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Distributed Diagnosis by using a Condensed Local Represegtion of the Global

Diagnoses with Minimal Cardinality
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Abstract

The set of diagnoses is commonly calculated in
consistency based diagnosis, where a diagnosis in-
cludes a set of faulty components. In some appli-
cations, the search for diagnoses is reduced to the
set of diagnoses with minimal cardinality. In dis-
tributed systems, local diagnoses are calculated in
each agent, and global diagnoses are calculated for
the complete system. The key contribution in the
present paper is an algorithm that synchronizes the
local diagnoses in each agent such that these repre-
sent the global diagnoses with minimal cardinality.
The resulting diagnoses only include faulty compo-
nents used by the specific agent, and are therefore a
condensed local representation of the global diag-
noses with minimal cardinality.
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The key contribution in the present paper is an algorithm
that synchronizes the minimal local diagnoses in one agent
with the minimal local diagnoses in the other agents, suah th
the result is a set of diagnoses with minimal cardinalityclica
resulting diagnosis is a subset of some global diagnoses, an
only components used by the specific agent is included the
resulting diagnosis. Since only the components used by the
specific agent are included, both the size and the number of
the resulting diagnoses with minimal cardinality are reztlic
compared to the set of global diagnoses with minimal cardi-
nality. The resulting diagnoses with minimal cardinalitg a
therefore a condensed local representation of the global di
agnoses with minimal cardinality, and are here denoted con-
densed diagnoses with minimal cardinality. By reducing the
size and the number, the algorithm requires a low computa-
tional load, low memory usage, and low network load. The
algorithm is distributed such that it can handle both change
in the number of agents and the exchange of single agents.
The algorithm is described in Section 5, using the framework

This paper considers distributed systems that consist of r distributed diagnosis presented in Section 3-4.
set of agents, where an agent is a more or less indepen-Our work has been inspired by diagnosis in distributed

dent software entity, connected to each other via some neembedded systems used in automotive vehicles. These sys-
work [Hayes, 1999; Weiss, 1989The diagnoses can, in dis- tems typically consist of precomputed diagnostic test$ tha
tributed systems, be divided into two different types, glob are evaluated in different agents, which in the automotive i
diagnoses that are diagnoses for the complete distributedustry correspond to electronic control unigsc(Js). Sets of
system and local diagnoses that are diagnoses for a singt@nflicts are generated when the diagnostic tests are ¢gdlua
agenfRooset al., 2001. in the ECus, and theecus then compute sets of minimal lo-

It is an advantage to have the set of minimal global diag-cal diagnoses. These embedded distributed systems typical
noses in each agent. However, an agent has only an interegnsist ofecus with both limited processing power and lim-
in knowing the fault status of the components used by thaited RAM memory. The algorithm presented here is therefore
agent since the other components does not affect the specifionstructed such that it requires low processing power and
agent. Consider for example a global diagnosis that cansisiow memory usage. In these systems, it should be possible
of a set of components that have been found to be faulty. Ato exchange, add, or remogeus without having to do any
agent that uses some components in its operation is inderestchanges to the diagnostic software. The algorithm predente
in knowing if any of these components are included in thein this paper is therefore constructed such that it can kandl|
global diagnosis. The agent however does not have an irsuch changes. Requirements on diagnostic systems used in
terest in the fault status of the rest of the components in thautomotive vehicles are discussed in Section 2.
global diagnosis. In some applications, the calculatiodiof
agnoses is focused on to some smaller set of diagnoses, férl Related Work
example the most probable diagnokds Kleer, 199)or the ot research, such 4Reiter, 1987, has been aimed at the
diagnoses with minimal cardinalifyle Kleer, 1990 centralized diagnosis problem. These methods can also be
used for distributed systems by letting a central diagnosti
agent collect conflicts from the system and then calculate th
minimal global diagnoses. It is not always suitable to use
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sets of local diagnoses such that these are consistentheith trza
global diagnosefRooset al, 2003. The method does not | A rexer B—
guarantee that a combination of the agents’ local minimal di —
agnoses is also a global minimal diagnosis. However, for ey ceandiner &
ery global minimal diagnosis, there is a combination of loca
minimal diagnoses. The updated sets of local diagnoses re| s | vs
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complete set of global diagnoses. The method presented in
this paper updates the local diagnoses such that these repfigure 1: The distributed system in current Scania heawy-du
sent the global diagnoses with minimal cardinality. vehicles.

In [Biteuset al., 2004, a method was presented that calcu-
lated the global diagnoses with minimal cardinality by san
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_Ecu is the engine management system, which is connected
other, which adds its minimal local diagnoses, then trahsmit® Sensors and actuators related to the engine. There can be

the result to the next agent, etc. Even though the method igfﬂt_]o ?boﬂt S(Edcus i?]lthg fystemé,l degirlogng on the t%/pe
efficient, it might not give a sufficient distributed diagnos ot the truck, and roughly between < an components are

tic system since it requires a lot of cooperation between théhaghnosed b'y eaahc# icall locki d of 8
agents. In[Biteuset al, 2004, the computational burden The ECUs dCPUS ave typically a ccf)c t:ng spee Ok
when calculating the global diagnoses with minimal cardina t©© 84MHz, and &AM memory capacity of about 4 to 158

ity was reduced by partitioning the system into two or moreCAN buses can typically transfer 100 to 500 kbit/s. As these

sub-systems, whose minimal local diagnoses did not sharaumbers indicate there is not much computational, memory,

components with each other. The partition approach has sinflo" nétwork capacity available, especially when consiugri

ilarities with the tree reduction technique usedWotawa that theecus should be used for both control and diagnosis.

2001 and can also be used for the algorithm presented here, . N
Related to this work is also theu funded project Multi- 2.2 Overall Requirements on Distributed Systems
Agents-based Diagnostic Data Acquisition and Managemena distributed system that can present the same information t
in Complex SystemsyAaGic) which develops an architecture users, as if it were a centralized system, can be denotest tran
useful for distributed diagnosigoppen-Seligeet al., 200d. parent[Tanenbaum and van Steen, 2002onsidering fault
The project discusses protocols for network communicationdiagnosis, one interpretation of transparency is that timém
control algorithms, and other aspects of the integratiodi-of mal diagnoses presented by the distributed diagnostiersyst
agnosis in distributed systems. should be the same as those presented by a centralized di-
agnostic system, meaning that the minimal global diagnoses

2 Reguirements on Diagnostic Systems used ,So\hourl]d be presented, n(]zt only the minimaLIocal diagmgses.

; ; nother interpretation of transparency is that, even tioug

in the Automotive Industry oneEcu fails to deliver its minimal local diagnoses the re-
To better understand the industrial demands on diagnbsis, t maining system should still be able to deliver the minimal
distributed diagnostic systems used in Scameheavy-duty global diagnoses. This means that the diagnostic processes
trucks have been analyzed. These systems consistad  should be distributed among tiEeus, or if a centralized di-
connected to each other via a controller area networkuj. agnosticecu is used, backupcus should exist.

The software embedded in tEeus is primary used forcon- |f it is possible to increase or decrease the size of the sys-

trol and monitoring. tem, without changes in the software, the system can be said
. to be scalabléTanenbaum and van Steen, 2Q0Zonsider-

2.1 An Example of a Distributed System ing a truck, it should be possible to attach new parts inclgdi

One configuration of the distributed system in Scania’snewECUSs to the network without having to change the soft-
heavy-duty vehicles is shown in Figure 1. The system in-ware in theEcus.

cludes three separata\N buses, the red, the yellow, and the If it is possible to exchange agcu to for example a new
green. Each of thecus is connected to sensors and actua-version without having to change the software in the other
tors, and both sensor values and control signals can becsharecus, the system can be said to be interoperftdeenbaum
with the otherecus over the network. One example of an and van Steen, 2002This is especially important in automo-



tive systems where it frequently occurs that parts are cepla signal
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by parts from other manufacturers. Network , input ' output

2.3 Requirement Conclusions AGENT AL MDiag- ‘ Agent A
nosis

An algorithm for distributed diagnosis used in automotiee v ]

hicles, should require a limited processing power, memory

usage, and network load. The algorithm should further tesul e o

in a transparent, scalable, and interoperable system.

The algorithm presented in this paper synchronizes the ) )
minimal local diagnoses, which results in a transpareal;sc ~ Figure 2: Agents, network, components, and diagnosis.
able, and interoperable system. The condensed diagnoses
with m.|n|mal cardlnal_lty do not include components that are, ¢ Outputs, Inputs, and Components in
not of interest and this reduces computational load, memory o

Distributed Systems

usage, and network load.

A distributed system consists of a set of age#tsA local di-
. . . agnosis is determined by the conflicts in a single agentewhil
3 Consistency Based Diagnosis a global diagnosis is determined by all agents’ conflicts.

A system consists of a set of componeftsvhere a compo- Here, the complete set of components are partitioned into

nent is something that can be diagnosed. This not only inprivate component® C C and common componendsC C,

cludes components directly connected to the agents, such #iere” N G = (). A private component is only used by one

sensors and actuators, but also includes components shar@gent, while a common component is used by two or more

between the agents, e.g. cables and pipes. agents. The set of private components is partitioned irfto di
To reduce the complexity of the diagnostic system, it isferentsets belonging to different agents such that for trahis

sometimes preferable to only consider the abnomAraland ~ Sets, P NP4 = 0, whereA;, A; € A. The set¥* is the

the not abnormakAB mode, where thel B mode does not  Subset ofX' that is used in agemt. _ o

have a model. This means that the minimal diagnosis hy- In addition to components, an agent in a distributed sys-

pothesis is fulfilledde Kleeret al, 1994, and therefore the ~tem should also be able to diagnose inputs from other agents.
notation in for examplebEe will be employed. The outputs are values from sensors, to actuators, or frém ca

A diagnosis is a set of componeni C C, such that culations, which are made available to the other agents over

the components’ abnormal behaviors, the remaining compdhe network. The complete set of signalsa set of inputs
nents’ normal behaviors, the system description, and the oBfN € S, and a set of outputSU/T C S is here used. Each

servations are consistent. Since the minimal diagnosis hy_utputo € OUT is connected to a subset of inplitsc ZN.

pothesis is fulfilled and> is a diagnosis, all supersets bf Example 1:Figure 2 shows a typical layout of agents and
are also diagnoses. Further, a diagndsiss a minimal di-  components. The system consists of two agents, a network,
agnosis if there is no proper subsetC D’ whereD is a  and four sensor component$,to D. The sensorst and B
diagnosidde Kleeret al, 1993. are physically connected to agent, while the sensorg’

An evaluation of a diagnostic test results in a conflict if and D are connected tal,. A diagnosis in agenti; could
some components, checked by the test, have been found for example include the components B, andC, connected
behave abnormal. A conflict is a set of components C,  with dashed lines. Agent; diagnoses indirectly sensat
such that the components’ normal behaviors, the system déhrough the signal transmitted over the network. o

scription, and the observations are inconsistent. A€t C An output might depend on other components, such as sen-

is a diagnosis if and only if it has a nonempty intersection . . . ; D1
with every conflict in a set of conflicts. A consequence of this>O'S: and }he mformr_:\tlon about this relationship is staned
the output's assumptions.

is that the set of minimal diagnoses is exactly determined by
the set of minimal conflictbde Kleeret al., 1994. Definition 1 (Assumption) Lets be a signal which is an out-
In some cases, it is computationally intractable to cateula put from agentd or an input that is connected to the output
the complete set of minimal diagnoses. To reduce the compurom agentA. Let the setss(s) € PAUGUINA. If sis
tational cost, the search can be focused on the diagnodes wiabnormal if and only if some non-empty subSet ass(s) is
minimal cardinality, as described in for examptie Kleer, abnormal, themss(s) is the set of assumptions fer
199d. LetD be a set of diagnoses, then the set of minimal
cardinality diagnoses is the sBt,. = {D € D: |D| =
minDeD |D|}

Each output depends on components and other inputs. This
dependency can be propagated to a set consisting only of
components.

Definition 2 (Dependency)Let s € S be a signal, then the

4 Distributed Diagnosis dependency fos is

This section will present the framework for distributed-sys d o d
tems that will be used to describe how condensed diagnoses ep(s) = ass(s) NC U U ep(?)-
with minimal cardinality can be calculated. teass(s)NS



Network DNIN = {i:dep(i)nD # 0,i € IN'} means that
inputs, that might be faulty due to its dependency on some
Y faulty components, should be includediin

Agents A,

Example 3:Consider the system shown in Figure 3. There

A, :
exist a signals whose dependenayep(s) = {B}, repre-
_ sented by the dotted line. The sets of private components are
Egﬁ;‘;nents e P4 = {A} andP#> = {B, C}. The set of common com-
ponentsis; = {G}. Let{A, B, C, G} be a global diagnosis.

Common A condensed diagnosis in agedt is ({A,G,s1},1).
Components .. . e . .
Componentd is included since it is a private component in
Ay, G since itis acommon component, ansince it depends
on the faulty componenB. Component” is represented by

Figure 3: An example of a two agent system.

k = 1 since it does not affect agent, . o
Since thedep(-) function is defined implicit, the possibility  Theminimal cardinality condensed diagnoseghe set of
of loops has to be considered in an implementation. condensed diagnoses where each condensed diagnosis is a

Example 2:Continuation of Example 1. The assumption of subset of some minimal cardinality global diagnoses , ne. i
the output isss(outpuy = {C'}. The dependency equals the Definition 4, the set of global diagnos@xis the set of min-
assumption since the assumption does not include any signamal cardinality global diagnoses. The objective of theoalg

o  rithm described in the next section is to calculate the skts o
minimal cardinality condensed diagnoses in each agent.

4.2 Diagnoses & Conflicts on Components & Inputs _ _ o

An agent should state diagnoses that include both compc? A'QOUthr_n for Calculating _the Minimal

nents and inputs. The diagnoses in Section 3 cannot be Cardinality Condensed Diagnoses

used directly since these only include components. Instead The main idea of the algorithm presented in this Section is

corr_1p.o_nent—|nput d|agno§|s S de_fmed 9” theCSetZN. that each agent first find and then transmits the subset of min-
Definition 3 (Component-input diagnosis) A setD = C'U  jmal local diagnoses that other agents might be interested
I'Ce,CcC ' CIN,isacomponent-inputdiagnosisif of. Each agent then receives the transmitted diagnoses and
the setC UC', whereVi € ' : C'ndep(i) # 0, is a diagnosis. merges these with its own set of minimal local diagnoses re-

A component-input diagnosis will simply be denoted a diag-Sulting in the minimal cardinality condensed diagnoses.
nosis when no misunderstanding is imminent. As with diag- 'he transmitting part is described in Section 5.2, the re-

noses, conflicts can also be defined uganZ.\'. ceiving and merging is described in Section 5.3, and finally
the main algorithm is described in Section 5.4.
4.3 Condensed Diagnoses Representing Global In the algorithms,D is some diagnosid} C ZN, Q C
Diagnoses OUT,P C P,andG C G.

It was mentioned in the introduction that the condensed-diag
noses with minimal cardinality should be calculated in eaci5'1 Outputs Dependent on Inputs

agent. The algorithm, as written, requires thats(s) C C, i.e. an
Definition 4 (Condensed diagnosisLet D be a set of output's value does not depend on any signal. This can be
global diagnoses. The tupld, k), whereD ¢ pAugu  lfiled for a general system, whetes(s) C C U ZN, by
INA andk € 7, is a condensed diagnosis in agedtif r(_eplacmg the assumptions with the corresponding dependen
3D € D such that cies, such thaiss(s) := dep(s) C C.

ID|+k=|D,DNP=DNPADNG=DNG, 5.2 Transmit Diagnoses
i N . The first step is to find and transmit the subset of minimal
DOIN ={i:dep(i)nD\D #0,i € IN}. local diagnoses that is of interest to the other agents.
The condensed diagnos{®, z) in agentA4, is a tuple A minimal local diagnosis should be transmitted if it in-

where the seD represents the subset of some global diag-cludes common components, inputs, or components that out-
noses, diagnosi® in the definition, including components puts depends on, since these might affect other agents. For
used by agentl. Variablek represents the components not each diagnosis that should be transmitted, the private oemp
included inD but included inD. nents can be removed since these do not directly affect other
Interpretation of the different requirements for a congéehs agents. If some outputs depend on any of the removed private
diagnosis:|D| + k = |D| means that the cardinality plés = components these outputs are instead added to the diagnosis
should equal that of the global diagnosis with minimal car-The minimal local diagnoses that are not transmitted on the
dinality; D NP = D N P4 means thatD should only in-  network can be represented by a variable N, which is the
clude private components used by agantbh NG =D NG minimal cardinality of the non-transmitted local diagnese
means that the common components should be includedhe agents receiving the diagnoses will then be aware that



Algorithm 1 Transmit diagnosesr ansmi t (A, m). Network S2

Require: A set of minimal local diagnosé®*, limit m. b

Ensure: SetT' X broadcasted on the network. vy {
1: DTX:={DeD?:|D|<m 3
2: DTX = }DE]D)TX pl=m Agents A As

Al

DN(INUGU (Useoyraass(a))) # 0} S |

3 n:= minDQDA\DTX |D| B ) ! \\ !
4 TX = {(D,k) : D e D',D = PUGUT,D = Eg‘rﬁ;nem@ \ () @

GUTUQQ = {0 € OUT" : ass(o) N P # 0}, k =
|P - Q|} gommon t

s if |]D)T | # |]D)A| then omponents

: enﬂ?f( =TXUAD ) Figure 4: An example of a three agent system.

: Broadcasf' X on the network.

0o ~Nou

on the same component then the cardinality of the condensed
diagnosis will not be correct. Consider for example two sig-
cardinalityn nalss; anng dependi_ng on compon_eAt The cardinality qf

! Oé{sl, s2}, 0) is two while the cardinality of the corresponding

there exist one or more non-transmitted local diagnosds wit

.A_Igorlithm; pelrtl‘orms éhe stedpstQescribed above. Sirrllcg tfh lobal diagnosig A} is one. The condensed diagnosis should
minimal cardinality condensed diagnoses are searche e ({s1, s2}, —1) where the minus one a compensation.
the algorithm accepts a maximum limit on the cardinality lg’IAIgorithm 2 performs the steps described above. The al-

of the local diagnoses to be transmitted. Row 2 decides which _ . ; :
X . orithm transforms the received sets of tuples by replacing
diagnoses that should be transmitted. Row 4 constructs a tt Tputs that are outputs from the current agent, with the com-

Sfrigﬁgfg%t?ee ?g%r:%sn's méhr%%g\r/'ggterﬁgtzpfgrﬁnfiﬁsponents in the outputs’ assumptions, row 1-3. The func-
P 9 P P tion M HS(M) calculates the minimal hitting set for the

Example 4.Consider the system shown in Figure 4, wherecollection of setsM. For example, the minimal hitting set
objects connected to the agents with solid lines are indudeM HS({{A, B},{B,C}}) = {{A,C},{B}}. To be able to
in some minimal local diagnosis, while those connected withcalculate the compensation discussed above, the set d&inpu
dashed lines are notincluded. The sets of private compsnenis partitioned into the sdt’, which is outputs that was added
areP4t = {A}, P42 = {B,C, D}, andP4: = {E}. The  tothe diagnosis whe; transmitted the tuple, and the &t
set of common components & = {G}. There exist tWo  which is the inputs to agemt; without the outputs frons,.

signals with assumptionss(s;) = {B} andass(s2) = {E}.  I|n row 5 the received sets of tuples are merged. In row 6, the
Assume that the following set of minimal local diagnosescondensed diagnoses are compensated for signals depending
has been calculated in agett on the same components. Finally, in row 7, the condensed di-
DA — {{C, 55}, {B,C},{G,C}, {D}}. agnoses, which do not have minimal cardinality, is removed.
Using Algorithm 1 withm > 2, the set Algorithm 2 Calculate the minimal cardinality condensed di-
agnosesondense(4;).

DTX = {{0752}5{B50}3{G3 O}} A A A
o ] ) o Require: Received set$' X7 from all agentsd;; as a re-
is first calculated. The variabte = 1, i.e. the cardinality of sult of evaluating r ansni t (4;,m). Set of minimal
{D}. The transmitted set of tuples is local diagnose®A: .

TX = {{{s2},1), {s1}, 1), {G}, 1), (0, 1)} Ensure: Set of minimal cardinality condensed diag-
Y k) k) Y Y ) Y nosegD)?T'
where the private components have been removed. This set: for all j # i do
will represenfD“2 in agents4; andA;. © 2 RX%:={(PUGUGUTUT,k): (GUTUQ,k) €
_ _ TX4% T =00=T"nOUT* T =T\Q},H ¢
5.3 Receive and Merge Diagnoses MHS(U,cpf{ass(0)}),P=HNP,G=HNG}

The second step is to receive the transmitted sets, transfor 3: end for
them into an appropriate form, and then calculate the mihima 4: RX# := {(D,0) : D € DA}
cardinality condensed diagnoses. 5: D = {(H, k) : (Dj, kj) € RX%,

If a received diagnosis include a signahat are an output H=U;D; k= Zj kj}.
from the receiving agent then the receiver know which com- g: ]D)?i = {(D,k +conp(D)): (D,k) € D?i}
ponents that depend on, and is therefore replaced with  7: DA .= {(D,k) € D4,k = min
the assumptionss(s). After the replacement, the minimal
local diagnoses and the received diagnoses can be merged to
form a set of condensed diagnoses. If a condensed diagnosisThe value ofk + conp(D) should be the difference be-
includes several inputs and if several of these inputs dépenween the cardinality oD and a corresponding minimal car-

(D,k)eDsi




Algorithm 3 Functionconmp(D). Algorithm 4 Main algorithm.

Input: DiagnosisD. Require: Set of minimal local diagnosé®* in all agents.
Output: Variablek. Result: Set of minimal cardinality condensed diagnoses.
1: Each diagnosis is constructed such that ) : Decide with voting:m; = maxse 4 minpepa |D|
D=(PIUG'UTH) Uz (PPUGIUGI UTI UTY) VA € Aevaluate ransmi t (A, m;)
2 79 = (D% Upys TF) N OUT A VA € Aevaluatecondense(A)
: Decide with voting:ms = maxe4 minpepa | D|
VA € Aevaluatd ransmi t (4, mo)
: VA € Aevaluatecondense(A)

: k%l = minHGMHS(Uagzj {ass(o)}) |[HNP|— |Zj|

2 AN A

2

3

4: kgg = minHGMHS(UUEfijj {ass(o) NP |H| — |1:‘J ﬂZ-j|
5: ky =Y (kJy + ki)
6
7
8

: ZG = Gl Uj;,gi (GJ U GJ)
: kg = minHEAlHS(Uneuj¢iZj {ass(0)})NG |H| — |ZG ﬂH|
s ki=ko+ ks

agentsA; € A. LetD4: be the result after evaluating Algo-
rithm 2 in agentA4;. ThenD;“i is the set of minimal cardinal-
ity condensed diagnoses.

Proof The complete proof is given ifBiteuset al., 2004.
dinality global diagnosis. The variable is calculated in  Qutline of the proof: A diagnosiéD¢, k) € D% is by con-
Algorithm 1, while the functionconp(D) is given by Al-  struction a condensed diagnosisgii¢| + k = |D9|, where
gorithm 3. In the algorithmg, is the compensation for e referees to condensed apdo global. First show the car-
signals depending on the same private components, whilginality of D9 ¢ D™¢, second show that the cardinality of
ks is the compensation for signals depending on the sam@®¢ in (D¢ k) € DZ%, and finally show that the cardinal-

common components. The following example will illustrate ities are equal. It is found thaD¢| + X = |D?| where

conp(D). _ _ X =3, 4i(k] + k3) + ks, andk{ is identified ask; in Algo-
Example 5:Con5|dAer an agem; with outputss; andsz,  rithm 1 in agentd,. The variables:} andks; is identified as

private component®”2 = { A}, and assumptionsss(s1) =  the corresponding variables in Algorithm 3. O

{A} andass(s2) = {A}.

Let a minimal local diagnosis in ageft be D = {s1, s} Example 6:Continuation of Example 4. Assume that agent

and letA; have an empty set of minimal local diagnoses. Thel2 has received the following sets of tuples from agent

minimal cardinality condensed diagnosisAn, before eval- andAs,

uatingconp(D), is in this casé{s1, s2},0). A minimal car- TXA = {({s1},0), (0, 1)} TXA = {({s2},0)}
dinality global diagnosis i{A}, and the cardinality of the ) )

minimal cardinality condensed diagnosis is therefore not ¢ Using Algorithm 2, the sets

rect,|{s1, s2}|+0 # [{A}|. Usingconp(D), row 1 give that

A Az _
2 = (5, 5,). Row 3 give thak2, = [{A}| — |{s1,s0}| = RX™ ={({B},0),(0, 1)}  RX" = {({s2},0)}
—1. The result is the minimal cardinality condensed diagnos calculated. Assume that aget has the following set of
sis({s1, s2}, —1), which has correct cardinality. minimal local diagnoses
Assume now that agemt, has the minimal local diagno-
sis{A}, and agent; has an empty set of minimal local di- D4 = {{C,s:},{B,C},{G,C},{D}}

agnoses. Agentl; transmit the se{({s1,s2}, —1)} which
is the set of minimal cardinality condensed diagnosisglin
Usingconp(D), the sefl? = {sy, so} and the resultis that RX42 = {({C, s2},0), ({B,C},0), ({G,C},0), ({D},0)}.
k2 = 0. In the second example, the compensation was done o

in the transmitting agent, while in the first example, the eom  The RX sets are merged, resulting in the set

ensation had to be done in the receiving agent. o
P . - . 929 . D?I = {<{Ba0752}50>7<{527C}71>v<{825D}31>}7
How computationally difficult is theonp(D) function?
Consider the special case whars(oc) C PpAi andass(o) N which is the set of minimal cardinality condensed diagnoses
ass(o;) = 0, which means that a signal only depends on o
private components and that no two signals depends on the
same component. In this simplified casenp(D) = 0. If 5.4 Main Algorithm

ass(c) C P, i.e. a signal only depends on private compo- | emma 1 shows that the sets of minimal cardinality con-
nents, then the variable, = 0 while k> might be some non- &

lue. Th . h ist b . ensed diagnoses can be calculated with Algorithm 1 to 3.
zero value. The more connections that exist between signaj§,yever, it is possible to reduce the computational burden
dependencies, and the more common components that emg&, using the cardinality limitn in Algorithm 1

the more computationally complex wilonp (D) be. '

he following | h h h inimal dinali Algorithm 4 first calculates a lower boumd; on the cardi-
The following lemma shows how the minimal cardinality ity of the minimal cardinality global diagnoses. The iin

condensed diagnoses could be calculated. mal cardinality condensed diagnoses are then calculatéd wi
Lemma 1 Let D™ be the set of minimal cardinality global this lower bound as input tor ansni t (-). The algorithm
diagnoses, and letr ansmi t (A4;, c0) be evaluated for all  then computes an upper bound on the cardinality of the global

which is transformed with the algorithm to the set
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Figure 5: A system including relatively few signals commhre
to the number of components.

diagnoses with minimal cardinality.;. Sincems, is the car-
dinality of a global diagnosis, it is known that the cardityal
of a minimal cardinality global diagnosis is less than oraqu
to ms. The local diagnoses with cardinality greater thag
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Figure 6: A system including relatively many signals com-
pared to the number of components.

In agentA;, the resulting set of minimal cardinality con-
densed diagnoses ' = {({A},3),({G},3)}. To ver-

can therefore not be part of a minimal cardinality global di-ify this set, the set of minimal cardinality global diagnsse
agnosis and can therefore be ignored. The result is dedcribealculated

in Theorem 1. The result after evaluating Algorithm 4 is that
all agents have a set of minimal cardinality condensed diag-

nosesDZ.

The reason for using Algorithm 4 is that it is, in most

Dmc = {{A’ C? D7 F}7 {A7 O? D7 J}7
{G7 O? D7 F}7 {G7 C? D7 J}}
Is the minimal cardinality condensed diagnoses correct?

cases, more efficient than using the algorithm as describedonsider the condensed diagnosis = ({A},3), and the

in Lemma 1.

minimal cardinality global diagnosi® {A,C,D, F}.

Even though Algorithm 4 is written as two separated partsUsing Definition 4 to verify thatD is a condensed diagno-
the result of part one should in an implementation be usedis, ID|+0 = |[D|, DNP = DnPA = {4}, and
when calculating part two. The correctness of the algorithmp N g = D N G = . Further

is shown in Theorem 1.

Theorem 1 Same assumptions as in Lemma 1, bubigt be
the result after evaluating Algorithm 4 in ageAt. Then the

setD?" is the set of minimal cardinality condensed diagnoses;

Proof Follows from Lemma 1. O

6 Example using the Algorithms
Two examples will be studied in this section.

DNIN = {i:dep(i)ND\D # 0,i € ZN} = 0.

This shows that is a condensed diagnosis, and sidgés
a minimal cardinality global diagnosi$) is a minimal cardi-
hality condensed diagnosis.

The condensed diagnosi§A}, 3) represents the first and
the second minimal cardinality global diagnoses, while the
condensed diagnos{$G}, 3) represents the other. o

In the example above, the minimal cardinality condensed

Example 7: Consider the system shown in Figure 5. It diagnoseswas a condensed and efficient representatioa of th
includes three agents with the sets of private component®inimal cardinality global diagnoses. The next example wil

P4 = {A H I}, P4 = {B,C,D}, P4 = {E,F,J},
the set of common componenis= {G}, and the set of sig-
nals{s}.

The following sets of conflicts have been detecigd:
{{A,H.G}.{A,1,G}}, I*> = {{C},{D}}, andII*s

{{F, J}}. The sets of minimal local diagnoses are calculate

from the conflicts resulting in the sets
D4 = {{A},{G},{H,I}} D" ={{C,D}}
DA = {{F}, {J}}.

The following sets of tuples are transmitted to agdnt
from A, and As.

TXA = {(0,2)} TX4 ={(,1)}.
The received sets in agedt are
RXA = {({H, I},0), ({A},0), ({G},0)}
RX4 = {(0,2)} RXAs = {(p,1)}.

be used to exemplify when the minimal cardinality condensed
diagnoses is not a condensed and efficient representation.

Example 8:Consider the system shown in Figure 6. The
system includes three agents with the sets of private com-
chnentSPA1 = {A}, P42 = {B,C,D}, PM = {E,F},

et of common componeng = {G}, and the set of sig-
nals{si, s2,s3}. The assumptions aress(s;) = {B,C},
ass(s2) = {C, D}, ass(s3) = E.

The following sets of conflicts have been detecigd:
{{s1,A, G}, {s3,A,G}}, T*2 = {{s3, D}}, andIIs
{{E, F}}. The minimal local diagnoses is calculated from
the object conflicts resulting in the sets

DA = {51,853}, {A},{G}} D" = {{s3},{D}}
DA = {{E},{F}}.

The following sets of tuples are transmitted to agédnt
from A5 and As.

TX™ = {({3},0), ({s2},0)} TX™ = {{{s3},0),(8,1)}



The received sets in agedf are Theorem 1 and Lemma 1. The minimal cardinality condensed
diagnoses only include components that are used by the spe-
RXM = {({s1,53},0), ({A},0), ({G},0)} cifiég agent ané/ is therefore g local condensed repreysentati%
RX A2 — {{{s3},0), ({s2},0)} of the minimal cardinality global diagnoses.
As A diagnostic system, using the algorithm presented in this
RX7 = {({s3},0), (0, 1)} paper, is transparent since the loss of an agent would only
Resulting set of minimal cardinality condensed diagnoses mean that this agent would not transmit its minimal local di-
agnoses on the network. It is scalable since it is directht po
DA = {({s1,s3},0), ({51, 52,53}, —1), sible to add neviecus to the network. The algorithm requires
({A, 53},0), ({G, 5}, 00, } a low processing load and memory usage since unwanted pri-
PTEAr AL TRl vate components have been removed from the condensed di-
where the—1 in the second condensed diagnosis means thaignoses with minimal cardinality.
the true cardinality is one less than the cardinality forgbe
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