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Within the field of fault diagnosis, it has often been as-
sumed that each component has only two possible beha
ioral modes, e.g. selReiter, 1987; deKleer and Williams,

1987. For this case, and given a set of conflict sets, it is
well known that a minimal hitting set corresponds to a min-
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Abstract

A generalization of the minimal hitting-set algo-
rithm given by deKleer and Williams is presented.
The original algorithm handles only one faulty
mode per component and only positive conflicts.
In contrast, the new algorithm presented here han-
dles more than two modes per component and also
non-positive conflicts. The algorithm computes a
logical formula that characterizes all diagnoses. In-
stead of minimal diagnoses, or kernel diagnoses,
some specific conjunctions in the logical formula
are used to characterize the diagnoses. These con-
junctions are a generalization of both minimal and
kernel diagnoses. From the logical formulas, it is
also easy to derive the set of preferred diagnoses.

Introduction

imal diagnosigReiter, 1987. Algorithms for computing
all minimal hitting sets have been presentefReiter, 1987;

deKleer and Williams, 1997 Improvements have later been

given in e.g[Greineret al., 1989; Wotawa, 2001

In [Reiter, 1987; deKleer and Williams, 198¥is assumed
that a conflict can only imply that some component is faulty.

We call this apositive conflicfdeKleeret al, 1994. If all

conflicts are positive, it is also well known that the set of

all minimal diagnoses characterizes all diagnosiKleer Tk d
and Williams, 1987, This will for example be the case if component, the minimal diagnoses can be argued to be the

the faulty modes of the components have no fault model
However, if there are fault models, it is possible to have-non

positive conflicts implying that some component is faudtefr

If there is a desire to compute something that characte
izes all diagnoses when there are non-positive conflicts, th

concept of minimal hitting sets and the algorithmg$Reiter,
1987; deKleer and Williams, 198¢an not be used. To solve
this, an alternative characterization based on so caéedkel
diagnosesvas proposed ifdeKleeret al, 1994, where also

an algorithm to compute the kernel diagnoses was given. The
kernel diagnoses characterize all diagnoses even in tlee cas
of non-positive conflicts.

It has been noted in several papers that more than two pos-
sible behavioral modes are useful for improving the perfor-
mance of the diagnostic system, see ESfruss and Dressler,
1989; deKleer and Williams, 1989 For this case, neither
minimal diagnoses or kernel diagnoses can be used to char-
acterize all diagnoses. Further, none of the algorithniRé
iter, 1987; deKleer and Williams, 1987; deKlesral, 1992
are applicable.

To be able to handle both more than two behavioral modes
and non-positive conflicts, the present paper proposes a new
characterization of all diagnoses. Conflicts and diagnases
represented by logical formulas, and instead of minimal di-
agnoses and kernel diagnoses, we use more general conjunc-
tions on a specific form. In the special case of two behavioral
modes per component, these conjunctions become equivalent
to kernel diagnoses, and in the case of only positive cogflict

Yﬁey become equivalent to minimal diagnoses. Thus, the here

proposed framework can be seen as a generalization of both
minimal diagnoses and kernel diagnoses.

Another contribution is that we show that the minimal hit-
ting set algorithm given ifdeKleer and Williams, 199%an
in fact be generalized to compute the here proposed char-
acterization. Note that, even though the pad&tsuss and
Dressler, 1989; deKleer and Williams, 19&8®nsider more
than two behavioral modes per component, they are, in con-
trast to the present paper, not concerned with the character
zation or computation of all diagnoses.
Under the assumption of only two behavioral modes per

dnost desired diagnoses. This has been called the parsimony

principle, e.g. se¢Reiter, 1987. In the generalized case of
more than two behavioral modes, the minimal diagnoses are

fao longer necessarily the most desired diagnoses. Indtead t

concept ofpreferred diagnoselsas been defined iDressler

and Struss, 1992 We will in this paper show how to obtain
!Reiter used the word diagnosis for what in this paper is dalle these preferred diagnoses by means of the above mentioned
minimal diagnosis. logical formulas.



The paper is organized as follows. In Section 2, the al-C' to be minimal, contrary to what has been statefGreiner
gorithm from[deKleer and Williams, 1997s restated as a et al, 1989. It can also be noted that the loop ovgre A
reference. In Section 3, the logical framework is presentedcould be modified td, € A4, which would be more effi-
Then the generalized version of the algorithm frideKleer  cient sinceA ;4 is smaller tham\.
and Williams, 198¥is given in Section 4. Sections 5 and 6
discuss the relation to minimal and kernel diagnoses. Kinal 3 A Logical Framework
Section 7 describes how to compute the preferred diagnos

! : € ach component is assumed to be in exactly one out of sev-
All proofs of theorems have been placed in an appendix. b y

eral behavioral modes. A behavioral mode can be for example
- . no-fault, abbreviatedv F', gain-faultG, bias B, open circuit

2 The Original Algorithm OC, short circuitSC, unknown faultU F, or just faulty F.

This section presents the original algorithm and its asgedi  For our purposes, each component is abstracted to a variable
framework as presented iiWeKleer and Williams, 1997  specifying the behavioral mode of that component.d -
However, since we have a different objective than in the-orig hote the set of such variables. For each component varable
inal paper, we will not always use the same notation and nanlet R. denote thedomainof possible behavioral modes, i.e.
ing convention. ceR..

The system to be diagnosed is assumed to consist of a num-We will now define a set of formulas to be used to express
ber of components represented by aGef conflictis rep-  that certain components are in certain behavioral modes. If
resented as a sét C C. The meaning of a confli¢f' is that ¢ is a component variable in the seandM C R., the ex-
not all components i@’ can be in the normal fault-free mode. pressiorc € M is a formula. For example, jf is a pressure
Thus only positive conflicts can be handled. A confiigtis ~ sensor, the formula € {NF,G,UF} means that the pres-
said to beminimalif there is no other conflic€, such that sure sensor is in mod¥ F, G, or UF. If M is a singleton,

Coy C (. e.g. M = {NF}, we will sometimes write alsp = NF.

A diagnosisé is also represented as a $etC C. The  Further, the constant with valuefalsg is a formula. If¢

meaning of a diagnosisis that the components contained in and- are formulas theg A v, ¢ V v, and—¢ are formulas.

§ are faulty and the components not contained are fault In accordance with the theory of first order logic we say
free. A diagnosis, is said to baminimalif there is no other thataformulap is a semantic consequence of another formula
diagnosisi; such that, C ;. ~, and writey = ¢, if all assignments of the variabl€sthat

One fundamental relation between conflicts and diagnose®akey true also make true. This can be generalized to sets
is that if C is the set of all minimal conflicts} is a diagnosis  of formulas, i.e{y1,..., 7.} | {¢1...., ¢ } if and only if

if and only if for all conflictsC < C it holds thats N C # . MA Ay, E G A A g Ifitholds thatl' = @ and
Given a set of diagnoses and a conflictC' the minimal @ [= I', where® andT" are formulas or sets of formula$,

hitting set algorithm ifdeKleer and Williams, 199%inds an  andI are said to be equivalent and we wiite~ ®.

updated set of minimal diagnoses. A version of the algorithm We will devote special interest to conjunctions on the form

as described in the text édleKleer and Williams, 1987 can 1 EMyAcy € My A - Ac, €M, 1)

be written as follows.

Algorithm 1
Input: a set of minimal diagnoses, and a conflict se€
Output: the updated set of minimal diagnoses

where all components are unique, i®.# c; if j # k, and
eachM; is a nonempty proper subsetBf.,, i.e. § # M; C
R.,. Let D, denote a conjunction on the form (1). From a set
of such conjunctions we can then form a disjunction

Apiga = A
forall §; € A do D1V Dy V...Dp, (2)
if 6; N C = then Note that the different conjunctior3; can contain different
Remove); from A4 number of components. We will say that a formula igiax-
forall c € C'do imal normal formMNF if it is on the form (2) and has the
Onew 1= 6; U {c} additional property that no conjunction is a consequence of
forall 6, € A, 6x # 6; do another conjunction, i.e. for each conjunctibp, there is no
if 0, C Onew then goto LABEL1 conjunctionD;, j # i, for which it holds thatD; = D;.
end Note that the purpose of using formulas in MNF is that they
Aqdd 3= Aadd U {0new} are relatively compact in the sense that an MNF-formula does
LABEL1 not contain redundant conjunctions and that each conjmcti
end does not contain redundant assignments.
end For an example consider the following two formulas con-
end taining pressure sensops, p2, andps, where all have the
O 1= Ayg U Ay behavioral modeR,, = {NF,G, B,UF}.
The algorithm has the properties thatAfis the set of all p € {UF}Apy € {B,UF}V p3 € {UF}

minimal diagnoses, the algorithm outp@twill contain all
minimal diagnoses with respect to also the new conflict pr€{UF}Ap2 € {B,UF} V1 € {G,UF}
Further, it also holds tha will contain only minimal diag-  The first formula is in MNF but not the second sinee €
noses. Note that this algorithm does not require the conflic§UF} Aps € {B,UF} = p1 € {G,UF}.



3.1 Conflicts and Diagnoses e Instead of checking the conditidp C §,,c.,, check the

A conflict is assumed to be written using the logical language ~ ¢onditionD,c,, = Dy.

defined above. For example, if has been found that the pres- In the algorithm we will use the notatial; € D to denote
sure sensop; can not be in the mod& F" at the same time  the fact thatD; is a conjunction irfD. The algorithm can now
asps is in the modeB or N F, this gives the conflict be stated as follows:

H=p € {NF}Ap, € {B,NF} (3)  Algorithm 2 _ _
. - . _ Input: a formulaD in MNF, and a negated confli¢
To relate this definition of conflict to the one used in Sec-Qutput: Q

tion 2, consider the confliat’ = {a, b, c}. With the logical p,_,, = D
language, we can write this conflict asc€ {NF} Ab €  forall D, € D do

{NFjnce{NF}. if D; i~ P then

Instead of conflicts, we will mostly use negated conflicts, RemoveD; from D,
so instead ofH we consider—H. In particular we will forall P; € P do
use negated conflicts written in MNF. For an example, the Let D,..., be a conjunction in MNF such
negated conflict-H, whereH is defined as in (3), can be that D,e,, ~ D; A P
written in MNF asp; € {G, B,UF}Vp, € {G,UF}. With- forall Dy, € D, Dy, # D, do
out loss of generality, we will from now on assume that all if Dpew = Dy, then goto LABEL1
negated conflicts are written on the form end

ct€E MiVeseMyV---Ve, €M, (4) ?X\dBdE'ElDadd V Drew

wherec; # ¢ if j # k, andd # M; C R.,. This means end
that (4) is in MNF. end

A system behavioral mode a conjunction containing a €nd
unique assignment of all componentsdn For example if  Q := Doia V Dada

C = {p1,p2, p3}, a system behavioral mode could be To keep the algorithm description “clean”, some operations
_ _ _ have been written in a simplified form. More details are dis-
pL=UFApy=BNps=NE cussed in Section 4.2 below. Note that an improvement cor-
We consider the termiiagnosido refer to a system behavioral responding to the change df to A,;; in Algorithm 1 is not
mode consistent with all negated conflicts. More formally, i possible for the generalized algorithm.
P is the set of all negated conflicts, a system behavioral mode The algorithm is assumed to be used in an iterative manner
d is adiagnosisf {d} UP [~ L or equivalentlyd = P. as follows. First when only one confli&; is considered, the
To relate this definition of diagnosis to the one used in Secdiagnoses are already describedy Thus, the algorithm
tion 2, assume th&t = {a, b, ¢, d} and consider the diagnosis is not needed. When a second conffstis considered, the
0 = {a,b}. With the logical language, we can write this di- algorithm is fed withD = P; andP = P», and produces the

agnosisaa = FAb=FAc=NFAd= NF. output@ such that ~ P; A P,. Then, for each additional
conflict P,, that is considered, the inp@ is the old output
4 The Generalized Algorithm Q

.When the algorithm is used in this way, the following re-

With only small modifications, the original algorithm stdte sults can be guaranteed.

in Section 2 can be made to work with logical MNF-formulas . . _
instead of sets. The result is an algorithm that handles moréheorem 1 Let P be a set of negated conflicts that is not in-
than two behavioral modes per component and also norfonsistent, i.eP = 1, and letQ be the output from Algo-
positive conflicts. With the modification, the algorithm Wil rithm 2 after processing all negated conflictslin Then it
take as inputs, a formut® and a negated conflig®, both ~ holds thatQ ~ P.

written in MNF. The purpose of the algorithm is then to de-Thegrem 2 The outputQ from Algorithm 2 is in MNF.

rive a new formula@ in MNF such thatQ ~ D A P. ) )
The modifications are the following: The proofs for these results can be found in the appendix.

e Instead of using a set of minimal diagnoskss input, 4.1 Example
use a formul& in MNF. Note thatD is not restricted to
be a disjunction of system behavioral modes, but instea
can be a disjunction of conjunctions on the form (1).

¢ Instead of using a conflict sét as input, use a negated

a'o illustrate the algorithm, consider the following smatt e
ample wher& = {p1, p2, p3} and the domain of behavioral
modes for each componentils, = {NF,G, B, UF}:

conflict ? on the form (4). D=DVDy=p €{G,B,UF}Vpse{GUF}
e Instead of checking the conditidnN C = 0, check the P=PiVP=pe{B,UF}Vps €{G,BUF}
conditionD; [ P. First the conditionD; % P is fulfilled which means thab;

¢ Instead of the assignmefit.,, := &; U {c}, find a con- is removed fronD,,;; and the inner loop of the algorithm is
junction D,,¢,, in MNF such thatD,,c., >~ D; A P;. entered. There ®,,.,, is created such thaD,,., ~ Di A



P, =p € {G,B,UF}Aps € {B,UF}. ThiS D¢, IS Now we see that the conditidD,,.., = Dy, holds if and only
then compared td; in the conditionD,,..,, = Ds. The if M C R.,, My C MP, andR., C MP. The first
condition is not fulfilled which means th#,,.,, is added to  of these three conditions is always fulfilled and the third ca
Dodada. NextaD,,.,, is created such thdD,,.,, ~ D1 A Py = never be fulfilled since, by definition of MNlMgP C Re..
p1 € {G,B,UF} Aps € {G,B,UF}. Also this time the Thus, this example shows th&,.,, = Dy holds if and only
condition D,,.,, = D2 is not fulfilled, implying thatD,,c., if (1), Dy contains only components that are also contained in
is added taD,qq. Next, the conjunctiorD; is investigated D,,..,, and (2), for all components contained in bottD,,,,
but sinceD; = P holds, Dy is not removed fronD,q and  andDy, it holds thatM/* C MZ-D.
the inner loop is not entered. The algorithm output is finally The fourth detail to be considered is the expression
formed as Dadd = Dagd V Dpew. SinceD,qq is not assigned from

Q := Dy1g V Daga = Do V (D1 A Py V Dy A Py) = wﬁek;]eginniir;gdrt]r;issSieé(rﬁ)erzssion is to be rea®agy := Dyew

add .

=p3 €{G, UF}Vp1 €{G,B,UF} Apy €{B,UF}V Finally, note thatD,;; or D,qq Mmay be unassigned or

vpre{G,B,UF} Aps€{G,B,UF} empty at some places in the algorithm. In that case, e.g. in

It can be verified thaD ~ D A P. Also, it can be seen that € := Dota V Dada, the missing term can just be neglected.

Qisin MNF. ] o ]
5 Relation to Minimal Diagnoses

4.2 Algorithm Details - . i
. . . The concept of minimal diagnoses was originally proposed
To implement the algorithm, some more details need to bfﬁ1 [Reiter, 1987; deKleer and Williams, 198fr systems

!TInO\;m'.[ TITI(? first is .ZOW to check tlhe Cr:)nd't'dmf P. 10 \yhere each component has only two possible behavioral
lllustrate this, consider an example whebg contains com- modes, i.e. the normal fault-free mode and a faulty mode.

ponents:, co, andes and’P components,, ¢z, andey. Since Minimal dia : ; ;
L . ; gnoses have two attractive properties. Firstly
Dis in MNF, and? in the form (4),D; and’ will have the they represent the “simplest” diagnoses and are therefere o

form ten desired when prioritizing among diagnoses. Secomlly, i
Di=c1 € MP Neog € MP N ez € MP (5) case there are only positive conflicts, the minimal diagaose
P=cse M Ves € MPVey € MP (6) characterize the set of all diagnoses. These two properties

will now be investigated for the generalized case of mora tha

We realize that the conditio; |= P holds if and only if  two modes per component and non-positive conflicts.
MP C MY or MP C MYP. Thus, this example shows that

in general,D; = P holds if and only ifD; andP containat 5.1 “Simplest” Property

least one common qomponemtwherer’ < Mip'. . For the case of more than two modes per component, the
The second detail is how to find an express@p.. in  concept ofpreferred diagnosewas defined ifDressler and
MNF such thal.e., ~ D; A P;. To illustrate this, consider  gyrss 199pas a generalization of minimal diagnoses. The
an example wher®; contains components andcs, andP;  pagic jdea is that the behavioral modes for each component
the component,. SinceD is in MNF, andP inthe form (4),  4re ordered in a partial order defining that some behavioral
D; andP; will have the form modes are more preferred than other. For exampIE, is
D;=c; € MP Ney € MP (7a)  usually preferred over any other mode, and a simple electri-
P cal fault, such as short-cut or open circuit, may be preferre
Pj=cz € My (7b)  over other more complex behavioral modes. Further, an un-
ThenQ,,c., will be formed asD,,c., = ¢1 € MP Acy €  known faultU F' may be the least preferred mode.
MP n Mf which means thab,,.., ~ D; A P;. If it holds For a formal definition leb! >. b denote the fact that
that MP N ME # 0, Dy, will be in MNF. Otherwise let for component, the behavioral modag! is (_aqually_ or more
Dypew = L. The checkDye,, = Dy will then immediately — Preferred tha?. For each component, this relation forms a
make the algorithm jump tbABEL1meaning thaD,,., will partial order on the behavioral modes. Further, thesdoekt
not be added t®,,;,. induce a partial order on the system behavioral modesd i et
The third detail is how to check the conditiéh,.,, = D,. ~ andd; be two system behavioral modés= Acec(c = bc).
To illustrate this, consider an example whébg.,, contains ~ Then we writed; > d; if for all ¢ € C it holds thatb; > b7.
components; andc,, and Dy, the components, andc;. A preferred diagnosis can then formally be defined as a diag-

SinceD,,.., andD are both in MNF,D,,.,, andDj, will have ~ Nosisd such that there is no other diagnogisvhered’ > d.
the form In Section 7 we will discuss how the preferred diagnoses can

D _ M M 8 be obtained from an MNF formula representing all diagnoses.
new =C1 € My Acg € My (8a) Note that in the case of only two modes, preferred diagnoses
Dy =co € MP Nz € MY (8b)  are exactly the minimal diagnoses.

Without changing their meanings, these expressions can lRemark: One may ask what “preferred” or “simplest” di-
expanded so that they contain the same set of components:agnoses means. One possible formal justification is the fol-
D!, =c1 € M Acy € M} Acs € Re, (9) lowing. Let P(d) denote the prior probability of the system
, I D behavioral model = A.ccc = b.. We assume that faults
Dy, =c1 € Rey Aea € My' Aes € M (10)  occur independently of each other which means fhat) =



[I.cc P(c = b.) whereP(c = b.) is the prior probability o= NFAb=FAc= NFAd= NF, and this minimal
that component is in behavioral modé.. If Q isaformula  diagnosis does not characterize all diagnoses.

such thatQ ~ P, it holds thatP(d|P) = P(d A Q)/P(Q).

This means thaP(d|P') = P(d)/P(Q)if d =P,ie.ifdisa 6 Relationto Kernel Diagnoses

diagnosis, and(d|P) = 0if d [~ P, i.e. if d is not a diagno-
sis. For a given sk, the termP(Q) is only a normalization
constant, which means that to compdtgi|PP) for different
diagnoses it is enough to consider the pribg). To know

The papetdeKleeret al., 1997 definegpartial diagnosisand
kernel diagnosis This was done assuming only two modes
per component. The purpose of kernel diagnoses is that the
the exact value of a prioP(c = b.) may be very difficult set of all kernel diagnoses characte_ri_zes all d_iagnoser$ eve
© dR the case when there are non-positive conflicts. As noted

or even impossible. Therefore one may assume that for ea [deK] tal, 1997, al bset of k | di X
component, the priors are unknown but at least partially oriN LAerIeeret al, - » &S0 a SUbset of kernel diagnoses IS
metimes sufficient to characterize all diagnoses.

dered. Under this assumption, and given the set of negate%)

conflicts, the preferred diagnoses are then the most prebabl In the context of this paper We can define partial diagnosis
ones. as a conjunctiord of mode assignments such that= P.

Then, a kernel diagnosis is partial diagnassuch that there
5.2 Characterizing Property is no other partial diagnosis whered |= d'.
According to the following theorem, the outp@ from

Now we investigate how the characterizing property of mini- ajgorithm 2 is, in the two-mode case, a disjunction of kernel
mal diagnoses can be generalized to the case of more than gnoses.

modes and the presence of non-positive conflicts. In some .
special cases, the preferred diagnoses characterizeagh di 1 heorem 3 Let each component have only two possible be-
noses with the help of the partial order That is, ifd; is a havioral modes, leP be a.set of negated confl_lcts, and &t
diagnosis and ifl, < d;, we know that alsd is a diagnosis. 0e the output from Algorithm 2 after processing all negated
ponent and only positive conflicts, which in turn is guaradte kernel diagnosis.

when there are no fault models. Note that it may also be tru@lote that the MNF property alone does not guarantee that all
in a case with more than two modes, even in the presence @bnjunctions are kernel diagnoses. This can be seen in the

fault models. However this does not hold generally. following formula which is in MNF.
In an MNF-formula, the conjunctions have the property
that they characterize all diagnoses. For example consider a=NAcz=NVa=NAc=F (11)

the case when the components at¢a,b,c,d, e}, R =
{NF,B,G,UF}forallcomponents,and € {B,UF}Ab €
{G,UF} is one of the conjunctions in an MNF formula. By
letting each diagnosis be represented as an ordered set ¢
responding tda, b, ¢, d, e}, this single conjunction character-
izes the diagnoses

All diagnoses represented by (11) are characterized by the
single kernel diagnosis, = N. Therefore none of the con-
junctions in (11) are kernel diagnoses.
"Even though the papédeKleeret al, 1997 defines par-
tial and kernel diagnoses for the case of only two modes
per component, the definition of partial and kernel diageose
given above is applicable also to the case of more than two
{B,UF} x{G,UF} x{NF,B,G,UF}x modes per component. However, the conjunctions in the
x{NF,B,G,UF} x {NF,B,G,UF} output Q from Algorithm 2 will for this case not be ker-
nel diagnoses. Instead each conjunction represents a set of
rEartial diagnoses, e.g. the first conjunction of (12) repre-
&nts the two partial diagnoses = F A c3 = B and
c1 = E AN cs = G. Since the second conjunction of (12)
represents e.gy = F Acs = F A cg = B, itis also obvious
that the partial diagnoses represented by each conjuraron
not necessarily kernel diagnoses.

which is 256 diagnoses.
For another example assume that each of the compone
C = {a,b,c,d} has only two modes, i.eR = {NF, F}.
A conjunctiona € {F} A b € {F} would then characterize
all diagnoseq F'} x {F} x {NF,F} x {NF,F}. In Sec-
tion 2 this conjunction would be represented{ayb}. If all
conflicts are positive, all conjunctions would be on thigtior
and there is a one-to-one correspondence between the co?- . .
junctions in an MNF-formula and the minimal diagnoses in Extracting Preferred Diagnoses
the original framework described in Section 2. In Section 5 it was concluded that the conjunctions in the out
If there is a fault model for the modg of a component put @ from Algorithm 2 characterize all diagnoses, and in
a, the non-positive conflick € {F} may appear. Assume the special case of two modes per component and only pos-
also that a conflicb = { NF'} appears. This has the conse- itive conflicts, there is a one-to-one correspondence b&twe
quence that a formula in MNF, describing all diagnoses, mayMNF-conjunctions and the minimal diagnoses. This special
for example contain a conjunctiane {NF} Ab € {F}. case has also the property that if we study each conjunction
This conjunction characterizes all diagno$@&F'} x {F} x in an MNF formulaQ separately, it will have only one pre-
{NF,F} x {NF, F},and this is a so callekkrnel diagnosis ferred diagnosis. This preferred diagnosis is a also a pezfe
(see the next section). Note that to represent this coripmct diagnosis when considering the whole form@a The con-
is not possible using sets as described in Section 2. Naie alsequence is that it is straightforward to extract the preter
that there is one minimal diagnosis in this example, namelyliagnosis from a formul®. In the general case, there is no



such guarantee. For example, in the two-mode case and wh
some conflicts are non-positive, which means that the ndgat
conflict will contain some assignment= N F', there may be
a conjunction not corresponding to a preferred diagnosis.
For an example with more than two modes, conside
two componentg; andc; whereR., = {NF,E, F} and
NF >, E >, F, and a third component; where
R., = {NF, B, G} with the only relationsVF' >., B and
NF >., G. Then consider the MNF-formula

Q=ci €{E} Nc3 € {B,G}V
c1 € {E,F}/\CQE {E,F}/\CQ,E{B,G} (12)

The preferred diagnoses consistent with the first conjancti
areci = FEANcg=NFAcs=Bandcy =FEAc;=NFA

cs = G. The preferred diagnoses consistent with the secon
arec; = EAcyg = EAc3 = B andcl = ENcy = ENcg = G.

As seen, the two diagnoses= E A cs = E A c3 = B and

c1 = ENcy = EAcg = G are not preferred diagnoses of
the whole formulaQ.

The example shows that preferred diagnoses can not be e,

tracted simply by considering one conjunction at a time. In
stead the following procedure can be used. For each conjun

tion in Q, find the preferred diagnoses consistent with that,

conjunction, and collect all diagnoses found in a®etThe
set¥ may contain non-preferred diagnoses. These can be r
moved by a simple pairwise comparison. Note that thelset

& Conclusions

8n this paper the minimal hitting-set algorithm frofdeK-

leer and Williams, 198has been generalized to handle more
than two modes per component and also non-positive con-
flicts. This has been done by first establishing a framework
where all conflicts and diagnoses are represented with spe-
cial logical formulas. Then the original minimal hittingts
algorithm needed only small modifications to obtain the de-
sired results. It has been formally proven tigat~ P, i.e.
the algorithm output is equivalent to the set of all diagisose
Further it was proven that the algorithm outpgdtis in the
MNF-form that guarantees th@ does not contain redundant
conjunctions.

In a comparison with the original framework where con-
Hicts and diagnoses are represented by sets, it was comclude

at the conjunctions in the outp@, from the generalized
algorithm, are a true generalization of the minimal diagsos
obtained from the minimal hitting-set algorithm. It hasaals
been concluded that the conjunctions are a true generaliza-
tion of kernel diagnoses. Since, for the case of more than
tfvo mode per component, minimal diagnoses do not neces-
sarily correspond to the most desired diagnoses, it wasddst
Shown how preferred diagnoses could be obtained from the
onjunctions with a reasonable amount of effort.
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Appendix

Lemma 1 The outputQ from Algorithm 2 contains no two
conjunctions such thad, = Q.

PROOF. Assume the contrary, thgt and@- are two con-

We can find aD’ such thatD’ ~ D; ~ D, and where
D' is the conjunction of one®; obtained from every? e
P\ (¢1N¢1). ThenletD* = c € A?1792 A D’ which means
that@Q: | ¢ € A»1792 A Dy ~ D*. Similarly we can obtain
the relationQ, = c € A»"%2 A Dy ~ D*. By construction

junctions inQ and @2 = Q1. There are three cases that of D* it can be realized thab* = @, for some conjunction

need to be investigated: (1)1 € Do, Q2 € Dadd, (2)
Q2 € Doia, Q1 € Dadd, (3) Q1 € Dadd, Q2 € Dada-

1) The factQ, € D,q4q means thatD,,., = Q- at some
point. Since®: € Dy, Dnew Must then have been

compared t@);. Since@- has really been added, it can-

not have been the case thigd = Q1.

SinceQ® € Dqqq, it holds thatQ); = D; A P; for some
D; € D. The factQ. E @1 implies thatQ, = D; A
P; = D;. This is a contradiction sino@, € D, andD
is in MNF.

There are three cases: @, = D; A P2 &= D; A
Pj1 = Q1,(0)Q2 = Dia A Pj |= Dyt APy = Qq, (€)
QQ = Do /\PjQ ': D1 /\le = Ql, where in all cases,
Pj1 # Pjy andD;; # D;s.

a) We know thatD; andP are formulas on forms like
Di=ae€ ANbe BAce CandP = a €
A, V b € B, respectively. This means th@y =
a€ ANA,Nbe BAce CandQy =a € AND €
BN B, Ace C. ThefactQs = Q1 implies that
A C An A, which further means that C A,,.
ThisimpliesD, =a € ANbe BAceC=ac
A, = P. Thus,Q: andQ, are never subject to be
added tdDg44.

b) We have thaf); = Dig/\Pj ': Dil/\Pj ': D €
D. This means thaf); = D;» A P; can not have
been added t®,, 4.

C) We have thaQ2 = Djs A Pjg ': Di1 A le ':
D;; € D. This means tha®, = D;s A Pj2 can not
have been added ®©,44.

2)

3)

All these investigations show that it impossible tliat =
Q1. O

Theorem 2 The outputQ from Algorithm 2 is in MNF.

PROOF. From Lemma 1 it follows th& contains no two
conjunctions such thap, & Q1. All conjunctions inD,;4
are trivially on the form specified by (1). All conjunctions i

D.qq are also on the form (1) because of the requirement on

Dy e, ThusQ is in MNF. O

Lemma 2 Let Q be the output from Algorithm 2 after pro-
cessing all negated conflicts Ih For any two conjunctions
Q1 andQs in Q, there is no componentand conjunction)
suchthat); ~ DAce Ay and@Qs =~ D A c € Ay where
A CR.andA4; C R..

PROOF. Assume thatthere is a componeartd conjunction
Dsuchthat); ~ DAce Ay andQs ~ D Ac € Ay. We
can write@Q; asc € A?* A D; whereA? is the intersection
of the sets)M; obtained from allP € ¢; C P, andD; is
the conjunction of oné®; obtained from evenp € P\ ¢;.
Similarly we write@, asc € A%2 A D,.

Qr in Q. Because of this relation bot); and@> can not
be contained ir@ which is a contradiction. This means that
there can not be a componeréind conjunctiorD such that
leD/\CEAlanng’ZD/\CEAQ. O

Lemma 3 Let @ = D4 A Dyaq be the output from Algo-
rithm 2 after processing all test negated conflict®inf D,
is not contained irD,,4, and the seD; , A P; is not contained
in D,qq4, after running the algorithm, then there isfa;
such thatD;,, A P; = D andD ANPj W D, NP

PROOF. The fact thab,,, is not contained irD,;; means
that the inner loop of the algorithm must have been entered
whenD; = D; . Thenthe factthab; A P; is not contained
iN Dyqq, means thaD;,, A P; = Dy, for someDy, k # ip,.
By choosingi,,+1 = k, this givesD;, A P; = D;,, ..

Next we prove thatD, A P; = D; A P;. Let the sin-
gle assignment iP; bea € A,. We will divide the proof
into four cases: (1@ ¢ comps D;, a € comps Dy, (2)
a € comps D;, a ¢ comps Dg, (3) a ¢ comps D,
a € comps Dy, and (4)a € comps D;, a € comps Dy.

1) The factD; A P; = Dy would imply D; = Dy, which
is impossible becaugg is in MNF.

Gm41 Gm41

2) This means thab; can be written a®); = D’ Aa € A;.
The factD; A P; |= Dy, would thenimply thaD’ |= Dj,
and consequently thdd; | Dy, which is impossible
becausé is in MNF.

First assume thab,; contains a component ¢ Dy,.
Note that this component is not component This
would imply thatc is not contained iP;. Thus the com-
ponents ofD; A P; is a not a subset of the components
of D;, A P;, which impliesD, A P; (= D; A P;. The
case left to investigate is when the component®pére

a subset of the componentsby,.

Assume thaD;, A P; = D; A P;. This relation can be
written D), Aa € A, N Ay = D; Aa € A, whereD;,
is a conjunction not containing component For this
relation to hold it must hold thab), = D;. This means
that D, = a € Ay A D}, = D; which is impossible
becausé is in MNF.

Assume thaDy, A P; = D; A P;. This relation can be
written D;. Aa € A, N A, = D; ANa € Ay N A; where
D;, and D) are conjunctions not containing component
a. This relation would implyD;, = Dj. Further on, the
factD; A P; = Dj, can be writteru € A, N A; A D) |=

a € Ay A Dy, which implies thatD; = Dj . Thus we
haveD; ~ D; and the only possible difference between
D; andDy, is the assignment of componentLemma 2
says this is impossible.

3)

4)

With i = i, andk = i,,41, these four cases have shown that
D N Pj = D5, N Pj. O

Tm+1



Lemma 4 Let D be the output from Algorithm 2 after pro- and thus become one conjunctiongh SinceQ; = D; A
cessing all negated conflicts#),_, andQ the output given (¢, = M,) = D;, both@; and D; cannot be conjunctions
D and P as inputs. For each conjunctioB; in D and P; in Q because? is in MNF according to Theorem 2. This
in P it holds that there is a conjunctio;, in Q such that contradiction shows thdP; can not be a partial diagnosis.
D;i AN Pj = Q. Next, study the case whei A ¢, = M, is the partial

PROOF. If, after running the algorithr; is contained in diagnosis, and led, denote the complementary element to

Dy, then the lemma s trivially fulfled. If instea,  p; Mo This means that both) A, = My 1 a = M. and
is contained iD,q4, then the lemmadis also trivially fulfiled. 2/\¢» = Mp/a = M, are partial diagnoses. This means, by
Study now the case whef®; is contained ifD,,g andD;AP;  definition, thatDAc, = MyAa = M, = Pp1 U{Pn} ~ Q.
is not contained ifD, 4. We can then apply Lemma 3 with SinceQx = D Aa = M, Ac, = My, andQ is in MNF, there
P =P,_U{P}. Thisgivesusd;,, ,, suchthaD; AP; =  mustbe anothep,, suchthatDAc, = M,Aa = My = Qum.
D;,. ., andD; ., AP~ D; A P;. According to Lemma 2, it can not hold th@t,, = D A ¢, =

If D;,,., is contained irDyq, then the lemma is fulfilled. M, A a = M,. Therefore we can remove one assignment
IfinsteadD;,,,, A P; is contained ifD,qq4, NOte thatD;,, A from D A ¢, = M,, A a = M, and still obtain a conjunction
Pj = D, impliesD;,, A P; = D;,., AP;. Thismeans ( such thatd = Q,,. Note then that it can not hold that
that the lemma is fulfilled. In this way we can repeatedly = D A ¢, = M, since this would imply tha®;, = Q...
apply Lemma 3 as long as the ne;, ,, obtained is not  Now we investigate the case= D A a = M,. LetQ
contained irDyq andD;,, ., A Pj notcontained iDaqa-  denote the set of assignments containedinThe fact that

We will now prove that after a finite number of applications Qw = DANa= M,A ¢, = M, means that each negated
of Lemma 3 we obtain &;, ., whereD;, ., is contained conflictP € P,,_,U{P,} contains an assignmentinJ{a =
in Dyiq O Dy, A Pjis contained inD,44. Note that that My} U{c, = M,}.
each application of Lemma 3 guarantees @@L A Pj E Next, D A a = M, | Q, means that),, contains a
Dy, A PjandD;,,, APy o2 D, A Pj. This factitself g pset of the assignments containedim a = A,. This
implies that there cannot be an infinite number of applicatio ,rther means that each negated confiice P,,_;, U {Py}
of Lemma 3. U contains an assignment frofty, U {a = M, }. This means
that aP’ that does not contain any assignment fr@m must
contain the assignment = M,. The consequence of this
is thatP’ cannot contain the assignment= M,. Since it

im

Theorem 1 LetP be a set of negated conflicts that is not
inconsistent, i.eP [~ L, and letQ be the output from Al-

ﬂglrg?rt?étgﬁfrppmcessmg all negated conflictsfinThen it was concluded above that egBhcontains an assignment in
T QU{a = M,}U{c, = M,}, P’ mustthen contain the assign-

PROOF. LetP,_; denote the set all negated conflictsfin mentc, = M,. Thus each negated confliete P,,_1U{P,}

exceptP. Then it holds that® ~ P,,_; U {P} ~ D AP.  contains an assignment froiy,, U {c, = M,}.

Lemma 4 implies thaD A P = Q. Left to prove isQ |= We can now select one assignment from eBch P,,_; U

D A P. Take arbitrary conjunctio®y, in the outputQ. If @,  {P»} but with the requirement that the selected assignment

is in D,yq, then it must be in als®, i.e. Q, = D, for some  must bec, = M, or contained irf2. By forming a conjunc-

conjunctionD; in D. The fact thatD; is in D, means also  tion ® of these assignments, it will hold thBXA ¢, = M, =

thatD; = P. ThusQ, = D; = DAP. O ®. ThereforeQy = DAa = M, Nc, = M, = &. If ®

is not one of the conjunctions i@, there will be anothe®),

ch tha® = Q,. This means tha®;, = Q, andQ; cannot

contained inQ, which is a contradiction. Thus we have

shown that it cannot hold that= D A a = M, and there-

fore thatD A ¢, = M, cannot be a partial diagnosis. This

further means thad,, must be a kernel diagnosis. O

Lemma5 LetP,_;UP, be aset of negated conflicts, and let
each component have only two possible behavioral modes. Ef"
D is the output from Algorithm 2 after processing all negated e
conflicts inP,,_1, then a new call to the algorithm with inputs
D andP,, gives an output in which each conjunction is a
kernel diagnosis.

PROOF. Take an arbitrary conjuncti@ in Q. It holdsthat ~ Theorem 3~ Let each component have only two possible

Qi ~ D; A P; for some conjunctioD; in D and some con- behavioral modes, Ié be a set of negated conflicts, and let

junctionP; in P,,. If Q). ~ D, then@,, is a kernel diagnosis < be the output from Algorithm 2 after processing all negated

sinceD; is. Next we investigate the other ca@g % D;. conflicts inlP. Then it holds that each conjunction gfis a
Assume that),, is not a kernel diagnosis. The assignmentkernel diagnosis.

Pj can be written ag, = M,. Thus, we can writ€); 8  PROOF. It is not difficult to realize that, after processing t

Qr = Di A (¢, = Mp). Since by assumptioQy, is nota  first two negated conflicts i, each conjunction of the output
kernel diagnosis, we can remove one assignment, either g js a kernel diagnoses. For each further negated conflict that
M, or some assignment= 1, in D;, from @, and obtain s processed, each conjunction of the new output will be a
a partial diagnosis. The partial diagnosis obtained iseeith kernel diagnosis according to Lemma 5. O]
D;or D Ac¢, = My, whereD; = D Aa = M,. Study

first the case wher®); is the partial diagnosis. By definition,

this means thaD; = P,,_; U {P,}, which impliesD, =

P,.. This means thabD; would not be removed fronb,;4



