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Abstract: An accurate specific heat ratio model is important for an accurate heat
release analysis, since the specific heat ratio couples the systems energy to other
thermodynamic quantities. The objective is therefore to investigate models of the
specific heat ratio for the single-zone heat release model, and find a model accurate
enough to introduce a cylinder pressure modeling error less than or in the order of the
cylinder pressure measurement noise, while keeping the computational complexity at
a minimum. Based on assumptions of frozen mixture for the unburned mixture and
chemical equilibrium for the burned mixture, the specific heat ratio is calculated
using a full equilibrium program for an unburned and a burned air-fuel mixture, and
compared to already existing and newly proposed models of γ.
A two-zone mean temperature model and the Vibe function are used to parameterize
the mass fraction burned. The mass fraction burned is used to interpolate the specific
heats for the unburned and burned mixture, and then form the specific heat ratio,
which renders a small enough modeling error in γ. The impact that this modeling
error has on the cylinder pressure is less than that of the measurement noise. The
specific heats for the unburned mixture are captured within 0.2 % by linear functions,
and the specific heats for the burned mixture are captured within 1 % by higher-order
polynomials for the major operating range of a spark ignited (SI) engine.

1. INTRODUCTION

The accuracy with which the energy balance can
be calculated for a combustion chamber depends
in part on how accurately changes in the inter-
nal energy of the cylinder charge are represented.
The most important thermodynamic property used
when calculating the heat release rates in engines is
the ratio of specific heats, γ(T, p, λ) = cp

cv
(Gatowski

et al., 1984; Chun and Heywood, 1987; Guezennec
and Hamama, 1999).

Based on the first law of thermodynamics, Gatowski
et al. (1984) developed a single-zone heat release
model that has been widely used, where the specific
heat ratio is represented by a linear function in
mean charge temperature T :

γlin(T ) = γ300 + b(T − 300) (1)

This allows a critical examination of the burning
process by analysis of the heat release. In order to

compute the heat release correctly, the parameters
in the single-zone model need to be well tuned.
These parameters, such as heat transfer coefficients,
γ300 and b in the linear γ-model (1) and so on,
can be tuned using well known methods. For in-
stance, Eriksson (1998) uses standard prediction
error methods to tune the parameters. This is done
by minimizing the prediction error of the measured
cylinder pressure, i.e. by minimizing the difference
between the modeled and measured cylinder pres-
sure. Applying these standard methods usually ends
up in absurd and non-physical values of γ300, as
it becomes larger than 1.40, which is the value of
γ300 for pure air. But more importantly, the linear
approximation of γ (1) itself introduces a model
error in the cylinder pressure which has a root
mean square error of approximately 30 kPa, for low
load engine operating points, and approximately
90 kPa in the mean for operating points covering
the entire operating range. These errors are more



than four and ten times the error introduced by
the measurement noise, and will affect the com-
puted heat release. Therefore a better model of
γ(T, p, λ) is sought. A correct model of γ(T, p, λ) is
also desirable in order to avoid badly tuned (biased)
parameters.

The objective is to investigate models of the specific
heat ratio for the single-zone heat release model,
and find a model accurate enough to introduce a
modeling error less than or in the order of the
cylinder pressure measurement noise, while keeping
the computational complexity at a minimum. Such
a model would help us to compute a more accurate
heat release trace.

1.1 Outline

In the following section three existing γ-models are
described. Then based on chemical equilibrium, a
reference model for the specific heat ratio is de-
scribed. Thereafter, the reference model is calcu-
lated for an unburned and a burned air-fuel mixture
respectively, and compared to these existing models
in the two following sections. With the knowledge
of how to describe γ for the unburned and burned
mixture respectively, the focus is turned to finding
a γ-model during the combustion process, i.e. for a
partially burned mixture. This is done in section 6,
where a number of approximative models are pro-
posed. These models are evaluated in terms of the
normalized root mean square error related to the
reference γ-model found from chemical equilibrium,
as well as the influence the models have on the cylin-
der pressure, and also in terms of computational
time.

2. EXISTING MODELS OF γ

The computational time involved in repeated use
of a full equilibrium program, such as CHEPP
(Eriksson, 2004) or the NASA program (Svehla
and McBride, 1973), can be substantial, and there-
fore models of the thermodynamic properties have
been developed. Three such models will now be
described.

2.1 Linear model in T

The specific heat ratio during the closed part of
the cycle, i.e. when both intake and exhaust valves
are closed, is most frequently modeled as either a
constant, or as a linear function of temperature.
The latter model is used in (Gatowski et al., 1984),
where it is stated that the model approximation is
in parity with the other approximations made for
this family of single-zone heat-release models. The
linear function in T can be written as:

γlin(T ) = γ300 + b (T − 300) (2)

Depending on which temperature region and what
air-fuel ratio λ the model will be used for, the slope

b and constant γ300 in (2) have to be adjusted.
Concerning the temperature region, this shortcom-
ing can be avoided by increasing the complexity
of the model and use a second (or higher) order
polynomial for γlin(T ). This has been done in for
example Brunt et al. (1998). Such an extension
reduces the need for having different values of γ300

and b for different temperature regions. Later on,
γlin(T ) is calculated in a least squares sense for both
burned and unburned mixtures.

2.2 Segmented linear model in T

According to Chun and Heywood (1987), the com-
monly made assumption that γ(T ) is constant or
a linear function of mean temperature is not suf-
ficiently accurate. Instead, they propose a segmen-
tation of the closed part of the engine cycle into
three segments; compression, combustion and post-
combustion (expansion). Both the compression and
post-combustion are modeled by linear functions
of T , while the combustion event is modeled by
a constant γ. They further state that with these
assumptions, the one-zone analysis framework will
provide accurate enough predictions. The model of
γ can be written as:

γseg(T, xb) =

{
γcomp
300 + bcomp (T − 300) xb < 0.01

γcomb
300 0.01 ≤ xb ≤ 0.99

γexp
300 + bexp (T − 300) xb > 0.99

(3)
where the mass fraction burned xb is used to

classify the three phases. The γ-model proposed
by Chun and Heywood (1987) has discontinuities
when switching between the phases compression,
combustion and post-combustion. This can pose
a problem when estimating e.g. the mass fraction
burned.

2.3 Polynomial model in p and T

The third model is a polynomial model of the
internal energy u developed in Krieger and Borman
(1967) for combustion products of CnH2n, e.g. iso-
octane. For weak and stoichiometric mixtures (λ ≥
1), a single set of equations could be stated, whereas
different sets where found for each λ < 1. The model
of u for λ ≥ 1 is given by:

u(T, p, λ) = A(T ) − B(T )
λ

+ ucorr(T, p, λ) (4)

given in [kJ/(kg of original air)], where

A(T ) = a1T + a2T
2 + . . . + a5T

5 (5a)

B(T ) = b0 + b1T + . . . + b4T
4 (5b)

The gas constant was found to be:

R(T, p, λ) = 0.287 +
0.020

λ
+ Rcorr(T, p, λ) (6)

given in [kJ/(kg of original air) K]. Krieger and
Borman suggested that the correction terms ucorr

and Rcorr should account for dissociation, and
that they are non-zero for T > 1450 K. They



correction terms as well as the coefficient values for
the polynomials in (5)-(6) are given in (Klein and
Eriksson, 2004).

In general, the error in u was found to be less
than 2.5 per cent in the pressure and temperature
range of interest, where the extreme end states
were approximately {2300 K, 0.07 MPa} and
{3300 K, 35 MPa}, and less than 1 per cent over
most of the range. A model of γ is then found as

γKB =
cp

cv
= 1 +

R

cv
(7)

where R is given by (6) and cv = ∂u
∂T is found by

differentiating (4) with respect to T .

2.4 Summary of existing γ-models

Apparently there are ambiguities in which model
structure to use for γ, therefore γ(T, p, λ) is calcu-
lated for adequate temperature and pressure regions
for both unburned and burned mixture, assuming
that the unburned cylinder charge is frozen and the
burned mixture is at equilibrium at every instant.
This in order to find out what model structure of
γ that is accurate enough for our purposes. One
such purpose is to estimate parameters in the single-
zone model such as heat transfer coefficients, burn
rate parameters and so on, using the measured
cylinder pressure. This requires a model of the cylin-
der pressure in which the γ-model has a key role,
and therefore the impact each γ-model has on the
cylinder pressure is monitored. All thermodynamic
properties depend on the air-fuel ratio λ, but for
notational convenience this dependence is hereafter
left out when there is no explicit dependence.

3. CHEMICAL EQUILIBRIUM

Assuming that the unburned air-fuel mixture is
frozen and that the burned mixture is at equi-
librium at every instant, the specific heat ratio
and other thermodynamic properties of various
species can be calculated using the Matlab pack-
age CHEPP. The results from CHEPP have been
validated to give accurate results with the given
assumptions (Eriksson, 2004). Therefore if the as-
sumptions of unburned frozen mixture and burned
mixture at chemical equilibrium are valid, CHEPP
captures the behavior of the actual experimental
mixture in the cylinder fully. According to Heywood
(1988, p.86), it is a good approximation for perfor-
mance estimates to consider the unburned gases as
frozen and the burned gases as in chemical equi-
librium during the closed part of the engine cycle.
As a consequence, CHEPP is believed to capture
the thermodynamic properties of a air-fuel mixture
well.

The fuel considered is a reference fuel named iso-
octane, C8H18, which reacts with air according to:

1
λ (8 + 18/4)

C8H18 + (O2 + 3.773N2) −→
x1O + x2O2 + x3H + x4H2 + x5OH

+x6H2O + x7CO + x8CO2 + x9NO + x10N2 (8)

where the products given on the right hand side
are chosen by the user and λ is the air-fuel ratio
(AFR). The coefficients xi are found by CHEPP
and when scaled properly with λ they reveal the
mole fraction of specie i that the mixture consists of
at a given temperature, pressure and air-fuel ratio.
The mixture is assumed to obey the Gibbs-Dalton
law.

4. UNBURNED MIXTURE

First of all, the specific heat ratio for an un-
burned frozen mixture of iso-octane is computed
using CHEPP in the temperature region T ∈
[300, 1000] K, which is valid for the entire closed
part of a motored cycle. The specific heat ratio
for air-fuel ratio λ = 1 is shown in figure 1 as a
function of temperature, together with its linear
approximation (2) in a least squares sense. The
linear approximation γu

lin is fairly good for λ = 1.
Actually, the specific heats cp and cv from which γ is
formed, are fairly well described by linear functions
of temperature. Table 1 summarizes the normalized
RMSE (NRMSE) and the coefficients of the respec-
tive linear function for γ, mass-specific heats cv and
cp for temperature region T ∈ [300, 1000] K and
λ = 1. The RMSE of γu

lin is defined as:
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Fig. 1. Specific heat ratio for unburned stoichiomet-
ric mixture using CHEPP and the correspond-
ing linear function of temperature.

Property Constant Slope NRMSE
γu

lin
[-] 1.3488 −13.0 · 10−5 0.19 %

clin
p,u [J/(kg K)] 1051.9 0.387 0.15 %

clin
v,u [J/(kg K)] 777.0 0.387 0.20 %

Table 1. Coefficients and normalized
RMSE in linear approximations of γ,
mass-specific cv and cp, for temperature

region T ∈ [300, 1000] K and λ = 1
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Fig. 2. Specific heat ratio for unburned stoichiomet-
ric mixture using CHEPP for various air fuel
ratios λ as functions of temperature. λ = ∞
corresponds to pure air.

RMSE =

√√√√ 1
M

M∑
j=1

(γ(Tj) − γu
lin(Tj))2 (9)

where M are the number of samples. The NRMSE
is then found by normalizing RMSE with the mean
value of γ(T ):

NRMSE =
RMSE

1
M

∑M
j=1 γ(Tj)

(10)

Besides temperature, the specific heat ratio also
varies with AFR, as shown in figure 2 where λ
is varied between 0.8 (rich) and 1.2 (lean). For
comparison, γ(T ) is also shown for λ = ∞, i.e. pure
air which corresponds to fuel cut-off.

The coefficients in γu
lin (2) vary with λ as shown in

the two upper plots of figure 3. Both the constant
γ300 and the slope b become smaller as the air-fuel
ratio becomes richer. From the bottom plot of fig-
ure 3, which shows the NRMSE for different AFR:s,
it can be concluded that the linear approximation
γu

lin(T ) is better the leaner the mixture is, at least
for λ ∈ [0.8, 1.2].

5. BURNED MIXTURE

The specific heat ratio γ for a burned mixture
of iso-octane is computed using CHEPP in tem-
perature region T ∈ [500, 3500] K and pressure
region p ∈ [0.25, 100] bar, which covers most of
the closed part of a firing cycle. The mixture is
assumed to be at equilibrium at every instant. The
specific heat ratio is strongly dependent on mixture
temperature T , but γ also depends upon the air-
fuel ratio λ and pressure p as shown in figure 4
and figure 5 respectively. For the same deviation
from λ = 1, rich mixtures tend to deviate more
from the stoichiometric mixture, than lean mixtures
do. The pressure dependence of γ is only visible for
T > 1500 K, and a higher pressure tends to retard
the dissociation and yields a higher γ.
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Fig. 3. Upper: The constant value γ300 in (2) as
a function of λ for unburned mixture at equi-
librium. Middle: The value of the slope coef-
ficient b in (2) as a function of AFR. Bottom:
Normalized root mean square error (NRMSE)
for γu

lin(T ).
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Fig. 4. Specific heat ratio for burned mixture at var-
ious air-fuel ratios λ at 7.5 bar using CHEPP.
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Fig. 5. Specific heat ratio for burned stoichiometric
mixture using CHEPP at various pressures.

To model the specific heat ratio with a linear func-
tion γb

lin(T ) of temperature, and thereby neglecting
the dependence of pressure, will of course introduce
a modeling error. This modeling error depends on
which temperature (and pressure) region the linear
function is estimated for, since different regions will
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Fig. 6. Specific heat ratio for burned stoichiometric
mixture using CHEPP, the corresponding lin-
ear function γb

lin and Krieger-Bormans polyno-
mial γKB.

yield different coefficient values in (2). In figure 6
γ is computed at λ = 1 and p = 7.5bar for
T ∈ [500, 3500] K, and as well as the corresponding
linear function γb

lin (2) and the polynomial γKB

(7) developed by Krieger and Borman (1967).

The linear approximation γb
lin(T ) does not capture

the behavior of γ(T ) for λ = 1 very well. The
coefficients for the linear model γb

lin(T ) vary for
the specific temperature region. They are given for
temperature regions A to E in Table 2. A second
order polynomial shows the same behavior as the
linear case, but when the order of the polynomial is
increased to three, the model captures the modes of
γ(T ) quite well. By increasing the complexity of the
model even more, an even better fit is found. This
has been done in the Krieger-Borman polynomial,
and for this example it captures the the behavior
of γ(T ) well for temperatures below 2800 K as
seen in figure 6 and in the right-most (NRMSE)
column in table 3, where the NRMSE value is much
higher for temperature region A than for the other
regions. In table 3, the NRMSE and maximum
relative error (MRE) for the linear approximation
γb

lin and the Krieger-Borman polynomial γKB at
various temperature regions are given. As expected,
the Krieger-Borman polynomial is better than the
linear approximation in every chosen temperature
region, since the NRMSE is smaller. Comparing
just the MRE:s could result in false conclusions.
Take the temperature region A for instance, where
the respective MRE are approximately the same.
One could then conclude that the models describe
γ equally well, but in figure 6 it was clearly visible
that γKB is the better one, which is also the
conclusion when comparing the respective NRMSE.

In table 4, the NRMSE and MRE for the Krieger-
Borman polynomial γKB(T, p, λ) for λ close to
stoichiometric is displayed. For λ ≥ 1 (lean), γKB

fits the equilibrium γ better than for λ < 1, a
tendency which is most evident when comparing the
NRMSE for temperature region B. For temperature
region A the difference for different λ is less striking,

Region T ∈ γ300 b
A [500, 3500] 1.3695 −9.6 · 10−5

B [500, 3000] 1.3726 −9.9 · 10−5

C [500, 2700] 1.3678 −9.4 · 10−5

D [500, 2500] 1.3623 −8.8 · 10−5

E [1200, 3000] 1.4045 −11.4 · 10−5

Table 2. Coefficients in linear approxima-
tion γb

lin(T ) found in (2) for λ = 1 and
p = 7.5 bar.

Region T ∈ γb
lin

γKB

MRE NRMSE MRE NRMSE
A [500, 3500] 2.0 % 0.97 % 2.0 % 0.56 %
B [500, 3000] 1.6 % 0.95 % 0.7 % 0.20 %
C [500, 2700] 1.9 % 0.90 % 0.3 % 0.17 %
D [500, 2500] 2.4 % 0.74 % 0.3 % 0.17 %
E [1200, 3000] 1.6 % 0.74 % 0.7 % 0.21 %
Table 3. Maximum relative error (MRE)
and normalized root mean square er-
ror (NRMSE) for different temperature

regions at λ = 1 and p = 7.5 bar.

Reg γKB@λ = 0.975 γKB@λ = 1 γKB@λ = 1.025
MRE NRMSE MRE NRMSE MRE NRMSE

A 1.9 % 0.86 % 2.0 % 0.56 % 2.1 % 0.59 %
B 1.8 % 0.73 % 0.7 % 0.20 % 0.7 % 0.28 %

Table 4. Maximum relative error (MRE)
and normalized root mean square er-
ror (NRMSE) for different temperature
regions for γKB(T, p, λ) at p = 7.5 bar

and λ = {0.975, 1, 1.025}

since the γKB does not fit γ as well for T >
3000 K. Therefore the Krieger-Borman polynomial
is preferably only to be used on the lean side. On the
rich side and close to stoichiometric (within 2.5 %),
the Krieger-Borman polynomial does not introduce
an error larger than the linear approximation given
in table 3, and γKB should therefore be used in
this operating range.

If a linear model of γ is prefered for computational
reasons, the performance of the linear model could
be enhanced by proper selection of temperature
region. However, the MRE does not decrease for
every reduction in interval, as seen when comparing
MRE:s for regions D and B in table 3. Thus, the
temperature region should be chosen with care by
using the NRMSE as measure:

• When using the single-zone temperature T to
describe the specific heat ratio of the burned
mixture, temperature region B is preferable,
since during the closed part T ≤ 3000 K.

• When using the burned-zone temperature Tb

in a two-zone model, temperature region E
is recommended, since for most cases Tb ∈
[1200, 3000]. The temperature limits are found
by evaluating a number of experimental cylin-
der pressure traces using (A.1) and (A.7).
By chosing region E instead of region B, the
NRMSE is reduced by 25%.



6. PARTIALLY BURNED MIXTURE

The specific heat ratio γ as a function of mixture
temperature T and air-fuel ratio λ for unburned
and burned mixture of air and iso-octane has been
investigated in the two previous sections. During
the closed part of a motored engine cycle, the
previous investigations would be enough since the
models of the unburned mixture will be valid for
the entire region. When considering firing cycles on
the other hand, an assumption of either a purely
unburned or a purely burned mixture approach is
not valid for the entire combustion chamber during
the closed part of the engine cycle.

To describe the specific heat ratio in the single-
zone model for a partially burned mixture, the mass
fraction burned trace xb is used to interpolate the
(mass-)specific heats of the unburned and burned
zones to find the single-zone specific heats. The
specific heat ratio is then found as the ratio between
the interpolated specific heats.

6.1 Reference model

The single-zone specific heats are found from energy
balance between the single-zone and the two-zone
model, from which the single-zone specific heat ratio
γCE can be stated:

cp(T, p, xb) = xb cp,b(Tb, p)+(1−xb) cp,u(Tu) (11a)

cv(T, p, xb) = xb cv,b(Tb, p)+(1−xb) cv,u(Tu) (11b)

γCE(T, p, xb) =
cp(T, p, xb)
cv(T, p, xb)

(11c)

where the mass fraction burned xb is used as an
interpolation variable. The single-zone (T ), burned
zone (Tb) and unburned zone (Tu) temperatures
are given by the two temperatures models (A.1)
and (A.7) described in appendix A. The first is
the ordinary single-zone temperature model and
the second is a two-zone mean temperature model
developed by Andersson (2002). The mass specific
heats in (11) are computed using CHEPP (Eriksson,
2004) and γCE then forms the reference model.

To compute γCE is computationally heavy. Even
when the specific heats are computed before-hand
at a number of operating points, the computational
burden is still heavy due to the numerous table
look-ups and interpolations required. Therefore, a
computationally more efficient model which retains
accuracy is sought for. A number of γ-models will
therefore be described in the following subsection,
where they are divided into three subgroups based
upon their modeling assumptions. These γ-models
are then compared to the reference model γCE

found from (11), in terms of four evaluation criteria,
specified in the subsection “Evaluation criteria”.

6.1.1. How to find xb? To compute the specific
heat ratio γCE (11), a mass fraction burned trace
xb is needed. For simulated pressure data, the mass

fraction burned is considered to be known, which is
the case in this work. However, if one were to use
experimental data to e.g. do heat release analysis,
xb can not be considered to known. There are then
two ways of determining the mass fraction burned;
The first is to use a simple and computationally
efficient method to get xb from a given cylinder
pressure trace. Such methods include the pressure
ratio management by Matekunas (1983) described
in section E.If one does not settle for this, the
second approach is to initialize xb using a simple
method from the first approach, and then iteratively
refine the mass fraction burned trace xb using the
computed heat release.

6.2 Grouping of γ-models

Twelve γ-models have been investigated and based
upon their modeling assumptions, they are divided
into three subgroups; The first group contains mod-
els for burned mixture only. The second contains
models based on interpolation of the specific heat
ratios directly, and the third group, to which (11)
belongs, contains the models based on interpolation
of the specific heats, from which the ratio is deter-
mined.

6.2.1. Group B: Burned mixture The first sub-
group represents the in-cylinder mixture as a single
zone of burned mixture with single-zone tempera-
ture T , computed by (A.1). The first model, de-
noted B1, is the linear approximation in (2):

γB1(T ) = γb
lin(T ) = γ300 + b (T − 300) (12)

where the coefficients can be determined in at
least two ways; One way is to use the coefficients
that are optimized for temperature region T ∈
[500, 3000] (region B in Table 2) for a burned
mixture. This approach is used in (Gatowski et al.,
1984), although the coefficients differ somewhat
compared to the ones given in Table 2. Another
way is to optimize the coefficients from the reference
model (11). This approach will be the one used
here, since it yields the smallest modeling errors
in both γ and cylinder pressure p. The approach
has optimal conditions for the simulations, and
will therefore give the best results possible for this
model structure.

The second model, denoted B2, is the Krieger-
Borman polynomial described in (4)

u = A(T ) − B(T )
λ

−→ γB2(T ) = γKB(T ) (13)

without the correction term for dissociation. The
Krieger-Borman polynomial is used in model B3 as
well,

u = A(T ) − B(T )
λ

+ ucorr(T, p, λ)

−→ γB3(T, p) = γKB(T, p) (14)



with the correction term ucorr(T, p, λ) for dissocia-
tion included. The fourth and simplest model uses
a constant γ:

γB4 = constant (15)
As for model B1, the coefficient in (15) is deter-
mined from the reference model (11).

6.2.2. Group C: Interpolation of specific heat ratios
The second subgroup uses a two-zone model, i.e.

a burned and an unburned zone, and calculates the
specific heat ratio γb(Tb) and γu(Tu) for each zone
respectively, where the temperatures are given by
the two-zone mean temperature model (A.7). The
mass fraction burned trace xb is then used to find
the single-zone γ by interpolating γb and γu. Note
that the energy balance equation, used in (11), is
not fulfilled for subgroup C.

The first model, denoted C1, interpolates linear
approximations of γ for the unburned and burned
mixture. The linear functions are optimized in tem-
perature region T ∈ [300, 1000] for the unburned
mixture, and temperature region T ∈ [1200, 3000]
for the burned mixture. The resulting γC1 can there-
fore be written as:

γC1(T, xb) = xb γb
lin(Tb) + (1 − xb) γu

lin(Tu) (16)

where the coefficients for the linear functions are
given in Table 2 and Table 1 respectively.

The second model was proposed in (Stone, 1999,
p.423), here denoted C2, and is based on interpo-
lation of the internal energy u computed from the
Krieger-Borman polynomial:

u = A(T ) − xb
B(T )

λ
−→ γC2(T, xb) (17)

This model includes neither dissociation nor the
internal energy of the unburned mixture.

An improvement of model C1 is expected when sub-
stituting the linear model for the burned mixture
with the Krieger-Borman polynomial. This new
model is denoted C3 and described by:

γC3(T, p, xb) = xb γKB(Tb, p) + (1 − xb) γu
lin(Tu)

(18)
The fourth model interpolates γu(Tu) and γb(Tb, p)
given by CHEPP:

γC4(T, p, xb) = xb γb(Tb, p) + (1 − xb) γu(Tu) (19)

and this model is denoted C4. This model will re-
flect the modeling error introduced by interpolating
the specific heat ratios directly instead of using
the definition through the specific heats (11). The
segmented linear model (3) developed by Chun and
Heywood (1987) is also investigated and here de-
noted by model C5:

γC5 (T, xb) =

{
γcomp
300 + bcomp (T − 300) xb < 0.01

γcomb
300 0.01 ≤ xb ≤ 0.99

γexp
300 + bexp (T − 300) xb > 0.99

(20)
Model C5 uses the single-zone temperature for each
phase, and classifies into group C due to that the
switching used for xb in (20) can be seen as a

nearest neighbor interpolation. As for model B1 and
B4, the coefficients in (20) are determined from the
reference model (11).

6.2.3. Group D: Interpolation of specific heats
The last subgroup uses a two-zone model, i.e. a
burned and an unburned zone, just as the sec-
ond subgroup, and the specific heats are inter-
polated to get the single-zone specific heats. The
first model, denoted D1, uses the Krieger-Borman
polynomial for the burned zone to find cp,b(Tb, p)
and cv,b(Tb, p), and the linear approximations of
cp,u(Tu) and cv,u(Tu) given in Table 1 for the un-
burned zone:

γD1(T, p, xb) =
xb cKB

p,b (Tb, p) + (1 − xb) clin
p,u(Tu)

xb cKB
v,b (Tb, p) + (1 − xb) clin

v,u(Tu)
(21)

An extension of model D1 is to use the unburned
specific heats cp,u(Tu) and cv,u(Tu) computed from
CHEPP:

γD2(T, p, xb) =
xb cKB

p,b (Tb, p) + (1 − xb) cp,u(Tu)

xb cKB
v,b (Tb, p) + (1 − xb) cv,u(Tu)

(22)
This model is denoted D2 and reflects the model
error introduced by using the linear approximation
of the unburned mixture specific heats, when com-
paring to D1.

Model D1 is also extended for the burned mix-
ture, where the specific heats for the burned mix-
ture cp,b(Tb, p) and cv,b(Tb, p) are computed using
CHEPP. This model is denoted D3:

γD3(T, p, xb) =
xb cp,b(Tb, p) + (1 − xb) clin

p,u(Tu)
xb cv,b(Tb, p) + (1 − xb) clin

v,u(Tu)
(23)

and reflects the model error introduced by using
the Krieger-Borman approximation of the specific
heats, when comparing to D1.

The reference model γCE (11) belongs to this group
and is denoted D4:

γD4(T, p, xb) = γCE(T, p, xb) (24)

6.3 Evaluation criteria

The different γ-models given by (12)-(23) are eval-
uated in terms of four criteria. The criteria are:

(1) Normalized root mean square error (NRMSE)
in γ, which gives a measure of the mean error
in γ.

(2) Maximum relative error (MRE) for γ, which
yields a measure of the maximum error in γ.

(3) Root mean square error (RMSE) for the corre-
sponding cylinder pressures. This measure will
give a measure of the impact that a certain
model error has on the cylinder pressure and
will help to find a γ-model accurate enough for
the single-zone model.

(4) The computational efficiency is also evaluated
by comparing the required simulation time of



the cylinder pressure given a burn rate trace
and a specific γ-model.

6.4 Evaluation covering one operating point

At first, only one operating point is considered. This
operating point is given by the parameter values in
table E.1, and corresponds to the cylinder pressure
given in figure 7, i.e. at low engine load conditions.
The cylinder pressure given in figure 7 is used as an
example that illustrates the effect that each model
has on specific heat ratio γ and cylinder pressure.
To investigate if the engine operating condition
influences the choice of model, nine operating points
covering most parts of the operating range of an
engine are used to do the same evaluations. These
operating points and their corresponding cylinder
pressures are given in (Klein, 2004, pp.131).
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Fig. 7. Simulated cylinder pressure using Gatowski
et al.-model with nominal values in table E.1,
and the linear γ-model B1 replaced by reference
model D4.

6.4.1. γ-domain The γ-models in the three sub-
groups are compared to the reference model γCE

(11). A summary of the results are given here while
a complete picture is given in (Klein, 2004, pp.134).
Figure 8 compares the reference model D4 with the
computed values of γ for a few of these models,
namely B1, B3, C5, C4 and D1.

Of these models, only model D1 (21) is able to
capture the reference model well. This is confirmed
by the MRE(γ) and NRMSE(γ) columns in ta-
ble 5, where only model group D yields errors lower
than 1% for both columns. Model C4 deviates only
during the combustion, which in this case occurs
for θ ∈ [−15, 40] deg ATDC. This deviation is
enough to yield a NRMSE(γ) which is almost 0.6
%, approximately six times that found for D1.

Of the models previously proposed in literature,
the linear model B1 (12) has the best performance,
although it does not capture the reference model
very well, as seen in the upper plot of figure 8.
Model B3 (14) is only able to capture the reference
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Fig. 8. Upper: Specific heat ratios for models B1, B3

and C5 as compared to the reference model D4.
Lower: Specific heat ratios for models C4 and
D1 as compared to the reference model D4.

Model MRE: RMSE: NRMSE: Time
γ [%] p [kPa] γ [%] [s]

B1 (12) 4.7 52.3 1.3 3.8
B2 (13) 5.9 85.8 2.7 4.1
B3 (14) 5.2 76.0 1.8 4.2
B4 (15) 7.7 62.8 4.5 3.8
C1 (16) 2.3 39.8 0.69 4.7
C2 (17) 7.3 140.7 4.1 4.9
C3 (18) 2.4 25.4 0.65 5.1
C4 (19) 2.3 22.8 0.58 211.1
C5 (20) 8.4 82.9 1.5 4.0
D1 (21) 0.27 2.8 0.10 5.2
D2 (22) 0.26 2.6 0.09 12.3
D3 (23) 0.04 0.3 0.01 381.9
D4 (11) 0.0 0.0 0.0 384.2
Table 5. Evaluation of γ-models, on the

single cycle shown in figure 7.

model after the combustion, since model B3 is
optimized for a burned mixture. Model C5 (20) has
good behavior before and after the combustion. But
during the combustion, the constant γcomb

300 does not
capture γCE very well.

To conclude, model group D yields errors in γ
which are less than 1% for this operating point. Of
these models, model D3 has the best performance
compared to the reference model D4.

6.4.2. Pressure domain The impact that the γ-
models have on the corresponding cylinder pressure
is shown in figure 9 for models B1, B3, C5, C4 and
D1, and for all models in (Klein, 2004, pp.138).
The plots show the difference between the simulated
cylinder pressure for reference model D4 and the γ-
models, i.e. the cylinder pressure error induced by
the modeling error in γ. Note that the scaling in the
figures are different. The cylinder pressure model
used for the simulations is the model developed
by Gatowski et al. (1984). Section E gives more
details about the implementation used here.

The RMSE of the measurement noise is approxi-
mately 6 kPa and it is only model group D that
introduces a modeling error in the same order as
the noise in terms of RMSE. Thus, the other γ-
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Fig. 9. Upper: Reference cylinder pressure, the same
as given in figure 7. Middle: Cylinder pressure
error introduced by models B1, B3 and C5. For
convenience, the sign for C5 is changed. Lower:
Cylinder pressure error introduced by models
C4 and D1. Note that the scaling in the plots
are different.

models will introduce a modeling error which is
significantly larger than the measurement noise as
seen in Table 5, and thereby affect the accuracy of
the parameter estimates. Within group D, models
D3 and D4 have the smallest RMSE(p), and there-
fore yield the highest accuracy. Model D1 does not
introduce a significantly larger RMSE(p) than D2,
and therefore the most time efficient one should be
used of these two. Altogether this suggests that any
model in group D could be used.

The previously proposed γ-models B1, B2, B3, B4

and C5, described in section 2, all introduce model-
ing errors which are at least seven times the mea-
surement noise for this operating point. Clearly,
a large error, so none of these models are recom-
mended. Of these models, B1 induces the smallest
RMSE(p) and should, if any, be the one used of the
previously proposed models.

6.4.3. A note on crevice volume modeling Note
that the usage of a γ-model different from the linear
model used in Gatowski et al. [1984], will also affect
the amount of energy left or added to the system
when a mass element enters or leaves the crevice
volume. This energy term u′ − u =

∫ T ′

T has to be
restated for every γ-model at hand except model B1,
and this is done for model D1 in appendix D.

6.4.4. Computational time The right-most col-
umn of table 5 shows the computational time. The
time value given is the mean time for simulating the
closed part of one engine cycle using Matlab 6.1
on a SunBlade 100, which has a 64-bit 500 MHz
processor. The proposed model D1 is approximately
70 times faster than the reference model D4, where
the reference model uses look-up tables for pre-
computed values of the specific heats cp and cv.
Introducing the model improvement in model D1 of
the specific heat ratio to the Gatowski et al. single-
zone heat release model is simple, and it does not
increase the computational burden immensely com-
pared to the original setting, i.e. B1. The increase in
computational effort is less than 40 % compared to
the linear γ-model when simulating the Gatowski
et al. single-zone heat release model.

6.5 Evaluation covering all operating points

The same analysis as above has been made for
the simulated cylinder pressure from nine different
operating points, where pIV C ∈ [0.25, 2] bar and
TIV C ∈ [325, 372] K. The parameters for each cycle
is given in table 6. The operating range in p and T
that these cycles cover is given in figure 10, where
the upper plot shows the range covered for the
unburned mixture, and the lower shows the range
covered for single-zone (solid) and burned (dashed)
mixture. According to (Heywood, 1988, p.109), the
temperature region of interest for an SI engine is 400
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Fig. 10. Operating range in p and T . Upper: Un-
burned zone. Lower: Single zone (solid) and
burned zone (dashed).

OP pIV C [kPa] TIV C [K] Qin [J]
1 25 372 330
2 50 341 760
3 100 327 1620
4 150 326 2440
5 200 325 3260
1 25 372 330
6 50 372 700
7 100 372 1420
8 150 372 2140
9 200 372 2850

Table 6. Operating points (OP) for the
simulated cylinder pressure.



Model MRE: RMSE: NRMSE:
γ [%] p [kPa] γ [%]

B1 3.4 84.9 1.2
B2 5.2 153.6 2.4
B3 4.5 137.3 1.7
B4 7.1 110.0 4.2
C1 1.9 56.6 0.77
C2 6.6 269.2 3.9
C3 1.9 42.4 0.53
C4 1.8 36.7 0.46
C5 8.3 191.9 1.6
D1 0.26 5.8 0.097
D2 0.25 5.1 0.092
D3 0.044 0.7 0.016

Table 7. Evaluation of γ-models, in terms
of the mean values for all operating

points.

to 900 K for the unburned mixture; for the burned
mixture, the extreme end states are approximately
{1200 K, 0.2 MPa} and {2800 K, 3.5 MPa}. Of
course, not all points in the range are covered but
the cycles at hand cover the extremes of the range
of interest.

The results are summarized in terms of MRE,
RMSE and NRMSE in table 7 as mean values for
all operating point.

6.5.1. Ordering of models When comparing the
NRMSE for γ in table 7, the ordering of the γ-
models, where the best one comes first, is:

D4 ≺ D3 ≺ D2 ≺ D1 ≺ C4 ≺ C3 ≺ C1 ≺ B1 ≺
C5 ≺ B3 ≺ B2 ≺ C2 ≺ B4(25)

Here B2 ≺ C2 means that model B2 is better than
C2. Comparing RMSE for the cylinder pressure p,
the ordering of the γ-models becomes:

D4 ≺ D3 ≺ D2 ≺ D1 ≺ C4 ≺ C3 ≺ C1 ≺ B1 ≺
B4 ≺ B3 ≺ B2 ≺ C5 ≺ C2(26)

This ordering is not the same as in (25), but the only
difference lies in models C5 and B4. Model C5 has
poor performance in terms of RMSE(p), compared
to NRMSE(γ). For model B4, it is the other way
around.

6.5.2. Model group D In terms of NRMSE(γ) (25)
and RMSE(p) (26) model group D behaves as ex-
pected, and obeys the rule: the higher the complex-
ity is, the higher the accuracy becomes. According
to the RMSE(p) column in table 7, the models in
D all introduce an RMSE(p) which is less than
that found for the measurement noise. Comparing
models D1 (21) and D2 (22), it is obvious that not
much is gained in accuracy by using the unburned
specific heats from CHEPP instead of the linear
functions. The computational cost for D2 was more
than two times the one for D1, as shown in table 5.
This suggests that the unburned specific heats are
sufficiently well described by the linear approxima-
tion. Model D3 (23) utilizes the burned specific heat

from CHEPP, and this is an improvement compared
to model D1 which uses the Krieger-Borman poly-
nomial for cp,b and cv,b. This improvement reduces
the RMSE(p) with a factor 7, but the cost in com-
putational time is high, approximately a factor 70
according to table 5. This is considered to be a
too high cost at the moment. The comparison also
shows that if we want to reduce the impact on the
cylinder pressure, the effort should be to increase
the accuracy of the Krieger-Borman polynomial for
the burned mixture. This is however left as future
work for the moment, and in the meanwhile model
D1 is recommended as a good compromise between
computational accuracy and efficiency.

6.5.3. Model group C In model group C, model
C5 has good performance when considering the
NRMSE in γ (25), but not as good in RMSE(p) (26).
This perhaps explains why Chun and Heywood
(1987) consider this to be a good and accurate
enough model for single-zone models. This illus-
trates the importance of evaluating the modeling
error in the γ-domain to the cylinder pressure do-
main, and it also reflects that RMSE(p) is the more
important model performance measure of the two.
Model C2 (Stone, 1999, p.423) has really bad per-
formance and would be the last choice here. The
rest of the models in group C obeys the same rule
as group D, i.e. C4 ≺ C3 ≺ C1.

When the best model in group C, i.e. C4, is com-
pared to all models in group D, and especially
the reference model D4, it is concluded that the
specific heats should be interpolated, and not the
specific heat ratios. This conclusion can be drawn
since the only difference between C4 and D4 is how
the interpolation is performed. Model C4 interpo-
lates the specific heat ratios found from CHEPP
directly, and model D4 interpolates the specific
heats from CHEPP and then form the specific heat
ratio. Therefore, group D has better performance
than group C. Since D1 has higher accuracy and
approximately the same computational time as all
models in group C, there is no point in using any of
the models in group C.

6.5.4. Model group B As expected, the models in
group B has the worst performance of them all, if
excluding models C2 and C5. It is interesting to note
that the linear model γb

lin (B1) performs best in the
group, although it introduces a modeling error in p
which is at least ten times the measurement noise in
the mean. It has better performance than γKB (B3)
in the pressure domain, although this is not the case
in the γ-domain. This again points out the necessity
of evaluating the impact of the γ-model on to the
cylinder pressure. Therefore, if the assumption is
that the cylinder contents should be treated as a
burned mixture during the entire closed part of the
engine cycle, B1 is the model to use.



6.5.5. Summary To conclude, the models are or-
dered by their performance and with computational
efficiency in ascending order:

D4 ≺ D1 ≺ B1 ≺ B4 (27)

Some of the models are excluded from this list,
either due to their low accuracy, high computational
time, or because another model with approximately
the same computational time has higher accuracy.
Of the models given in (27), D1 is recommended as a
compromise between computational time and accu-
racy. Compared to the original setting in Gatowski
et al. (1984), the computational burden increases
with 40 % and the modeling error is more than ten
times smaller in the mean. This also stresses that
the γ-model is an important part of the heat release
model, since it has a large impact on the cylinder
pressure. The focus is now turned to how the γ-
models will affect the heat release parameters.

6.6 Influence of γ-models on heat release parameters

The question is: What impact does each of the
proposed γ-models have on the heat release param-
eters? This is investigated by using the cylinder
pressure for operating point 2, given in figure 7,
and estimate the three heat release parameters θd,
θb and Qin in the Vibe function, introduced in
appendix C. The cylinder pressure is simulated
using reference model D2 in conjunction with the
Gatowski et al. cylinder pressure model, and this
forms the cylinder pressure measurement signal to
which measurement noise is added.

The heat release trace is then estimated given the
measurement from reference model D2. The heat
release trace is parameterized by the Vibe func-
tion, which has the heat release parameters θd,
θb and Qin. The estimation is performed by min-
imizing the prediction error, i.e. by minimizing the
difference between the measured cylinder pressure
and the modeled cylinder pressure. The Levenberg-
Marquardt method is used as optimization algo-
rithm. The heat release parameters are then esti-
mated for each of the γ-models using the Gatowski
et al.-model, where the γ-model is replaced in an
obvious manner in the equations. In the estima-
tions, only the three heat release parameters are
estimated. The other parameters are set to their
true values given in table E.1. The results are sum-
marized in table 8, which displays the relative esti-
mation error (RE) and the relative 95 % confidence
interval (RCI) in θd, θb and Qin respectively for each
γ-model. The computational time and RMSE(p) are
also given.

6.6.1. Discussion The RMSE of the applied mea-
surement noise is approximately 6.7 kPa, which is
also the RMSE found when using most γ-models.
All methods are able to estimate the rapid burn
angle θb most accurately of the three, and almost
all of them are accurate within 1%. On the other
hand, only model group D is accurate within 1 %

θd [%] θb [%] Qin [%] RMSE
RE RCI RE RCI RE RCI [kPa]

B1 5.1 1.7 0.29 3.1 -9.2 1.4 9.8
B2 3.1 1.7 0.63 2.9 -7.3 1.3 9.1
B3 3.4 1.7 -0.2 2.9 -7.2 1.3 9.1
B4 6.8 1.7 -0.11 3.2 -6.2 1.4 10.1
C1 0.074 1.4 1.1 2.4 -2.9 1.1 6.5
C2 9.6 2.1 -1 3.9 -14 1.7 16.0
C3 0.19 1.4 0.75 2.4 -2.5 1.2 6.5
C4 0.14 1.5 0.64 2.4 -2 1.2 6.7
C5 -8 1.5 -2.5 2.3 27 0.92 6.6
D1 0.21 1.5 -0.062 2.4 -0.67 1.3 6.7
D2 0.2 1.5 -0.08 2.4 -0.61 1.3 6.7
D3 0.22 1.5 -0.13 2.4 -0.48 1.3 6.7
D4 0.21 1.5 -0.13 2.4 -0.42 1.3 6.7

Table 8. Relative estimation error (RE)
and relative 95 % confidence inter-
val (RCI) given in per cent, for heat re-
lease parameters using various γ-models
at operating point 2. The nominal values
for the heat release parameters are: θd =
15 deg, θb = 30 deg and Qin = 760 J. The
computational time and cylinder pressure

RMSE are also given.

for all three parameters, and this suggests that any
of the D-models can be used, preferably model D1

due to its lower computational time. Note also that
C5 gives the highest deviation in the estimates of
them all.

6.7 Influence of air-fuel ratio λ

An investigation is performed to see how the pro-
posed model D1 behaves for different air-fuel ratios
λ. The NRMSE(γ;D1, λ) and RMSE(p;D1, λ) are
computed for model D1 (21) compared to reference
model D4 for air-fuel ratio λ ∈ [0.975, 1.025], at op-
erating point 2. It is assumed that the λ-controller
of the SI engine has good performance, and there-
fore keeps the variations in λ small. The results are
displayed in figure 11, where the upper plot shows
the NRMSE(γ;D1, λ), and the lower plot shows the
RMSE(p;D1, λ). Lean and stoichiometric mixtures
have the lowest errors in the γ domain, which is

0.98 0.99 1 1.01 1.02
0

0.005

0.01

N
R

M
S

E
(γ

; D
1) 

[−
]

NRMSE(γ; D
1
,λ) @ OP2

0.98 0.99 1 1.01 1.02
2.5

3

3.5

4

AFR λ [−]

R
M

S
E

(p
; D

1) 
[k

P
a]

RMSE(p; D
1
,λ) @ OP2

Fig. 11. Upper: NRMSE(γ;D1, λ) for λ ∈
[0.975, 1.025]. Lower: RMSE(p;D1, λ) for λ ∈
[0.975, 1.025].



expected since the Krieger-Borman polynomial for
the burned mixture is estimated for lean mixtures.
The error in pressure domain is approximately sym-
metric around λ = 0.995, and the magnitude is still
less than the measurement noise. This assures that
for a few per cent deviation in λ from stoichiometric
conditions, the introduced error is still small and
acceptable.

6.7.1. A note on fuel composition An sensitivity
analysis is made for fuels such as methane and two
commercial fuels in (Klein, 2004). This in order to
see if the results are valid for other fuels than iso-
octane. The carbonhydrogen ratio for the fuel CaHb

is given by y = b/a. It is found that the hydrocarbon
ratio needs to be close to 2.25, i.e. the one for iso-
octane, although an exact limit can not be given
without further studies. For a commercial fuel with
ratio y = 1.88, the RMSE(p) introduced is increased
with less than 75 % compared to iso-octane, which
is acceptable.

6.8 Influence of residual gas

The influence of the residual gas mass fraction xr

on the specific heat ratio has been investigated
in (Klein, 2004). It was found that the model used
needs to be robust to changing operating condi-
tions, a feature the Krieger-Borman polynomial
has. Therefore model (28) which uses the Krieger-
Borman polynomial is recommended, although it
did not have the best performance of the xr-models
at every operating point.

cp = xb c
KB
p,b (Tb, p) + (1 − xb)

(
(1 − xr)c

lin
p,u(Tu) + xr c

KB
p,b (Tu, p)

)
(28a)

cv = xb c
KB
v,b (Tb, p) + (1 − xb)

(
(1 − xr)c

lin
v,u(Tu) + xr c

KB
v,b (Tu, p)

)
(28b)

γD1xr
(T, p, xb, xr) =

cp(T, p, xb, xr)

cv(T, p, xb, xr)
(28c)

6.9 Summary for partially burned mixture

The results can be summarized as:

• The modeling error must be compared both in
terms of how they describe γ and the cylinder
pressure.

• Comparing models C4 and D4, it is obvious
that interpolating the specific heat ratios di-
rectly instead of the specific heats causes a
large pressure error. Interpolation of specific
heat ratios does not fulfill the energy equation.

• The γ-models B1, B2, B3, B4, C2 and C5 pro-
posed in earlier works, introduce a pressure
modeling error which is at least four times the
measurement noise, and at least ten times the
measurement noise in the mean. If any of them
should be used, model B1 should be considered.

• If only single-zone temperatures are allowed,
model B1 is the better one.

• The computation times are of the same order
for all models except D3, D4 and C4.

• The models in group D are required to get a
cylinder pressure RMSE that is of the same
order as the measurement noise.

• As a compromise between accuracy and com-
putational time, model D1 is recommended.
Compared to the original setting in Gatowski
et al. (1984), the computational burden in-
creases with 40 % and the cylinder pressure
modeling error is 15 times smaller in mean.

• For a residual gas mass fraction xr up to 20 %,
model D1 can be extended with specific heats
for the residual gas (28). These specific heats
are modeled by the Krieger-Borman polyno-
mial. This model extension adds a
NRMSE(γ) which is less than 0.3 % to the
previous modeling error for xr = 0.

• The results are valid for the air-fuel ratio re-
gion λ ∈ [0.975, 1.025] with retained accuracy.
For other fuels than iso-octane, the hydrogen-
carbon ratio y needs to be close to 2.25, i.e. the
one for iso-octane. The closer, the better the
accuracy is. For a commercial fuel with ratio
y = 1.88, the RMSE(p) is increased with 70 %
compared to iso-octane for model D1, which is
acceptable.

• Only model group D produces prediction error
estimates of the heat release parameters, that
are accurate within 1 % for all three param-
eters, and this suggests that any of the D-
models can be used, preferably model D1 due
to its lower computational time.

7. CONCLUSIONS

Based on assumptions of frozen mixture for the
unburned mixture and chemical equilibrium for the
burned mixture, the specific heat ratio is calculated,
using a full equilibrium program (Eriksson, 2004),
for an unburned and a burned air-fuel mixture, and
compared to several previously proposed models of
γ. It is shown that the specific heat ratio and the
specific heats for the unburned mixture is captured
within 0.25 % by a linear function in mean charge
temperature T for λ ∈ [0.8, 1.2], and the burned
mixture is captured within 1 % by a higher-order
polynomial in cylinder pressure p and temperature
T developed in Krieger and Borman (1967) for the
major operating range of a spark ignited (SI) en-
gine. If a linear model is prefered for computational
reasons for the burned mixture, the temperature
region should be chosen with care which can reduce
the modeling error in γ by 25 %.

With the knowledge of how to describe γ for the
unburned and burned mixture respectively, the fo-
cus is turned to finding a γ-model during the com-
bustion process, i.e. for a partially burned mixture.
This is done by interpolating the specific heats for
the unburned and burned mixture using the mass
fraction burned xb. The objective of the work was
to find a model of γ, which results in a cylinder



pressure error less than or in the order of the mea-
surement noise. It is found that interpolating the
linear specific heats for the unburned mixture and
the higher-order polynomial specific heats for the
burned mixture, and then forming the specific heat
ratio

γ(T, p, xb) =
cp(T, p, xb)
cv(T, p, xb)

=
xb cKB

p,b + (1 − xb) clin
p,u

xb cKB
v,b + (1 − xb) clin

v,u

(29)
results in a small enough modeling error in γ. This
modeling error results in a cylinder pressure error
less than 6 kPa in mean, which is in the same order
as the cylinder pressure measurement noise.

It was also shown that it is important to evaluate
the model error in γ to see what impact it has on the
cylinder pressure, since a small error in γ can yield
a large cylinder pressure error. This also stresses
that the γ-model is an important part of the heat
release model.

Applying the proposed model improvement, model
D1 (29), of the specific heat ratio to the Gatowski
et al. (1984) single-zone heat release model is sim-
ple, and it only increases the computational bur-
den slightly. Compared to the original model, the
computational burden increases with 40 % and the
modeling error introduced in the cylinder pressure
is reduced by a factor 15 in mean.
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Appendix A. TEMPERATURE MODELS

Two models for the in-cylinder temperature will be
described, the first is the mean charge single-zone
temperature model. The second is a two-zone mean
temperature model, used to compute the single-
zone thermodynamic properties as mean values of
the properties in a two-zone model.

A.1 Single-zone temperature model

The mean charge temperature T for the single-
zone model is found from the state equation pV =
mcRT , assuming the total mass of charge mc and
the mass specific gas constant R to be constant.
These assumptions are reasonable since the molec-
ular weights of the reactants and the products
are essentially the same (Gatowski et al., 1984).
If all thermodynamic states (pref ,Tref ,Vref ) are
known/evaluated at a given reference condition ref ,
such as IVC, the mean charge temperature T is
computed as

T =
TIV C

pIV CVIV C
pV (A.1)



A.2 Two-zone mean temperature model

A two-zone model is divided into two zones; one
containing the unburned gases and the other con-
taining the burned gases, separated by a infinitesi-
mal thin divider representing the flame front. Each
zone is homogeneous considering temperature and
thermodynamic properties, and the pressure is the
same throughout all zones (Nilsson and Eriksson,
2001). Here a simple two-zone model will be used
to find the burned zone temperature Tb and the un-
burned zone temperature Tu, in order to find a more
accurate value of γ(T ) as an interpolation of γu(Tu)
and γb(Tb). The model is called temperature mean
value approach (Andersson, 2002), and is based
on a single-zone combustion model and adiabatic
compression of the unburned charge. The single-
zone temperature can be seen as a mass-weighted
mean value of the two zone temperatures.

Prior to start of combustion (SOC), the unburned
zone temperature Tu equals the single-zone temper-
ature T :

Tu,SOC = TSOC (A.2)
The unburned zone temperature Tu after SOC is
then computed assuming adiabatic compression of
the unburned charge according to:

Tu = Tu,SOC

(
p

pSOC

)1−1/γ

= TSOC

(
p

pSOC

)1−1/γ

(A.3)
The unburned zone temperature Tu is therefore
given by:

Tu(θ) =




T (θ) θ ≤ θig

T (θig)
(

p

p(θig)

)1−1/γ

θ > θig
(A.4)

Energy balance between the single-zone and the
two-zone models yields:

(mb + mu)cvT = mbcv,bTb + mucv,uTu (A.5)

Assuming cv = cv,b = cv,u, i.e. a calorically perfect
gas, ends up in

T =
mbTb + muTu

mb + mu
= xbTb + (1 − xb)Tu (A.6)

where the single-zone temperature can be seen as
the mass-weighted mean temperature of the two
zones. Including a model for cv would increase the
importance of Tb in (A.6), resulting in a lower value
for Tb. From (A.6), Tb is found as

Tb =
T − (1 − xb)Tu

xb
(A.7)

The procedure is summarized as:

(1) Compute the single-zone temperature T in (A.1)

(2) Compute the mass fraction burned xb by us-
ing e.g. Matekunas pressure ratio manage-
ment (C.1) and use the Vibe function in (C.3)
to parameterize the solution

(3) Compute the unburned zone temperature Tu

using (A.4)
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Fig. A.1. Upper: Single-zone temperature T1z, un-
burned Tu and burned Tb zone temperatures
for the cylinder pressure given in figure 7. Bot-
tom: Corresponding mass fraction burned trace
calculated using Matekunas pressure ratio.

(4) Compute the burned zone temperature Tb

from (A.7)

The various zone temperatures for the cylinder
pressure trace displayed in figure 7 are shown in
figure A.1. The burned zone temperature is sensitive
to low values of the mass fraction burned, xb. There-
fore, Tb is set to the adiabatic flame temperature for
xb < 0.01. The adiabatic flame temperature Tad for
a constant pressure process is found from:

hu(Tu) = hb(Tad, p) (A.8)

where hu and hb are the enthalpy for the unburned
and burned mixture respectively.

Appendix B. CYLINDER PRESSURE MODEL

The article (Gatowski et al., 1984) develops, tests
and applies the cylinder pressure model used here.
It maintains simplicity while still including the
effects of heat transfer and crevice flows. The model
has been widely used and the phenomena that it
takes into account are well known (Heywood, 1988).
The pressure differential dp can be written as

dp =
đQch − γ

γ−1 p dV − đQht

1
γ−1 V + Vcr

Tw

(
T

γ−1 − 1
b ln

(
γ−1
γ′−1

)
+ T ′

)
(B.1)

This is an ordinary differential equation that easily
can be solved numerically if a heat-release trace
đQch is provided. The heat release is modeled by
the Vibe function described in section C.

Appendix C. COMBUSTION MODEL

The combustion of fuel and air is a very complex
process, and would require extensive modeling to
fully capture. Our approach here is to use the
pressure ratio management (Matekunas, 1983) to



produce a mass fraction burned trace and then use
the Vibe function to parameterize the burn rate of
the combusted charge. If the mass fraction burned
trace is known, as for simulations, the pressure ratio
management is not used.

C.1 Matekunas pressure ratio

The pressure ratio management was developed
by Matekunas (1983) and is defined as the ratio
of the cylinder pressure from a firing cycle p(θ) and
the corresponding motored cylinder pressure pm(θ):

PR(θ) =
p(θ)

pm(θ)
− 1 (C.1)

The mass fraction burned trace xb is then approxi-
mated by the normalized pressure ratio PRN (θ)

xb(θ) ≈ PRN (θ) =
PR(θ)

maxPR(θ)
(C.2)

an approximation valid within 1-2 degrees (Eriks-
son, 1999).

C.2 Vibe function

The Vibe function (Vibe, 1970) is often used as a
parameterization of the mass fraction burned xb,
and it has the following form

xb(θ) = 1 − e
−a

( θ−θig
∆θ

)m+1

(C.3)

The burn rate is given by its differentiated form

dxb(θ)
dθ

=
a (m + 1)

∆θ

(
θ − θig

∆θ

)m

e
−a

( θ−θig
∆θ

)m+1

(C.4)
where θig is the start of the combustion, ∆θ is
the total combustion duration, and a and m are
adjustable parameters. In (Klein, 2004, p.32) the
eqations to relate the parameters a and m to the
physical burn angle parameters θd and θb are given.

The differentiated Vibe function (C.4) is used to
produce a mass fraction burned trace, i.e. a normal-
ized heat-release trace. The absolute value of the
heat-release rate dQch

dθ is given by the fuel mass mf ,
the specific heating value of the fuel qHV , and
combustion efficiency ηf as

dQch

dθ
= mfqHV ηf

dxb

dθ
= Qin

dxb

dθ
(C.5)

where Qin represents the total energy released from
combustion.

Summing up, the combustion process is described
by (C.5), parameterized by Qin, θig, θd, and θb.

Appendix D. ALTERED CREVICE TERM

The energy term describing the energy lost when
a mass element enters the crevice volume depends
on which γ-model is used and therefore has to be

restated for every γ-model except B1, which was
done in (B.1) for the original setting in the Gatowsk
et.al. model. Details are found in (Klein, 2004).
For model D1, the energy term u′ − u is therefore
rewritten as:

u′ − u =

∫ T ′

T

cv dT

= xb

∫ T ′

T

cKB
v,b dT + (1 − xb)

∫ T ′

T

clin
v,u dT

= xb(u
KB(T ′) − uKB(T )) + (1 − xb)

R

bu
ln

(
γu

lin(T ′) − 1

γu
lin

(T ) − 1

)
(D.1)

where we have used that cv = xbc
KB
v,b +(1−xb)clin

v,u

in the second equality, and in the third equality that
cv = ( ∂u

∂T )V for the burned mixture and (1) for the
linear unburned mixture. The first term in (D.1) is
given directly by the Krieger-Borman polynomial
in it is original form. The second term is easily
computed when knowing the coefficient values for
the linear unburned mixture model, i.e.

γu
lin = γu

300 + bu(T − 300) (D.2)

Note that (D.1) is zero whenever T ′ = T , i.e. when
the mass flow is out of the modeled crevice volume.

Appendix E. SINGLE ZONE MODEL
PARAMETERS

Par. Description Value
γ300 constant specific heat ratio [-] 1.3678

b slope for specific heat ratio[K−1] −8.13 · 10−5

C1 heat-transfer parameter [-] 2.28
C2 heat-transfer parameter [-] 3.24 · 10−3

θ0 crank angle phasing [deg ATDC] 0.4
∆p bias in pressure measurements [kPa] 30
Kp pressure measurement gain[-] 1
pivc cylinder pressure at IVC [kPa] 100
Tivc mean charge temperature at IVC [K] 340
Tw mean wall temperature [K] 440
Vc clearance volume [cm3] 35.5
Vcr single aggregate crevice volume [% Vc] 1
θig ignition angle [deg ATDC] -20
θd flame-development angle [deg ATDC] 15
θb rapid-burn angle [deg ATDC] 30

Qin released energy from combustion [J] 760
Table E.1. Nominal values for the param-
eters in the Gatowski et al. single-zone

heat release model.


