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Abstract
The set of diagnoses is commonly calculated in
consistency based diagnosis, where a diagnosis in-
cludes a set of faulty components. In some appli-
cations, the search for diagnoses is reduced to the
set of diagnoses with minimal cardinality. In dis-
tributed systems, local diagnoses are calculated in
each agent, and global diagnoses are calculated for
the complete system. The key contribution in the
present paper is an algorithm that synchronizes the
local diagnoses in each agent such that these repre-
sent the global diagnoses with minimal cardinality.
The resulting diagnoses only include faulty compo-
nents used by the specific agent, and are therefore a
condensed local representation of the global diag-
noses with minimal cardinality.

1 Introduction
This paper considers distributed systems that consist of a
set of agents, where an agent is a more or less indepen-
dent software entity, connected to each other via some net-
work [Hayes, 1999; Weiss, 1999]. The diagnoses can, in dis-
tributed systems, be divided into two different types, global
diagnoses that are diagnoses for the complete distributed
system and local diagnoses that are diagnoses for a single
agent[Rooset al., 2002].

It is an advantage to have the set of minimal global diag-
noses in each agent. However, an agent has only an interest
in knowing the fault status of the components used by that
agent since the other components does not affect the specific
agent. Consider for example a global diagnosis that consists
of a set of components that have been found to be faulty. An
agent that uses some components in its operation is interested
in knowing if any of these components are included in the
global diagnosis. The agent however does not have an in-
terest in the fault status of the rest of the components in the
global diagnosis. In some applications, the calculation ofdi-
agnoses is focused on to some smaller set of diagnoses, for
example the most probable diagnoses[de Kleer, 1991] or the
diagnoses with minimal cardinality[de Kleer, 1990].
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The key contribution in the present paper is an algorithm
that synchronizes the minimal local diagnoses in one agent
with the minimal local diagnoses in the other agents, such that
the result is a set of diagnoses with minimal cardinality. Each
resulting diagnosis is a subset of some global diagnoses, and
only components used by the specific agent is included the
resulting diagnosis. Since only the components used by the
specific agent are included, both the size and the number of
the resulting diagnoses with minimal cardinality are reduced
compared to the set of global diagnoses with minimal cardi-
nality. The resulting diagnoses with minimal cardinality are
therefore a condensed local representation of the global di-
agnoses with minimal cardinality, and are here denoted con-
densed diagnoses with minimal cardinality. By reducing the
size and the number, the algorithm requires a low computa-
tional load, low memory usage, and low network load. The
algorithm is distributed such that it can handle both changes
in the number of agents and the exchange of single agents.
The algorithm is described in Section 5, using the framework
for distributed diagnosis presented in Section 3–4.

Our work has been inspired by diagnosis in distributed
embedded systems used in automotive vehicles. These sys-
tems typically consist of precomputed diagnostic tests that
are evaluated in different agents, which in the automotive in-
dustry correspond to electronic control units (ECUs). Sets of
conflicts are generated when the diagnostic tests are evaluated
in the ECUs, and theECUs then compute sets of minimal lo-
cal diagnoses. These embedded distributed systems typically
consist ofECUs with both limited processing power and lim-
ited RAM memory. The algorithm presented here is therefore
constructed such that it requires low processing power and
low memory usage. In these systems, it should be possible
to exchange, add, or removeECUs without having to do any
changes to the diagnostic software. The algorithm presented
in this paper is therefore constructed such that it can handle
such changes. Requirements on diagnostic systems used in
automotive vehicles are discussed in Section 2.

1.1 Related Work
Most research, such as[Reiter, 1987], has been aimed at the
centralized diagnosis problem. These methods can also be
used for distributed systems by letting a central diagnostic
agent collect conflicts from the system and then calculate the
minimal global diagnoses. It is not always suitable to use



a dedicated central diagnostic agent due to for example lim-
ited computing resources in each agent, robustness against
agent disconnection, and the possibility to add new agents
to the network. It therefore exist algorithms, see for exam-
ple [Provan, 2002], which compute the minimal global diag-
noses in a cooperation between the agents. These algorithms
aim at the complete set of global diagnoses, while the method
presented here aims at the set of global diagnoses with mini-
mal cardinality.

There also exist algorithms where the agents update the
sets of local diagnoses such that these are consistent with the
global diagnoses[Rooset al., 2003]. The method does not
guarantee that a combination of the agents’ local minimal di-
agnoses is also a global minimal diagnosis. However, for ev-
ery global minimal diagnosis, there is a combination of local
minimal diagnoses. The updated sets of local diagnoses rep-
resent the global diagnoses without actually computing the
complete set of global diagnoses. The method presented in
this paper updates the local diagnoses such that these repre-
sent the global diagnoses with minimal cardinality.

In [Biteuset al., 2005], a method was presented that calcu-
lated the global diagnoses with minimal cardinality by trans-
mitting the minimal local diagnoses from one agent to an-
other, which adds its minimal local diagnoses, then transmit
the result to the next agent, etc. Even though the method is
efficient, it might not give a sufficient distributed diagnos-
tic system since it requires a lot of cooperation between the
agents. In[Biteus et al., 2005], the computational burden
when calculating the global diagnoses with minimal cardinal-
ity was reduced by partitioning the system into two or more
sub-systems, whose minimal local diagnoses did not share
components with each other. The partition approach has sim-
ilarities with the tree reduction technique used in[Wotawa,
2001] and can also be used for the algorithm presented here.

Related to this work is also theEU funded project Multi-
Agents-based Diagnostic Data Acquisition and Management
in Complex Systems (MAGIC) which develops an architecture
useful for distributed diagnosis[Köppen-Seligeret al., 2003].
The project discusses protocols for network communication,
control algorithms, and other aspects of the integration ofdi-
agnosis in distributed systems.

2 Requirements on Diagnostic Systems used
in the Automotive Industry

To better understand the industrial demands on diagnosis, the
distributed diagnostic systems used in ScaniaAB heavy-duty
trucks have been analyzed. These systems consist ofECUs
connected to each other via a controller area network (CAN).
The software embedded in theECUs is primary used for con-
trol and monitoring.

2.1 An Example of a Distributed System
One configuration of the distributed system in Scania’s
heavy-duty vehicles is shown in Figure 1. The system in-
cludes three separateCAN buses, the red, the yellow, and the
green. Each of theECUs is connected to sensors and actua-
tors, and both sensor values and control signals can be shared
with the otherECUs over the network. One example of an
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Figure 1: The distributed system in current Scania heavy-duty
vehicles.

ECU is the engine management system, which is connected
to sensors and actuators related to the engine. There can be
up to about 30ECUs in the system, depending on the type
of the truck, and roughly between 4 and 110 components are
diagnosed by eachECU.

The ECUs’ CPUs have typically a clocking speed of 8
to 64MHz, and aRAM memory capacity of about 4 to 150 kB.
CAN buses can typically transfer 100 to 500 kbit/s. As these
numbers indicate there is not much computational, memory,
nor network capacity available, especially when considering
that theECUs should be used for both control and diagnosis.

2.2 Overall Requirements on Distributed Systems

A distributed system that can present the same information to
users, as if it were a centralized system, can be denoted trans-
parent[Tanenbaum and van Steen, 2002]. Considering fault
diagnosis, one interpretation of transparency is that the mini-
mal diagnoses presented by the distributed diagnostic system
should be the same as those presented by a centralized di-
agnostic system, meaning that the minimal global diagnoses
should be presented, not only the minimal local diagnoses.
Another interpretation of transparency is that, even though
one ECU fails to deliver its minimal local diagnoses the re-
maining system should still be able to deliver the minimal
global diagnoses. This means that the diagnostic processes
should be distributed among theECUs, or if a centralized di-
agnosticECU is used, backupECUs should exist.

If it is possible to increase or decrease the size of the sys-
tem, without changes in the software, the system can be said
to be scalable[Tanenbaum and van Steen, 2002]. Consider-
ing a truck, it should be possible to attach new parts including
new ECUs to the network without having to change the soft-
ware in theECUs.

If it is possible to exchange anECU to for example a new
version without having to change the software in the other
ECUs, the system can be said to be interoperable[Tanenbaum
and van Steen, 2002]. This is especially important in automo-



tive systems where it frequently occurs that parts are replaced
by parts from other manufacturers.

2.3 Requirement Conclusions

An algorithm for distributed diagnosis used in automotive ve-
hicles, should require a limited processing power, memory
usage, and network load. The algorithm should further result
in a transparent, scalable, and interoperable system.

The algorithm presented in this paper synchronizes the
minimal local diagnoses, which results in a transparent, scal-
able, and interoperable system. The condensed diagnoses
with minimal cardinality do not include components that are
not of interest and this reduces computational load, memory
usage, and network load.

3 Consistency Based Diagnosis

A system consists of a set of componentsC, where a compo-
nent is something that can be diagnosed. This not only in-
cludes components directly connected to the agents, such as
sensors and actuators, but also includes components shared
between the agents, e.g. cables and pipes.

To reduce the complexity of the diagnostic system, it is
sometimes preferable to only consider the abnormalAB and
the not abnormal¬AB mode, where theAB mode does not
have a model. This means that the minimal diagnosis hy-
pothesis is fulfilled[de Kleeret al., 1992], and therefore the
notation in for exampleGDE will be employed.

A diagnosis is a set of componentsD ⊆ C, such that
the components’ abnormal behaviors, the remaining compo-
nents’ normal behaviors, the system description, and the ob-
servations are consistent. Since the minimal diagnosis hy-
pothesis is fulfilled andD is a diagnosis, all supersets ofD
are also diagnoses. Further, a diagnosisD′ is a minimal di-
agnosis if there is no proper subsetD ⊂ D′ whereD is a
diagnosis[de Kleeret al., 1992].

An evaluation of a diagnostic test results in a conflict if
some components, checked by the test, have been found to
behave abnormal. A conflict is a set of componentsπ ⊆ C,
such that the components’ normal behaviors, the system de-
scription, and the observations are inconsistent. A setD ⊆ C
is a diagnosis if and only if it has a nonempty intersection
with every conflict in a set of conflicts. A consequence of this
is that the set of minimal diagnoses is exactly determined by
the set of minimal conflicts[de Kleeret al., 1992].

In some cases, it is computationally intractable to calculate
the complete set of minimal diagnoses. To reduce the compu-
tational cost, the search can be focused on the diagnoses with
minimal cardinality, as described in for example[de Kleer,
1990]. Let D be a set of diagnoses, then the set of minimal
cardinality diagnoses is the setDmc = {D ∈ D : |D| =
minD∈D |D|}.

4 Distributed Diagnosis

This section will present the framework for distributed sys-
tems that will be used to describe how condensed diagnoses
with minimal cardinality can be calculated.
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Figure 2: Agents, network, components, and diagnosis.

4.1 Outputs, Inputs, and Components in
Distributed Systems

A distributed system consists of a set of agentsA. A local di-
agnosis is determined by the conflicts in a single agent, while
a global diagnosis is determined by all agents’ conflicts.

Here, the complete set of components are partitioned into
private componentsP ⊆ C and common componentsG ⊆ C,
whereP ∩ G = ∅. A private component is only used by one
agent, while a common component is used by two or more
agents. The set of private components is partitioned into dif-
ferent sets belonging to different agents such that for two such
sets,PAi ∩ PAj = ∅, whereAi, Aj ∈ A. The setXA is the
subset ofX that is used in agentA.

In addition to components, an agent in a distributed sys-
tem should also be able to diagnose inputs from other agents.
The outputs are values from sensors, to actuators, or from cal-
culations, which are made available to the other agents over
the network. The complete set of signalsS, a set of inputs
IN ⊆ S, and a set of outputsOUT ⊆ S is here used. Each
outputσ ∈ OUT is connected to a subset of inputsΓ ⊆ IN .

Example 1:Figure 2 shows a typical layout of agents and
components. The system consists of two agents, a network,
and four sensor components,A to D. The sensorsA andB
are physically connected to agentA1, while the sensorsC
andD are connected toA2. A diagnosis in agentA1 could
for example include the componentsA, B, andC, connected
with dashed lines. AgentA1 diagnoses indirectly sensorC
through the signal transmitted over the network. ⋄

An output might depend on other components, such as sen-
sors, and the information about this relationship is storedin
the output’s assumptions.

Definition 1 (Assumption) Lets be a signal which is an out-
put from agentA or an input that is connected to the output
from agentA. Let the setass(s) ⊆ PA ∪ G ∪ INA. If s is
abnormal if and only if some non-empty subsetC ⊆ ass(s) is
abnormal, thenass(s) is the set of assumptions fors.

Each output depends on components and other inputs. This
dependency can be propagated to a set consisting only of
components.

Definition 2 (Dependency)Let s ∈ S be a signal, then the
dependency fors is

dep(s) = ass(s) ∩ C ∪
⋃

t∈ass(s)∩S

dep(t).
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Figure 3: An example of a two agent system.

Since thedep(·) function is defined implicit, the possibility
of loops has to be considered in an implementation.

Example 2:Continuation of Example 1. The assumption of
the output isass(output) = {C}. The dependency equals the
assumption since the assumption does not include any signal.

⋄

4.2 Diagnoses & Conflicts on Components & Inputs
An agent should state diagnoses that include both compo-
nents and inputs. The diagnoses in Section 3 cannot be
used directly since these only include components. Instead, a
component-input diagnosis is defined on the setC ∪ IN .

Definition 3 (Component-input diagnosis) A setD = C ∪
Γ ⊆ Θ, C ⊆ C, Γ ⊆ IN , is a component-input diagnosis if
the setC ∪ Ĉ, where∀i ∈ Γ : Ĉ ∩dep(i) 6= ∅, is a diagnosis.

A component-input diagnosis will simply be denoted a diag-
nosis when no misunderstanding is imminent. As with diag-
noses, conflicts can also be defined uponC ∪ IN .

4.3 Condensed Diagnoses Representing Global
Diagnoses

It was mentioned in the introduction that the condensed diag-
noses with minimal cardinality should be calculated in each
agent.

Definition 4 (Condensed diagnosis)Let D be a set of
global diagnoses. The tuple〈D, k〉, whereD ⊆ PA ∪ G ∪
INA and k ∈ Z, is a condensed diagnosis in agentA if
∃D̄ ∈ D, such that

|D| + k = |D̄|, D ∩ P = D̄ ∩ PA, D ∩ G = D̄ ∩ G,

D ∩ IN = {i : dep(i) ∩ D̄\D 6= ∅, i ∈ IN}.

The condensed diagnosis〈D, x〉 in agentA, is a tuple
where the setD represents the subset of some global diag-
noses, diagnosis̄D in the definition, including components
used by agentA. Variablek represents the components not
included inD but included inD̄.

Interpretation of the different requirements for a condensed
diagnosis:|D| + k = |D̄| means that the cardinality plusk
should equal that of the global diagnosis with minimal car-
dinality; D ∩ P = D̄ ∩ PA means thatD should only in-
clude private components used by agentA; D ∩ G = D̄ ∩ G
means that the common components should be included;

D ∩ IN = {i : dep(i) ∩ D̄ 6= ∅, i ∈ IN} means that
inputs, that might be faulty due to its dependency on some
faulty components, should be included inD.

Example 3:Consider the system shown in Figure 3. There
exist a signals whose dependencydep(s) = {B}, repre-
sented by the dotted line. The sets of private components are
PA1 = {A} andPA2 = {B, C}. The set of common com-
ponents isG = {G}. Let{A, B, C, G} be a global diagnosis.

A condensed diagnosis in agentA1 is 〈{A, G, s1}, 1〉.
ComponentA is included since it is a private component in
A1, G since it is a common component, ands since it depends
on the faulty componentB. ComponentC is represented by
k = 1 since it does not affect agentA1. ⋄

Theminimal cardinality condensed diagnosesis the set of
condensed diagnoses where each condensed diagnosis is a
subset of some minimal cardinality global diagnoses , i.e. in
Definition 4, the set of global diagnosesD is the set of min-
imal cardinality global diagnoses. The objective of the algo-
rithm described in the next section is to calculate the sets of
minimal cardinality condensed diagnoses in each agent.

5 Algorithm for Calculating the Minimal
Cardinality Condensed Diagnoses

The main idea of the algorithm presented in this Section is
that each agent first find and then transmits the subset of min-
imal local diagnoses that other agents might be interested
of. Each agent then receives the transmitted diagnoses and
merges these with its own set of minimal local diagnoses re-
sulting in the minimal cardinality condensed diagnoses.

The transmitting part is described in Section 5.2, the re-
ceiving and merging is described in Section 5.3, and finally
the main algorithm is described in Section 5.4.

In the algorithms,D is some diagnosis,Γ ⊆ IN , Ω ⊆
OUT , P ⊆ P , andG ⊆ G.

5.1 Outputs Dependent on Inputs

The algorithm, as written, requires thatass(s) ⊆ C, i.e. an
output’s value does not depend on any signal. This can be
fulfilled for a general system, whereass(s) ⊆ C ∪ IN , by
replacing the assumptions with the corresponding dependen-
cies, such thatass(s) := dep(s) ⊆ C.

5.2 Transmit Diagnoses

The first step is to find and transmit the subset of minimal
local diagnoses that is of interest to the other agents.

A minimal local diagnosis should be transmitted if it in-
cludes common components, inputs, or components that out-
puts depends on, since these might affect other agents. For
each diagnosis that should be transmitted, the private compo-
nents can be removed since these do not directly affect other
agents. If some outputs depend on any of the removed private
components these outputs are instead added to the diagnosis.
The minimal local diagnoses that are not transmitted on the
network can be represented by a variablen ∈ N, which is the
minimal cardinality of the non-transmitted local diagnoses.
The agents receiving the diagnoses will then be aware that



Algorithm 1 Transmit diagnosestransmit(A, m).

Require: A set of minimal local diagnosesDA, limit m.
Ensure: SetTX broadcasted on the network.
1: D

TX := {D ∈ D
A : |D| ≤ m}

2: D
TX := {D ∈ D

TX :
D ∩ (IN ∪ G ∪ (∪σ∈OUT A ass(σ))) 6= ∅}

3: n := minD∈DA\DT X |D|

4: TX := {〈D̄, k〉 : D ∈ D
TX , D = P ∪ G ∪ Γ, D̄ =

G ∪ Γ ∪ Ω, Ω = {σ ∈ OUT A : ass(σ) ∩ P 6= ∅}, k =
|P | − |Ω|}

5: if |DTX | 6= |DA| then
6: TX := TX ∪ {〈∅, n〉}
7: end if
8: BroadcastTX on the network.

there exist one or more non-transmitted local diagnoses with
cardinalityn.

Algorithm 1 performs the steps described above. Since the
minimal cardinality condensed diagnoses are searched for,
the algorithm accepts a maximum limitm on the cardinality
of the local diagnoses to be transmitted. Row 2 decides which
diagnoses that should be transmitted. Row 4 constructs a tu-
ple including the diagnosis without private components anda
variablek ∈ N representing the removed private components.

Example 4:Consider the system shown in Figure 4, where
objects connected to the agents with solid lines are included
in some minimal local diagnosis, while those connected with
dashed lines are not included. The sets of private components
arePA1 = {A}, PA2 = {B, C, D}, andPA3 = {E}. The
set of common components isG = {G}. There exist two
signals with assumptionsass(s1) = {B} andass(s2) = {E}.

Assume that the following set of minimal local diagnoses
has been calculated in agentA2

D
A2 = {{C, s2}, {B, C}, {G, C}, {D}}.

Using Algorithm 1 withm ≥ 2, the set

D
TX = {{C, s2}, {B, C}, {G, C}}

is first calculated. The variablen = 1, i.e. the cardinality of
{D}. The transmitted set of tuples is

TX = {〈{s2}, 1〉, 〈{s1}, 1〉, 〈{G}, 1〉, 〈∅, 1〉}

where the private components have been removed. This set
will representDA2 in agentsA1 andA3. ⋄

5.3 Receive and Merge Diagnoses
The second step is to receive the transmitted sets, transform
them into an appropriate form, and then calculate the minimal
cardinality condensed diagnoses.

If a received diagnosis include a signals that are an output
from the receiving agent then the receiver know which com-
ponents thats depend on, ands is therefore replaced with
the assumptionass(s). After the replacement, the minimal
local diagnoses and the received diagnoses can be merged to
form a set of condensed diagnoses. If a condensed diagnosis
includes several inputs and if several of these inputs depend
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Figure 4: An example of a three agent system.

on the same component then the cardinality of the condensed
diagnosis will not be correct. Consider for example two sig-
nalss1 ands2 depending on componentA. The cardinality of
〈{s1, s2}, 0〉 is two while the cardinality of the corresponding
global diagnosis{A} is one. The condensed diagnosis should
be〈{s1, s2},−1〉 where the minus one a compensation.

Algorithm 2 performs the steps described above. The al-
gorithm transforms the received sets of tuples by replacing
inputs that are outputs from the current agent, with the com-
ponents in the outputs’ assumptions, row 1–3. The func-
tion MHS(M) calculates the minimal hitting set for the
collection of setsM . For example, the minimal hitting set
MHS({{A, B}, {B, C}}) = {{A, C}, {B}}. To be able to
calculate the compensation discussed above, the set of inputs
is partitioned into the set̃Γj , which is outputs that was added
to the diagnosis whenAj transmitted the tuple, and the setΓ̄j ,
which is the inputs to agentAj without the outputs fromAi.
In row 5 the received sets of tuples are merged. In row 6, the
condensed diagnoses are compensated for signals depending
on the same components. Finally, in row 7, the condensed di-
agnoses, which do not have minimal cardinality, is removed.

Algorithm 2 Calculate the minimal cardinality condensed di-
agnosescondense(Ai).

Require: Received setsTXAj from all agentsAj 6=i as a re-
sult of evaluatingtransmit(Aj , m). Set of minimal
local diagnosesDAi .

Ensure: Set of minimal cardinality condensed diag-
nosesDAi

s .
1: for all j 6= i do
2: RXAj := {〈P̄ ∪G∪ Ḡ∪ Γ̄∪ Γ̃, k〉 : 〈G∪Γ∪Ω, k〉 ∈

TXAj , Γ̃ = Ω, Ω̄ = Γ ∩ OUT Ai , Γ̄ = Γ \ Ω̄}, H ∈
MHS(∪σ∈Ω̄{ass(σ)}), P̄ = H ∩ P , Ḡ = H ∩ G}

3: end for
4: RXAi := {〈D, 0〉 : D ∈ D

Ai}
5: D

Ai
s := {〈H, k〉 : 〈Dj , kj〉 ∈ RXAj ,

H = ∪jDj , k =
∑

j kj}.
6: D

Ai
s := {〈D, k + comp(D)〉 : 〈D, k〉 ∈ D

Ai
s }

7: D
Ai
s := {〈D̄, k〉 ∈ D

Ai
s , k = min

〈D̄,k〉∈D
Ai
s

k}

The value ofk + comp(D) should be the difference be-
tween the cardinality ofD and a corresponding minimal car-



Algorithm 3 Functioncomp(D).
Input: DiagnosisD.
Output: Variablek.
1: Each diagnosis is constructed such that

D = (P i ∪ Gi ∪ Γi) ∪j 6=i (P̄ j ∪ Gj ∪ Ḡj ∪ Γ̄j ∪ Γ̃j)

2: Zj := (Γi ∪k 6=i Γ̄k) ∩ OUT Aj

3: k
j
21 := minH∈MHS(∪

σ∈Zj {ass(σ)}) |H ∩ P| − |Zj |

4: k
j
22 := minH∈MHS(∪

σ∈Γ̃j∩Zj {ass(σ)})∩P |H |−|Γ̃j ∩Zj |

5: k2 :=
∑

j(k
j
21 + k

j
22)

6: ZG := Gi ∪j 6=i (Gj ∪ Ḡj)
7: k3 := minH∈MHS(∪

σ∈∪j 6=iZj {ass(σ)})∩G |H |− |ZG∩H |

8: k := k2 + k3

dinality global diagnosis. The variablek is calculated in
Algorithm 1, while the functioncomp(D) is given by Al-
gorithm 3. In the algorithm,k2 is the compensation for
signals depending on the same private components, while
k3 is the compensation for signals depending on the same
common components. The following example will illustrate
comp(D).

Example 5:Consider an agentA2 with outputss1 ands2,
private componentsPA2 = {A}, and assumptionsass(s1) =
{A} andass(s2) = {A}.

Let a minimal local diagnosis in agentA1 beD = {s1, s2}
and letA2 have an empty set of minimal local diagnoses. The
minimal cardinality condensed diagnosis inA2, before eval-
uatingcomp(D), is in this case〈{s1, s2}, 0〉. A minimal car-
dinality global diagnosis is{A}, and the cardinality of the
minimal cardinality condensed diagnosis is therefore not cor-
rect,|{s1, s2}|+0 6= |{A}|. Usingcomp(D), row 1 give that
Γ2 = {s1, s2}. Row 3 give thatk2

21 = |{A}| − |{s1, s2}| =
−1. The result is the minimal cardinality condensed diagno-
sis〈{s1, s2},−1〉, which has correct cardinality.

Assume now that agentA2 has the minimal local diagno-
sis{A}, and agentA1 has an empty set of minimal local di-
agnoses. AgentA2 transmit the set{〈{s1, s2},−1〉} which
is the set of minimal cardinality condensed diagnosis inA1.
Usingcomp(D), the set̃Γ2 = {s1, s2} and the result is that
k2 = 0. In the second example, the compensation was done
in the transmitting agent, while in the first example, the com-
pensation had to be done in the receiving agent. ⋄

How computationally difficult is thecomp(D) function?
Consider the special case whereass(σ) ⊆ PAi andass(σk)∩
ass(σl) = ∅, which means that a signal only depends on
private components and that no two signals depends on the
same component. In this simplified casecomp(D) = 0. If
ass(σ) ⊆ P , i.e. a signal only depends on private compo-
nents, then the variablek3 = 0 while k2 might be some non-
zero value. The more connections that exist between signals
dependencies, and the more common components that exist,
the more computationally complex willcomp(D) be.

The following lemma shows how the minimal cardinality
condensed diagnoses could be calculated.

Lemma 1 LetDmc be the set of minimal cardinality global
diagnoses, and lettransmit(Aj ,∞) be evaluated for all

Algorithm 4 Main algorithm.

Require: Set of minimal local diagnosesDA in all agents.
Result: Set of minimal cardinality condensed diagnoses.
1: Decide with voting:m1 = maxA∈A minD∈DA |D|
2: ∀A ∈ A evaluatetransmit(A, m1)
3: ∀A ∈ A evaluatecondense(A)
4: Decide with voting:m2 = maxA∈A minD∈DA

s
|D|

5: ∀A ∈ A evaluatetransmit(A, m2)
6: ∀A ∈ A evaluatecondense(A)

agentsAj ∈ A. LetDAi
s be the result after evaluating Algo-

rithm 2 in agentAi. ThenD
Ai
s is the set of minimal cardinal-

ity condensed diagnoses.

Proof The complete proof is given in[Biteuset al., 2006].
Outline of the proof: A diagnosis〈De, k〉 ∈ D

Ai
s is by con-

struction a condensed diagnosis if|De| + k = |Dg|, where
e referees to condensed andg to global. First show the car-
dinality of Dg ∈ Dmc, second show that the cardinality of
De in 〈De, k〉 ∈ D

Ai
s , and finally show that the cardinal-

ities are equal. It is found that|De| + X = |Dg| where
X =

∑
j 6=i(k

j
1 + k

j
2)+ k3, andk

j
1 is identified ask1 in Algo-

rithm 1 in agentAj . The variableskj
2 andk3 is identified as

the corresponding variables in Algorithm 3. �

Example 6:Continuation of Example 4. Assume that agent
A2 has received the following sets of tuples from agentA1

andA3,

TXA1 = {〈{s1}, 0〉, 〈∅, 1〉} TXA3 = {〈{s2}, 0〉}

Using Algorithm 2, the sets

RXA1 = {〈{B}, 0〉, 〈∅, 1〉} RXA3 = {〈{s2}, 0〉}

is calculated. Assume that agentA2 has the following set of
minimal local diagnoses

D
A2 = {{C, s2}, {B, C}, {G, C}, {D}}

which is transformed with the algorithm to the set

RXA2 = {〈{C, s2}, 0〉, 〈{B, C}, 0〉, 〈{G, C}, 0〉, 〈{D}, 0〉}.

TheRX sets are merged, resulting in the set

D
A1

s = {〈{B, C, s2}, 0〉, 〈{s2, C}, 1〉, 〈{s2, D}, 1〉},

which is the set of minimal cardinality condensed diagnoses.
⋄

5.4 Main Algorithm
Lemma 1 shows that the sets of minimal cardinality con-

densed diagnoses can be calculated with Algorithm 1 to 3.
However, it is possible to reduce the computational burden
by using the cardinality limitm in Algorithm 1.

Algorithm 4 first calculates a lower boundm1 on the cardi-
nality of the minimal cardinality global diagnoses. The mini-
mal cardinality condensed diagnoses are then calculated with
this lower bound as input totransmit(·). The algorithm
then computes an upper bound on the cardinality of the global
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Figure 5: A system including relatively few signals compared
to the number of components.

diagnoses with minimal cardinalitym2. Sincem2 is the car-
dinality of a global diagnosis, it is known that the cardinality
of a minimal cardinality global diagnosis is less than or equal
to m2. The local diagnoses with cardinality greater thanm2

can therefore not be part of a minimal cardinality global di-
agnosis and can therefore be ignored. The result is described
in Theorem 1. The result after evaluating Algorithm 4 is that
all agents have a set of minimal cardinality condensed diag-
nosesDA

s .
The reason for using Algorithm 4 is that it is, in most

cases, more efficient than using the algorithm as described
in Lemma 1.

Even though Algorithm 4 is written as two separated parts,
the result of part one should in an implementation be used
when calculating part two. The correctness of the algorithm
is shown in Theorem 1.

Theorem 1 Same assumptions as in Lemma 1, but letD
Ai
s be

the result after evaluating Algorithm 4 in agentAi. Then the
setDAi

s is the set of minimal cardinality condensed diagnoses.

Proof Follows from Lemma 1. �

6 Example using the Algorithms
Two examples will be studied in this section.

Example 7: Consider the system shown in Figure 5. It
includes three agents with the sets of private components
PA1 = {A, H, I}, PA2 = {B, C, D}, PA1 = {E, F, J},
the set of common componentsG = {G}, and the set of sig-
nals{s}.

The following sets of conflicts have been detected,ΠA1 =
{{A, H, G}, {A, I, G}}, ΠA2 = {{C}, {D}}, andΠA3 =
{{F, J}}. The sets of minimal local diagnoses are calculated
from the conflicts resulting in the sets

D
A1 = {{A}, {G}, {H, I}} D

A2 = {{C, D}}

D
A3 = {{F}, {J}}.

The following sets of tuples are transmitted to agentA1

from A2 andA3.

TXA2 = {〈∅, 2〉} TXA3 = {〈∅, 1〉}.

The received sets in agentA1 are

RXA1 = {〈{H, I}, 0〉, 〈{A}, 0〉, 〈{G}, 0〉}

RXA2 = {〈∅, 2〉} RXA3 = {〈∅, 1〉}.

Components
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Figure 6: A system including relatively many signals com-
pared to the number of components.

In agentA1, the resulting set of minimal cardinality con-
densed diagnoses isDA1

s = {〈{A}, 3〉, 〈{G}, 3〉}. To ver-
ify this set, the set of minimal cardinality global diagnoses is
calculated

Dmc = {{A, C, D, F}, {A, C, D, J},

{G, C, D, F}, {G, C, D, J}}.

Is the minimal cardinality condensed diagnoses correct?
Consider the condensed diagnosisD = 〈{A}, 3〉, and the
minimal cardinality global diagnosis̄D = {A, C, D, F}.
Using Definition 4 to verify thatD is a condensed diagno-
sis, |D| + 0 = |D̄|, D ∩ P = D̄ ∩ PA = {A}, and
D ∩ G = D̄ ∩ G = ∅. Further

D ∩ IN = {i : dep(i) ∩ D̄\D 6= ∅, i ∈ IN} = ∅.

This shows thatD is a condensed diagnosis, and sinceD̄ is
a minimal cardinality global diagnosis,D is a minimal cardi-
nality condensed diagnosis.

The condensed diagnosis〈{A}, 3〉 represents the first and
the second minimal cardinality global diagnoses, while the
condensed diagnosis〈{G}, 3〉 represents the other. ⋄

In the example above, the minimal cardinality condensed
diagnoses was a condensed and efficient representation of the
minimal cardinality global diagnoses. The next example will
be used to exemplify when the minimal cardinality condensed
diagnoses is not a condensed and efficient representation.

Example 8:Consider the system shown in Figure 6. The
system includes three agents with the sets of private com-
ponentsPA1 = {A}, PA2 = {B, C, D}, PA1 = {E, F},
set of common componentsG = {G}, and the set of sig-
nals{s1, s2, s3}. The assumptions areass(s1) = {B, C},
ass(s2) = {C, D}, ass(s3) = E.

The following sets of conflicts have been detected,ΠA1 =
{{s1, A, G}, {s3, A, G}}, ΠA2 = {{s3, D}}, andΠA3 =
{{E, F}}. The minimal local diagnoses is calculated from
the object conflicts resulting in the sets

D
A1 = {{s1, s3}, {A}, {G}} D

A2 = {{s3}, {D}}

D
A3 = {{E}, {F}}.

The following sets of tuples are transmitted to agentA1

from A2 andA3.

TXA2 = {〈{s3}, 0〉, 〈{s2}, 0〉} TXA3 = {〈{s3}, 0〉, 〈∅, 1〉}



The received sets in agentA1 are

RXA1 = {〈{s1, s3}, 0〉, 〈{A}, 0〉, 〈{G}, 0〉}

RXA2 = {〈{s3}, 0〉, 〈{s2}, 0〉}

RXA3 = {〈{s3}, 0〉, 〈∅, 1〉}

Resulting set of minimal cardinality condensed diagnoses

D
A1

s = {〈{s1, s3}, 0〉, 〈{s1, s2, s3},−1〉,

〈{A, s3}, 0〉, 〈{G, s3}, 0〉, }

where the−1 in the second condensed diagnosis means that
the true cardinality is one less than the cardinality for theset
{s1, s2, s3}.

To be able to verify the correctness of the minimal cardi-
nality condensed diagnoses, the minimal cardinality global
diagnoses are calculated. The set of conflicts, not including
signals, isΠ = {{B, C, A, G}, {E, A, G}, {E, D}, {E, F}}
and the set of minimal cardinality global diagnoses is

Dmc = {{B, E}, {A, E}, {C, E}, {G, E}}.

Is the minimal cardinality condensed diagnoses correct?
Consider the condensed diagnosisD = 〈{s1, s3}, 0〉, and
the minimal cardinality global diagnosis̄D = {B, E}. Us-
ing Definition 4 to verify thatD is a condensed diagnosis,
|D|+0 = |D̄|, D∩P = D̄∩PA = ∅, andD∩G = D̄∩G = ∅.
Further

D ∩ IN = {i : dep(i) ∩ D̄\D 6= ∅, i ∈ IN} = {s1, s3}

sinceass(s1)∩ D̄ 6= ∅ andass(s3)∩ D̄ 6= ∅. This shows that
D is a condensed diagnosis, and sinceD̄ is a minimal cardi-
nality global diagnosis,D is a minimal cardinality condensed
diagnosis. ⋄

As can be seen in the above example, there where quite
some calculations that had to be performed compared to the
calculation of the minimal cardinality global diagnoses. If
a system has a high degree of components used by several
agents, the minimal cardinality condensed diagnoses will in-
clude relatively many components. The reduction of size and
the number of diagnoses will in this case be limited, and the
efficiency of the algorithm reduced, as was seen in the exam-
ple.

Considering automotive systems, theECUs typically have
a large number of private components compared to both the
number of inputs and the number of common components. It
is therefore applicable to use the algorithm for these systems.

7 Conclusions
The objective when designing the algorithm described in Sec-
tion 5, was to gain a diagnostic algorithm that used low pro-
cessing power, low memory usage, low network load, and re-
sulted in a transparent, scalable, and interoperable distributed
system, see Section 2.

An algorithm has been presented in Section 5, that syn-
chronizes the minimal local diagnoses in a distributed system.
The result is a set of minimal cardinality condensed diagno-
sis, where each minimal cardinality condensed diagnosis is
a subset of some minimal cardinality global diagnoses, see

Theorem 1 and Lemma 1. The minimal cardinality condensed
diagnoses only include components that are used by the spe-
cific agent and is therefore a local condensed representation
of the minimal cardinality global diagnoses.

A diagnostic system, using the algorithm presented in this
paper, is transparent since the loss of an agent would only
mean that this agent would not transmit its minimal local di-
agnoses on the network. It is scalable since it is directly pos-
sible to add newECUs to the network. The algorithm requires
a low processing load and memory usage since unwanted pri-
vate components have been removed from the condensed di-
agnoses with minimal cardinality.
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