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Abstract— Fault diagnosis is important for automotive vehicles, calculated for arecuy, these describes the possible faulty com-
due to economic reasons, such as efficient repair and fault ponents that are somehow involved with thiSU'S operation.
prevention, and legislative reasons, mainly safety and pollution. |, the set of local diagnoses, there are some diagnoses that are

Embedded systems in vehicles includes a large number of . - . .
electronic control units, that is connected to each other via an more likely than the other diagnoses, e._g. a dlagnos_ls that .only
electronic network. Many of the current diagnostic systems use includes a sub-set of the components in another diagnosis. If
pre-compiled diagnostic tests, and fault-logs that stores the results all the local diagnoses in all thecus were merged together,

from the tests. To improve the diagnostic system, fault localization the result would be theylobal diagnosesi.e. the diagnoses
in addition to the existing fault detection is wanted. for the complete system.

Since there are limitations in processing power, memory, and ] .
network capacity, an algorithm is searched for that uses stated After such a simple merge _Of the local diagnoses, one cogld
diagnoses in the control units to find the diagnoses for the find that some of the local diagnoses, that from a local point

complete system. Such an algorithm is presented and exemplified of view seemed to be most likelys in fact not at all most

in the article. likely considering the complete systehibw to calculate the
The embedded system used in a Scania heavy duty vehicle, has Y likelv ql bgl di P f y the | | di is th
been used as a case study to find limitations in the embedded more likely global diagnoses Irom the local diagnoses IS the

system, and realistic requirements on the algorithm. topic of this paper.
Copyright © 2004 J. Biteus, M. Jensen, & M. Nyberg Notice that an alternative when searching for the global
diagnoses, would be to start all over again from s,

] ) ~ however, since the local diagnoses already have been com-
In most modern automotive vehicles, seveméctronic puted, it might be preferable to use these.

control units(Ecu) communicates over an electronic network.
EachEecu is usually connected to one or sevetamponents
e.g. sensors and actuators, and to make sure that the co
nents are operating correctly, they anenitoredby theEecus.
Often, precompiled diagnostic testsvhich can be simple or
complex, are used to perform the monitoring. A. A Typical Embedded System

If an Ecu, with the use of tests, finds that one or several
components are showing abnormal behaviors, one or severdlany vehicles, including Scania’s heavy-duty vehicles, have
diagnostic trouble code¢dTC) are created. Thesetcs are a controller area networkCAN) which connects severalcus
read out by technicians, and will assist them in locating the each other. Each of thecus, is further connected to sensors
faulty component or components. When reading tites, and actuators, and both sensor values and control signals can
it might be difficult to localize the faulty component, orbe shared with the oth&cus over the network. An example of
components, among all the components that are includadEecy, is the engine management system, which is connected
in the DTCcs. The reasons for this are that eabic can to sensors and actuators related to the engine. In Fig. 1, a
involve multiple components, and that the sheer volume obnfiguration of the current Scania embedded system is shown.
DTCs might be overwhelming for the technician. Due to thif includes three separateaN buses, red, yellow, and green,
difficulty, the reparation times might be prolonged, and nonvhich are connected to the coordinatmu. The coordinator
faulty components might unnecessary be replaced. acts as a router, making sure that no messages are forwarded to

Therefore, it is preferable to present a list of the possibBny other bus unless it is necessary. There are between 20 and
faulty components that might have caused theses, i.e. the 30 ECus in the system, depending on truck’s type and outfit,
diagnoseghat explain thepTcs should be found. and between 4 and 110 components are connected to each

The diagnoses that are calculated for a siregles are here Ecu. The ECus’ cpus have a clocking speed of 8 to 64 MHz,
denoted thdocal diagnosesWhen local diagnoses have beemnd a memory capacity of 4 to 150 kB.

I. INTRODUCTION

An algorithm is presented that uses the individuadus’
computation power to calculate the more likely global diag-
¥es from local diagnoses.
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Fig. 2. A typical ECU, component and test layout.

ook | 7poe diagnosed, by one or several agents, for abnormal behavior.

The agents are connected to each other via a network, where
an output signal in an agent is linked to input signals in one
or several other agents.

Example 1:In Fig. 2, a typical layout of agents and
components is shown. The tests involves the components
ci connected with solid lines. Components and c4 are
physically connected to ageAt;, and some calculated value
involving componentsc, and c4 is transmitted over the
network from agenfA; to A;, indicated by the dotted lines
in the figure. o

In a vehicle, the agents are the software programs that are
implemented in theecus. The components are the sensors,
actuators, pipes, etc., which are monitored by the diagnostic
systems. Output signals are mostly values from sensors, actu-

The current Scania diagnostic system consists of precomer signals, or calculated values, that are made available to
piled diagnostic tests. When a test indicates some faulttr& other agents over thean.
diagnostic trouble codepfc) is generated. There are between Each componentc € C, has a general fault mode and
10 and 1000 tests in ea@tu. No explicit fault isolation is a no-fault mode. Since the general fault mode does not
performed in the current system, neither in or between thave a model, the notation used in for examplee is here
Ecus. Further, there are no explicit communication betweemployed [6].
the ECuUs, regarding the results of the tests.

In Fig. 2, a typical layout ofecus and components are
shown. The tests involves the componeantshat is connected

A diagnosis for a set of components$ C C is

Dcc’

with solid lines. Some calculated value used in a test in ag98Pliates that the componentse D are in the faulty mode

A1 which involves component, andc4 is transmitted over

the network from agenf\; to A,.

C. Related Work

Diagnosis for embedded systems can be centralized, de
tralized or distributed. Most research has been aimed at
centralized problem, where a single process collects relevan
data from the system and states global diagnoses [1]. ]
contrast to the centralized system, in a fully distributed syste
there is no central process at all. The distributed process
communicates instead directly with each other to form thg

are doing some part of the diagnostic work [3].

II. SYSTEM DESCRIPTION ANDDIAGNOSIS

REPRESENTATION

while the remaining componenés\D might or might not be

in the faulty mode.
A local diagnosids a diagnosis stated by an agent, it states

Cthe modes of some sub-set of componeidt§, which are

Shehow involved in the operation of the agent. The set of
gal diagnoses for agemt; is Dj.

}3\ global diagnosidgs a diagnosis that can state the mode of
all components in the system, i€/ = C. The set of global

magnoses is denoten.

“Due to the combinatorial explosion when searching for
global diagnoses, it is preferable to only consider some sub-
set of global diagnoses with properties that are specifically

SHferesting. One such set is thminimal-cardinality (mc
process that directs the diagnostic work, while local process 9 y (me)

gnoses

D™ ={D; | |D;| = Dn?ie% IDi|,Dj € D}

for a set of diagnose®. The set of local minimal cardinality

The diagnostic system involves a set of agents,and a diagnoses for agemt; is denotedd™¢ %, and the set of global
set of components], which are the set of objects that can beninimal cardinality diagnoses is denotéd™c.



If all components have the same probability to fail, the most i
likely global diagnoses will simply be the global minimal '
cardinality diagnoses. This is one such set of more likely \
global diagnoses, that according to Section | is wanted. R

In Section |, the possibility to merge different sets of local | | -
diagnoses was discussed. Timerging of two sets of diag- q 0
nosesD; andDj, is defined ad; x,D; 2 {D; UD; |D; € )

Dy, D; € Dj}. By merging all local diagnoses, the global
diagnoses can be formed

Dmod,mc,l e

Fig. 3. Agents, local diagnoses, and MGMCDs.
D = xy; Dy

Example 2: [Merge of local diagnosegjonsider the local erged local cardinality diagnoses, when consideviggicos
diagnosesD; = {{A,B},{C}} and D, = {{B}}. The global

diagnose® =Dy xy D, = {{A, B},{C, B}}. S x, Dmodme,i _ pme
It is however not the case that a merge of the local minimal i
cardinality diagnoses results in the global minimal cardinali%nCe the differentigMcDs are disjoint.

diagnoses, i.e. Example 5: MGmcps] Consider Fig. 3 where five agents

x, Dme £ pme states local diagnoses in a truck. The local diagnoses are rep-
i resented by the circles and states the modes of the components

for some sets of local minimal cardinality diagnoses inside the circles. Three sets mtsmcDs could be found. ©

Example 3: [Merge ofD{*“] Consider the example above,
where D¢ = {{C}} and D** = {{B}}. The merge gives, [1l. MINIMAL -CARDINALITY DIAGNOSES

D¢ x, De = {{C, B}}, while D™¢ = {{A,B},{C,B}}, i.e. - . .
{/1{ B} L\J/vaé not i{r{mlud}e}d in the merge{{of thze {IocaI}JminimaI The principle for the algorithm, is that each agent has
ca;dinality diagnoses createdminimal local diagnosesising for example the algo-

rithms presented in [1]. These local diagnoses are then merged

A. Global Diagnosis Representation together to form the4GMcos.

The global diagnqses_: can be represented in Several_diﬁerﬁmMinimaI—CardinaIity Diagnoses — Algorithm 1
ways. When considering systems, such as a vehicle, the
diagnoses should be used by a technician for repair. In thisThe algorithm, which is described in Algorithm 1, consists
case, it might be preferable to present the global diagnos#stwo main parts. Firstly, is the sets of agents whose local
as a conjunction of smaller disjoint parts of diagnoses. Tigéagnoses are guaranteed to be merged Wgecps found.
global diagnoses will then simply be a merge of all the disjoifthereafter, the local diagnoses are iteratively merged with
parts, which is more compactly, and easily, represented by #higorithm 2 into sets oMGMCDs.
parts themselves. From the technicians point of view, the partsThe main idea is to start with a low, then if no partial
will be smaller, and therefore more easily understood, than thiegnosis with cardinality less than or equalis found, i.e.
complete set of global diagnoses. N = (), then £ is raised and a new search begins. If local
If the local diagnoses were disjoint, one such conjunctiatiagnoses from all agents have been merged and a partial
would be available directly from the local diagnoses. Thidiagnosis have been found, iN®~ + (), this will be the set of
might however not be the case, because the different losatMCDs. A first approximation of the lower bound, is that
diagnoses might include complex relations between diadie MGMCDS must be at least as large as tagyest minimal
noses, i.e. they are not disjoint. Another way is to merg&rdinality local diagnosis, considering all agentsRin
the local diagnoses from a sub-set of agents, so that eacfihe algorithm isdecentralizedwhere Algorithm 1 is cal-
such set of merged diagnoses is disjoint from the othewulated in some central agent, while the computation and
These sets of diagnoses are here denatedule diagnoses memory intensive Algorithm 2 is performed in the local
pmod & Xua, e D; for some set of agentd C A. For two agents. In the algorithms, aordered set is represented by
different module diagnosedyi N A; = andD; N D; =0, (-) and anunorderedby {-}.
whereD; € D™°4t andDj € D™O4). Example 6: [Algorithm 1] Consider Fig. 4 where the
Example 4: [Module diagnosedf Dy = {{A,B}}, D, = wmcmcDs for the three agents should be found. Some central
{{B, C}}, andD3 = {{E}}, then for the sub-sets of agends = unit decides that the local diagnoses should be merged in order
{A1,Az}and A, = {As}, it follows thatD™ed! = {{A B, C}} Az, A, thenA,. It sends the UpdateAgent command to agent
andpmed.2 = [[E)}. o Az, who calculatesNA3. Thereafter are the UpdateAgent
The m:th set of module minimal cardinality diagnosescommand sent té&\; who collectsN”3 and calculatesN”?+.
(MGMCD) is denotedD™°d.™me.™ |n contrast to the case with The end result i™edme = NAz, o



Algorithm 2 UpdateAgent
Require: D, for Ay, whereA; = R; andDD; for A,, where
A = Ri_7. The number of evaluations, including this, of
UpdateAgent for agend; is 1.
Ensure: D04 for agents{Ry,...,R;} with cardinality less
then or equall. A new L.
1. E:= {Dj | ‘D)‘ < E,Dj S ]D)Ri}
2: D:= {D] | ‘D]‘ > L,Dj S DRi}

Fig. 4. Information flow.

3: if i=1 then [The firstR]
Algorithm 1 module global minimal-cardinality diagnoses % IN f: E 1 th
: . 5: else ifi > en
Require: All local diagnoses], for all agentsA. , L .
Engure: All MGMCDS gDmod,mc' g 6: T := NRT‘, whereNRi-1 is N in agentR; ;.
1 E:={(A;,¢)|A; € VA c € D;,D; € Dy v W = #Jjﬂ E xuE
2. G:=(A,C,E) [Bipartite graph] ~ ° W XUW "
3: Find subgraphs$ € G. o =WiuWa U
10 F:=FUE

a: for all G; € G, whereG; = (VA, V€ E;), and V€ # 0.

. — W | W 1
The setR = VA, whereR = (Ry,...,Ry) do 1 Na={W | Wj| < £)

122 M :=W\N

5 L :=maxa.cr MNp.ep. |D; .

6 i1 Xair MiND; e |D| 132 fN=0Al=1 then

7: W'hile NR» = () do 14: L := min; [Wj| [New lower bound.
8: L£mev .= UpdateAger(R;, Ri_1, £) 12 en?jni? i

9: NR¢ includes the new diagnoses and is store®in ‘

10: Pmid 1 9 " 17. Saved for later use ard,..., T}, D, F, and M. New
11: if.£“ew >  then global diagnosedN is saved for use by ageRmt , ;.

12: i:=1, L:=L"eW

13: end if

14: end while over the network and updates its information,

15.  pmodmek — NRn whereR is the kithR € R.

16. end for w2+ .= {{B,C},{B,D}} NA = ().

SinceNA+ = () and this is the first time thad, have been

called, i.e.l = 1, £ is increased t@. Since a newl was

B. Update Agent — Algorithm 2 returned the first agent is called again. Agént updates its

When executing algorithm Algorithm 2 with commandnformation which giveN”: := {{}}. A4 collects the new

UpdateAgen(R;, R;_1, L), a set of new diagnoses are formednformation and find thatN*+ := {{B, C},{B, D}}. A, takes
and stored irR;. These new diagnoses are the diagnoses t¢a€r and calculates

are formed by merging the local diagnoses in the parR of WA2 .= ((B, C},{B, C,D},{B,D, C},{(B, D}}
up to agentR;, that have a cardinality less than or equal the A, T R e
given lower limit £. Further, only the diagnoses that have not N2 = {{B, C},{B, D}.

been considered in previous evaluations are storeRli.in Since NR» = NA:z £ (), the iterations ends and the set of
In the algorithm,l is the number of times that the currenf cycps, pmed — NAz, o

agent have been called with command UpdateAggre.g. the

first time that an agent is called with UpdateAgent, theal. C. Simulations

The main parts of the algorithm are the merge of ¢kt and

new global diagnosefor {Ry,...,R;_1} with the new local

diagnosegW1), and the merge of theew global diagnoses gmpedded system is very complex, and that the diffezens

for {Rq,...,Ri_1} with the old local diagnosegW>). are constructed by different companies and can therefore not
Example 7: [Algorithm 2 and relevant part of Algorithm 1], easily modified.
Consid.er the system in Fig. 4. In includes three agent Whos%stead, a hypothetical model of an embedded system has
local diagnoses are been constructed, inspired by the existing system described
D, = {{B, C},{D}} D; = {{B},{C,D,E,F,G}} in Section I-A. The model includes three different buses and
Dy = {{C}.{D}} 20 Ecus. The components have been divided into three parts,
’ ' where 65 % are local, 11 % shared within each bus, and 3%
The sort ordeR = (A3, A4, Az). With £ =1, the first agent, shared within the whole system. Eaebu has about 50 to
Aj finds new diagnoses with cardinalitg £, which give 200 tests, that together monitor teeu's components. Both
NAs = [{B}}. and is then finished. Agemi, collectsN?3 the connections to the shared components, and the tests, are

The algorithms presented in this paper have not yet been
implemented in any vehicle. The reason for this is that the
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Fig. 5. Calculation times with increasing humber of components.

TABLE |
SETS OF DIAGNOSES

o

% IDi],Di € XUr,er Dy
- <L L >L
R <C | MW ?
e L %% %% ?
B —~=7717 7 ?

Fork > 1 letR = {R1,...,Rx_1} and consider agerRy.
Assume thaiN for agentRy_; is the correct diagnoses with
cardinality £ consistent with all diagnoses from agems
Further thatT,, ..., Tx_; are correct.

The following information is stored from previous runs

Tk = {D] ‘D) S XU_D1,|D]'| = E—l—i—j,
Ri€R
Dg, € Dy, |Dr | < L—-1+4]}

forke{1,...,1—1},
M :={D;|Dj € xy Dy,|Dj| > £,Dg, € Dg,,|Dg,| < L}
Ri€R

picked by random. Further, between 1 and 5 random faults (4)

have been inserted into the model. This result®ias from

which local diagnoses have been computed.

F:={Dj|[IDj| < £,Dj € Dg,} (5)

The algorithm give

After this have the algorithm presented in this paper been
used to find theveMcDs. Mean values of the computation E:={Dj ||D;| = £,D; € Dg,} (6)
times for the algorithm can be seen in Fig. 5, where differentT, .= {D; |D; € x_ Dy, |D;| = £,Dg, € Dy, |Dg,| < £}

number of components have been included in the system.

D. Correctness of the Algorithms

Ri€R
()

The diagnoses

The result of Algorithm 1 is given by the following theorem.

Theorem 1. If all local diagnosdB; for all agentsA; € A
are available, then the result of Algorithm 1 is

Dmod,mc,k (1)

for all k. o

The proof needs two lemmas that shows the correctnes
Algorithm 2 and parts of Algorithm 1. The first lemma state
that diagnoses of a certain cardinality are found, and thatLiJ

no diagnoses was found,*¢* will have a specific value.

Lemma 2. GivenR = {Rq,..
limt £'. For R, € R, after computing L™V =
UpdateAgentRy, Ry 1, L), then

NRe ={D; | """ < |Dj| < £Y,Dj € D}, 2)

where £~ is £ from the preceding call tdJpdateAgentor
if L—1 = 0 then itisci™ittation Fyrther isD = xyg, eg Di.
If NRx = () and 1 =1 for agentRy, then

LheEW = m)ln{\D]\ |£ < |D]|)D] € D}) (3)
otherwise isCnew = [,

<&
Proof: Consider first the case wherel = 1. If k =1,
i.e. R =Ry, thenR; will have

NR':=E ={D; |ID;| = £,D; € D}

whereD = Dg, . It follows by direct use of the algorithm.

S

., R}, and a lower

D S XU Di
Ri€R

are divided into different sets with respect to the cardinality
of the diagnoses fronR and R respectively. In Table | is it
shown what parts of the diagnoses that is founavn Wy,

and W,. M is found from (4).W, from (5) and (7).W; is

gg culated from (6) and the union of tHg:s, where

lf Tj = {Dj ‘Dj S Xl_LDia |D]| < ,C,]DRi S ]Di, ‘DRi‘ < E}

j=1 RiER
(8)
From this follows that the new diagnoses
NRe = (W | IW;] < L,W; € W}

whereW = W; UW,; U M. It must be shown that there is no
diagnoses in (2) that has not yet been includedNff:. The
above showed that there is no diagnosis that comes from this
or previous calculations that is not included.

The upcoming iterations will give

Dy :={Dj|[Dj| > £,D; € Dg, }
T = NRe
={Dj|D; € xy_Djy,|Dj| > £,Dg, € Dy, |Dr,| < L+ 1}

Ri€R

E:= {Dj ‘ ‘D]‘ > E,Dj S DRk}



and thereby follows that for iteratioh+ 1,
W C Dy | |Dj| > £,D; € D, D = xy Dy}
i

then there is n@; with |D;| < £ whereD; € xug, g Dy, and

therefore
NRn — {D] | ‘D]‘ = E,Dj S D} — pmod,mc. (11)

If NR» =£ () then, if there has been no precediRg with

for all remaining iterations this will also hold. All diagnoses\NRx £ (), then £ = £initiation gnd (11) is true. Otherwise

was therefore included in the set N, i.e.
N ={D; |Dj € x, Dy, |D;| < L}
R;iER

SinceW; > £, W, > £ andM > L]
NRe ={D;|D;j € x, Dy, £V < |Dj| < L}
R;iER
NRx was shown given that the assumption al§uor agent
Rk_1, and Tq,..., Tx_q are correct. Now,NR' was above
shown to be correct, and therefore the assumption holds

induction.
If NRe =0

M = W\NRx =w
={D;|D; € RxUR]D)i,\Dj\ > £,Dg, € Dg,, Dg,| < £}
i€
Thereby, the algorithm give that
L := min |D;l,
D;eD

WherE£ < ‘D]‘, D = XUR{ER ]D)i.

there is some latest precediRg whereNRx = () in the first
traversal and

£ = min{|D;|| D; € D™°%} < [NF»|
)
which show (11) is true. [ ]
Finally the proof of Theorem 1.
Proof: From the algorithm follows directly that all
prartme.k gre disjoint. Lemma 3 gives tha@@Partmek gre
WGMCDS. [ |

IV. CONCLUSIONS

There is an increasing number of systems that uses multiple
agents to achieve some stated tasks. One such example is
found in the vehicle industry where new vehicles might include
several dozens ofcus, which are used to control different
parts of the vehicle. With the increasing complexity comes
a higher demand for diagnosis, i.e. the system must be able
to detect and localize faults in the whole system. Due to the
increasing number of connections between the agents, this task

WhenAL # 1 for somel, the proof follows the same ideaputs new demands on the diagnostic system. One such demand
as above with the difference that there will be several differeist that the agents should be able to communicate with each-

sizes of diagnoses included in for example ]
The next lemma states the result after the final call fro
Algorithm 1 to Algorithm 2 for a set of agenf®.
Lemma 3. After computation tipdateAgentR.,, Rn—_1, L),

whereR = {Ry,...,Ry}, then if NR» £ ) in agentR, € R
then

NR“ — Dmod‘mc‘ (9)

(o3

Proof: The initiation of

Einitiation -— max min |D]|
A{€ER Dj S5
gives thatDmed| > cinitiation from this follows that the
initiation of £ does not result in the removal of any possibl
Dmed when using Algorithm 2.

computation of UpdateAgefR,,,...), NR» £ () and £ =
min;{|D;| | D; € D™°4} where D™°9 = x_, g Di. From
Lemma 2 is given that

NR» ={D; | £ < |Dj| < £',D; € D™} (10)

B

If NRn = ) after call to UpdateAgent, then at the nexi]

other to state diagnoses that are consistent with the knowledge
stored in each agent.

It has been shown how an algorithm that uses the agents
local diagnoses to state global diagnoses could be designed.
To reduce the complexity, only the global diagnoses with
minimal cardinality was considered. The algorithm uses the
agents own processing power which reduced the need for a
central diagnostic agent.
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