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Abstract

In this paper, a new algorithm for computing all
minimal over-constrained sub-systems in a struc-
tural model is proposed. To handle large differen-
tial algebraic models in diagnosis, systematic struc-
tural approaches to find testable sub-systems have
been suggested. It is shown how the algorithm can
be incorporated and improve some of them. Previ-
ous algorithms are recalled and it is shown that the
new algorithm is 14000 times faster when applied
to a Scania truck engine model.

1 Introduction
In model based diagnosis, the diagnostic system construction
is based on a model of the technical system to be diagnosed.
To cope with large differential algebraic models, systematic
structural approaches to find testable sub-systems have been
suggested in e.g.[Cassar and Staroswiecki, 1997], [Blanke
et al., 2003], [Pulido and Alonso, 2002] [Travé-Massuy`es
et al., 2001], and[Krysander and Nyberg, 2002]. All these
approaches have in common that testable sub-systems are
found among the over-constrainedsub-systems. Furthermore,
of all over-constrained sub-systems, it is the minimal ones
that are used to derive analytical redundancy relations. Sev-
eral algorithms for computing all minimal over-constrained
sub-systems have been proposed in[Pulido and Alonso,
2002], [Krysander and Nyberg, 2002], and [Blanke et al.,
2003]. However all these algorithms run into complexity
problems when considering large industrial examples.

In this paper we present a new algorithm for computing all
minimal over-constrained sub-systems in a structural model.
For the new algorithm the computational complexity is de-
pendent on the order of structural redundancy, i.e. the differ-
ence between the number of equations and unknowns. For a
fixed order of structural redundancy, the computational com-
plexity is polynomial in the number of equations in contrast to
previous algorithms where the complexity is exponential. In
many applications, sensors are expensive and thus the struc-
tural redundancy is low even if the models are large. The
algorithm is applied to a Scania truck-engine model with 126
equations. All minimal over-constrained sub-systems were
computed with the new algorithm more than 14000 times
faster than with previous algorithms.

Three different types of structural representations used to
describe differential algebraic systems are recalled in Sec-
tion 2. We introduce a notion, i.e.minimal structurally
overdetermined(MSO) set of equations, which characterize
over-constrained sub-systems independent of structural rep-
resentation. Several other proposed structural characteriza-
tions of over-constrained sub-systems are then recapitulated
in Section 3. All these are MSO sets of equations and this
means that the proposed algorithm can easily be used in any
of these approaches to find over-constrained sub-systems. For
comparison, previous algorithms for finding over-constrained
sub-systems are recalled in Section 4. In Section 5 a basic
algorithm for finding all MSO sets will be presented. This
algorithm illustrates the basic ideas and then in Section 6 fur-
ther improvements are described. Finally in Section 7, it is
shown that the computation time for finding all MSO sets in
a Scania truck engine model is significantly decreased by us-
ing the new algorithm compared to the previous ones and the
complexity of the different algorithms are discussed.

2 Structural Representations
The structure of a model is represented by a bipartite graph
with variables and equations as node sets. There is an edge
connecting an equatione and an unknownx if x is included
in e. When considering differential algebraic systems, dif-
ferent alternatives for handling derivatives exist. In this sec-
tion, three different structural representations of a differential
algebraic system are recalled. These three variants will be
exemplified by the following differential algebraic system

ẋ1 = −x2
1 + u

x2 = x2
1

y = x2

(1)

whereu andy are known, andx1 andx2 are unknown signals.
The first structural representation of (1) is the following

biadjacency matrix of the bipartite graph:

equation unknown
x1 x2

e1 X
e2 X X
e3 X

(2)

In this representation all unknowns, i.e.x1 andx2, are con-
sidered as signals. There is an “X” in position (i, j) in the



biadjacency matrix ifxj or any of its time-derivatives appear
in equationei. This approach has been used in for exam-
ple [Frisket al., 2003].

The second structural representation of (1) is

equation unknown
x1 ẋ1 x2

e1 X X
e2 X X
e3 X

Unknowns and their time-derivatives are, in contrast to pre-
vious representation, considered to be separate independent
algebraic variables. New equations can be obtained by differ-
entiation, for example

ė2 : ẋ2 = 2 x1 ẋ1

ė3 : ẏ = ẋ2

The extended structure is then

equation unknown
x1 x′

1 x2 x′
2

e1 X X
e2 X X
ė2 X X X
e3 X
ė3 X

(3)

This modelling principle is used in[Krysander and Nyberg,
2002].

In the third and final structural representation, unknowns
and their time-derivatives are, as in the second representa-
tion, considered to be separate independent algebraic vari-
ables. Thus the equations are purely algebraic and differential
relations of the form

ẋi =
d

dt
xi

are added. The structural representation of (1) is

equation unknown
x1 x′

1 x2

e1 X X
e2 X X
e3 X
d X X

(4)

whered is the added differential equation. This representa-
tion is used for diagnosis in[Blankeet al., 2003].

3 Use of MSO Sets for Test Construction
Several structural approaches to find testable sub-systems
have previously been suggested. In this section a structural
characterization of testable sub-systems is presented.

First some important structural properties will be de-
fined. The biadjacency matrix in Figure 1 shows a
Dulmage-Mendelsohn canonical decomposition[Dulmage
and Mendelsohn, 1958] of a bipartite graph withM andX as
node sets. Here we assume thatM is a set of equations andX
is a set of unknowns. The grey-shaded areas contain ones and
zeros, while the white areas only contain zeros. The thick line

M−

M0

M+

X− X0 X+

Figure 1: A Dulmage-Mendelsohn decomposition.

represents a maximal matching in the graph defined by this
biadjacency matrix. The modelM is decomposed into three
parts where the one denotedM+ is thestructurally overdeter-
mined partwith more equations than unknowns. The struc-
turally overdetermined partM+ of M is the equationse ∈ M
such that for any maximal matching there exists analternat-
ing pathbetween at least one free equation ande.

In consistency based diagnosis, redundancy in the model is
used and this motivates the following definitions.

Definition 1 (Structurally overdetermined) A set M of
equations isstructurally overdeterminedif M has more equa-
tions than unknowns.

Definition 2 (Proper structurally overdetermined) A
structurally overdetermined setM is a proper structurally
overdetermined(PSO) set ifM = M+.

Definition 3 (Minimal structurally overdetermined) A
structurally overdetermined set is aminimal structurally
overdetermined(MSO) set if no proper subset is a structurally
overdetermined set.

Note that an MSO set is also a PSO set. All three struc-
tural representations of (1) shown in (2)-(4) are examples of
MSO models and have one more equation than the number of
unknowns. From the equation system (3) the equation

ẏ2 − 4y(u − y)2 = 0

can be derived by algebraic elimination. This is called an ana-
lytical redundancy relation or a parity relation and can be used
to check ifu andy are consistent with the model (1). Hence
the testable system (1) has a corresponding MSO model for
each structural representation.

Since MSO sets can be used in any structural represen-
tation, comparisons to other structural characterizations of
testable models using different representations are possible.
In [Krysander and Nyberg, 2002] and [Frisk et al., 2003]
MSO sets are used to find testable sub-systems. In[Pulido
and Alonso, 2002] minimal evaluable chainsare used, which
are MSO models with the additional requirement that they
contain known variables. In[Blankeet al., 2003] and[Travé-
Massuyèset al., 2001] redundancy relationsare used, which
also correspond to MSO models.

In conclusion, MSO models are used in all structural ap-
proaches discussed above. The example in (1)- (4) shows that
MSO models can be interpreted in a similar way independent



of structural representation. By noting these similarities the
algorithm that will be proposed in Section 6 can be applied
to any structural representation considered and be used in the
previously discussed approaches.

4 Previous Algorithms
Two main ideas for finding all MSO sets have previously been
presented. These will be recalled and compared. These will
be used to compare the computational complexity of the new
algorithm proposed in this paper.

The first approach for finding all MSO sets is presented
independently in[Krysander and Nyberg, 2002] and[Pulido
and Alonso, 2002]. The basic principle is to choose one equa-
tion as the redundant equation and then find all possible ways
to compute structurally all unknowns in the redundant equa-
tions. The redundant equation is first chosen to be the first
equation and then the second and so on until the last equation
is the redundant equation. When all possible ways to com-
pute all unknowns in the first equation are found, all MSO
sets including the first equation have been found. This means
that the first equation will not be used further in the search for
more MSO models.

The second approach for finding all MSO sets is presented
in [Blankeet al., 2003]. All maximal matchings are enumer-
ated. For each maximal matching and for each free equa-
tion for this matching, an MSO set is given by the equations
reached by an alternating path from the free equation.

The computation time of both approaches grows fast with
the number of equations. Therefore they cannot be used in
practice for large industrial examples. Each set of equations
considered in the second approach is analyzed as least as
many times as in the first approach. Hence the computa-
tional complexity of the second approach is not better than
for the first one, and a comparison can be found in[Rattfält,
2004]. Therefore only the first approach will be considered
when comparing the computational complexity with the new
algorithm developed in this paper.

5 New Algorithm
In this section we will present a new algorithm for finding
all MSO sets. This algorithm is based on a top-down ap-
proach in the sense that we start with the entire model and
then reduce the size of the model step by step until an MSO
model remains. To illustrate the ideas, a basic version is pre-
sented here and then in the next section, improvements are
discussed.

Before presenting the algorithm, we need the notion
of structural redundancy. Given a bipartite graph, let
varX(M) ⊆ X be the subset of variables inX connected to at
least one equation inM . Given a proper structurally overde-
termined set of equationsM , the structural redundancȳϕM
is defined by

ϕ̄M = |M | − |varX(M)|
The algorithm will be based on the following three lemmas.

Lemma 1 If M is a proper structurally overdetermined set of
equations ande ∈ M , thenϕ̄ (M\{e})+ = ϕ̄M − 1.

Lemma 2 The set of equationsM is an MSO set if and only if
M is a proper structurally overdetermined set andϕ̄M = 1.

Lemma 3 If M is a set of equations,E ⊆ M is an PSO set,
ande ∈ M \ E, then

E ⊆ (M \ {e})+

The proofs of all lemmas and theorems in this paper can
be found in[Krysanderet al., 2005]. The first lemma reveals
how the structural redundancy decreases when one equation
is removed. It follows from this lemma that if we start with
any proper structurally overdetermined set of equations we
can alternately remove equations and computing the overde-
termined part until the structural redundancy becomes 1. We
have then found an MSO-set, according to Lemma 2. Finally,
Lemma 3 implies that an arbitrary MSO set can be obtained
recursively this way. By using this principle in combination
with a complete search the algorithm becomes as follows.
The input setM is assumed to be a PSO set.

Algorithm 1 MMSO := FindMSO(M)
if ϕ̄ M = 1 then

MMSO := {M};

else

MMSO := ∅;

for eachequatione in M do

M ′ := (M \ {e})+;
MMSO := MMSO ∪ FindMSO(M ′);

end for

end if
return MMSO

From the discussion above, it follows that the sets found in
MMSO are MSO sets and that all MSO sets are found.

To illustrate the steps in the algorithm, consider the fol-
lowing proper structurally overdetermined model consisting
of four equations and two unknown variables:

equation unknown
x1 x2

e1 X
e2 X X
e3 X
e4 X

(5)

The structural redundancy of this set of equations is 2. When
entering the algorithm,e1 is removed and the setM ′ becomes
(M\{e1})+ = {e3, e4}. In this casēϕM ′ = 1 and the equa-
tion set is saved as an MSO inMMSO. Thene2 is removed
and M ′ = (M\{e2})+ = {e3, e4}. This means that the
same MSO set is found once again. Nexte3 is removed and
the MSO set{e1, e2, e4} is found. Finallye4 is removed and
the MSO set{e1, e2, e3} is found.

Since the same MSO set{e3, e4} is found twice, we can
suspect that the algorithm is not optimal in terms of efficiency.
The next section will therefore present improvements in order
to increase the efficiency.



6 Improvements
A straightforward improvement is of course to prohibit that
any of the MSO sets are found more than once. Another and
more sophisticated improvement is that sets of equations can
be lumped together in order to reduce the size and the com-
plexity of the structure. The proposed reduction preserves
structural redundancy and it is therefore possible to use the
reduced structure to find all MSO sets in the original struc-
ture.

6.1 Structural Reduction
The reduction is based on a new unique decomposition of
the overdetermined part of a bipartite graph. An illustration
of the decomposition is shown in Figure 2 as a biadjacency
matrix. If M is the set of all equations andX is the set of all
unknowns, the decomposition can be defined as follows. Let
R be a relation on the setM of equations defined by(e′, e) ∈
R if

e′ /∈ (M \ {e})+ (6)

Now we show thatR is an equivalence relation. It follows
directly from the definition thatR is reflexive. If(e′, e) ∈ R,
then it follows from (6) and Lemma 3, withE replaced by
(M \ {e})+, that (M \ {e})+ ⊆ (M \ {e′})+. Lemma 1
and Lemma 3 imply that both sets have the same struc-
tural redundancy and that(M \ {e})+ = (M \ {e′})+.
Hence(e, e′) ∈ R andR is therefore symmetric. Further-
more if (e1, e2) ∈ R and (e2, e3) ∈ R, then it holds that
(M \{e1})+ = (M \{e2})+ = (M \{e3})+, which implies
thatR is transitive. The relationR is therefore an equivalence
relation and the equivalence class containinge is denoted by
[e].

The setM can then be partitioned into disjoint equivalence
classesMi. For each equation setMi, the setXi is defined as
the unknowns only included inMi and

X0 = X \ (
⋃

i6=0

Xi)

It follows from Lemma 1, by considering the complementary
sets, that

|Mi| = |Xi| + 1
for all 1 ≤ i ≤ m, i.e. there is one more equation than
unknown in each block. Furthermore forn + 1 ≤ i ≤ m in
the figure,Mi has cardinality 1 andXi = ∅.
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Figure 2: A structural decomposition of a PSO set.

Theorem 4 If E ⊆ M is a PSO set, thenE is a union of
equivalence classes defined by (6), i.e.

E =
⋃

i∈I

Mi

whereI ⊆ {1, 2, . . .m}.

This theorem motivates why the equations in each equiva-
lence class can be lumped together when computing all PSO
sets. A new bipartite graph is formed with equivalence classes
{Mi} and the unknownsX0 as node sets. The unknowns con-
nected toMi are varX0(Mi). The reduction of (5) is

equivalence class unknown
Mi x2

{e1, e2} X
{e3} X
{e4} X

and the decomposition is given byM1 = {e1, e2}, M2 =
{e3}, M3 = {e4}, X0 = {x2}, X1 = {x1}, andX2 =
X3 = ∅. Note that it is only equivalence classes of cardinal-
ity greater than one that give a reduction. An interpretation of
this reduction is that the two first equations are used to elim-
inate the unknownx1. In the lumped structure, each equiva-
lence class is considered as one equation and the definitions
of PSO set, MSO set, and structural redundancy are thereby
extended to lumped structures. In the example above we have
ϕ̄ {{e1, e2}, {e3}, {e4}} = 2. The structural redundancy for
the lumped and the original structure are always the same.

The reduction is justified by the following theorem, which
together with Theorem 4 shows that there is a one-to-one cor-
respondence between the PSO sets in the original and in the
lumped structure.

Theorem 5 The set{Mi}i∈I is a PSO set in the lumped
structure if and only if∪i∈IMi is a PSO set in the original
structure.

It follows from the discussion above that the reduced struc-
ture can be used to find all PSO sets in the original structure.

6.2 Improved Algorithm
A drawback with Algorithm 1, presented in Section 5, is that
some of the MSO sets are found more than once. There are
two main reasons why this happens and these can be illus-
trated using the following example:

equation unknown
x1 x2

e1 X
e2 X X
e3 X
e4 X
e5 X

(7)

First, the same PSO set{e3, e4, e5} is obtained, if eithere1

or e2 is removed. This is avoided by using the lumping de-
scribed in the previous section. Second, the same MSO set is
obtained if the removed equations are permuted. For exam-
ple, the MSO set{e4, e5} is obtained if firste1 and thene3 is
removed but also if the order of removal is reversed. In the



next algorithm such permutations are prevented and the set
R is an additional input argument, in the recursive calls, that
contains the equations that are allowed to be removed.

Lumping can be extended and applied to subsets of previ-
ously lumped structures. Sets of equations are then lumped
together into new sets of equations by taking the union of the
sets in the equivalence class. In each call of the subroutine,
lumping of the equivalence classes is used. We illustrate this
with an example. Assume that we start with 6 equations and
thate2 ande3 are lumped together and the following structure
is obtained:

equation unknown
x1 x2

{e1} X
{e2, e3} X
{e4} X X
{e5} X
{e6} X

(8)

In the first recursive call{e1} is removed and the graph corre-
sponding to the remaining part has the same structure as (5).
Now, lumping is performed and the sets{e2, e3} and{e4} are
lumped together into the set{e2, e3, e4}.

A problem is how to form the new set of equations that
are allowed to be removed, i.e. the set corresponding toR,
for the lumped structure and the following principle will be
used. If all the original equivalence classes in a lumped set are
included inR, then the lumped set is included in the new set,
denoted byR′. Otherwise the lumped set is excluded from
R′. It can be shown that, in this way, all MSO sets are found
once and only once. The algorithm can formally be defined
as follows.

Algorithm 2 MMSO = MSO(M)
M := {{e}|e ∈ M+};
MMSO := MSOsubsets(M,M);
return MMSO;

Subroutine:MMSO := FindMSO(M,R)
if ϕ̄M = 1 then

MMSO := {∪E∈ME};

else

R′ := ∅;M′ := M;
while R 6= ∅ do

Select anE ∈ R;
Lump[E] in M′;
if [E] ⊆ R then
R′ := R′ ∪ {∪E′∈[E]E

′};
end if
R := R \ [E];

end while

MMSO := ∅;

while R′ 6= ∅ do

Select anE ∈ R′

R′ := R′ \ {E};
MMSO := MMSO ∪ FindMSO(M′ \ {E},R′);

end while

end if
return MMSO

By lump [E] in M′, in the algorithm, we mean that only
the equivalence class[E] in M′ is lumped and that the other
equations remain unchanged. Note that only classes that in-
tersectR are lumped in the subroutine, which is sufficient in
order to avoid that the same MSO set is found more than once.
To illustrate the algorithm, we use the set (7) and describe the
first steps in the recursion. First, the subroutine is called with
input setsM = R = {{e1}, {e2}, {e3}, {e4}, {e5}}. In the
first while loop, lumping is performed with the resulting sets
M′ = R′ = {{e1, e2}, {e3}, {e4}, {e5}}. Then the subrou-
tine is called recursively with the following four pairs of input
sets

M′ \ {{e1, e2}} andR′ = {{e3}, {e4}, {e5}},
M′ \ {{e3}} andR′ = {{e4}, {e5}},
M′ \ {{e4}} andR′ = {{e5}},
M′ \ {{e5}} andR′ = ∅

6.3 Computational Complexity
The structural redundancy depends on the number of avail-
able sensors, which are often expensive, and therefore the
structural redundancy is low in many applications. One ex-
ample of this is given in the next section. For a fixed order of
structural redundancy, the computational complexity is poly-
nomial in the number of equations, in contrast to previous
algorithms where the complexity is exponential. This follows
from the fact that the number of subroutine calls are equal
to the number of PSO sets, which grows polynomially, and
that the computational complexity to obtain the setM+ is
polynomial. It should be pointed out that, in the case of few
unknowns, the roles are reversed. For a fixed number of un-
knowns, the complexity of the new algorithm is exponential
and the complexity of the old algorithm is polynomial in the
number of equations. However, this situation is not common
in diagnosis applications.

7 Application to a Large Industrial Example
To demonstrate the efficiency of the algorithm, described in
the previous section, we will here apply it to a real industrial
process. The process is a Scania truck diesel-engine and a
sketch is shown in Figure 3. This engine has two actuators,
namely the fuel injectionδ and the EGR-valve. It has eight
sensors, namely ambient pressurepamb, ambient temperature
Tamb, air flow Wcmp, inlet pressurepim, inlet temperature
Tim, exhaust pressurepem, engine speedneng, and turbine
speedntrb. Further details of the application is presented
in [Eriksson, 2004].

A simulation model of the engine was provided in
Simulink. This model has 4 states and 4 outputs. These 4
outputs areWcmp, pim, pem, andntrb. The rest of the sensors
are in the Simulink model implemented as inputs. To analyze
the model, it was transferred to a flat list of equations. The
number of equations is 126 and the structural redundancy is 4.



Figure 3: Example of a Scania truck engine.

The fact that the structural redundancy is 4 is a consequence
of that the number of outputs is 4.

For comparison, three algorithms were tested on the set of
126 equations. The first is the old MSO algorithm presented
in [Krysander and Nyberg, 2002], where an alternative par-
tial reduction is used. Without any reduction, the old MSO
algorithm is practically intractable for this example. The sec-
ond is the new basic algorithm presented in Section 5 with the
structural reduction in Section 6.1 applied initially, reducing
the number of equations to 28. The third is the new improved
algorithm presented in Section 6.

All algorithms were implemented in Matlab and executed
on a PC with a 1 GHz processor. The execution times were
measured in seconds and are presented in Table 1.

Algorithm Execution time
The old MSO algorithm 5900 s
The new basic algorithm 18 s
The new improved algorithm 0.42 s

Table 1: A comparison of three MSO algorithms.

In the table we can see that the new MSO algorithm is more
than 14000 times faster than the old algorithm!

8 Conclusions
A new approach to compute minimal structurally overdeter-
mined sets of equations was developed. The proposed algo-
rithm can be used in other structural approaches for finding
testable sub-systems. There are three main ideas that are used
in the new algorithm. First, it is based on a top-down ap-
proach as described in Section 5. Second, a structural reduc-
tion is used where subsets of equations are lumped together
in order to reduce the size of the structural model. Third and
last, it is prohibited that any MSO set is found more than
once. For a fixed order of structural redundancy, the compu-
tational complexity, of the new algorithm, is polynomial in
the number of equations, in contrast to previous algorithms
where the complexity is exponential. The efficiency of the al-
gorithm was demonstrated by applying the new and previous

algorithms to a model of a Scania truck engine.
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[Rattfält, 2004] Linda Rattfält. A comparative study of two
structural methods for fault isolability analysis. Mas-
ter’s thesis, Link¨opings Universitet, SE-581 83 Link¨oping,
2004. URL:http://www.vehicular.isy.liu.se/Publications/.
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