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Abstract. When designing model-based fault-diagnosis systemsin a structural model In addition to finding all submodels that can
the use oftonsistency relationglso called e.gparity relationg is be used to derive consistency relations, the algorithm also selects a
a common choice. Different subsets are sensitive to different subsessnall set of submodels that corresponds to consistency relations with
of faults, and thereby isolation can be achieved. This paper presentise highest possible diagnosis capability.
an algorithm for finding a small set of submodels that can be used to In industry, design of diagnosis systems can be very time con-
derive consistency relations with highest possible diagnosis capabisuming if done manually. Therefore it is important that methods for
ity. The algorithm handles differential-algebraic models and is basediagnosis-system design are as systematic and automatic as possible.
on graph theoretical reasoning about the structure of the model. Afihe algorithm presented here is fully automatic and only needs as
important step, towards finding these submodels and therefore alsoput a structural model of the system. This structural model can in
towards finding consistency relations, is to find milnimal struc-  turn easily be derived from for example simulation models.
turally singular (MSS) sets of equations. These sets characterize the Structural approaches have also been studied in other works deal-
fault diagnosability. The algorithm is applied to a large nonlinear in-ing with fault diagnosis. In [10] a structural approach is investi-
dustrial example, a part of a paper plant. In spite of the complexity ohated as an alternative to dependency-recording engines in consis-
this process, a small set of consistency relations with high diagnosi®ncy based diagnosis. Furthermore a structural approach is used in
capability is successfully derived. the study of supervision ability in [2] and an extension to this work
considering sensor placement is found in [12].

. In Sections 2 and 3, structural models and their usefulness in fault

1 Introduction diagnosis are discussed. Then in Section 4, a complete description of

When designing model-based fault-diagnosis systems, using tthe algorithm is given. The algorithm is then in Section 5 applied to

principle of consistency based diagnosis [5, 11, 6], a crucial step ié large nonline_ar indu_strial process, a part of a paper plant. In §pite
the conflict recognition. As shown in [3], conflict recognition can be of the complexity of this process, a small set of consistency relations

achieved by using pre-computed consistency relations (also calle§fith nigh diagnosis capability is successfully derived.
e.g.analytical redundancy relationsr parity relationg. With prop-
erly chosen consistency relations, different subsets of consistency r&  Structural models

lations are sensitive to different subsets of faults. In this way isolationl_he behavior of a svstem is described with a model. Usually the
between different faults can be achieved. y ) y

The systems considered in this paper are assumed to be model?r:cfda is a set of equations. A structural model [2] contains only the

. . . . . - ormation of which variables that are contained in each equation.
by a set of nonlinear and linear differential-algebraic equations. Tq_et M,., denote the structural model obtained from the equations

find consistency relations by directly manipulating these equations iaescribing the system to be diagnosed. This structural model will

a computationally complex task, _espeC|aIIy for_ large ar_ld_ nonllne.aE:ontain three different kinds of variables: known variabiése.g.
systems. To reduce the computational complexity of deriving consis-

. . sensor signals and actuators; unknown variablgs for example
tency relations, this paper proposes a two-step approach. In the flrs? 9 g P

. ) . internal states of the system; and finally the fauitsIf faults are

step, the system is analyzed structurally to find overdeternsobd ; . . i
: decoupled then they will also be includedih,. The differentiated
models Each of these submodels are then in the second step trans- ) . : . .
and non-differentiated version of the same variable are considered to

formed to consistency relations. The benefit with this two-step @Phe different variables. The time shifted variables in the time discrete

proach is that the submodels obtained are typically much smalleéase are also considered to be separate variables.

than the whole model, and therefore the computational complexity A structural model can be represented byirzidence matri4

of deriving consistency relations from each submodel is substantiallyi] The rows correspond to equations and the columns to variables. A
lower compared to directly manipulating the whole model. o O : o . - )
cross in positior{s, 5) tells that variableg is included in equation.

The main contribution and the focus of the paper is a structural al-
gorithm for finding these submodels. Instead of directly manipulatingexample 1 A simple example is a pump, pumping water into the top
the equations themselves, the proposed algorithm only deals with thef a tank. The water flows out of the tank through a pipe connected
structural information contained in the model, i.e. which variablesto the bottom of the tank. The known variables are the pump imput
that appear in each equation. This structural information is collectethe measured water level in the tapk, and the measured flow from



the tanky;. One fault denoted; is assumed to be associated with 3,1 Basic Assumptions
each known variable. The actual flows to and from the tank are de-
notedF;, and the actual water level in the tank is denotedVithout ~ Basic assumptions are needed to guarantee that the subsets found

knowing the exact physical equations describing the analytic modePnly by analyzing structural properties are exactly those subsets that
the structural model can be set up as follows: can be used to form consistency relations. Before the basic assump-

tions are presented, some notation is needed.FLé&e any set of

equation | unknown fault known equations andl’ any set of variables. Then definerx (E) = {z €
FiFsh b | fufonforfor | wynys X|3e € E : e containsz} andequp(X) = {e € E|3z € X : e
e1 X X X containse}. Also, letvarx (e) andequg (x) be shorthand notations
€2 XX X @ for varx ({e}) andequg ({z}) respectively. Ifg is any equation,
€3 X X X function or variable, leg® denote the:th time derivative ofy. Then
e XX definevarx (E) = {undifferentiatedz|3i(z* € varx (E))}, e.g.
22 X X X X varx,uy {y = &}) = {y,«}. Finally, the number of elements in

any setF is denoted E|.
The first assumption is introduced to ensure that the model be-

Equatione; describes the pumpy the conservation of volume in o ; . . )
d ! pumz: comes finitely differentiated in Section 4.1.

the tank,es the water level measuremeat, the flow from the tank
caused by the gravity; the flow measurement, ang a fault model

Assumption 1 The modelV/,,;, has the property
for the flow measurement fauf ;.

©)

The meaning of condition (3) is that each subset of equations include

more or equally many different variables, considering derivatives as

The _task Is to find submodels that can be usgd to form cons_lstenctyle same variable. If condition (1) is not fulfilled and there are no
relations. To be able to draw a correct conclusion about the d'agno%dundant equations, the model would normally be inconsistent
ability from the structural analysis, it is crucial that for each of these As mentioned earlier the structural model contains less inforlma-

submodels there is a consistency relation that validates all equatioqi%n than the analytical model. The next assumption makes it possible

VE C Mom‘g : |E| < |quuy(E)|.
3 Fault Diagnosis Using Structural Models

included in the submodel. The common definition of consistency re
lation does not ensure this. Therefore the new definitionowisis-
tency relation for an equation sét introduced that explicitly points
out the submodel considered. Before consistency relatiorEfis
defined some notation is needed.

Let x andy denote the vectors of variables containedXin and

Y respectively. The®(x, y) denote an equation set that depends on

variables contained iX,, andY’.

Definition 1 (Consistency Relation forE) A scalar equation
c(y) = 0is aconsistency relation fahe equation¥ (x, y) iff

IxE(x,y) < c(y) =0 2)

and there is no proper subset Bfthat has property (2).

Definition 1 differ from the common definition of consistency re-
lation in two ways, the left implication in (2) and that there is no
proper subset off that has property (2). Refer the latter as the min-
imality condition in Definition 1. The following example shows the
importance of the left implication in (2).

Example 2 Consider the modell = {y1 = z,y2» = z,y3 = z}.
The equationy; —y» = 0is not a consistency relation fdr, because
it is true even if e.gys # y1 = y2 and then it is impossible to find
a consistent: in E. Howevery; — y2 = 0 is a consistency relation
for {y1 = z,y2 = z}.

The expression: + y2 — 2ys

0 includesys. The right im-

to draw conclusions about analytical properties from the structural
properties.

Assumption 2 There exists a consistency relatiofy) = 0 for the
equation sef iff
VX' Cwarx, (H),X' # 2 :|X'| < |equu(X")| 4)

According to Assumption 2 the unknown variableshincan be
eliminated if and only if it holds that for each subset of variables in
H the number of variables is less then the number of equatiofs in
which contain some of the variables in the chosen subset.

The Assumptions 1 and 2 are often fulfilled. For example all sub-
sets of equations found in the industrial example in the end of the
paper satisfy Assumption 2. Even though the "only if” direction of
Assumption 2 is difficult to validate in an application, the results of
the paper can still be used to produce a lower bound of the actual
detection and isolation capability.

If all subsets of the model fulfill Assumption 2, the structural anal-
ysis will find all subsets that can be used to find consistency relations.

3.2 Finding Consistency Relations via MSS Sets

Now, the task of finding those submodels that can be used to derive
consistency relations will be transformed to the task of finding the
subsets of equations that have the structural property (4). To do this,
two important structural properties are defined [9].

plication in (2) holds, but the opposite direction does not hold. The o _ N _ _
conclusion is that also this expression is not a consistency relatiodéfinition 2 (Structurally Singular) A finite set of equation&’ is

for E or any equation subset d.
However(y: — y2)? + (y2 — y3)? = 0 is a consistency relation
for E.

The minimality condition in Definition 1 is important, because it
guarantees that any invalid equation can infer an inconsistency.

structurally singulawith respect to the set of variables if |E| >
|lvarx (E)|.

Definition 3 (Minimal Structurally Singular) A structurally sin-
gular set is aminimal structurally singulafMSS) set if none of its
proper subsets are structurally singular.



For simplicity, MSS will always mean MSS with respectXg, in For all natural numbers;, y§j+1) _ y;j) — 0 is a consistency

the rest of the text. The next theorem tells that it is sufficient and necrg|ation. Most of these consistency relations contain high orders of

essary to find all MSS sets to get all different sets that can be utilize@griyatives ofy, andy». The derivatives of known variables are in
to form consistency relations. The task of finding all submodels thabeneral not known, but they can usually be estimated. The higher
can be used to derive consistency relations has thereby been trangqer of derivative, the more difficult it is to estimate the derivative.
formed to the task of finding all MSS sets. Thus it is reasonable to make a limitation(y) for variabley of the
order of derivative that can be considered as possible to estimate.
Derivatives up ton(y) are then considered to be known and higher
derivatives belong td(,.

To summarize the example, Algorithm 2 must be capable of differ-
entiating equations. To produce a correct structural representation of
For a proof, see [7]. differentiated equations, the algorithm must take linearly contained
variables into account. Further, it has to handle the limitatiary )
foreachy € Y.

Theorem 1 Let H C Moyig, Where M,,i4 fulfills Assumption 1.
Further, let H and all E; fulfill Assumption 2. Then there exists a
consistency relation(y) = 0 for H(x,y) where|H| < oo iff H =
U, E: where for eachi, E; is an MSS set.

4 Algorithm for finding and selecting MSS sets

The objective is to find all MSS sets in a differentiated version of theAIgorithm 2 consists of two parts. The first part is a modification of

: ) : 1 n a; () f
modelM,,, and then choose a small subset of these MSS sets witantelides’ algorithm [9]. Led = Ui, U<y {e;’ },thenay; is the
the same diagnosability as the full set of MSS sets. The algorithnftighest number of differentiations it of equationi. ThenM is a

can be summarized in the following steps. differentiated model oMo,y = U7, {e:}. Let{e{""|1 < i < n}
be the set of most differentiated equationgiin The highest deriva-
Algorithm 1 tive of a non-differentiated variable in the modelM is defined as

o _ _ . max({ilz® € varx, (M)}).
1. Differentiating the model: Find equations that are meaningful to  pantelides algorithm differentiates equation subsets, so that the
differentiate for finding MSS sets. _ original equations together with the differentiated equations have a
2. Simplifying the model: Given the original model and the addi- ;omplete matchingd] of the most differentiated equations into the
tional equations found in step (1), remove all equations that canynknown variables with the highest derivatives.
not be included in any MSS set. To simplify the next step, merge The modification of Pantelides’ algorithm is that derivatives of
sets of equations that have to be used together in each MSS setown variables, higher or equal ta(y), are also allowed to be
3. Finding MSS sets: Search for MSS sets in the simplified model. jcjuded in the matching.
4. Analyzing Diagnosability: Examine the diagnosability of the MSS
sets found in step (3). Algorithm 2
5. Decoupling faults: If the diagnosability has to be improved, someinput: The original model\/,,,, a description of which variables
faults have to be decoupled. For decoupling faults, return tothat are linearly contained, and for eaghe Tary (Morig), m(y) <

step (1) and consider these faults as unknown variablég,in 0.
6. Selecting a subset of MSS sets: Select the simplest set of MSS sets - _ ) o
that contains the desired diagnosability. (1) Apply the modified Pantelides’ algorithm Ad,;, and the limits

m(y). The output is the number of times each equation must be
Note that to avoid searching for all MSS sets decoupling all possi- differentiated to find all MSS sets.
ble faults, Algorithm 1 has been organized so that first, the fault fr¢2) Differentiate the equations id/,;, the number of times sug-
model is analyzed. Then if it is necessary for achieving higher isola- gested in step (1) and use the description of which variables that
bility, faults are decoupled. The following sections discuss each of are linearly contained, to get the correct structural description of
the steps in Algorithm 1. the differentiated structural model denotél;; s .

. . Output: Mz s.
4.1 Differentiating the Model

To handle dynamic models, Algorithm 1 needs a way to deal withlt Is critical that step (1) in Allgo.rlf[hm 2 termlnatgs, .€. o equatllon
S - . . . L . should be differentiated an infinite number of times. In Pantelides
derivatives. In this section an algorithm for handling derivatives is

defined. This algorithm is referred to as Algorithm 2. A small exam-(lggs). the condltlon_when the algorithm terminates is stat_ed. This
le will show what Alaorithm 2 must be capable of handlin condition can be written as the structural property (3). Since the
P 9 P 9 model M,,;, has this property according to Assumption 1, the al-

Example 3 Consider the model = {e1, e2,e3} = {y1 = z,yo =  9orithm will terminate.

i,ys = x*}. It is obviously impossible to eliminatein e, if dif- Let now M SS(M) denote the set of MSS sets found in equations
ferentiation of any equation is forbidden. In general, all derivatives M and M SSau(M) = MSS(U2,M™). Then it is possible to
of E have to be considered. £ denote the set of theth time  State the following theorem proven in [7].

derivative of each element, the equation set generally considered i?heorem 2 If Assumption 1 is satisfied and for eagh

Uz‘oioE<i)- o v
Even thoughvarx, (e1) = varx, (e3) = {z} the derivatives of vary (Morig), m(y) < oo, then
e1 andes contain different sets of variables, because x,, (é1) = MSSai(Morig) = MSS(Maiss)

{&} # varx,(és) = {z,z}. Sincex is linearly contained ire;,

the variabler in ¢; disappears. Knowledge about which of the vari- The consequence of this theorem is that all MSS sets that are possible
ables that are contained linearly in an equation determines the set dfo find if the original model,,, is differentiated an infinite number
variables in the differentiated equation completely. of times, can always be found M4 ;.



Example 4 The following example is a continuation of Example 1 This makes one group d&1, e2, é4, é5 }. This search made simplifi-

with the structural model shown in (1). Let(u) = m(ys) = 1 cations and therefore the search is performed once more. The second
andm(yx) = 0. According to Algorithm 1 the first iteration uses time no simplifications have been done and the simplification step is
the fault free model, i.e. all faults are zero. The equatigrontains  therefore complete. The remaining system is

only a fault. Since all faults are at the moment assumed to be zero,

] ” . o equation unknown fault known
theneg is not considered. Further, assume that no variable is linearly £ h | Fufunt f ‘ WYy
contained in any equation. Then no variable will disappear in the dif- [ el [ X X e )y(f )y(f < )?)?
ferentiation. The structural modél/,;  ; obtained from Algorithm 2 es X X X ©
iS €4 X X
. es X X X
equation | unknown fault known
FiRFsh b | f o | u ' -

- S J;(fyhfyffyf 4.3 Finding MSS Sets

€2 XX XX x x ®) After the simplification step is completed, step (3) in Algorithm 1

23 X X finds all MSS sets in the simplified mod&{;..,. This section ex-

éi X XXX plains how the MSS sets are found.

es X X X The task is to find all MSS sets in the modél;...,, with equations

és XX X X XX {e1, - ,en}. Let My, = {eg, - ,en} bethelash — k + 1 equa-

tions. LetE be the current set of equations that is examined. The set
of MSS sets found is denoted,;43. Then the following algorithm
finds all MSS sets iM ;.

Algorithm 3

4.2 Simplifying the Model

Itis a complex task to find all MSS sets in a structural model. There
fore it can be of great help if it is possible to simplify the model. Here MPUt: The model sir,..
two kinds of simplifications are used. 1. Setk = 1andMy g3 = @.

In a first step, all equations iy, ¢s that include any variable 2. Choose equatioey,. LetE = {e;} and X = &.
that is impossible to eliminate, are removed. This can be done witB. Find all MSS sets that are subsets\éf and include equation..
Canonical Decomposition [2]. (@) LetX = wvarx, (E)\X be the unmatched variables.

In a second step, variables that can be eliminated without losing - ) )
any structural information are found. The rest of this section will be (?) If X = &, thenE is an MSS set. Inseff into Maigs.

(c) Else take a remaining variablé € X and letX = X U

devoted to a discussion about this second step. 3

If there is a setX C X, with the propertyl + |X| = {Z}. Let E = equy;,\g(Z) be the remaining equations. For
lequary; s, (X)], then all equations inquay,, , , (X) have to be used all equationse in E let E = E U {e} and goto (a).
to eliminate all variables itX . Since all unknown variables mustbe , ¢, setk = k + 1 and goto number (2).
eliminated in an MSS set this means particularly that all MSS sets
including any equation afquay,,,, (X) has to include all equations Output: The set of MSS sets found, Megs.
inequn,,,, (X). The ideais to find these sets. Then it is possible toAlgorithm 3 finds all MSS sets if/,.;, according to the next theo-
eliminate internal variables, here denot&din these sets. Every set rem proven in [7].

is replaced with one new equation. _ .
This second simplification step finds subsets of variables that ar'é’heorem{ Maigs = MSS(M“_WP)_ _
included in exactly one more equation than the number of variableslhe following small example with five equations shows how the al-

To reduce the computational complexity, a complete search for suc#orithm works.

sets is in fact not performed here. Instead only a search for single : | ‘g(l “;(2 T3
variables included in two equations is done. When a variable is in- 9 X X
cluded in just two equations, these equations are used to eliminate 3l x x X
the variable. If all variables are examined and some simplification 4| x

was possible, then all remaining variables have to be examined once 5 X

more. When no more simplifications can be made, the simplificationThis model gives the following time evolution of current equations,
step is finished and the resulting structural model is dendfed, . i.e. E in Algorithm 3 is
Note that with this strategy larger sets than two equations will also

be found, since the algorithm can merge sets found in previous steps. 2 3 2
The next theorem ensures that no MSS set is lost in the simplifica- 2 5 5 2 2 3 3 5
tion step. 3 3 3 3 4 4 4 4 4 4
11 1 11 1 1 1 1 1 1
Theorem 3 MSS(Mdiff) = MSS(MSimp) 4
4 3 3 5
For a proof, see [7]. Consider again Example 4 and the output (5) 3 3 5 55 4 4
from the differentiation step. No equations can be removed in the 2 2 2 2 22 3 3 3 45

first simplification step. . . The bold columns represent the MSS sets found. This example
The second step searches for variables which belong only to twalso shows that if there are several matchings including the same

equations. In the first search, the algorithm fifilsn {e1,e2}, F2in - equations, the algorithm finds the same subset of equations several
{éa, é5}, andh in the equations produced Hy1, e2} and{éa, és5}. times.



4.4 Analyzing Diagnosability variablesX, and search for new MSS sets by applying Algorithm 1
] ~ step (1) to the new model obtained. An MSS set that is able to isolate
When the MSS sets are found, the next step is to analyze their dizyt ; from fault j has to include at least one equation that includes

agnosability. The continuation of the example in (6) will be used toggt ;. If any such MSS set is found, it has to include an elimination
illustrate how this analysis is done. The 4 MSS sets that can be foungs fault 5. If not, this MSS would have been discovered earlier.

in (6) are shown in the left column in Figure 1 (a). The matrix in this | the example in Figure 1, the fault matrix shows tfiagnd f,
figure is the incidence matrix of the MSS sets in (6). If any equationan, not be isolated fronfy, ;. The problem is that there is no MSS set
in the MSS set include fault;, the elements, j) of the incidence  that decouple faulf, ;. But there could be one f, s is eliminated.
matrix is equal toX. Note that anX in position (i, j) is no guar-  The fault , ; is moved from the fault§” to the unknown variables
antee for faultj to appear in the MSS sét For an example of the  x°  The procedure starts all over from the step (1) in Algorithm 1.

interpretation of an incidence matrix, consider the third MSS set intje result is a new MSS set in whidl; is decoupled. This gives a
Figure 1 (a). This MSS set could contgin and f, ¢, but it is impos- possibility to detect and isolate all faults.
sible that it could contaitf,x, sincef, is only included in equation

e3. For simplicity, the derivatives of the faults are omitted in Figure 1.

If the number of different faults is large it is not easy to see Which4
faults that can be isolated from each other. The incidence matrix of
the MSS sets show which faults that could be responsible for an in- )
consistency of each MSS set, but it is more interesting to see whicf} i not unusual that the number of MSS sets found is very large.
faults that can be explained by other faultstadilt matrixshows the ~ Many of the MSS sets probably use almost as many equations as un-
maximum isolation and detection capability of the diagnosis systemknown variables in the entire system. These MSS sets usually rely
The maximum isolation capability with a diagnosis system designe®" too many uncertainties to be usable for fa_lult isolation. Small MSS
with this structural method is obtained if it is assumed that each faulp€tS are more robust and are usually sensitive to fewer faults. There-
makes all MSS sets including this fault inconsistent. If fautt sen-  fore the goal must be to find the set of most robust MSS sets but with
sitive to at least all MSS sets that fauis sensitive to, then element the Same diagnosis capability as the set of all MSS sets.

(i, ) of the fault matrix is equal t& . The interpretation of ai in Start tq sortthe MS_S sets in an ascending order (_)f complexity. The
position(i, j) is that faultf; can not be isolated from faujt. compl_exny measure is here the number of_eg_uatlons, even though

The fault matrix corresponding to the incidence matrix in Fig- More _|nforr_nat|ve measures are also a possibility. The MSS sets'are
ure 1 (a) is shown in Figure 1 (b). Consider the first row of the fault€xamined in the rearranged order. If an MSS set increase the diag-

matrix. Suppose that faulf, is present. Then, the first three MSS hosability, then select the MSS set. The diagnosability is increased if
sets are not satisfied in an ideal case. This meansftheertainly some fault becomes detectable or some faghin be isolated from

can explain faultf,, but alsof,; can explain faultf,. Fault f, some other fa_ulj. This means that for each detection of afaul_t and_
cannot explain faulf.,, since if f, is present, the third MSS set is for €ach isolation between two faults, the smallest MSS sets with this
satisfied. Note that the fault matrix is not symmetric. For examplediagnosis ability will be one of the chosen MSS sets. In this way the
fault f,; can explain faultf, but the opposite is not true. The fault final outputfrom Algorithm 1 will be the most robust set of MSS sets
matrix can more easily be analyzed after Dulmage-Mendelsohn pelVith highest possible diagnosis capability.

mutations [8]. This algorithm returnsraaximal matching4] which

is in block upper-triangular form. The diagonal blocks corresponds

to strong Hall components of the adjacency graph of the fault ma5  Industrial example: A part of a paper plant

trix. The interpretation is that faults in a diagonal block can never

be distinguished with that diagnosis system. In the small example iThis example is a stock preparation and broke treatment system of a
Figure 1 (b), the same matrix is returned after Dulmage-Mendelsohfaper plant located in Australia. The system is used for mixing and
permutations, which usually is not the case. The diagonal blocks argurifying recycled paper for production of new paper. An overview

.6 Selecting a Subset of MSS Sets

thel x 1 diagonal elements. of the system is shown in Figure 2.
To screen
&
MSS | fufynfyr present interpreted fault bure Valve 6 @
Tei s e, e e, 657 | X X X fault | fu  Fyh  Fyr — Fo
{el,en.eq.éq.e5.€50 | X X X Tu X X ot
{e1,eg,eq4,é4,e5,é5} | X X fyn ‘ X X — Fa -
{e3, ¢4, e5 X X Ty s X DY Pulper Valve 4
Valve 1 F
(a) (b) F3 F10 8
Pump 1 )
Cyclone
Figure 1. The incidence matrix of MSS sets is shown in (a). The fault vave2 (X d Py
matrix of (a) is shown in (b). vaves Valve 5

Fy
Tank

To sedimentation

4.5 Decoupling faults

Suppose that the elemeit j) of the fault matrix is equal t&< for Figure 2. A stock preparation and broke treatment system of a paper plant.
somei # j. It could still be possible to isolate faultfrom fault
j by trying to decouple fault j. Include faujt among the unknown



5.1 System Description 5.3 Simplifying the Model

Mucl)sfa??tzt;2‘rteh?:§r}1/:itdegr]eaclir?ong2“(;]e:ar\ri?cd %Zorggdtgf htggléﬁg\(,j\,;h% the first step of simplification applied to the left matrix in Figure 3,
pup y ) ; . the equationg27, 28,29} include variables belonging only to one
compare well to real measured data. Because of space considerations, .. . : -
. - . equation, i.e. they cannot be included in any MSS sets.

the details of the model are omitted, but can be found in [7]. The The second part of the simplification finds that the vari-
system has 4 states: the volume and concentration in the pulperandé{r@)les{9 17,18, 19, 20, 21, 25, 26, 27, 28,29, 30,31} can be elim-
the tank. There are 6 sensors in the system.Se;nsmdy;; measure inated. ’Th7e équétiohs ,tha7t f(;rm7 gr7oupys ;;{aa 52}, {2,53}

the water levels of the pulper and the tank respectivglyand y. (3,54}, {4, 15, 40}, {32, 41,44}, {39, 48,51} {31’43}‘{35’45}‘
measure concentratiops andys measure pressure. The flows and .~ ~5 ¢ 7 0 700 ST 0 LA L 0 L

S : 37,46} and{36,47}. The simplified structural model is shown in
concentrations into this system are known and the flows out from the.. Lo . )
igure 4 (a). Note the simplification of the model by comparing Fig-
system are also known. There are 6 valves and two pumps that are ;
. ) ure 3 and Figure 4 (a).
actuators with known inputs.

There are 21 faults that are considered. All sensors can have a con-
stant offset faul( f1, ..., fs). All valves can have a constant offset
in the actuator signdlf7, . . ., f12). Clogging can occur in the pipes XL . ) )
near the valveg fis, ..., fis) and also directly after the tank. kK s . .
Finally, the pumps can have a constant offset in the actuator signal * : : :
(f20, fa1)-

The system is described by 29 equations. Equatigns. ..,
e4) describe the dynamicgges,...,e14) are pressure loops,s
relates the concentration in the junction after the tank with the “ - - -
flows Fy and Fg, (e1s, e17) describe the two pump$eis, . . ., e23) wl *E - R
are valve equationgezq, . . ., e2¢) are flow equations, and finally o o
(ea7,. .., e29) @re sensor equations for sensor 1, 2, and 3. The struc- = ; )
tural model for these equations can be viewed in the first 29 rowsin = L. "= as] : - . -
the matrices in Figure 3 renumbered unknown variables faults

(@) (b)
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5.2 Differentiating the Model _ S _ _ o
Figure 4. The simplified structural model is shown in (a). The incidence
The highest order of derivatives that is known for all known vari- matrix of the MSS sets is shown in (b)

ables are assumed to be one. If a variable is contained linearly in

an equation the variable disappears in the differentiated expression.

This knowledge is used since the equations are known. Algorithm 2

is applied to the first 29 equations in Figure 3. The result is that all

equations except equation 1, 2, 3, and 4 are differentiated. This ré.4 Finding MSS sets
sults in additionally 25 differentiated equations shown in the lower

part of Figure 3. Algorithm 3 is then applied to the simplified model. The algorithm
returns 35770 MSS sets that are contained in the simplified model.
o kT T The largest MSS set consists of 24 equations.
57)( x Xx X sl XXX .
oL e T % ] 5.5 Analyzing Diagnosability
sl < x IR -
ol | ] The two different fault matrices are seen in Figure 5. The Dulmage-
. Mendelsohn permutations gives that the faul® 13}, {8,14},
B 1 E% ] {9,15}, {10,16},{11,17} and {12, 18} are never distinguishable.
i i o Fart----- R These pairs of faults all belong pairwise to the same valve. This iso-
ol ) LT | Ty lation performance for faults concerning valves is in this case ac-
x < x X < ceptable. To give an example of how elimination of faults is done,
L T ] the attention is focused on isolating faults 4, 8, and 14.
451 xXxx xXxX 1 asp xXxx
or N T 1 5.6 Decoupling faults
S5 w0 5 m w wm Yo 5 b w5 w o _ _
unknown variables fauits Considering Figure 5, it is still important to discover if any MSS set

can decouple fault 2 or 3 and be sensitive to fault 4. It is also neces-
sary to decouple fault 20. Apply Algorithm 1 to the original model,
Figure 3. Structural model of the stock preparation and broke treatment but where fault 2 now is considered to be an unknown variable. Then
system. apply the Algorithm 1 to the model where faults 3 is decoupled and
finally also when fault 20 is decoupled. The algorithm finds thereby
additional MSS sets that isolate fault 4, 8, and 14.



5.7 Selecting a subset of MSS sets
The 24 chosen MSS sets are
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™

the consistency relations, which give the fault detection and the fault
isolation capability.

The method is capable of handling general differential-algebraic
non-causal equations. Further, the method is not limited to any spe-
cial type of fault model. Algorithm 1 finds all submodels that can
be used to derive consistency relations and this is proven in Theo-
rem 2, 3, and 4. The key step in Algorithm 1 is step (3) that finds all
MSS sets in the model it is applied to.

Finally the method has been applied to a large nonlinear industrial
example, a part of a paper plant. The algorithm successfully manage
to derive a small set of submodels. In spite of the complexity of this
process, a sufficient number of submodels could be transformed to
consistency relations so that high diagnosis capability was obtained.
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