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Abstract Three different types of structural representations used to
describe differential algebraic systems are recalled in Sec-
tion 2. We introduce a notion, i.eminimal structurally
overdeterminedMSO) set of equations, which characterize
over-constrained sub-systems independent of structural rep-
resentation. Several other proposed structural characteriza-
tions of over-constrained sub-systems are then recapitulated
in Section 3. All these are MSO sets of equations and this
means that the proposed algorithm can easily be used in any
of these approachesto find over-constrained sub-systems. For
comparison, previous algorithms for finding over-constrained
sub-systems are recalled in Section 4. In Section 5 a basic
algorithm for finding all MSO sets will be presented. This
1 Introduction algorithm illustrates the basic ideas and then in Section 6 fur-
Otﬁ}er improvements are described. Finally in Section 7, it is
own that the computation time for finding all MSO sets in
‘Scania truck engine model is significantly decreased by us-
the new algorithm compared to the previous ones and the
complexity of the different algorithms are discussed.

In this paper, a new algorithm for computing all
minimal over-constrained sub-systems in a struc-
tural model is proposed. To handle large differen-
tial algebraic models in diagnosis, systematic struc-
tural approaches to find testable sub-systems have
been suggested. It is shown how the algorithm can
be incorporated and improve some of them. Previ-
ous algorithms are recalled and it is shown that the
new algorithm is 14000 times faster when applied
to a Scania truck engine model.

In model based diagnosis, the diagnostic system constructi
is based on a model of the technical system to be diagnoseﬁ
To cope with large differential algebraic models, systema’tic"’l
structural approaches to find testable sub-systems have be
suggested in e.dCassar and Staroswiecki, 199Blanke

et al, 2003, [Pulido and Alonso, 2002 [ Travé-Massugs .
et al, 2001, and[Krysander and Nyberg, 20D2All these 2 Structural Representations

approaches have in common that testable sub-systems areée structure of a model is represented by a bipartite graph
found among the over-constrained sub-systems. Furthermorejth variables and equations as node sets. There is an edge
of all over-constrained sub-systems, it is the minimal onesonnecting an equationand an unknowm if x is included

that are used to derive analytical redundancy relations. Sewn e. When considering differential algebraic systems, dif-
eral algorithms for computing all minimal over-constrainedferent alternatives for handling derivatives exist. In this sec-
sub-systems have been proposed [Rulido and Alonso, tion, three different structural representations of a differential
2004, [Krysander and Nyberg, 2002and [Blanke et al,  algebraic system are recalled. These three variants will be
2003. However all these algorithms run into complexity exemplified by the following differential algebraic system
problems when considering large industrial examples.

. _ 2
In this paper we present a new algorithm for computing all vpo= gt )
minimal over-constrained sub-systems in a structural model. T2 =1
For the new algorithm the computational complexity is de- y = ™2

pendent on the order of structural redundancy, i.e. the differwhereu andy are known, and; andzs are unknown signals.
ence between the number of equations and unknowns. For aThe first structural representation of (1) is the following
fixed order of structural redundancy, the computational combiadjacency matrix of the bipartite graph:

plexity is polynomial in the number of equations in contrast to

: . S ; equation| unknown
previous algorithms where the complexity is exponential. In
many applications, sensors are expensive and thus the struc- ﬁg 2 5
tural redundancy is low even if the models are large. The €1 Y X )
algorithm is applied to a Scania truck-engine model with 126 Z Y

equations. All minimal over-constrained sub-systems were
computed with the new algorithm more than 14000 timedn this representation all unknowns, i.e; andz-, are con-
faster than with previous algorithms. sidered as signals. There is ak™in position (¢, ) in the



biadjacency matrix if:; or any of its time-derivatives appear X~ X0 Xt

in equatione;. This approach has been used in for exam- M-
ple[Frisket al, 2003.
The second structural representation of (1) is
equation| unknown MO
I 5.61 i)
el X X
() X X +
€3 X M

Unknowns and their time-derivatives are, in contrast to pre-
vious representation, considered to be separate independent
algebraic variables. New equations can be obtained by differ-
entiation, for example

Figure 1: A Dulmage-Mendelsohn decomposition.

represents a maximal matching in the graph defined by this

€2 12 7,2 L biadjacency matrix. The modal is decomposed into three
€3 ¢ Y=1T2 parts where the one denot&fit is thestructurally overdeter-
The extended structure is then mined partwith more equations than unknowns. The struc-
. turally overdetermined pait/ = of M is the equations ¢ M
equation|  unknown such that for any maximal matching there existsaftarnat-
T1_ Ty T2 T ing pathbetween at least one free equation and

€1 X X In consistency based diagnosis, redundancy in the model is

€2 § X X x (3)  used and this motivates the following definitions.

Z X Definition 1 (Structurally overdetermined) A set M of

é3 X equations istructurally overdetermingfiM has more equa-

. . L ) tions than unknowns.
This modelling principle is used ifrysander and Nyberg, Definition 2 (Proper structurally overdetermined) A

2004. ; :
. ' . structurally overdetermined se¥/ is a proper structurally
In the third and final structural representation, unknowns verdetermine@PSO) set iVl — M+.

and their time-derivatives are, as in the second representg— o < _
tion, considered to be separate independent algebraic vafPefinition 3 (Minimal structurally overdetermined) A
ables. Thus the equations are purely algebraic and differentiakructurally overdetermined set is @inimal structurally

relations of the form overdetermine{MSO) setif no proper subsetis a structurally
d overdetermined set.
Ti = i Note that an MSO set is also a PSO set. All three struc-

tural representations of (1) shown in (2)-(4) are examples of

are added. The structural representation of (1) is MSO models and have one more equation than the number of

equation| unknown unknowns. From the equation system (3) the equation
/
e S e 9 —dy(u—y)* =0
! (4) : o .
€2 X X can be derived by algebraic elimination. This is called an ana-
es3 X lytical redundancy relation or a parity relation and can be used
d X X to check ifu andy are consistent with the model (1). Hence

whered is the added differential equation. This representa—the testable system (1) has a corresponding MSO model for

o ) L each structural representation.
tion is used for diagnosis ifBlankeet al, 2003. Since MSO sets can be used in any structural represen-

. tation, comparisons to other structural characterizations of
3 Use of MSO Sets for Test Construction testable mo%els using different representations are possible.
Several structural approaches to find testable sub-systenis [Krysander and Nyberg, 200and [Frisk et al, 2003
have previously been suggested. In this section a structurdMSO sets are used to find testable sub-systemgPuitido
characterization of testable sub-systems is presented. and Alonso, 200Pminimal evaluable chainare used, which
First some important structural properties will be de-are MSO models with the additional requirement that they
fined. The biadjacency matrix in Figure 1 shows acontain known variables. [iBlankeet al, 2003 and[Travé-
Dulmage-Mendelsohn canonical decompositi@ulmage Massuyset al, 2001 redundancy relationare used, which
and Mendelsohn, 19%®f a bipartite graph witll/ andX as  also correspond to MSO models.
node sets. Here we assume thais a set of equations and In conclusion, MSO models are used in all structural ap-
is a set of unknowns. The grey-shaded areas contain ones aptbaches discussed above. The example in (1)- (4) shows that
zeros, while the white areas only contain zeros. The thick lindSO models can be interpreted in a similar way independent



of structural representation. By noting these similarities thd.emma 2 The set of equation¥ is an MSO set if and only if
algorithm that will be proposed in Section 6 can be appliedM is a proper structurally overdetermined set apd/ = 1.

to any structural representation considered and be used in the . . .
previously discussed approaches. Lemma 3 If M is a set of equationdy C M is an PSO set,

ande € M \ E, then

4 Previous Algorithms EC(M\{e})"

Two main ideas for finding all MSO sets have previously been
presented. These will be recalled and compared. These wiB
be used to compare the computational complexity of the new
algorithm proposed in this paper.

The first approach for finding all MSO sets is presente
independently ifKrysander and Nyberg, 20p2nd[Pulido

The proofs of all lemmas and theorems in this paper can
e found in[Krysanderet al., 2005. The first lemma reveals
ow the structural redundancy decreases when one equation
is removed. It follows from this lemma that if we start with
ny proper structurally overdetermined set of equations we

R can alternately remove equations and computing the overde-
and Alonso, 200R The basic principle is to choose one equa-iermined part until the structural redundancy becomes 1. We

tion as the redundant equation and then find all possible Ways e then found an MSO-set. accordind to Lemma 2. Einall
to compute structurally all unknowns in the redundant equaﬁ-IIe i 9 : Y:

tions. The redundant tion is first chosen to be the firafeMMa 3 implies that an arbitrary MSO set can be obtained
ons. The redundant equation 1s Tirst chosen 1o be the fir cursively this way. By using this principle in combination
equation and then the second and so on until the last equatiQfi, " o mpete search the algorithm becomes as follows
is the redundant equation. When all possible ways to COMs1 1 input sefl/ is assumed to be a PSO set ‘
pute all unknowns in the first equation are found, all MSO P '
sets including the first equation have been found. This meanslgorithm 1 M ;50 := FindMS0(M)
that the first equation will not be used further in the search foif z M = 1 then
¥

more MSO models. M — {M};

The second approach for finding all MSO sets is presented MSO = ’
in [Blankeet al., 2003. All maximal matchings are enumer- else
ated. For each maximal matching and for each free equa-

tion for this matching, an MSO set is given by the equations Marso =2 o
reached by an alternating path from the free equation. for eachequatione in M do
The computation time of both approaches grows fast with M= (M\ {e)+;

the number of equations. Therefore they cannot be used in , ]
practice for large industrial examples. Each set of equations Maso = Marso U FindMSO(M');
considered in the second approach is analyzed as least as end for

many times as in the first approach. Hence the computaénd if

tional complexity of the second approach is not better tha
for the first one, and a comparison can be founfRattfilt,
2004. Therefore only the first approach will be considered From the discussion above, it follows that the sets found in
when comparing the computational complexity with the newM ;s are MSO sets and that all MSO sets are found.

r?eturn Murso

algorithm developed in this paper. To illustrate the steps in the algorithm, consider the fol-
lowing proper structurally overdetermined model consisting

5 New Algorithm of four equations and two unknown variables:

In this section we will present a new algorithm for finding equation| unknown

all MSO sets. This algorithm is based on a top-down ap- T T

proach in the sense that we start with the entire model and 1 X

then reduce the size of the model step by step until an MSO e X X (®)

model remains. To illustrate the ideas, a basic version is pre- e3 X

sented here and then in the next section, improvements are e4 X

discussed.

Before presenting the algorithm, we need the notionThe structural redundancy of this set of equations is 2. When
of structural redundancy Given a bipartite graph, let enteringthe algorithne; is removed and the séf’ becomes
vary (M) C X be the subset of variablesiiconnectedtoat (M \{e1})" = {es,e4}. In this casep M’ = 1 and the equa-
least one equation if/. Given a proper structurally overde- tion set is saved as an MSO .M 5;50. Thene; is removed
termined set of equation®, the structural redundangyM  and M’ = (M\{e2})™ = {es,es}. This means that the
is defined by same MSO set is found once again. Nexis removed and

B the MSO sefleq, 2, e4} is found. Finallye, is removed and
¢ M = |M]| — |varx (M)] the MSO sef e, es, e3} is found.
The algorithm will be based on the following three lemmas. _ Since the same MSO sgt;, e4} is found twice, we can
] . suspect that the algorithm is not optimal in terms of efficiency.
Lemma 1 If M is a proper structurally overdetermined set of The next section will therefore presentimprovements in order
equations and € M, theng (M\{e})* =p M — 1. to increase the efficiency.



6 Improvements Theorem 4 If E C M is a PSO set, theilv is a union of
A straightforward improvement is of course to prohibit that 8duivalence classes defined by (6), i.e.

any of the MSO sets are found more than once. Another and B U M,
more sophisticated improvement is that sets of equations can A ¢
be lumped together in order to reduce the size and the com- el

plexity of the structure. The proposed reduction preservegherel C {1,2,...m}.
structural redundancy and it is therefore possible to use the

reduced structure to find all MSO sets in the original struc- | NS theorem motivates why the equations in each equiva-

ture. lence class can be lumped together when computing all PSO
sets. A new bipartite graph is formed with equivalence classes

6.1 Structural Reduction {M;} and the unknownX, as node sets. The unknowns con-

The reduction is based on a new unique decomposition df€cted taV/; are var, (1/;). The reduction of (5) is

the overdetermined part of a bipartite graph. An illustration equivalence clas$ unknown

of the decomposition is shown in Figure 2 as a biadjacency M; T )

matrix. If M is the set of all equations and is the set of all {e1,ea} X

unknowns, the decomposition can be defined as follows. Let {es} X

R be arelation on the sét/ of equations defined bi¢’, e) € {ea} X

it ¢ ¢ (M\ {e})* ©6) and the decomposition is given by, = {e1,e2}, My =

. . . {esh, My = {es}, Xo = {z2}, Xy = {z1}, and X =

Now we show that? is an equivalence relation. It follows . — & Note that it is only equivalence classes of cardinal-
directly from the definition thak? is reflexive. If(¢’,e) € R, jty greater than one that give a reduction. An interpretation of
then it follows from (6) and Lemma 3, with’ replaced by  thjs reduction is that the two first equations are used to elim-
(M \ {e})", that(M \ {e})* € (M \ {e'})". Lemmal jnate the unknown;. In the lumped structure, each equiva-
and Lemma 3 imply that both sets have the same strugence class is considered as one equation and the definitions
tural redundancy and that\ \ {e})™ = (M \ {¢'})".  of PSO set, MSO set, and structural redundancy are thereby
Hence(e,e’) € R and R is therefore symmetric. Further- extended to lumped structures. In the example above we have
more if (e1,e2) € R and(ez,e3) € R, then it holds that 5 (¢, )1, {e3}, {es}} = 2. The structural redundancy for
(M\{er})™ = (M\{e2})* = (M \{es})", whichimplies  the Jumped and the original structure are always the same.
thatRis transitive. The relatio® is therefore an equivalence  The reduction is justified by the following theorem, which
relation and the equivalence class containing denoted by  together with Theorem 4 shows that there is a one-to-one cor-

[e]. N o . respondence between the PSO sets in the original and in the
The set) can then be partitioned into disjoint equivalence|ymped structure.

classed\/;. For each equation séf;, the setX; is defined as

the unknowns only included if/; and Theorem 5 The set{M;};cr is a PSO set in the lumped
structure if and only ifU;c; M; is a PSO set in the original
Xo=X\(|JX) structure.
#0 It follows from the discussion above that the reduced struc-

It follows from Lemma 1, by considering the complementaryture can be used to find all PSO sets in the original structure.
sets, that .
IM;| = | X;| + 1 6.2 Improved Algorithm
forall 1 < i < m, i.e. there is one more equation than A drawback with Algorlthm 1, presented in Section 5, is that
unknown in each block. Furthermore for-1 < i < min  Some of the MSO sets are found more than once. There are
the figure,M; has cardinality 1 and&; = @. two main reasons why this happens and these can be illus-
trated using the following example:

X1 Xo - Xn Xo

7 equation| unknown
X X
Ml \§ 7% €1 ); -
M| o o | XX )
: T es
% €4 §
M ”,;% ©
vl % First, the same PSO séts, ey, e5} is obtained, if eithee;
M WM% or e; is removed. This is avoided by using the lumping de-

scribed in the previous section. Second, the same MSO set is
. . obtained if the removed equations are permuted. For exam-
Figure 2: A structural decomposition of a PSO set. ple, the MSO sefey, e} is obtained if firste; and theres is
removed but also if the order of removal is reversed. In the



next algorithm such permutations are prevented and the set end while
R is an additional input argument, in the recursive calls, thatq if
contains the equations that are allowed to be removed. return M

. . SO

Lumping can be extended and applied to subsets of previ- . ] .

ously lumped structures. Sets of equations are then lumped By lump [E] in M, in the algorithm, we mean that only
together into new sets of equations by taking the union of théhe equivalence clag&] in M’ is lumped and that the other
sets in the equivalence class. In each call of the subroutin€guations remain unchanged. Note that only classes that in-
lumping of the equivalence classes is used. We illustrate thitersectk are lumped in the subroutine, which is sufficient in
with an examp|e_ Assume that we start with 6 equations an@rder to avoid that the same MSO set is found more than once.

thate, andes are lumped together and the following structure T illustrate the algorithm, we use the set (7) and describe the

is obtained: first steps in the recursion. First, the subroutine is called with
equation| unknown input setsM = R = {{e1}, {e2},{es}, {ea}, {e5}}. Inthe
T X first while loop, lumping is performed with the resulting sets
{e1} X M =TR' = {{e1,ea},{es}, {es}, {es}}. Then the subrou-
{eg,e5} | X (8) tineis called recursively with the following four pairs of input
{ea} | X X sets
{65} X
{66} X

_ _ ) M\ {{e1, e2}} andR’ = {{es}, {ea}, {es}},
In the first recursive cafe; } is removed and the graph corre- , ,
sponding to the remaining part has the same structure as (5). M\ {{es}} andR" = {{ea}, {es}},
Now, lumping is performed and the séts;, es } and{e4} are M\ {{es}} andR’ = {{es}},
lumped together into the séto, e3, e4}. / r_
A problem is how to form the new set of equations that M\ {{es}} andR" =2
are allowed to be removed, i.e. the set correspondif@,to 6.3 Computational Complexity

for tgelflum[%ed fitr?nctrre "’}Cdl t:e folllowmgiﬁrmlmrelle V(\j"” k;e The structural redundancy depends on the number of avail-
ilasc?udedainRetﬁe% tf?e?t?rl;pzlde sg'? i(s: EiinscsiﬁZedailnuthepﬁev?/eseatl le sensors, which are often expensive, and therefore the
denoted byR'. Otherwise the lumped set is excluded from structural redundancy is low in many applications. One ex-

7 e mple of this is given in the next section. For a fixed order of
R'. It can be shown that, in this way, all MSO sets are foun tructural redundancy, the computational complexity is poly-
once and only once. The algorithm can formally be define

omial in the number of equations, in contrast to previous

as follows. algorithms where the complexity is exponential. This follows
Algorithm 2 M ;50 = MSO(M) from the fact that the number of subroutine calls are equal
M = {{e}|lee MT}; to the number of PSO sets, which grows polynomially, and
Mirso := MSOsubsets(M, M); that the computational complexity to obtain the aét" is
return Msso; polynomial. It should be pointed out that, in the case of few
unknowns, the roles are reversed. For a fixed number of un-
Subroutine: M ;5o := FindMSO(M, R) knowns, the complexity of the new algorithm is exponential
if @ M =1then and the complexity of the old algorithm is polynomial in the
Marso = {UgemEY; _number of_equati_ons_. However, this situation is not common
in diagnosis applications.
else
R =M = M; 7 Application to a Large Industrial Example
while R # @ do To demonstrate the efficiency of the algorithm, described in
Selectant € R; the previous section, we will here apply it to a real industrial
Lump[E] in M'; process. The process is a Scapia trupk diesel-engine and a
if [E] C R then sketch is shown_m_ Figure 3. This engine has two actuators,
R . namely the fuel injectiod and the EGR-valve. It has eight
R_ =R'U {UE’E[E]E I3 sensors, namely ambient presspgg,, ambient temperature
end if Toump, air flow W,,,,, inlet pressurep;,,,, inlet temperature
R:=R\I[E]; Tim, €xhaust pressurg.,,, engine speea., , and turbine
; speedn;,. Further details of the application is presented
end while in [Eriksson, 2004
Muso = 9, A simulation model of the engine was provided in
while R’ # @ do Simulink. This model has 4 states and 4 outputs. These 4
Selectanf € R’ outputs aré/_VC,m,{, Dim» Pems andn;,,. The rest of the sensors
R =R\ {E}; are in the Simulink model implemented as inputs. To analyze
' the model, it was transferred to a flat list of equations. The

Murso = Marso UFindMsO(M' \ {E}, R'); number of equations is 126 and the structural redundancy is 4.



algorithms to a model of a Scania truck engine.
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tational complexity, of the new algorithm, is polynomial in

the number of equations, in contrast to previous algorithms

where the complexity is exponential. The efficiency of the al-

gorithm was demonstrated by applying the new and previous



