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ABSTRACT

Four methods for compression ratio estimation of an engine
from cylinder pressure traces are described and evaluated
for both motored and fired cycles. The first three meth-
ods rely upon a model of polytropic compression for the
cylinder pressure, and it is shown that they give a good es-
timate of the compression ratio for simulated cycles at low
compression ratios. For high compression ratios, this sim-
ple model lack the information about heat transfer and the
model error causes the estimates to become biased. There-
fore a fourth method is introduced where heat transfer and
crevice effects are modeled, together with a commonly used
heat release model for firing cycles. This method is able to
estimate the compression ratio more accurately at low as
well as high compression ratios.

INTRODUCTION

A newly developed engine, which can continously change
the compression ratio, has been developed at SAAB Au-
tomobile AB. The ability to change the compression ratio
opens up new opportunities to increase the efficiency of
SI engines by down sizing and super charging. But if the
compression ratio gets stuck at too high ratios, the risk of
engine destruction by heavy knock increases rapidly. If the
compression ratio gets stuck at too low ratios, we get an
unnecessary low efficiency, and therefore an unnecessary
high fuel consumption. It is therefore vital to monitor
and diagnose the continuously changing compression ratio
on-line. Due to geometrical uncertainties, a spread of the
compression ratio among the different cylinders is inher-
ent [1], and since it is hard to measure the compression
ratio directly, estimation is required. The questions asked
here are related to: 1) accuracy, 2) convergence speed and
3) over all convergence. The accuracy is of course limited
due to measurement noise and model uncertainties.
The approach investigated is to use cylinder pressure to
estimate the compression ratio. A desirable property of
the estimator is that it must be able to cope with the un-
known offset introduced by the charge amplifier, changing

thermodynamic conditions, and possibly also the unknown
phasing of the pressure trace in relation to the crank angle
revolution.
Two models of cylinder pressure with different complexity
levels, a polytropic model and a single-zone zero-dimensional
heat release model [2] are used. To estimate the param-
eters in the cylinder pressure models, three different op-
timization algorithms minimizing the prediction error are
utilized, namely:

1. A linear subproblem approach, where groups of the
parameters are estimated one at a time and the pre-
dictor function is rewritten to be linear for the group
of estimated parameters. Thus we can use linear re-
gression at every substep for estimating the particu-
lar group of parameters.

2. A variable projection method [3], where one itera-
tion consists of two substeps: The first substep esti-
mates the parameters that are linear in the predictor
function, holding the nonlinear constant. The second
substep is to perform a line search in the direction of
the negative gradient at the parameters found from
substep one. This method classifies as a separable
least squares method.

3. Levenberg-Marquardt method, i.e. a Gauss-Newton
method, where we here use numerical approxima-
tions of the gradient and the hessian.

Based on these models, four different methods are devel-
oped and used for compression ratio estimation for both
motored and fired cycles.

THE SVC ENGINE

The principle of the SVC (Saab Variable Compression) en-
gine is shown in Figure 1. By tilting the mono-head the
compression ratio can be continuously varied between 8
and 14. The geometric data for the SVC engine are given
in Appendix A.
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Figure 1: Schematic of engine with variable compression.
c©SAAB Automobile AB

SVC volume function

The cylinder volume sweep for the SVC is different in
appearance compared to the standard volume function,

Vd(θ) = πB2a
4 ( l

a + 1 − cos θ −
√

( l
a )2 − sin2 θ) , since the

geometry of the crank in relation to the cylinder changes
when the cylinder head is tilted. This motivates the study
done in [4] which is only briefly recapitulated here.
The cylinder volume V SV C(rc, θ) for the SVC engine can
be written as

V SV C(rc, θ) = V SV C
c (rc) + Vd(θ − θcorr(rc)) (1)

where θ − θcorr(rc) = θ′ is the corrected crank angle, rc is
the compression ratio and V SV C

c is the clearance volume
for the SVC engine. The dependence of the correction term
θcorr(rc) for rc is shown in Figure 2. Simulations show that
the relative error between the SVC volume function and
the standard volume function is less than 0.6 % for every
crank angle.
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Figure 2: Top dead center correction as function of com-
pression ratio.

CYLINDER PRESSURE MODELING

Two models are used for describing the cylinder pressure
trace and they are refered to as the polytropic model and
the standard model.

Polytropic model A simple but efficient model is the poly-
tropic compression model,

p(θ)V (θ)n = C (2)

where p is the cylinder pressure, V (θ) is the volume func-
tion, n is the polytropic coefficient and C is a cycle-to-cycle
dependent constant. The model is valid during the com-
pression phase of the engine cycle, but not during combus-
tion. This means that for a firing cycle only data between
inlet valve closing (IVC) and start of combustion (SOC)
will be used, but for motored cycles all data between inlet
valve closing (IVC) and exhaust valve opening (EVO) is
utilized.
Standard model The article by Gatowski et.al. [2] devel-
ops, tests and applies the heat release analysis procedure
used here. It maintains simplicity while still including the
effects of heat transfer and crevice flows. The model has
been widely used and the phenomena that it takes into ac-
count are well known [5]. Therefore, only a short summary
of the model is given here. The pressure differential dp can
be written as

dp =
δQch − γ

γ−1 p dV − δQht

1
γ−1 V + Vcr

Tw

(
T

γ−1 − 1
b ln

(
γ−1
γ′−1

)
+ T ′

) (3)

This is an an ordinary differential equation that easily can
be solved numerically if a heat-release trace, δQch is pro-
vided. For this purpose the well-known Viebe function is
used in its differentiated form.
The Viebe function has the following form

xb(θ) = 1 − e−a( θ−θ0
∆θ )m+1

(4)

and its differentiated form is

d

dθ
xb(θ) =

a (m + 1)
∆θ

(
θ − θ0

∆θ

)m

e−a( θ−θ0
∆θ )m+1

where xb is the mass fraction burned, θ0 is the start of the
combustion, ∆θ is the total combustion duration, and a
and m are adjustable parameters. This model is valid be-
tween inlet valve closing (IVC) and exhaust valve opening
(EVO).

ESTIMATION METHODS

Cylinder pressure referencing

Piezoelectric pressure transducers are used for measuring
the in-cylinder pressure, which will cause a drift in the
pressure trace. This drift is assumed to be constant dur-
ing one engine cycle, and can be estimated with various
methods [6]. Here the measured pressure trace pm(θ) will
be referenced by comparing it to the intake manifold pres-
sure pman just before inlet valve closing (IVC), for several
samples of pman. Due to standing waves in the intake
runners at certain operating points, the referencing might
prove to be insufficient, so a second pressure referencing
will be made for method 3 and 4.
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Method 1

The first method estimates the polytropic exponent n, the
compression ratio rc and the constant C in the polytropic
model. The method iteratively solves two problems, one to
determine the polytropic exponent n, and the other to de-
termine the compression ratio rc. By using the polytropic
model (2)

p(θ)(Vc(rc) + Vd(θ′))n = C (5)

the compression ratio rc can be estimated by iteratively
estimating the clearance volume Vc (i.e. rc) and the poly-
tropic coefficient n.
Substep 1: The polytropic coefficient n is assumed to be
known and the clearance volume is estimated by rewriting
(5). This yields a least square subproblem which is linear
in the parameters C1 and Vc according to

Vd(θ′) = C1p(θ)−1/n − Vc(rc) (6)

where C1 = C1/n and Vc are the parameters to be esti-
mated.
Substep 2: The polytropic coefficient n is then estimated
using the estimate of Vc from substep 1. Applying loga-
rithms on (5) yields

ln p(θ) = C2 − n ln(Vd(θ′) + Vc(rc)) (7)

which is linear in the parameters n and C2 = lnC. The
linear parameters are estimated and we return to substep
1. This procedure is repeated until convergence.

Method 2

The second method also uses the polytropic compression
model (2), together with a variable projection algorithm.
A nonlinear least squares problem min

x
||r(x)||2 is separable

if the parameter vector x can be partitioned such that x =
(y z)T

min
y

||r(y, z)||2 (8)

is easy to solve. If r(y, z) is linear in y, r(y, z) can be
rewritten as

r(y, z) = F (z)y − g(z) (9)

For a given z, this is minimized by

y(z) = [FT (z)F (z)]−1F (z)g(z) = F †(z)g(z) (10)

using linear regression. The original problem can then be
rewritten as

min
z

||r(y, z)||2 = min
z

||g(z) − F (z)y(z)||2 (11)

and

r(y, z) = g(z) − F (z)y(z) = g(z) − F (z)F †(z)g(z)
= (I − PF (z))g(z) (12)

where PF (z) is the orthogonal projection onto the range of
F (z), thus the name variable projection method.
The polytropic model in (5) is rewritten as

ln p(θ) = C2 − n ln(Vd(θ′) + Vc) (13)

which is the same equation as (7). This equation is linear
in the parameters C2 = lnC and n and nonlinear in Vc

and applies to the form given in (9). A computationally
efficient algorithm is described in [3] and is summarized
for our application in Appendix B. For this application
the method converges within four iterations.

Method 3

The third method uses the polytropic compression equa-
tion (2) as methods 1 and 2 did, but a pressure sensor
model is added according to

p(θ) = pm(θ) + ∆p (14)

in order to make the pressure referencing better. The crank
angle phasing ∆θ of the volume and pressure traces is also
included in the polytropic model, which then can be writ-
ten as

p(θ) = pm(θ′ +∆θ)+∆p = C · (Vd(θ′ +∆θ)+Vc)−n (15)

Based on Equation 15 the following nonlinear least squares
problem is formulated

min
x

||r||2 = min
x

N∑
i=1

(pm(θi)+∆p−C ·(Vd(θi+∆θ)+Vc)−n)2

(16)
A Levenberg–Marquardt method, see e.g. [7], is used to
solve this nonlinear least squares problem. The problem
has good numerical properties, the Levenberg–Marquardt
method has second order local convergence and for this
application the method converges within ten iterations.

Method 4

The fourth method uses the single zone model (3) from [2]
which includes heat transfer and crevice effects, and it will
be used to improve the estimation accuracy. The free pa-
rameters which were also used in [8] are summarized in Ap-
pendix C. Due to the complexity of this model, the sublin-
ear approach and variable projection approach are not suit-
able for optimization, and therefore only the Levenberg–
Marquardt method is used. The increased complexity of
the model also causes identifiability problems for the esti-
mated crevice volume Vcr and the estimated compression
volume Vc, which appear to be strongly correlated. There-
fore during estimation the crevice volume is set constant.
As in method 3, the residual between modeled and mea-
sured cylinder pressure is formed (compare (16)) and min-
imized in a least squares sense using the same Levenberg–
Marquardt method as before. This approach has earlier
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been successfully applied in [9] for motoring cycles, but
here a heat-release model is included to cope with firing
cycles.

Summary of methods

The following table shows the relation between the differ-
ent methods.

Polytropic Model Standard Model
Opt alg 1 Method 1
Opt alg 2 Method 2
Opt alg 3 Method 3 Method 4

For firing cycles, methods 1, 2 and 3 will only use cylinder
pressure data between inlet valve closing (IVC) and start
of combustion (SOC), in contrast to method 4 which will
use data from the entire closed part of the engine cycle,
i.e. between inlet valve closing (IVC) and exhaust valve
opening (EVO). For motoring cycles, all data during the
closed part of the cycle is utilized by all methods.

SIMULATION RESULTS

Since the true values of the compression ratios of the engine
are unknown, simulations of the cylinder pressure trace are
necessary to perform and use for evaluating the four pro-
posed methods. Only then can it be determined whether
the estimates are unbiased or not.
Cylinder pressure simulations were made using the stan-
dard model (3) with representative parameters (Appendix
C). Sixty different realizations of Gaussian noise with
mean value 0 and standard deviation 2 kPa were then
added to the simulated cylinder pressures for firing and
motored cycles respectively. The following sections shows
the typical behavior of the estimation methods for a repre-
sentative cycle at a high compression ratio rc = 13, where
the effects of heat transfer are more likely to show due
to the higher pressure and temperature in the cylinder.
Residuals for all methods are found in figures 4 to 10 and
figures 12 and 13 show a summary of all estimations for
motored and fired cycles respectively. In the summary sec-
tion, statistics of the performance for the four methods are
summarized for both firing and motoring cycles.

Method 1

Method 1 converges in a few iterations for almost all sim-
ulated cylinder pressures, both for firing and motored cy-
cles. Figure 3 shows the simulated cylinder pressure at
compression ratio rc = 13, during the compression and
expansion phase of a motored cycle. Using the simulated
cylinder pressure an estimation of the parameters is made,
and from these a residual from the simulated and esti-
mated cylinder pressure can be found. In Figure 4, the
residual corresponding to the cylinder pressure in Figure 3
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Figure 3: Simulated cylinder pressure for a motored cycle
at rc = 13.

is shown. At the beginning of the compression phase and
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Figure 4: Difference between estimated and simulated
cylinder pressure using method 1, for a motored cycle at
rc = 13.

at the end of the expansion, the model and estimation
method works satisfactory, but not in between where most
of the heat transfer occurs. This model inaccuracy is partly
covered by allowing the polytropic exponent to be small.
Convergence can not be guaranteed for this method, since
the predictor function is rewritten in every substep. If the
same predictor function could be used at every substep, the
problem would be bilinear in the parameters and converge
linearly [3]. If the stopping criteria is based upon the con-
vergence of the estimated parameter values, the situation
from figure 5 can occur, where the estimated parameters
move away from the true parameter values. On the other
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Figure 5: The estimated values of Vc and n at every substep
for method 1 when diverging.

hand, if the stopping criteria is based upon the value of
the loss function, defined as the sum of squared residuals,
the algorithm will stop in time, but the estimate will most
likely be biased. Using the loss function, the method stops
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in one iteration, i.e. two substeps.

Methods 2 and 3

Methods 2 and 3 show the same lack of model accuracy as
method 1, although the estimated compression ratio be-
comes nearly unbiased. Looking at the residuals in Fig-
ure 6 (method 2) and Figure 7 (method 3), stemming from
the simulated cylinder pressure in Figure 3, we see the
same systematic deviation between the estimated model
and the simulation as was seen for the previous methods.
But when lowering the compression ratio the model be-
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Figure 6: Difference between estimated and simulated
cylinder pressure using method 2, for a motored cycle at
rc = 13.
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Figure 7: Difference between estimated and simulated
cylinder pressure using method 3, for a motored cycle at
rc = 13.

comes more accurate, the residual in Figure 8 does not
show the same systematic deviation as the residual in Fig-
ure 7 did. This is due to that the heat transfer and crevice
effects are smaller, which is due to the lower pressure and
temperature rendering from the lower compression ratio.
The systematic deviation for the residuals are expected
since the crevice flow and heat transfer are not considered
here and it stresses that these phenomena must be taken
into account when a better estimate is desired. Therefore
in method 4 a model for the heat transfer and crevice flow
is included, together with a heat release model.

Method 4

Reasonable enough, the more complex method also shows
the best ability to adjust to the simulated cylinder pressure
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Figure 8: Difference between estimated and simulated
cylinder pressure using method 3, for a motored cycle at
rc = 8.

and explain the physical phenomena taking place in the
cylinder. The residual between simulated and estimated
cylinder pressure for a motored cycle at rc = 13 is shown
in Figure 9. The residual looks like white noise, suggest-
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Figure 9: Difference between estimated and simulated
cylinder pressure using method 4, for a motored cycle at
rc = 13.

ing that the estimation method can explain the data fully.
This is also the case for firing cycles, see Figure 10 where
the simulated and estimated cylinder pressure is shown
together with the residual. As mentioned in Estimation
methods, the strong correlation between the crevice vol-
ume Vcr and the compression volume Vc, shown in fig-
ure 11, makes the estimated compression ratio become bi-
ased if the crevice volume is also estimated. Therefore the
crevice volume is held constant during the estimations.

Summary

Comparing the residuals from all methods, it is obvious
that method 4 can explain the data most accurately. This
suggests that the estimation of the compression ratio be-
comes best for method 4, which is also shown in Figure 12
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Figure 10: Difference between estimated and simulated
cylinder pressure using method 4, for a fired cycle at
rc = 13.
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Figure 11: Depence of estimation bias in crevice volume
Vcr and estimation bias in clearance volume Vc.

for motored cycles, where the mean and 95% confidence
interval of the estimated compression ratio is shown for all
four methods. The 95% confidence interval is computed by
assuming that the model is correct and that the estimation
error asymptotically converges to a Gaussian distribution.
In the figure the real compression ratios are the integer
values 8 til 13 and for convenience, method 1 is moved to
the left, method 2 is moved a little to the left (and to the
right of method 1), method 3 is moved a little to the right
and method 4 is to the right of method 3. The estimates
should be as close to the horizontal lines as possible.
Method 1 over estimates the compression ratio, a system-
atic discrepancy that becomes larger for higher compres-
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Figure 12: Mean and 95% confidence interval of the esti-
mated compression ratio for motored cycles using the four
methods, compared to the real compression ratio.

sion ratios. As mentioned before, this is allowed by letting
the polytropic coefficient become small. Methods 2 and 3
on the other hand under estimates the compression ratio,
and this systematic fault increases with the compression
ratio, in the same way as for method 1. Methods 2 and
3 give approximately the same estimates and 95 % con-
fidence intervals, suggesting that the more time efficient
one should be used. Method 4 is able to estimate the com-
pression ratio correctly, due to the higher flexibility of the
model.
For firing cycles the same effect as for the motoring cycles
appears and is even more pronounced as shown in Fig-
ure 13. Table 1 summarizes the standard deviation and
the maximum relative error of the estimated compression
ratio for 60 cycles respectively. The maximum error is
smallest for method 4 both for firing and motoring cycles.
The standard deviation is small for all methods. Surpris-

Method Type Std dev Max rel error
1 Fired 0.0319 0.0326

Motored 0.0175 0.0258
2 Fired 0.1236 0.0396

Motored 0.0243 0.0202
3 Fired 0.1284 0.0251

Motored 0.0112 0.0144
4 Fired 0.0620 0.0112

Motored 0.0156 0.0029

Table 1 Table showing the standard deviation and max-
imal relative error of the estimated compression
ratio rc, for every method using simulated firing
and motoring cycles respectively.
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Figure 13: Mean and 95% confidence interval of the es-
timated compression ratio for fired cycles using the four
methods, compared to the real compression ratio.

ingly, the compression ratio estimation is biased even for
method 4 for firing cycles.
To conclude, the first three methods rely upon the assump-
tion of a polytropic compression and expansion and it is
shown that this is sufficient to get a rough estimate of
the compression ratio, especially for low compression ratios
and by letting the polytropic exponent to become small.
But for higher rc:s it is important to take the heat transfer
into account, and then only method 4 is accurate enough.
It is interesting to note that for diagnostic purposes, all
four methods will be able to detect when the compression
ratio gets stuck at a too high or too low level.
The time complexity for the four methods is quite diverse,
and is summarized in table 2. The simulations were made
using Matlab 6.1 on a SunBlade 100, which has a 64-bit
500 Mhz processor.

Method Time # Iter # Parameters
1 11.2 ms 1 3
2 23 ms 3 3
3 145 ms 5 5
4 2 ∗ 105 ms 9 12

Table 2 Table showing the mean time and mean num-
ber of iterations in completing one cycle, together
with the number of parameters for all methods.

FUTURE WORK

The compression volume Vc and the crevice volume Vcr

are difficult to decouple using the current standard model

from [2]. This issue will be looked into more detail, and
will perhaps require a new model for the crevice effect.

CONCLUSIONS

During driving, all methods are able to detect if the com-
pression ratio is stuck at a too high or at a too low level.
This is sufficient both for safety reasons, where the com-
pression ratio can be too high and engine knock is the con-
sequence, and for fuel economic reasons, where a too low
compression ratio will lead to higher fuel consumption.
The four estimation methods all give good estimations for
low compression ratios on simulated data. But for high
compression ratios, the heat transfer has to be accounted
for and therefore the more complex method 4 gives a better
estimation than the simpler and more time efficient meth-
ods 1, 2 and 3. Method 2 is preferable to method 3 due to
its faster convergence.
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A SVC – GEOMETRIC DATA

Geometric data for the crank and piston movement are
given in the following table.
Property Abbrev. Value Unit
Bore B 68 [mm]
Stroke S 88 [mm]
Crank radius a = S

2 44 [mm]
Connecting rod l 158 [mm]
No. of cylinders 5 [-]
Displacement volume Vd 1598 [cm3]

B VARIABLE PROJECTION ALGORITHM

An computationally efficient algorithm is described in [3]
and is summarized here. Let xk = (yk, zk) be the current
approximation.

1. Solve the linear subproblem

min
δyk

||F (zk)δyk − (g(zk) − F (zk)yk)||2 (17)

and set xk+1/2 = (yk + δyk, zk).

2. Compute the Gauss-Newton direction pk at xk+1/2,
i.e. solve

min
pk

||C(xk+1/2pk + r(yk+1/2, zk)||2 (18)

where C(xk+1/2 = (F (zk), rz(yk+1/2, zk)) is the Ja-
cobian matrix.

3. Set xk+1 = xk+1/2 + αkpk and return to step 1.

The polytropic model in (5) is rewritten as

ln p(θ) = C2 − n ln(Vd(θ′) + Vc) (19)

This equation is linear in the parameters C2 = lnC and n
and nonlinear in Vc and applies to the form given in (9).
With the notation from the algorithm above, the parame-
ters are x = (C2 n Vc)T , where y = (C2 n)T and z = Vc.
The measurement vector is formed as g = − ln p and the
regression vector as F = [−I ln(Vc + Vd(θ′))].

C PARAMETERS IN SINGLE ZONE MODEL

The parameters used in the single zone model (3) are sum-
marized in the following table:

Par. Description Value
γ300 constant ratio of specific heat [-] 1.3

b slope for ratio of specific heat [K−1] −8 · 10−5

C1 heat transfer parameter [-] 1
C2 heat transfer parameter [-] 0.5
θ0 crank angle phasing [deg ATDC] -0.5
θig ignition angle [deg ATDC] -15
θd flame development angle [deg ATDC] 20
θb rapid burn angle [deg ATDC] 20
Vc clearance volume [cm3] 26.6–45.7
Vcr single aggregate crevice volume [cm3] 0.16
p0 bias in pressure measurements [kPa] 10
Tw mean wall temperature [K] 400
Tivc mean charge temperature at IVC [K] 330
pivc cylinder pressure at IVC [kPa] 100
Qin released energy from combustion [J] 500
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