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Abstract— A rapid parameter identification procedure for a
prototype automotive electromechanical brake is proposed, which
is intended to support post-production quality control checks and
quick model-based controller tunings. Instead of using a few
different experimental manoeuvres that isolate the identification
of certain sets of model parameters, an experiment optimisation
is performed to single out the best trajectory that facilitates the
identification of the whole sets of parameters while minimising
covariance in the estimates. Utilising the measurements obtained
from the optimal experimental design, both output error method
and prediction error method are employed to estimate the pa-
rameters, and their estimation accuracy and evaluation speed are
compared. Experimental results show that the proposed method
has reduced the time required for experiments significantly with
improved estimation accuracy.

I. INTRODUCTION

With throttle-by-wire now a standard feature in many produc-
tion vehicles, brake-by-wire (BBW) is envisaged to be the next
lineup by-wire technology to be implemented in future produc-
tion vehicles. Compared to the incumbent hydraulic brakes, BBW
technology offers reductions in components, space requirements,
environmental impact, and increased design flexibility through
software upgrades. BBW actuation is supported by the electrome-
chanical brake (EMB), where the clamping force is generated
from an electric motor connected through a reduction mechanism
to the brake pads.

Mathematical models that sufficiently represent the EMB and
capture the relevant dynamics are essential for simulation studies
and the construction of model-based controllers. Kwak et al. [1]
derived a ten degree-of-freedom physical model of an EMB with
planetary gear transmission similar to the EMB used in this work.
This model includes the dynamics of the sun gear, planetary
gears, nut carrier, spindle and brake calliper, whereby nonlinear
effects such as disc gap clearance, Coulomb frictions and gear
backlashes are considered. However, a lower-order model is
preferred to reduce the complexity in parameter identification
and controller development. Using modal analysis, Kwak et al.
[1] further shown that only the first mode is critical for the brake
operation, therefore analytically justified the use of one degree-
of-freedom lumped parameter model previously proposed by
Maron et al. [2] and Lüdemann et al. [3]. The lumped parameter
model can be derived using the torque equation around the motor
rotational axis, whereby the overall inertia, friction and stiffness
are individually lumped into three terms.

The conventional approach to parameter identification of EMB
involves running several distinctive experimental manoeuvres
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specifically designed for the identification of a certain set of pa-
rameters [4]. The stiffness characteristics is identified by varying
the motor position stepwise while measuring the clamp force.
The friction model parameters are determined from three sets of
experiments, namely the break-away tests without clamping for
static friction, break-away tests with clamping for load-dependent
static coefficient, and constant velocity tests for the Coulomb
friction, viscous friction and Stribeck characteristics. While these
tests are effective in identifying and validating the structure of the
model when it is first constructed, the time required for running
these experiments can be lengthy. In our case, nine hours of
data collection was needed even with scripted automatic testings,
in addition to extra hours for post-processing of data. During
the development phase, repeated parameter identification is often
required to evaluate the changes in parameters. Furthermore, pa-
rameter identification is also required for post-production quality
control checks and model-based controller tunings. It is clear that
the time required for executing the conventional EMB parameter
identification routine is overwhelming for these purposes.

In order to support quick quality control checks post-
production and rapid model-based controller tunings, a fast
and accurate parameter identification procedure is desirable.
Furthermore, measurement noises that are inevitable in practise
have to be taken into account for improved estimation accuracy.
These considerations motivate the development of a rapid model
parameter identification procedure for an EMB that incorporates
noise models.

The design of the rapid parameter identification procedure
is commenced in two stages. First, the optimal experimental
design is conducted in Section III. This involves planning an
optimal output trajectory to minimise the time required for
experiments needed to infer model parameters from a given
number of input-output measurements. This trajectory has to be
achievable by complying to the input and output constraints. In
the second stage, parameter estimation algorithms are devised in
Section IV to identify model parameters from the input-output
measurements. Output error method (OEM) and the prediction
error method (PEM) are formulated, followed by discussions on
their accuracy and ease of implementation. Finally, the parame-
terised EMB model is validated against independently obtained
experimental measurements.

II. ELECTROMECHANICAL BRAKE MODEL

An experimentally validated lumped parameter EMB model is
considered:

ẋ = f(x, Tm), y = h(x), (1)

where x = [x1, x2]T is the state with motor position x1 and
motor velocity x2, and Tm is the motor torque, which is also the

2013 Australian Control Conference November 4-5, 2013, Perth, Australia

ISBN 978-1-4799-2497-4 391 © 2013 Engineers Australia



input of the system. The nonlinear function f(·) is given by

f(x, Tm) =

[
x2

− 1
J (NFcl(x1)−T̄f (x1,x2)−Tm)

]
, (2)

where Fcl, J,N, Tf are the clamp force, lumped inertia, gear
ratio and friction torque respectively. The stiffness characteristics
is experimentally found to be hyperelastic, and can be modelled
using a third-order polynomial function:

Fcl(x1) =

{
k1x3

1 + k2x2
1 if x1 ≥ 0,

0 if x1 < 0.
(3)

The friction model adopted here is based on the friction model
presented in Hess and Soom [5], but modified to also include the
load-dependent friction coefficient and smooth transition at zero
velocity, given by:

Tf = Tvx2 +

(
TC +

Ts − TC
1 + (x2/ωs)2

)
tanh(εx2), (4)

where TC , Tv and ωs are the Coulomb friction torque, viscous
friction coefficient and the characteristic velocity of the Stribeck
friction respectively. The load-dependent static friction torque Ts
is given by

Ts(Fcl) = Ts0 + µsFcl. (5)

Additionally, a sufficiently large number is chosen for ε to match
the friction model to the experimentally obtained measurements.
The system output y comprises clamp force and motor velocity,
hence h(·) is given by

h(x) = [Fcl(x1), x2]T . (6)

Since the experimental measurements are conducted in discrete
sampling period and are influenced by noises, the continuous-
time EMB model (1) is discretised and augmented with noise
terms, given by:

xd(k + 1) = fd
(
xd(k), Tm(k), θ

)
+Bvvi(k),

yd(k) = h
(
xd(k), θ

)
,

ym(k) = h
(
xd(k), θ

)
+ vo(k), k = 1, . . . , n

(7)

where xd(k) = [x1(k), x2(k)]T is the state vector at time step k
and fd(·) is calculated using Euler forward method:

fd = xd(k) + tsf
(
xd(k), Tm(k), θ

)
, (8)

where ts is the step size. The plant dynamics are affected
by the process noise, vi(k) and the associated matrix Bv =
[0, 1/J ]T . The model output is given by yd(k), and the measured
output ym(k) is corrupted by the output measurement noise,
vo(k). Note that the EMB parameters, θ = [θ1, θ2, . . . , θ7]T =
[k1, k2, TC , Ts0, Tv, µs, ωs]

T are now included as function argu-
ments in the model (7), (8).

III. OPTIMAL EXPERIMENTAL DESIGN

A. Problem Formulation

Optimal experimental design is performed in order to plan an
output trajectory utilised for inferring the model parameters of
stiffness (3) and friction (4). To this end, the following standing
assumption is made.

Assumption 1. There exists an EMB plant model (7), (8) with
known bounds of the model parameters.

Remark 1. An initial calibration is typically performed, and a-
priori estimation of the model parameters is presumed to be
available. Additionally, the changes of gear ratio N and the lump

TABLE I
NOMINAL EMB MODEL PARAMETERS.

Parameter Value Unit Parameter Value Unit
J 2.91× 10−4 kg·m2 Friction:
N 2.63× 10−5 m/rad TC 7.67× 10−2 N·m

Stiffness: Ts0 4.68× 10−2 N·m
k1 −3.54× 10−1 N/rad3 Tv 4.46× 10−4 N·m·s/rad
k2 3.52× 10 N/rad2 µs 3.55× 10−5 N·m/N

Constraints: ωs 2.89× 10 rad/s
Fclmax 30000 N
Tmmax 3 N·m
x2 max 300 rad/s

inertia J are expected to be insignificant over time. On the other
hand, the stiffness and friction characteristics are prone to large
changes due to wear and operating conditions. Hence, during the
rapid parameter estimation process, N and J are assumed to be
fixed to reduce dimensionality and only θ is to be estimated.
The values listed in Table I are obtained using the conventional
identification approach alluded in the introduction, and will be
used as the initial estimates in the model-based approach to
experimental design.

During experimental design, the input is assumed to be free
from noise, that is vi = 0. However, the output is assumed to be
contaminated by noise with zero-mean and Gaussian distribution,
that is vo ∼ N(0, R). The sample covariance, R can be estimated
using [6]:

R =
1

n

n∑
k=1

(
ym(k)− yd(k)

)(
ym(k)− yd(k)

)T
. (9)

To obtain ym(·) and yd(·), an effort can be made to drive the
plant using an arbitrary chosen input trajectory {Tm(k), k =
1, . . . , n}, where the output ym(·) are measured. Then, the model
output, yd(·) can be computed from (7) using the input sequence.
Note in practise, process (or input) noise exists, although it is
difficult to estimate and incorporated in the experimental design.
In Section IV-B, the process noise will be estimated during
parameter estimation using PEM.

Furthermore, the experimental design can be approached by
optimising the input sequence, U := {Tm(k), k = 1, . . . , n}
such that the resultant output trajectory Y := {ym(k), k =
1, . . . , n} yields a small covariance in the estimated parameters.
As established by the Cramér-Rao lower bound, the lower bound
of the maximum likelihood estimator covariance is given by
the inverse of the Fisher information matrix, M−1, where M
is defined by [7]:

M = E

{(
∂ log p(Y |U, θ)

∂θ

)(
∂ log p(Y |U, θ)

∂θ

)T}
(10)

Assumption 2. The Fisher information matrix for the input
output pairings in the trajectory, M is nonsingular.

Remark 2. A nonsingular M is necessary for the existence of
the Cramér-Rao lower bound matrix and can be provided through
appropriate design of the experimental trajectory.

Several scalar measures of performance based on M is pre-
sented in [7], for example the A-optimality that minimises the
average variance of the parameters, where minU tr (M−1) is
evaluated; and the D-optimality that minimises the volume of
the uncertainty ellipsoids, where minU det (M−1) is evaluated.
The D-optimality is adopted in this work, attracted by its
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invariant property under scale changes in the parameters and
linear transformations of the output. This property is useful as
the parameters in the EMB model have magnitudes differing by
factors of up to 106.

To facilitate meaningful comparison between variances and to
avoid numerical sensitivity during optimisation, the parameters
and output are scaled. The normalised parameter vector, θ̄ =
[θ̄1, . . . , θ̄7]T is introduced as:

θ̄i = θi/θnom,i, i = 1, 2, . . . , 7 (11)

where the original parameters in SI units θ are normalised to
their respective nominal values θnom,i taken from Table I.

Note that the output ranges in SI units are given by{
h := [Fcl, x2]T : Fcl ∈ [0, 30000], x2 ∈ [−300, 300]

}
, where

they differ by two orders of magnitude. To avoid heavy
weighting on one of the measured outputs, h is scaled using the
following expression:

h̄ = diag
(
[10000−1, 100−1]

)
h. (12)

Note that the scaled outputs h̄ have reduced
ranges with the same order of magnitude, given by{
h̄ := [h̄1, h̄2]T : h̄1 ∈ [0, 3], h̄2 ∈ [−3, 3]

}
.

Additionally, the scalar performance measure of the D-
optimal design can be converted into a convex function us-
ing log det (M−1) [8]. It can be shown that M is a posi-
tive semidefinite symmetric matrix. If M is nonsingular, then
− log det (M) = log det (M−1) can be employed in order to
avoid numerical issues during the matrix inversion when M has
a bad condition number.

Procedure 1 (Optimal Experimental Design). Given n possible
input U := [Tm(1), . . . , Tm(n)]T , fd(·) subject to (8) and
Assumption 2, the optimal experimental trajectory is found by
the solution to the following:

min
U

− log det (M), (13)

s.t. xd(1) = x0,

xd(k + 1) = fd
(
xd(k), Tm(k), θ

)
, k = 1, . . . , n

|Tm(k)| ≤ Tmmax,

Fcl(k) ≤ Fclmax,

|x2(k)| ≤ x2 max. �

Note that the M in (13) can be numerically approximated
using the following expressions [6], [7]:

M =

n∑
k=1

(
dh̄k

dθ̄

)T
R−1

(
dh̄k

dθ̄

)
, (14a)

dh̄k

dθ̄
=
[
dh̄k
dθ̄1

dh̄k
dθ̄2

· · · dh̄k
dθ̄7

]
, (14b)

dh̄k

dθ̄i
=
∂h̄k

∂xTd
χθ̄i,k +

∂h̄k

∂θ̄i
, (14c)

χθ̄i,k+1 =
∂fd,k

∂xTd
χθ̄i,k +

∂fd,k

∂θ̄i
, (14d)

where χθ̄i,1 = 0 and k = 1, . . . , n. The arguments of fd(·) and
h̄(·) are omitted due to space constraint and the time steps are
written in the subscripts.

B. Results and Discussion

The optimisation problem (13) is solved using the derivative-
free optimisation function, ga in MATLAB, which is based on
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Fig. 1. Optimal trajectories for parameter identification versus various length
of experiments.

genetic algorithm [9]. The sampling period is chosen to be ts =
0.001 seconds. However, instead of updating the input sequence
U at every sampling period, it is updated once every 20th sample
to reduce the number of optimised variables. For the ease of
repeatability, the initial conditions of the experiment are selected
to be zero clamp force and zero velocity, where xd(1) = [0, 0]T .
Additionally, the length of experiment can also be freely chosen,
which can be reflected by varying the n in (13).

The input and output trajectories of four optimal experimental
designs with varying length from 0.1 seconds to 0.4 seconds
are plotted in Figure 1. Regardless of the length of experiments,
the clamp force trajectories resemble the step responses, while
the velocity transients consist of initial acceleration, operation at
maximum speed and deceleration to zero. The performance mea-
sures of the optimal trajectories with varying lengths are illus-
trated in Figure 2, where the criteria for A-optimal design and D-
optimal design are presented. The values of both criteria decrease
with the experimental length, implying a longer experiment
provides better parameter estimation accuracy. This is because
a longer experiment allows more time for full system dynamics
to be excited and more data to be collected. However, a decreased
rate of improvement is observed, where the reduction in the
performance criteria is more significant for experiments shorter
than 0.18 seconds. This is because for shorter experiments, the
maximum values of clamp force transients increase significantly
with a slight increase in experimental length. However, for exper-
imental length longer than 0.18 seconds, the maximum values of
clamp force trajectories remain at approximately 23 kN, as shown
in Figure 1. To strive a balance between the estimation accuracy
and the time required for experiments, 0.3 seconds is chosen
as the length of experiment, and the corresponding optimal
trajectory will be applied in the next subsection for parameter
estimation. While the experimental length of 0.2 seconds is
adequate, a slightly longer experiment is chosen to account for
situations where softer brake pads are used and longer rise-times
are expected compared to the nominal case.
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IV. PARAMETER ESTIMATION

The optimal experimental clamp force trajectory determined
in Section III is utilised as the reference trajectory.

Assumption 3. The EMB clamp force tracking controller is as-
sumed to be sufficiently fast relative to the optimal experimental
trajectory.

Remark 3. The dynamics of the transfer function from clamp
force reference to the actual clamp force can be neglected and
the clamp force profile identified in Section III can be explicitly
used in the parameter identification. A near-time-optimal clamp
force controller has been suggested in [10].

The experimentally obtained input and output measurements
will be used to infer the EMB model parameters in the following
using both OEM and PEM.

A. Output Error Method (OEM)

The OEM assumes that the noise only contaminates the output
measurements, i.e. there is no process noise. The output measure-
ment noise is assumed to be zero-mean Gaussian vo ∼ N(0, R).
Note exact knowledge of initial condition x0 is not available due
to noise.

Procedure 2 (Parameter estimation using OEM). Given
the plant model (7) and a sequence of measured input
U := [Tm(1), . . . , Tm(n)]T and measured output Y :=
[ym(1), . . . , ym(n)]T , the OEM finds the model parameters θ and
the initial condition x0 in order to minimise the error between
the measured and the model outputs, which can be formulated
as the following [6]:

min
x0,θ

{
1

2

n∑
k=1

[(
ym(k)− yd(k)

)T
R−1

(
ym(k)− yd(k)

)]
+
n

2
log det (R)

}
s.t. xd(1) = x0, (7) and (9). �

B. Prediction Error Method (PEM)

The PEM takes account of both the output measurement noise
and the process noise, given by vo ∼ N(0, R) and vi ∼ N(0, Q)
respectively. Note that the effect of input measurement noise can
be included in the process noise.

Instead of relying on the model output from (7), PEM utilises a
one-step ahead prediction model constructed using the extended

1 2 3 4

Fig. 3. Bench top experimental setup with data acquisition board (1), PC (2),
EMB (3), and brake calliper stand with load cells (4).

Kalman filter (EKF). The EKF is a nonlinear version of the
Kalman filter that involves repeated linearisation of the model
during evaluation [11]. It is evaluated at two stages, namely the
predict phase and the update phase. During the predict phase,
the states and the covariance of the states are predicted one-step
ahead using measurements at k−1, evaluated using the following:

x̂(k|k − 1) = fd
(
x̂d(k − 1|k − 1), Tm(k − 1), θ

)
,

P (k|k − 1) = A(k − 1)P (k − 1|k − 1)A(k − 1)T +BvQB
T
v ,

(15)

where A(k − 1) is the state transition matrix. These predictions
are subsequently corrected in the update phase using measure-
ments at k. This involves the calculation of the Kalman gain,
given by

K(k) = P (k|k − 1)C(k)TS(k)−1, (16)

where S(k) denotes the residual covariance, obtained from
S(k) = C(k)P (k|k − 1)C(k)T +R. (17)

The states and covariance are then updated using the following
expressions with the Kalman gain:

x̂(k|k) = x̂(k|k − 1) +K(k)
[
ym(k)− h(x̂d(k|k − 1), θ)

]
,

P (k|k) =
[
I −K(k)C(k)

]
P (k|k − 1).

(18)

The state transition matrix A(k − 1) and the observation matrix
C(k) are defined to be the following Jacobians:

A(k − 1) =
∂fd

∂xTd

∣∣∣∣∣
x̂(k−1|k−1),Tm(k−1)

, C(k) =
∂h

∂xTd

∣∣∣∣∣
x̂(k|k−1)

(19)

Procedure 3 (Parameter estimation using PEM). Given the EKF
(15)–(19) and a sequence of measured input U and measured
output Y , the PEM finds the model parameters θ, the initial
condition x0 and the process noise covariance Q in order to
minimise the error between the measured and the predicted
outputs, which can be formulated as the following [6]:

min
x0,θ,Q

{
1

2

n∑
k=1

[(
ym(k)− ŷd(k)

)T
S−1

(
ym(k)− ŷd(k)

)]
+
n

2
log det (S)

}
s.t. x̂d(1|1) = x0, P (1|1) = P0, (15)–(19),

ŷd(k) = h
(
x̂(k|k), θ

)
, k = 1, . . . , n �

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

Utilising the optimal experimental (OE) design derived in
Section III, the experiment was repeated 20 times using an
EMB benchtop test rig illustrated in Figure 3 and described
in [10]. Employing the experimentally measured clamp force,
motor velocity and motor torque illustrated in Figure 4, model
parameters are estimated using OEM and PEM. To ensure a
fair comparison the parameters are normalised with (11) and the
nominal values are given in Table I.
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TABLE II
ESTIMATES OF THE NORMALISED PARAMETERS.

Norm. OEM + OE PEM + OE OEM + Non-OE
Para. Mean Variance Mean Variance Mean Variance
θ̄1 0.799 0.00416 0.844 0.00433 0.815 0.00488
θ̄2 0.902 0.00324 0.936 0.00090 0.891 0.00440
θ̄3 1.662 0.01432 1.668 0.00603 1.609 0.00959
θ̄4 0.930 0.01488 0.921 0.00848 0.925 0.01999
θ̄5 2.216 0.05971 2.450 0.06599 1.660 0.01876
θ̄6 1.051 0.01833 0.875 0.00236 0.962 0.02159
θ̄7 0.426 0.01217 0.406 0.02671 0.384 0.01326

a) OEM vs. PEM: The normalised estimated parameters
are listed in Table II. Due to the presence of noise, the estimated
parameters obtained from each set of experiment are not exactly
identical, as demonstrated in Figure 5. To assist with compar-
ison, the means of the estimations given by both methods are
calculated, and are found to match closely.

However, discrepancies are observed between the estimations
and the nominal values. To check the validity of these values,
simulations results are compared against independently obtained
experimental data. From the step responses illustrated in Figure 6,
the simulated responses using parameters obtained from both
OEM and PEM visually overlap with the experimentally obtained
responses, indicating a satisfactory estimation.

Simulated responses obtained using the nominal parameter
values are also plotted in Figure 6, and are compared to responses
obtained using the newly acquired optimised parameters. It is
evident that the simulated responses obtained using the optimised
parameters match the experimental results better. This result
indicates that the optimised parameters are more accurate than
the nominal values.

The performance of estimation can be compared using the
variance of the estimated parameters. The sum of variances given
by OEM and PEM are 0.00480 and 0.00388 respectively. Since
the sum of variances given by the PEM is smaller, this suggests
that it renders better estimations. This can also be examined
by comparing the 50% confidence region depicted in Figure 5,
where the estimations provided by PEM have smaller confidence
regions. This improvement is resulted from the consideration of
process noise in the PEM, where the covariance Q is estimated to
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Fig. 6. Validation of parameterised model using the nominal parameters from
Table I and the estimated parameters from Table II.

be 0.00020154, suggesting that the motor torque measurements
have errors with standard deviation of 0.0142 Nm. Note that
the estimated standard deviation in torque measurement error is
relatively substantial compared to the friction torque at very slow
speed, as it has the same order of magnitude compared to the
break-away friction torque.

Further model validation is performed using experiment with
sinusoidal trajectory, as shown in Figure 7. There are some
disagreements in the simulated and the experimental responses.
A closer look at the velocity responses indicates that the model
shows lockups when the velocity crosses zero while the clamp
force transient is at its peak. However, the velocity lockups are
not observed in the experimental measurements. This suggests
that the response is very sensitive at very low speed, as a small
error in motor torque measurement or minor estimation error in
friction characteristics at very low speed may result in velocity
lookups, which then leading to significant deviation in the
clamp force trajectory. Nevertheless, in the period where velocity
lookups do not happen, for example in between 1.5 seconds to
1.7 seconds, the simulated responses are qualitatively matching
the measurements well.
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Fig. 7. Validation of parameterised models with sinusoidal trajectory.

Fig. 8. Kalman estimates for a sinusoidal tracking response.

The correction mechanism provided by the EKF is significant
for model response sensitive to the input measurement noise.
Figure 8 shows the mean and covariance estimates provided
by the extended Kalman filter for the sinusoidal trajectory. In
the clamp force response, the mean and the region bounded by
the variance are visually overlapping, implying a good estimate
is obtained. On the other hand, the variance of the estimated
velocity increases significantly at zero-crossings. However, due
to the correction feature, lookup is not noticeable in the estimated
velocity. Therefore, the parameter estimation provided by the
PEM is more robust against input measurement noise. On the
other hand, due to the inclusion of EKF, PEM requires ten times
more computational time compared to OEM in this application.

b) Optimal experimental design vs. non-optimal experimen-
tal design: As postulated in Section III, improved estimation
accuracy is expected from the optimal experimental design.
Utilising the non-optimal experiment transients with equal ex-
perimental length, as shown in Figure 4, the OEM is employed
to estimate the model parameters. The estimates are listed in
Table II and the confidence region is plotted in Figure 5. Simu-
lations are also run using the estimated parameters and plotted in
Figure 6. Compared to the experimental measurements, overshoot
in motor velocity is observed. Additionally, the trajectories of

clamp force and velocity deviate from the measurements after
0.2 seconds, hinting an underestimation of friction torque. The
sum of variances of the estimated parameters is 0.00729, which
is significantly higher compared to the optimal design.

The major attractive feature offered by the optimal experi-
mental design and the parameter estimation proposed in this
paper is the speed and accuracy in obtaining a useful set of
model parameters for an EMB. Compared to the nine hours
of data collection needed for the running four distinctive sets
of steady state experiments [4], the rapid procedure proposed
in this paper only requires one minute of data collection. This
is because the full system dynamics is exploited in the rapid
procedure and transient responses are used to infer the model
parameters, as opposed to the steady state responses used in the
slower routine. Moreover, the parameter estimations provided by
the rapid procedure are also more accurate, as demonstrated by
the validation results in Figure 6.

VI. CONCLUSIONS

The need for a rapid model parameter identification for an
electromechanical brake (EMB) is addressed in this paper. First,
the optimal experimental trajectory that minimises the data col-
lection time while ensuring the measurements provide sufficiently
rich information about the plant dynamics is determined —
needed for accurate estimation of parameters.

As opposed to the nine hours of data collection involved in
the parameter identification routine proposed in [4], a total of
one minute of experimentation is conducted utilising the optimal
experimental trajectory. It was observed that the PEM provides
a marginally better estimation accuracy compared to the OEM,
but required significantly longer evaluation time. This may be an
important consideration for practical implementation.
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