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Abstract

A framework for fault diagnosis, callestructured hy-
pothesis testds presented. It has earlier been devel-
oped within the area of automatic control, but is in fact
very much inspired by the ideas developed in the Al
area. The motivation was originally to handle dynamic
systems with noise. However, it is here shown that
also the noise-free case can be perfectly handled. The
system to be diagnosed, and also the different faults,
are described by differential equations, algebraic equa-
tions, and probability distribution functions. By using
the framework, it is in the isolation possible to utilize
all such modeled knowledge about the faults. The di-
agnosis system is constructed by combining a set of
different hypothesis tests. In this way, the task of di-
agnosis is transferred to the task of validating a set of
different models with respect to the measured data.

The motivation to develop the SHT framework comes
from work with real applications, namely diagnosis of au-
tomotive engines (Nyberg 1999b; Nyberg & Stutte 2001).
An example of requirements in such an application is that
we have 1 sensor, 5 different faults modeled in different
ways, a system that is dynamic, non-linear and contains
noise and model uncertainties. Since the goal in these ap-
plications is to make decisions in a noisy environment it
is natural to utilize the framework and theory of statistical
hypothesis testing, which was developed exactly for this
purpose.

In statistical hypothesis testing, and therefore also in the
SHT framework, the reasoning is abenbdels which can
be dynamic or static, and deterministic or stochastic. This
reasoning about models has the advantage that all type of
faults can be handled. Further on, by using models, we

can into the diagnosis system, include detailed knowledge
about how the faults affect the system. This can be a signif-
icant advantage since the more knowledge about the faults

1 Introduction : the
. . . . L that can be considered, the larger are the possibilities to
An ongoing effort in the fault diagnosis community is t0  ggjate between different faults.

investigate relations between the model-based diagnosis e following section will introduce the basic concepts
methods used by researchers from the Al and automaticy, the SHT framework. Then Section 3 will discuss fault
control areas respectively, e.g. see (Cordial. 2000). In 54eling. Section 4 goes into some details about hypoth-
this context it can be interesting to study the framework of ;g testing. Section 5 presents fheidence structure
structured hypothesis tes{SHT) (Nyberg 1999b; 1999¢; \\hich is closely related tstructured residualsa common
1999a). This framework was developed from the perspec-4 ;1omatic-control approach to fault diagnosis. In Section 6,
tive of automatic control but also uses inspiration from the ;|| pe shown that the incidence structure ideally is a rep-
Al area. Itis primarily based on statistical hypothesis test- rasenation of a set of relations between the faults. Based
ing (Lehmann 1986) and decision theory (Berger 1985). o hese results, a sufficient condition for obtaining a com-
The basic idea is to combine a set of different (binary) hy- pjete and logically sound diagnosis statement is proven in
pothesis tests, and in this way solve complicated diagnosisgecion 7. While the first part of the paper assumes a noise-

problems. Hypothesis testing, but from a slightly different e environment, Section 8 finally extends the discussion
perspective, have also been used in Al-based approaches tg, systems with noise.

model based diagnosis, e.g. see (Mcllraith & Reiter 1992;
Struss 1994).

Originally, the SHT framework was developed for diag-
nosis of noisy systems. However, in this paper it is shown
how it also can be used for diagnosis of noise-free sys-
tems. It is proved that with the SHT framework, we can
in a noise-free environment design a diagnosis system thal
always produce aompleteandlogically sounddiagnosis
statement, i.e. the diagnosis system will always tell exactly
which faults that can explain the observed behavior.

2 Basic Idea of Structured Hypothesis Tests

When using the SHT framework, different faults are classi-
fied into differenfault modesThis is similar tobehavioral
modesas defined in (de Kleer 1989). Here we briefly intro-
puce the concept of fault modes but more formal definitions
will follow later in the paper. For an illustrative example,
consider a system consisting of a gas tank with potential
leakages. The tank is also equipped with a pressure sensor.
We decide that all leakages, regardless of their area, be-
long to the same fault mode "leakage”. We also decide that
all faults in the pressure sensor belong to the fault mode
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"pressure sensor fault”. Further, one fault mode is always modes, i.e.S;, C €. Another possibility, discussed in (Ny-
the "no-fault” case. Then the complete list of fault modes berg 1999c), is to let the diagnosis statements be expressed

IS by logic formulas.
NF "no fault” A diagnosis statemenf can in general contain more
PSF "pressure sensor fault” than one fault mode. For exampfe= {F1, F2} means
L "leakage” that both fault mode$'1 and F'2 can explain the behavior
PSF&L | "pressure sensor fault” and "leakage” of the system.

Let F,, denote the present fault mode. Then for ihi

As seen each fault mode is associated with one abbreviy noihesis test, theull hypothesisind thealternative hy-
ation. We distinguish between single fault modéss F pothesican with the help of a set/;, be written

and L, and multiple fault modesPSF&L. The set of

all fault modes is denotef?, and in the exampleQ) = H}:F,eM; some fault mode iV}, can explain meas. data’
{NF,PSF,L,PSF&L}. A convention used, is that only (1a)
one fault mode can be present at the same time. As Wepl.F e ME  "no fault mode inMj can explain meas. data”
will see later, this originates from the theory of hypothesis (1b)
testing.
WhereMkC denotes the complement af.. For the two
2.1 The Diagnosis System possible decisions of a hypothesis t&stwe use the nota-
i 0 1 i
The diagnosis problem, and also the objective of the diag-t1On Sk ands;.. This means that
nosis system can be expressed as follows: G _ S = MC if H is rejected {I} accepted)
Given a set of observations, the task of the diagnosis k= Sy CQ if HY is notrejected

system is to generatediagnosis statemerff, which . _
contains information about which fault modesthat can ~ The convention used here and also commonly used in hy-
explain the observations. pothesis testing literature, is that whé is rejected, we

assumehat H} is true. This implies that the present fault
ode can not belong td/;, and thereforeS} = M.
hat we can assume whéf} is notrejected depends on
the actual hypothesis tests, and will be discussed in Sec-
tions 5 and 8. However, it always holds thef, C S C

Note that it is assumed that the diagnosis systepassive

i.e. it can by no means affect the plant. We also assume tha
the diagnosis system ®atic i.e. the same observations
will always give the same diagnosis statement. In terms
of decision theorye.g. see (Berger 1985)), the diagnosis
system is then decision rule(x), i.e. a function from the

observations to the diagnosis statement; How the hypothesis tests are used to diagnose and isolate

faults is illustrated by the following example.

0: X — P() Example 1 Assume thaf) = {NF, I, Fy, F3} and that
the diagnosis system contains the following set of three hy-

whereX’ is the set of all possible observations aR(\?) pothesis tests:

is thepower setof 2. Here,z is used to denote the whole
measured data-set, which usually consists of allknownand ~ HY : F, € My = {NF,Fi} 5] =Q
measured variables of the system up to present time or a H-F e MC = (F, F (R
subset of this data. One choice is to use a fixed size time vy € My =By Fah o Sy = {1, Fu
window.

Model based diagnosis is a complex task and it is there- HY:F, € My={NF, F»} S8 =0
fore advantageous to divide the task in smaller subtasks. 1. c 1
Thus the whole diagnosis systefifz) is divided into Hy : Fp € My ={F, F3} Sy = {F1, I3}
smaller partgy, (z), which we will assume to be hypothesis

tests. The classical, statistical or decision theoretic, defini- HY:F, € My ={NF, F3} S =0
tion of hypothesis tests adopted, e.g. see (Berger 1985; | o |
Lehmann 1986; Casella & Berger 1990), which is to be dis- H3 : Fp € My ={F,F,}  S3={F, I}

tinguished from “multiple hypothesis testing” that can also Then if onlvH? is reiected. we draw the conclusions that
be found in literature, e.g. (Basseville & Nikiforov 1993). F e Sl FyEISO FJ c SQ’That isF € S1ns9Ns —
This means that we use hypothesis tests that are "binary” in %2 F;}'mfmgt {pF2 F‘;} ie the Sresehtfaalt mode is
the sense that the outcome of a hypothesis test is one, Ouéithéng or Fy. If both ,H? e{ndﬁg are rejected, we draw
of two possible decisions. . . the conclusion thak), € {Fs, F3}N{F1, F3}NQ = {F3},
Each hypothesis test;(x) generates a sub-diagnosis i.e. the present fault mode I,
statementSy, i.e. Sy = dx(z). The diagnosis statement o ) )
S is then formed by combining the information of the sub- From the exgmple above, it is clear that the diagnosis state-
diagnosis statements. The procedure for this will be de-MeNtS can in general be expressedss- (7, Sk
scribed later. .
The diagnosis statemen$sand S;, do all contain infor- 3 Fault Modeling and Fault Modes
mation about which fault-modes that can explain the be- The plant to be diagnosed is modeled with a motgh).
havior of the system. In this paper, the representation andThe parameter vectdris called thefault stateand repre-
reasoning about this information are based on sets of faultsents the true but unknown fault situation of the plant. The



model M (0) consists of differential and algebraic equa- is an unknown arbitrary signal. To represent this with the

tions. In this paper we assume that no disturbances affect-vector, we can for example assume the following model:

the plant and that there are no unknown parameters. How-

ever, the general case, including disturbances, unknown pa- y(t) = g1 (ur(t) + ua(t)) + g2 fa(t)

rameters, and also stochastic models, is described in (Ny- _ ; ;

berg 1999c). The effect of noise is included in this paper mf:ﬁrg@: [17[%1: ‘?ﬁL’ r:gg; }2?531\?\,?,[? ;oi\fl[[&l(s)],og:‘zyr;ﬁg

but will be handled later in Section 8. model for AF with § = [0,1]. Note that in contrast to
One or possibly several fault stat’éalways corresponds  tne fault model in (3), the fault in fault modéF is not

to the fault-free case. THault-state space.e. the param-  555umed to always affect the adder. The assumption that

eter space of, will be denoted. Note that we have cho- 4 a1t always affect a system is calléallt exoneration

sen the convention thétis not dependent on time which (Cordieret al. 2000). As was seen in the adder example,

corresponds to an assumption that the fault state of the sysye can with the help of choosing fault models, chose to
tem never changes. Even though this may seem to be & s5,mdault exoneratioror not. '

limitation, this is not the case since we will be quite lib-
eral regarding the definition of the parameter veétae.g. 3.2 Fault Modes

elements are allowed to be functions. . . .
The modelM(8) can now formally be defined as The cIaSS|f|cat|p_n of different faults into fault modes corre-
sponds_to Partition of the fault-state spadge. Each fault
M:0O — P(X 2 modev is associated with a subs®t, of ©. Thus all sets
() @ ©,, are pairwise disjoint an® = U,cq©,. If fault mode
That s, for a fixed value of, the model specifies the set of 7 is present in the system, then we know that ©,. The

observations that are possible to observe. fact that all set$9, are pairwise disjoint reflects the fact
that only one fault mode can be present at the same time.
3.1 Fault Modeling Principles Note however that, even though two different fault modes

. o . always have disjoin®,-sets, they can result in identical
Many different principles for fault modeling have been gpservations. With the model (2), each fault modean

used in the automatic-control literature. One of the most now pe seen as a model of the process, namely the model
common is to model faults by unrestricted arbitrary fault x4 (9), wheres € ..

signals. When fault signals are used, a specific fault is usu- ) ) )
ally modeled as a scalar fault signal. For example considerExample 2 Consider a system described by the following

an adder described by the equation equations:
y(t) = ua () + ua(t) + S (1) ® £(t) =7le(t), ult))
yi(t) =ha(2(t)) 4 by
The fault free case can be representegt by = 0 and then Y2(t) =ha(x(t)) + b2

any fault can be modeled by &ift) # 0. Obviously, fault

modeling by signals is very general and can in principle The constants; andb, represents sensor bias faults and it
describe all types of faults, but as has been noted in e.gis assumed that only positive biases can occur. It is natural
(Blanke 1999; Dinget al. 1999), this can cause problems to letf; = b; andfy = by, and thus) = [0 02] = [by ba].
with the isolation. In the formalism described above, a fault Four fault modes are considered: “no faul®NF, “bias

signal f(t) can be an element in thevector, i.e. §; = in sensor 1"B1, “bias in sensor 2" B2, “bias in both
f(t). Note that; is still constant but its value is the whole sensor 1 and sensor 81&B2. The set®, Onr, OB1,
signalf(t). Op2, andOp1¢B2 become

Another common fault modeling principle is to model

faults by deviations in constant parameters. For an exam- [b1 b2

ple of how this can be described with the paramétesee Onr ={[0 0]}

Example 2. One further, also common, fault model is to ©B1 ={[b1 0]; by > 0}
consider abrupt changes of variables, e.g. see (Basseville & Opz ={[0 ba]; by > 0}
Nikiforov 1993). More discussions on how the here men- ’

tioned fault modeling principles, and also other, can be for- OB1en2 ={[b1 b2]; b1 > 0,02 > 0}
rlnguglgtbe)(-j using the parametgis found in (Nyberg 1999c; 3.3 Component Fault Modes

Note that although we in SHT have the possibility to uti- SO far, we have only considered fault modes and models on

lize fault models, there is nmustthat all faults are enumer- @ "system level”. Sometimes it is desirable to have a more
ated and precisely modeled. It is always possible to use acomponent-oriented view of the system. Assume that the
fault mode "unknown fault”, either alone together with the System is separated into a numbecofponents~or each

NF fault mode or together with other fault modes repre- of these components a number of faults can occur. Each of
senting more detailed fault models. For an example, con-these faults can be classified into differentponent fault
sider the adder in (3). There can for example be three faultmodes To avoid confusion, the fault modes on the system
modes: N F' (no fault), SO (stuck at zero), andLF (arbi-  level can then be denotegistem fault-modes

trary fault). The model foiS0 is obviouslyy(t) = 0, and Let I} be thej:th component fault-mode of thiegh com-

the model forAF’ can be writtery(t) = f.(t), wheref,(t) ponent. Further, lefV ' denote the no-fault fault-mode



of the i:th component. A system fault-mode can then be i.e. the model defined by the null hypothesis. Below, we
composed by a vector of component fault-modes. Somewill exemplify such a model validity measure based on us-

examples of system fault-modes are ing theprediction error. Another example of a commonly
1 5 » used model validity measure is the likelihood function. For
NF =[NF',NF*,... NF?] further discussions about different model validity measures
F} =[F!,NF?, ... NF?] useful for fault diagnosis, see (Nyberg 1999c).
2 1 2 3 ", ..
F{ =[NF,F{,NF", .. .NF"| 4.2 Test Quantities based on Prediction Errors
Fi&F3? =[F),FE,NF? .. .NF?] Here we will assume that the observations can be divided

. L . . into inputsu and outputsy. The calculation of the test
Note the strong relationship with how failure/behavioral quantity is then based on a comparison between the mea-

modes are treated in (de Kleer, Mackworth, & Reiter . ; :
1992). Here we have shortly discussed a representatio su.red and predicted outpytover a time window of length

based on component fault modes instead of system fault-

modes, and also the relation between the two. Actually also 1 & . 2

the complete logical reasoning can be done using only the Vii(0,%) = N Z (y(t) — 5(t10, %)) (4)

component fault modes. This topic will not be discussed =1

here but is further investigated in (Nyberg 1999c). wherej(t|0, x) is the prediction of the output(t), derived
from an assumption of a specifiand the measured data

4 Construction of the Hypothesis Tests The functionV; (0, x), whered is fixed, is then a measure
To develop the actual hypothesis tests, we first need to de-Of the validity of the modelM (), for a fixedd, in respect

cide the set of hypotheses to test. We will here assume thaf® _tl_hhe Teetlsuremi(tant d;’*ﬁ] nb lculated
the set of hypothesis tests is already specified with the help € test quantity can then be calculated as

of setsMj,. Tr(x) = min Vi (60, x) (5)
By using the set®).,, an alternative representation of the oeoy
hypothesis test (1) can be written as Note that although the model validity measlfgd, x)
0 in (5) is indexed byk, meaning that it is specific for the
H:0e | ] O, hypothesis testy, it is often possible (and also quite ele-
YEM, gant) to use the sani#é(6, x) for all hypothesis tests. In
H.:0¢ U o, that case, the only thing that differs test quantities in differ-

o ent tests, is the s@? over which the minimization is per-
TERE formed. This approach is demonstrated in (Nyberg 1999b).
This is the representation commonly used in statistical hy-

pothesis testing literature. For each hypothesisdgsive 5 Representing the Diagnosis System Using
then need to find eejection regioni.e. a subset ot where an Incidence Structure

the null-hypothesis is rejected. This is usually done via a
test quantity(often also called test statistic). The test quan-
tity is a functionTy(x) from the sample datax (i.e. the
observations), to a scalar value which is to be compared
with a thresholdJ,,. Typically if T} (x) > Ji, thenH} is
rejected and otherwise not rejected. The rejection region o
each test is thereby implicitly defined.

A standard approach in the fault diagnosis literature within
the automatic control community, e.g. (Gertler 1998;
Chen & Patton 1999), is to use the principlestfuctured
residualsto achieve fault isolation. In this section, we will
fsee that structured hypothesis tests can actually be seen
as a generalization and formalization of structured residu-
als. When using structured residuals, tesidual structure
4.1 Construction of the Test Quantities (also _called e.gfault-signature matrixincidence mgt_rix
_ i . isanimportant concept. A consequence of formalizing the
According to what has been said above, we need to desigryiagnosis procedure, as is done in structured hypothesis
a test quantityl, (x) such that it is low or at least below  tests, is that the concept of residual structure must be modi-
the threshold if the data matches the hypothesig)), i.e. fied. The solution here is to introduce a distinction between
a fault mode inM;. can explain the data. Also if the data anincidence structuredescribing how the faults ideally af-
come from a fault mode not in/;, T).(x) should be large  fect the test quantities, andiacision structuredescribing
or at least above the threshold. ~ how the diagnosiss is formed from the thresholded test
Design of test quantities, primarily from a statistical quantities. This section primarily describes the incidence
point of view, has been extensively discussed in general hy-strycture but later in Section 8, also the decision structure
pothesis testing literature, e.g. see (Lehmann 1986). Manyyill be discussed. However, we will already here see that
of these ideas are applicable to fault diagnosis. In additionrepresenting a diagnosis system with a decision structure,
it can be useful to view the test quantity asiadel validity is equivalent to a representation using the aéts S?, and
measureFrom the text above it should be realized that the .
test quantity is a model validity measure for the the model  "1q get an overview of how faults in different fault modes
ideally affect the test quantities, it is useful to set up an
M), o€ | e, incidence structure With ideally, we mean that the sys-
yEM, tem behaves exactly in accordance with the model and all



stochastic parts have been neglected, e.g. no unmodelethatF,, € {F5, F3} andF, € {Fy, F3}. This means that

disturbances exists and there is no measurement noise. Thé&s must be the present fault mode.

incidence structure is derived by studying the equations It can be realized that there is a one-to-one relationship

describing the process model and how the test quantitiesbetween this procedure, i.e. formirfgby using the in-

T, (x) are calculated. cidence structure, and hotis formed via the individual
Anincidence structure is a table or matrix containing 0:s, sub-diagnoses statemen{s For example, the sef§y and

1:s, and X:s. The X:s will be calledbn’t care An example S} for the incidence structure (6), are

of an incidence structure is

S ={NF, Fy, F3} St ={F}
| NF F\ F, Fj S ={NF, Fy, F,} Sy ={F, F3}
TQ(X) 0 0 X 1 Sg :{NF7F17F25F3} 551 :{FI’FP’}

Ts(x) | O X 0 X That is, the sef5) contains all fault modes which have 0

A 0 in the k:th row and thej:th column means that if ~ OF X in the &:th row of the incidence structure. Als$),
the fault mode present in the system, is equal to the faultcontains all fault modes which have 1 or X in the same
mode of thej:th column, then the test quantify, (x) will row. Whgn assuming ideal conditions, th(_a mmdenc_e struc_-
not be affected, i.e. it will be exactly zero. A 1in theh  ture can in this way be seen as an overview of a diagnosis
row and thej:th column means that fail faults belonging ~ System based on structured hypothesis tests.
to the fault mode of thg:th column, T}, (x) will always be .
affected, i.e. it will be non-zero. An X in thieth row and 6 Relations Between Fault Modes
thej:th column means that f@omefaults belongingto the It turns out that some fault modes are related to other fault
fault mode of thej:th column,T} (x) will under someop- modes such that in some cases they are impossible to sepa-
erating conditions be affected, i.e. it will be non-zero. The rate. Consider for example a system modeled as
dependence on operating condition typically arise in non- y = abu )
linear systems. Another reason for X:s is multiple fault
modes, where the individual faults may compensate outWhere one fault mod#', corresponds to that # 1 and
each other. Compared to previous works involving resid- fault modeF', corresponds to that # 1. It is obvious
ual structures (or fault-signature matrices etc.), the majorthat bothF, andFy, can equally well describe the system,

difference is that we have here added the usgooft care and that it is impossible to isolate between these two fault
Let s; denote the entry in the:th row and thej:th col- modes. _ _ _ ) )
umn of an incidence structure. Then the interpretation of For both analysis and design of diagnosis systems, this
O:S, 1:5’ and X:s can be forma”y Written as k|nd Of relaﬂons play a fundamental I’O|e. They te” us fOI’
example when isolation is possible, and also controls how
F,=F; — Tp(x)=0 if sp; =0 (7a) it is possible to chose the null-hypothesis, i.e. theldgt
F,=F; — Tp(x) #0 if sp; =1 (7b) To investigate this relation between fault modes, let us

first formally define fault modes:
whereF,, as before, denotes the present fault mode. Note

that the interpretation of X is implicitly contained in these Defmmon 1 (Fault Mode) A fault modefs is a function
formulas, since ifs;,; = X then none of the two formulas i ) )
are valid. Further we need the notion observation set

These "local” interpretations of 1:s, 0:s, and X:s, to- Definition 2 (Observation Set) The observation sebf a
gether with an incidence structure, is enough to define thefault modefF; is denoted)r, and defined by

isolation functionality of the whole diagnosis system. For
example the interpretation of the incidence structure (6) be- Or, = U Fi(0)
comes 0€OF,

Ty =0 F, e {NF,F1, Fy} Then the relations of interest are:

To=0—F,c{NF,F} gm zgm ((gs))
TQ#OHFPZFS Fl = VYF2
T3=0«F,c{NF, F,}} Or1NOp2 =10 (9c)

For example@Qr; C Ops means that any fault belonging
to fault modeF'1 can also be "explained” by a fault iR2.
170y =1 Fexplainet by o Fautinka, and vice verge o0
TQ#OHFPG{FQ,Fg} p y ’ ’

Ty=0—F, e {NF,F, F>} Example 3 Consider the system (8) and the fault modes

or equivalently

NF . a=1,b=1
T3#0— F, Fy, F: ’
370~ Fpeih, B} Fa: a#1b=1
This interpretation of the incidence structure (6) can now Fb - a=1,b#1
be used to derive the diagnosis statententor example if ) ’
T, = 0, T # 0, andT; # 0, we know by using the rules, Fa&Fb: aF1,b#1



Of the relations (9), thenly relations that hold in this ex- For observations originating frofijs, the test quantity
ample are the following: will be always non-zero. That is, the influence structure
should contain a 1 in the position fétj5. Finally for ob-

Ora = Ory (10a) servations originating fronf'j,, the test quantity will be
Onr C OragFb (10b) sometimes zero and sometimes non-zero. Therefore, the
Ora C Opagern (10c) influence structure should contain an X in the position for
Orp € OFa&Fo (10d) FJa-

Opa N Oxnp =0 (10e) -
OppyNONnp =10 (10f) Example 4 Consider again the system in Example 3. As-

sume that we can use ideal test quantities and want to con-
struct four hypothesis tests with the desired sets =
{NF}, M} ={Fa}, Mj = {Fb}, and M) = {Fa& Fb}.

q Using the relations (10) and Theorem 1, the influence
structure becomes

| NF Fa_Fb Fa&Fb
T /0 1 1 X

6.1 Design of the Influence Structure |1 0 0 X

The influence structure for each hypothesis test and thereby ? é 8 8 é
also the setd/;, are more or less determined from the re- 4

lations between the fault modes. To study this, we assumegy ;sing the relations between the incidence structure and
that we havedeal test quantities An ideal test quantity e setsS! and SO, we realize that also the seld;., re-
is zero if the measured data can be explained by the null K ol '

hypothesis and non-zero otherwise.

Assume we want to design a hypothesis test wit
the desired null-hypothesisH) : F, € M, =
{Fiy, Fis,...,Fi,}. This may be possible, but depend- 7 Completeness and Soundness of
ing on the relations between the fault modes, it is some- Structured Hypothesis Tests
times necessary to add some fault modes to th@&et

The following theorem tells us the relation between the It is desirable that a diagnosis system produces diagnosis
fault mode relations and the incidence structure. It is here Statements that amompleteandlogically sound That is,
assumed that the desired null hypotheses only contain onell fault modes that can explain the observations are con-
fault modes. However the extension to more complex null tained in.S (completeness), and all fault modesSncan
hypotheses is trivial. explain the observations (logical soundness). The follow-

Theorem 1 Given a hypothesis test with a desired null- N9 theorem contains a sufficient condition for producing
hypothesisi? : F, = Fi, and an ideal test quantity, the such diagnosis statements when using structured hypothe-

In a Venn-diagram, this can be illustrated as

lated asM,, = S,ic, are determined from Theorem 1. For
h example, in the example, we ha¥é, = {Fa, Fb}.

actual setM}, and the influence structure are uniquely de- Sis tests.

termined by the knowledge of the relatiofigs € Or2  Theorem 2 Let a diagnosis system be constructed with

andOp; N Oz = () as follows: _ _ one hypothesis test for each fault moHe i.e. the de-

The entry in the column corresponding to fault mddgis  sjred null hypotheses arél? : F, = Fi. Assume that
0if Op; C Op; ideal test quantities are used and let the incidence/decision

structure be chosen according to Theorem 1. Then the di-

1 if OriNOF; =0 agnosis statemerst will always be complete and logically
XifOp; NOp; # D andOp; € Op; sound.

PROOF. Let M; = {F'i} represent the desired null hy- PROOF. We need to prove thati € S if and only if some
pothesis. Assume that; is the present fault mode. There faylt state inFi can explain the measured data. Complete-
are three principle ways the fault modigi can be related  npess, i.e. the if-part of the proof, follows from the fact that
to 4, as is illustrated below: ideal test quantities are used and that the incidence/decision
structure is constructed with Theorem 1.

For the only-if part of the proof, assume that no fault
state belonging td'i can explain the measured data. Con-
sider now the hypothesis test with desired null hypothesis
H,(c’ : F, = Fi. Because of Theorem 1, the actud), will
The ideal test quantity fak/;, will be zero for all observa-  look like M, = {Fi, F1, F> ...}, where for allF; € M,
tions insideOr; and non-zero for all observations outside it holds thatOr, C Op;. This means that no fault states
Opr;. This means that the test quantity will be zero for all belonging to any of the fault modes i}, can explain the
observations originating from fault modéj,. Thus, the data. This further means thaf # 0 andS;, = S,i = Mkc,
influence structure should contain a 0 in the position for and thereford’; ¢ Si. This also implies thak; ¢ S which
Fj. concludes the proof. O




Remark A diagnosis system based on the framework of The tails of the distributions (on the wrong side.Hfwill
structured residuals uses a residual structure (i.e. an incicause errors in the decisions. However the probability of
dence/decision structure) with only 0:s and 1:s, and no X:s.making errors will in the example be very small.

This has the effect that in the general case, the diagnosis Assume now that faults with also smélimust be han-
statement will not be complete. dled. The probability distribution functions fa¥ F' and

F would look as is illustrated in Figure 1(b). If we use a
thresholdJ; in the middle of the distributions, we would
make errors with a high probability. The only possibility to
avoid errors is to only consider the distribution®@f' and
therefore use the threshald. The following conclusions
Yean then be made:

8 Diagnosis in a Noisy Environment

So far, only noise-free systems have been considered
However, most real systems are in fact affected by noise
and model uncertainties. Since hypothesis testing theor
is primarily developed for making decisions in a noisy and
uncertain environment, it is quite easy to extend the discus-
sion to the noisy case. Basically, instead of checking if the

test quantities are equal to zero, as was done in Section 6

T<Jy,=S8={NFF}
T>Jy=S={F}

(11a)
(11b)

to 7, we have to use thresholds.
Consider the following system with noise:

y=0+n

Here, y is measured andh is a stochastic term with
some probability distribution function. There are two fault
modes:d = 0 (NF)andf > 0 (F),i.e. Q = {NF, F}.

For diagnosing this system, we use a hypothesis test with

the following hypotheses:
HY:F,=NF
H':F,=F

(0 =0)
(0 >0)
Assume that the test quantity is chosenlas= y. In a
noise-free environment (i.e. = 0), we could easily draw

the conclusion that), = NF if T = 0 andF, = F if
T #0.

|
Iy T
(a)
/NF i
’/ C
— A }JQ T
(b)

Figure 1: Probability distribution functions for a large fault
and a small fault.

That is, when thd” < J, we do not draw any conclusion
sinceS = Q.

8.1 Hypothesis Tests in a Noisy Environment

The solution of using an "asymmetric” test, such as (11),
is a standard solution in hypothesis testing. Therefore a
hypothesis test in a noisy environment normally becomes:

notrejecttd; = S, = Sp=9Q
rejectHy (=acceptt;) = Sy, = S} = M{

This means that a fault mode is either an elementin Sfly
or an element in botl§) andS}. In terms of the incidence
structure, this means that all 1:s must be replaced with X:s.

Remember that the incidence structure corresponds to
the case where ideal conditions holds. In a more realistic
case, the model is not perfect; unmodeled disturbances af-
fects the process, and there is measurement noise. All this
means that the formulas (7) are not valid and the incidence
structure can therefore not be used to form the diagrtsis
That is, the structure used for deriving the diagnosis deci-
sion should not be the incidence structure, but instead the
decision structure The decision structure is in most cases
the incidence structure but with all 1:s replaced with X:s.

In the noise-free case, the decisigfismade by the hy-
pothesis tests were always true. In the noisy case, even
though we use a good threshold asftichosen as} = Q,
the decisionsS;, can not be guaranteed to be true. To be
able to make the assumption tHa} is true whenH} is re-
jected, we need to design the hypothesis test such that the
so calledsignificance levely, = P(rejectH? | H? true) is
small.

Sometimes, it is also in a noisy environment reason-
able to make the assumption thdj is true when it is
not rejected. This is controlled by th@ower function

. (0) = P(rejectH? | §). For example, if it actually holds

Now consider the noisy case but assume that when thetiatP(rejectH,? | 0) is large for alld € ©,, then we do

fault modeF is presentf is always large. Then the prob-
ability distribution functions fotN F' and F' would look as

is illustrated in Figure 1(a). Then by placing a threshéld
in the middle between the two distributions, the following
conclusions can be drawn:

T<J=S={NF}
T>J=S={F}

not take any large risk if we assume tHgtis not present
whenH,(c’ is not rejected. If this is the casé; should be
excluded fromSy. In other words, given a hypothesis test,
it is the power function that determines the choices of the
setsSp and S} (i.e. the choices of 0, 1, and X in the de-
cision structure). The relation between the power function
and the decisions? and S} is further investigated in (Ny-
berg 1999c).



9 Conclusions Chen, J., and Patton, R. J. 199Robust Model-Based

In this paper, we have seen how statistical hypothesis test- Fault Diagnosis for Dynamic Systemtsluwer Academic

ing and decision theory can be used to form a general Publishers.

framework for fault diagnosis. One advantage of using Cordier, M.; Dague, P.; Dumas, M.; Levy, F.; Montmain,
these existing theories is that all already developed theory J.; Staroswiecki, M.; and Trave-Massuyes, L. 2000. Al
for design and also evaluation of hypothesis tests and gen- and automatic control approaches of model-based diagno-
eral decision functions can quite easily be applied to the sis: Links and underlying hypothesis. SAFEPROCESS,
diagnosis problem. This advantage can clearly be seen in 274-279. Budapest, Hungary: IFAC.

(Nyberg 1999a; 2000a) which use methods from hypothe- ge kieer, J., and Williams, B. 1987. Diagnosing multiple
sis testing and decision theory for evaluations and compar- ¢5ts. Artificial Intelligence32(1):97-130.

isons of diagnosis systems. .
: ; ; de Kleer, J.; Mackworth, A.; and Reiter, R. 1992. Char-
Two consequences of using hypothesis testing are that acterizing diagnoses and systenstificial Intelligence

X:s must be used in the incidence/decision structure, and )

that the reasoning to produce the diagnosis statement is 56(2-3):197-222. ) o _
aboutmodels The X:s (lon't care are necessary to get ~ deKleer, J. 1989. Diagnosis with behavioral modes. Proc.
a completediagnosis statement. Interesting is that the es- NCAI-89, 104-109.

tablished frameworktructured residuals the area of au- Ding, S.; Jeinsch, T.; Ding, E.; Zhou, D.; and Wang, G.
tomatic control, does not use X:s and can therefore not 1999. Detection of observer based FDI schemes to the
produce complete diagnosis statements. The reasons to in-three tank system. Proc. of the ECC’99.

clude X:s are nonlinearities, noise, and multiple fault com-  Frank; ., ed. 1999Advances of Control: Highlights of
pensation. Also in (Cordieet al. 2000), it is argued that  Ecc9g Springer.

X:s are needed. The reason there is to handle multiple fault . . . .
compensation and to relax thiault exoneration assump- Gertl_er, J. 1998Fault [?eteﬁ'lt(lon and Diagnosis in Engi-
tion, i.e. the assumption that a fault always affects the neering System3Varce| Dekker.

system. In the SHT framework, relaxing of the fault ex- Hamscher, W.; Console, L.; and de Kleer, J., eds. 1992.
oneration assumption is not directly a reason to use X:s. Readings in Model Based Diagnosidorgan Kaufmann
Instead, we choose if we want to make the fault exonera- Publishers.

tion assumption or not, by using different fault modeling Lehmann, E. L. 1986.Testing Statistical Hypotheses
approaches. Springer Verlag, second edition.

To work with fault models is a powe_rful tool to handle Mcllraith, S., and Reiter, R. 1992n Tests for Hypothet-
in principle all types of faults. Thus, in the SHT frame- ¢ Reasoningln Hamscher et al. (1992). 89-96.

Eled as deviations i constant parameters, arbirary signals, \YP€10: M., and Stutte, T. 2001. Model based diagno-
! ' sis of the air path of an automotive diesel engine. IFAC

abrupt changes, a change in signal variance, and also a . X
mix between different types. Another reason to work with Automotive Workshop. Karlsruhe, Germany: IFAC.

fault models is the increased possibility to isolate different Nyberg, M. 1999a. Automatic design of diagnosis sys-

faults. For example, by knowing that two different faults ~tems with application to an automotive engin€ontrol

are acting in a different way, we can distinguish between ENngineering Practic&(8):993-1005.

the two even though they are acting on the same compo- Nyberg, M. 1999b. Model based diagnosis of both sensor-

nent. faults and leakage in the air-intake system of an Sl-engine.
In this paper, the SHT framework has only been exempli- SAE Paper 1999-01-0860

fied on small toy examples. A more complete, and Al ori-  Nyperg, M. 1999c. Model Based Fault Diagno-
ented example, can be found in (Nyberg 2000b) which in- gjs: Methods, Theory, and Automotive Engine Applica-

vestigates the well known polybox example from (de Kleer  jons Ph.D. Dissertation, Lindgsing University. URL:
& Williams 1987). However the theory has also been suc-  ptp:/www.fs.isy.liu.se/Publications/.

cessfully applied to real applications: diagnosis of the air
intake system of different kinds of automotive engines (Ny-
berg 1999b; 1999a; 2000a; Nyberg & Stutte 2001). These
works have shown that the theory has practical relevance

Nyberg, M. 2000a. Evaluation of test quantities for leak-
age diagnosis in the air path of an automotive engine.
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for both design and analysis of diagnosis systems. Nyberg, M. 2000b. The polybox example using the
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