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Abstract problems in sensor placement for fault diagnosis. The ex-
i i , ) ample is modeled by a fifth order linear system of ordinary
An algorithm is developed for computing which differential equations. This example will be used through-
sensors to add to obtain maximum fault detectabil- oyt the paper, although the results will be equally applEab
ity and fault isolability. The method is based to large scale, non-linear, differential-algebraic msedéhe
on only the structural information in a model model consists of the following equations
which means that large and non-linear differential- e
algebraic models can be handled in an efficient s = T2+ s
manner. The approach is exemplified on a model ey @Tg = —2T2 + T3+ T4
of an industrial valve where the benefits and prop- e3: d3=—3T3+ 5+ f1+ fo
erties of the method is clearly shown. e4: dy—=—Azs+T5 + f3
es: T5=—brs+u-+ f4
1 Introduction wherez; are the state variables a known control signal, and

. . . i . fi the faults we want to detect and isolate. Since there are no

Fault diagnosis and process supervision is an increasimgly - gpecified sensors there is no redundancy and the faults are no
portant topic in many industrial applications and there argjetectaple.
many publications in this area, see for examjitanke et In this example, faults are modeled by fault signals that are
al., 2003 and the rel_‘e_rences therein. To be _able to performnduded in the model equations arfid+ 0 indicates a fault.
model based supervision, some redundancy is needed and thignore general way to include faults is to assign assumptions
redundancy is typically provided by sensors mounted on thgy synport, to the equations. This type of fault modeling can
process. Scientific attention has mainly been devoted to thgigq easily be used with the approach that will be presented
design of a diagnosis system, given a model of a procesger put for sake of simplicity, fault signal modeling wiie
equipped with a set of sensors. Not as much attention hagseq in the paper. Also, from now on only single faults will
yet been devoted to decide which sensors to include in thge considered ang} will then be used to denote both the fault
process. _ signal and the fault mode.

_There are many types of performance measures in diagno-"Now, defineminimal sensor sethich is a minimal set of
sis, for example detection performance, false alarm pribbab gensors to add to achieve maximum fault isolability.

e o coiocs = oS Defition 1 (Minimal sensorse) LeLs beth setof pss:
ble sensor locations, i.e. the set of measurable variakled,

i.e. faults in different components should, as far as péssib . : : -
be able to be isolated from each other. Since sensor plac%e-tts.fb%g‘.mutlﬂsEt deflnediﬁoﬁ: ThenSis a ”}'”'W?" Slegﬁ.ct’r

ment is often done early in the design phase, possibly befor ed' ﬁ Ing the Sen":socr;d g'vf maximum fault iIsolabiity

a reliable process model can be developed, the method devél® @ proper su Se_ S 0, no-. o

oped in this paper is based on a structural process moda. ThiNote thatS is a multiset, which is similar to a set but allows

is a coarse model description that can be obtained early arf@ultiple instances of a member. Generalizations of the-stan
without major engineering efforts. Also, this means thegéa  dard set operations like union and intersection are striigh

and non-linear differential-algebraic models can be heehdl Ward. Multisets are used instead of regular sets since it may
in an efficient manner. The drawback with structural meth-b€ necessary to add more than one sensor measuring the same

ods is that only best case results are obtainedsgsander,  Variable. ] o
2004 for a more on depth discussion on this. Returning to the example, a first question is then what are

the minimal sensor sets achieving detectability of all &l

: Here it is assumed that sensors measure a state-variable or a
2 Problem Formulation function thereof. It can be shown, using conditions for faul
Before the main objective of the paper is formally presenteddetectability in linear systems, thét, }, {z2}, {x3, 24} are

a small example is discussed that illustrates the fundaahentall minimal sensor sets achieving detectability of all faul



A second step is to not only require detectability, but also o s ' D
isolability properties. Here isolability refers to isoibity as

it is commonly used in FDI and the consistency based di- e
agnosis Al community, see e.gCordieret al, 2004. For
details on how isolability is defined in this paper, see Sec-
tions 3 and 4. It can be shown that there mminimal sensor
sets that achieve maximal fault isolatiofx:q, zs}, {1, x4},
{x2, 23}, {x2, 4}, and{xs, x4}. Thus, adding sensorsmea- ~  '====--------- —

suring the variables in any of these sets, or a superset of t ) . : .
variables, achieves maximum fault isolability. rEgure_ 1: Structure of the linear example in Section 2. Gray
areas indicate non-zero elements.

Now, it is of course the case that the new sensors may also
become faulty. If we want also faults in the new sensors to be o
isolable from the other faults we may have to add additionaB-1 Dulmage-Mendelsohn decomposition
sensors. In this case, if maximum fault isolability is dedir We will frequently use the Dulmage-Mendelsohn decom-
also for faults in the new sensors, there &urainimal sensor  position [Dulmage and Mendelsohn, 195&nhich is illus-
sets where one sensor set is two sensors measufiegd  trated in Figure 2. The decomposition defines a partition
one forzs, i.e. the multisetS = {z1, 1, x3}. (Mo, My, ..., M,, M) of the set of equation3/, a similar
The problem formulation can now be stated as: partition of the set of unknown&’, and a partial order on the
setsM;. If the rows and columns are rearranged according to
Given a model and possible sensor locations, find  this order, the biadjacency matrix has the form shown in Fig-
all minimal sensor sets with the maximum possible ure 2. There are zero entries in the white parts of the matrix
fault isolability. and there might be ones in the gray-shaded parts. Three main
, ) parts of M can be identified in the partitiodd/, is called the
_The methods developed in sections that now followsiyyctyrally underdetermined part?_, M; is the structurally
aim at addressing this problem for general, non-linear ang\,st-determined part, and/.. is the structurally overdeter-

differential-algebraic models. Doing this analyticaltydiffi- ~ mined part. In the figure, each pdid/;, X;) is related to a
cult since then inference concerning solutions to the modeh|ock which is denoted by;.

equations is needed. Instead, a method based on utilizing

(O

only the structure of the model is employed. This gives X N X o XeiXe X
generic results that hold in a best-case situation. An advan wl @
tage is that large models can be handled in an efficient man-

ner. See Section 3 for some further results on the relatien be "
tween structural and analytical properties of a model. &we a M
[Krysander, 200Bfor an in depth discussion on this topic.

3 Theoretical Background

The sensor placement problem will here be solved using a

structural representation of the model. The structuraleeep .

sentation of a set of equatiodg with unknown variablesy

is a bipartite graph with variables and equations as node set Figure 2: Dulmage-Mendelsohn decomposition

The known variables are, in this paper, omitted in the struc-

ture because they will not be needed for the analysis. Teere i Diagnosis related treatments of Dulmage-Mendelsohn de-

an edge in the graph between a node representing an equatieémposition can be found in e.g[Blanke et al, 2003;

e € M and node representing an unknown variable X if Krysander, 200b

the variablex is contained ire. A bipartite graph can be de-

scribed by a biadjacency matrix where the rows and columns.2  Structural formulation of fault diagnosis

correspond to the node sets and the posifion) is one if | this section, we will give structural characterizationfs

there is an edge between nadendj, and a zero otherwise.  faylt diagnosis properties. By doing this, the sensor place
Structural methods can be applied to dynamical systemment problem can be formulated as a graph theoretical prob-

and the structure of the dynamic example formulated in Seclem.

tion 2 is shown in Figure 1 as a biadjacency matrix of the Let M denote a set of equations afAda set of single faults.

bipartite graph. The positiofe;, ;) is one ifz; or any time-  Without loss of generality, it is possible to assume thana si

derivative appear in equatiar). This structural representa- gle fault can only violate one equation. If a fault sigrfedp-

tion of dynamical systems has been used in for exaffjzlek  pears in more than one equation, we simply replade the

et al, 2003 and[Ploix et al, 2009. There exist other struc- equations with a new variable; and add equatiorf = ¢

tural representations of dynamical systems, but the ong usevhich then will be the only equation violated by this fault.

here is a compact representation suitable for the sensme-pla An example of this procedure is also given in the example in

ment problen{Krysander, 200b Section 5. Let; € M be the equation that might be violated




by a faultf € F. For the example introduced in Section 2, b

ef, =eyf, =es, e = ey, andes, = es. I

An equation is, in the generic case, monitorable if it is con- b2
tained in the structurally overdetermined partidf[Blanke /N
et al, 2003. If the structurally overdetermined part of a set ba ba
of equations)M is denoted byl T, then the structural char- \b_ /

acterization of detectability can be defined as follows.

Definition 2 A fault f is structurally detectable in a model Figure 3: Hasse diagram of the partial order over the set of
Mifepe M*. strongly connected componerits

Returning to the example and illustrating the correspon-
dence between detectable faults and structurally detectab o
faults, assume that a sengpmeasuringr4 has been added 4.1 _Senso.r placem(_ant for .detectab_lllty ) )
to the process and included in the modelday: v = 24. A_basm building block in the f|_nal algorithm will be to flﬂd
The faultsfs; and f4 are the detectable faults and a residualminimal sensor sets that achieve structural detectatility

capable of detecting them is faults in an exactly determined set of equations. This sBcti
) will be devoted to solving this sub-problem by first outligin
r=20y+99+4y—u=>5fs+ fs+ fa the solution for the example system from Section 2 and then

formally stating the solution. Although the example is give
by analytical equations, all results in this section areebam
the structural model only.

The example model is, without any additional sensors, an

which in fact is the only residual generator for this model
modulo post filtering. Thus, faultg; and f, are not de-
tectable. The structurally overdetermined paft™ of the

_rpr?deIM = {6176_2’ €3, 64665’ 66_} is equal to{e‘é’. €5, 66}'h exactly determined set of equations wittequations and

e equationgy, = eq andey, = es cgrrespon Ing to the  \,nknown variables:;, i.e. all faults are undetectable. Con-
detectable faulty; and f, belong toM ™, but not the equa-  gjger first the faultfs. To make this fault detectable, accord-
tions corresponding to the other faults. This implies adeor j,q 1o Definition 2, an additional sensor is needed such that
ing to Definition 2 that the detectable_fau_lt,%, and f,, are equatione s, = e, becomes a member of the overdetermined
the structurally detectable faults M which is in accordance part of the model.
with the analytical result above. o _ It is straightforward to verify thaff; becomes detectable

Detection is a special case of isolation, i.e. a fault is dejf gng only if any of the variablegzy,z, 24} are mea-
tectable if the fault is isolable from the no-fault mode. BY  gyred. For example, measuring makes the new measure-
ing this S|m|Ia_r|ty, it holds that a_faubfl-, isolable fromfj, can  ment equation together with equationsandes an overde-
violate a monitorable equation in the model describing &€ b armined set of equations. For this set of equations, auasid
havior of the process having a fauff. The equations valid generator which is sensitive to fauj can easily be derived.
with a fault f; is M\ {e, } and the monitorable part of these A similar line of reasoning can be made when measuring
equations is, in the generic case, equalb\ {es, })*. This o ,.
motivates the following structural characterization ajlés Then, why arer;, -, andz, exactly those measurements
bility. that give detectability of'3? The explanation can be seen in
Definition 3 A fault f; is structurally isolable fromf; in a lelgqre 1whereit caln be n;)'_ced tha_:_gllmdgl;s cc()jn_necte_d V_‘;'th
modellM/ if M ) » Via a non-zero element in positidi, 2) and in a similar

e € ( \{efﬂ_}.) _ N o fashion isb, connected td4. Thus, there is a connection

The structural detectability and isolability definitiondlw  petween variables;, =5, andz4, which is precisely the vari-

next be used in a structural approach for solving the sensaible in blockb, including fault f5. Measuringzs, i.e. the

placement problem. variable inb3, do not give detectability of; since there is no
connection betweeby and blockb,.
4 A Structural Approach The above reasoning indicates that some order between the

rT,Ftrongly connected components might be useful. Let the ex-
Ca_lctly determined part of Figure 2 be the adjacency matrix of

a directed graph on the set of strongly connected components
b;. A non-zero element in blocki, j) indicates a directed

Theoretical results and an algorithm to solve the proble
posed in Section 2 is here formulated using the theory in Se
tion 3. Due to space limitations, all proofs are omitted laut c

be found in[Krysander and Frisk, 2007 :
: ' . dge fromp; to b;. A partial order on the blocks can then be
A general assumption of the approach is that the mOdegefined as, < b, if and only if there is a path from, to

does not contain any underdetermined part. Thisis notare-""_. . ;
strictive assumption since any complete physical modd) Wileg{}oibgll;rgoiﬁgggz E:Z?angflzitil?grr?r:g gl;;hrﬁptl)édenng of the
given an initial cpndmon, ha\(e a unigue solution a_md_tpgre With this ordering one can state exactl whi.ch parts of
no underdetermined part. Without loss of generality, il$®a y

assumed that no fault affects more than one equation and tha‘;]:ﬁizt%n%e;eg;g%? mr?]gilo}lho?/\t/ir?geclgrrr?riz ?gfr;d;fitfég"tﬂgd

possible sensors measure a function of one unknown variableg. . X X : -
scussion above. This also gives, according to Definition 2

In case there are possible sensors that measure some finct hich faults that become detectable as a result of adding a
h of more than one unknown variable, include a new equatioHV 9

Tnew = h(.I) in the model. sensor.



) [fs] to adding a set of senso%. Then maximal detectability of
\ / faults F'in M U Mg are obtained if and only i has a non-
] empty intersection wit ([f]) for all [f] € F,,, whereF,, is
the set of maximal fault classes among the fault classes with

Figure 4: Hasse diagram of the partial order for the linear?(1/1) # 0.

example over the set of fault classes. In Figure 1 it can be The above result can be summarized in an algorithm that
seen thaffi] = [f2]. Classedfi] and[fs] are the maximal given a model\/, faults F', and a set of possible sensor loca-
elements of the partial order. tions P, computes the family of detectability s&fs

1 function D =Det ectability(M,F,P)
Lemma 1l Let M be an exactly determined set of equations, Compute block and fault class orders using;
b; a strongly connected component id, ande ¢ M an 5  F,, = set of maximal fault classég] s.t. D([f]) # 0;
equation corresponding to measuring any variabletin 4+  D={D([f])|[f] € Fn};

Then — o
(MU {ep)t = {e} U (U, <b, M;) Our objective was not to compute the set of detectability set

o e . D, but rather minimal sensor sets. For this, note that a bittin
Achieving detectability of one fault affecting a stronglyre set for a family of sets is a set that has non-empty inter(m%cti

nected component immediately implies detectability of a"with each set in the family. Thus, a minimal hitting set algo-

faults atlﬁe(;:tipg the same Icomponlentp The;ﬁfore tit rfn]?kel?ithm [Reiter, 1987; de Kieer, 198 applied to the family of
sense to define an equivalence relation on the set of Taulig, oy o1 e used to efficiently find all minimal sensor sets.
where all faults influencing the same strongly connected-com™ = 1o example model, as previously noted, the maxi-
ponent are equwalent. A set pf equwale_nt faults is denased mal fault classes arg, | and [fs] and the correspo’nding de-
[fi] where f; is one e!ement in the equwalgnce class. NO.W'tectabiIity sets areD([f1]) = (a1, 72,23} and D([fs]) =
based on Lemma 1, it is clear that measuring a variable ing .~ " = 1. Theorem 1 gives that the minimal sensor sets
block ordered higher than the block the fault enters aclsievethalt’ a?hiévé detectability of all faults afe:,}, {z.}, and

detectability. Let”? C X be a set of possible sensor locations {3, 24}, which are the same sensor sets as was determined
and introduce the set in Section 2

D([fi]) = {z[bj € BAb; <bj Az € X;N P} . .
. . . 4.2 Sensor placement for isolability of detectable
where X; is the set of variables corresponding to bldgk

B the set of strongly connected components, @grttle block , fau!ts ) o ) )
that is influenced by the faults iif,]. The setD([f;]) is thus  This section describes the basic ideas of how to find the min-
the set of variables such that measuramy variable in the imal sensor sets such that maximum single fault isolakigity
set achieves detectability of all faults in the equivaledlass ~ Obtained under the assumption that all faults are struiggura
[£i]. detectable. In the next section this assumption will be re-
Returning to the example and utilizing the result above moved. o _ _ o
one can see that detectability ifcomes automatically when ~_ The problem of achieving maximum isolability of the set
adding sensors to achieve detectability of either theddnlt Of single faultsF” can be divided int¢F'| sub-problems, one
[f1] or [f5]. This is becausés is less or equal than both, for each fault, as follows. For each faulf € F, find all
andb, and according to Lemma 1, blodk is automatically measurements that make the maximum possible number of
included in any overdetermined set of equations wifghor ~ faults fi € F"\ {f;} isolable fromf;. The solution to the
[f] are made detectable. This means that it is only necedsolability problem will then be obtained by combining the
sary to ensure detectability for a subset of the fault ciagse results from all sub-problems. o
ensure detectability of all faults. To illustrate exactljioh Each sub-problem can be formulated as a detectability
classes, introduce an order on the equivalence classEs of Problem, as will be shown next. Assume thidtis a model,
defined agf;] < [f;] if b; < b; whereby is the block where including sensors such th'at all faults are detecta.b_le,Mgd
the faults in[f,] enters the model. Figure 4 shows the Hassd€Presents a set of equations describing an additionabsens
diagram of the partial order for the example model. Here on&€tS- Given the sensor s, a faultf; is isolable fromf; in
can see that in the example it is necessary and sufficient te modelM U Mg if ey, € ((M U Ms)\ {es, })* according
ensure detectability of the maximal elements of the partiato Definition 3. By introducingyl” = M \ {ey, }, this can be
order. In the example the set of possible sensor locations igritten as
X, but with aP that is a proper subset &f one might have ef, € (M"UMg)" (1)

the case where a maximal fault class is not detectable regarghich according to Definition 2 means thatis structurally
less of which sensors iff that is added. In such a case, one getectable im/’ U Ms. Hence the maximum possible num-
need to consider the maximal elements among the detecta ) ) i i
o s b_b%r of faultsf; € F'\ {f;} are isolable fromy; in M U Mg

: if the maximum possible number of faulfs € F \ {f;}

The following theorem proves the general result and sumge structurally detectable in the mod@ll U Mg) \ {e/, }.
marizes the discussion of this section. This shows that each sub-problem can be formulated as a de-
Theorem 1 Let M be an exactly determined set of equations,tectability problem.

F the corresponding set of fault® C X the set of possi- Next, we use the example formulated in Section 2 to out-
ble sensor locations, and/s the equations corresponding line the solution of one sub-problem before formally stgtin



[ D 1 function D =1 sol abi | i t ySubProbl em(M,F,P,f)
B 2 MO =just—determined part of/ \ {es};
= E 3 FY=the setof faults F included inM?;
! 4 D=Detectability(°F°P);

An additional sensor set that maximizes the set of faultspair
(fi, f;) such thatf; is structurally isolable fronf; must have
a non-empty intersection with all detectability sets foumd
,,,,,,,,,,fifz all sub-problems.
Figure 5: Block structure of the example in Section 2 ex-function _D =Isol abi li ty(M,F.P)
tended with measurements.of andz,. 2 D=g;

3 for fieF

, o F'=F\{fi};
the solution. Assume that we have added sensors measwing D = DU | sol abi | i t ySubPr obl em(M,F',P,f;);
{z3,x4} such that all faults are detectable. Furthermore, @s- end
sume that these sensors can be faulty and denote these faults = . , .

5 and f, respectively. A row permuted structure of the ob- | e minimal sensor sets that maximize the isolability can be
tained model, = {ey, es, ..., 7} is shown in Figure 5. found by applying a minimal hitting set algorithm to the sets
Consider the sub-problem associated with fgultThe set  in the outputD. o .
M'in (1) is equal ta\/\{es, } = M\{es}. The sub-problem For the example shown in Figure 5, the families
is, given the model \ {es}, to find the minimal additional of detectability sets of the different sub-problems are

sensor set§ such that as many of the faulfs, fs, . .., feas {171, %2, Z3}} for fi, fa, andfs, {{z1, o, z4}} for fs and

possible become detectablelify U M. fe, and @ for f,. We have found two distinct detectabil-
The fault f, is not included inM’ and cannot be struc- [ty sets and the minimal hitting sets afe:}, {2}, and

turally detectable i/’ U Mg for any sensor séf. Thisim-  {%s,Z4}. These sets are the minimal additional measure-

plies thatfs is not isolable fromf; with any sensor addition Ments that achieve maximum single fault isolability.
and this also follows from the fact that these to faults \®la o
the same equation. The faulfs, f1, andfs in the structurally 4.3 .Se”SQF placement for both detectability and
overdetermined partM’)" = {e4, e5, 7} are according to isolability

Definition 2 structurally detectable b/’ and require no ad- We have shown how isolability can be achieved in a model
ditional measurements. Fauyfl in the just-determined part where all faults are structurally detectable. Next, we e
{e1,ea,¢e6} is not detectable, buf; can become detectable tend the presented solution to models where faults may not
in M’ U Mg if S is appropriate selected. be structurally detectable in the original model.

Sufficient and necessary requirements$gean be com- The solution is first outlined for the example described in
puted by the functiorDet ect abi | i ty described in Sec- Section 2. The faults in this model are not detectable and we
tion 4.1. By applying this function to the structurally just want to find all minimal sensor sets that maximize fault de-
determined part ofd/’, i.e. the sub-graph of/’ defined tectability and isolability. We have shown in Section 4.atth
by the node setge;, es,e6} and {1, 22,23}, we get that the minimal sets of measurements to achieve full deteetabil
D([fs]) = {x1,22,23}. Hence, one of the variables in the ity are {z:}, {z2}, and{z3,24}. If we add for example a
detectability sefz, 22, 3} must be measured to make the sensor measuring; described by an equation, we get a
faults F \ {f1, f»} detectable inM’ U Mg and this implies new modell U {e;} where all faults are detectable. Since
that all faults inF'\ { f1, f>} are isolable frony; in M U Mg.  all faults are detectable, the previously described metbod
The solution to the sub-problem related to fafylwill be the ~ achieve maximum isolability can be applied to the model
computed detectability set. The next theorem formalizes thM U {e;}. The minimal sensor sets that solve this prob-
solution of a sub-problem like the one discussed above.  lem are{z3} and{z4}. By combining this result with the

: ; fact that a sensor measuring has been added to obtain
Theorem 2 Let M be a set of equations with no structurally IR N
underdetermined partF' a set of structurally detectable detectability, it follows that{z1, zs} and {x1, 24} are two
faults in M, P C X the set of possible sensor locations, POSSIPle sensor sets that achieve maximum detectability an
and M the’equations added by adding the sensorssdtet " isolability. To compute all minimal sensor sets that achiev
MO beSthe just-determined part aff \ {e; }, FO the faults maximum isolability, we also have to investigate the solusi
contained inl/°. andD — Det ect abi | ifjf 3;(M0 O, P) when we choose to measufe,} or {x3,z4} to obtain full

. . detectability. By solving one isolability problem for each
Then the maximum possible number of faifjite F \ {f;} the minimal ts that achi i
are structurally isolable frony; in M U Mg if and only if]S e minimal sensor sets that achieves full detectabilie/gat

that the minimal sensor sets drey, zs}, {1, 24}, {22, 23},

have a non-empty intersection with all set<in {22,24}, and {x3, 24} which are the same sets as in Sec-
The result of the theorem can be summarized in a functiorion 2.
that given a model, a set of detectable faulfs in M, the The following description summaries the suggested algo-

possible sensor location8, and a faultf € F, computes rithm that given a modelM with no structurally underdeter-
the family of detectability set® that solves the isolability mined part, the faultd’, and the possible sensor locations
sub-problem forf. P, computes the familyS of all minimal sensor sets that
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achieve maximum isolability. In the algorithm the join op- Controller+
eration of two multisetsA and B will be used. The join op- ®\i \
N

eration is denoted byl W B and is defined as the multiset Z
containing all elements il U B with a multiplicity equal T— )
to the sum of the multiplicities i and B. For example
{iL’l,l'Q}H‘J{Il} :{Il,zl,xg}. =
function S = Sensor Pl acenent (M,F,P)
S =g, X
M?° = just—determined part ob; ®) ®) @
FO =the set of faults F included inM"Y;
D =Detectability(M°F°P), Figure 6: DAMADICS valve
Sq = MinimalHittingSetsD);
for S; € Sy . -
Create the extended modef, = M U Mg ; Figure 5. These_: faults and the original faultsfinare then
F, =the faults included inM,; stored on line 9 irF. . ,
D=Isol abi | i t y(M.,F.,P); The purpose of lines 10-11 is to, given the extended model
S; = MinimalHittingSetsD); M., find the familyS; of all minimal additional sensor sets
S=8SuU{S;wslS eS8} S’ achieving maximum isolability among both the faults in
end F, and the sensor faults associated with the additional sen-
Delete non-minimal sensor sets iiS; sorsS’. The next result states that$f achieves maximum

isolability among the fault$?,, thenS’ also achieves the max-

4.4 Adding sensors with faults imum isolability among all faults including the faults iatr
) 9 duced by the sensors 8.

Sensors might have corresponding sensor faults. When _ _
adding a sensor, it is possible that a new fault is introduced heorem 4 Let M be a model with no underdetermined part
into the model and in this section it is shown how these addiand F' a set of structurally detectable faults . Further-
tional sensor faults can be handled. more, letMg be an equation set describing additional sen-
Consider again the example introduced in Section 2 an§0rs andFs the associated set of sensor faults. Then for any
assume now that we want to find all minimal sensor sets tha3€nsor faultf € Fs and for any faultf’ € (F'U Fs) \ {f},
maximize the fault isolability when all sensors introduesn it holds thatf is isolable from/f’ and f" is isolable fromf in
possible faults. To do this, we will follow the algorithm M U Ms.

Sensor Pl acenent and describe how some of the lines  The theorem shows that once sensors and sensor faults
should be modified to cope with additional sensor faults.  have been added to the original model on line 8, the minimal
The additional sensors that have a corresponding sensggditional sensor sets to achieve maximum isolability aan b
fault have to be specified in the algorithm. This is done bycomputed exactly as before, i.e., the lines 10-14 need not be
introducing an additional input sét; C P where sensors changed. In conclusion, the only difference in the function
measuring variables i’y may become faulty and the other Sensor Pl acement when considering sensor faults is to

sensors may not. For the exampte is equal toP. add the additional inpuP; that should be used in the cre-
The purpose of line 5 and 6 is to compute all sensor setstion of the extended moda¥, on line 8.

that achieves full deteCtabIIIty In Se.C'Fion 4.1, it waswho A difference in the result from the case when not con-
that{z:}, {z2}, or {z3, 24} are the minimal sensor sets that sjdering sensor faults is that the solution might include

make the original faults;, ..., fi detectable and the next two sensors measuring the same variable. For the exam-
Fheorem shows that all additional sensors faults will agtbm p|e1 the minimal sensor sets when Considering sensor faults
ically become detectable. are {z1,z1, 23}, {x1, 21,24}, {x1, 22,23}, {21,22,24},

Theorem 3 Let M be a model with no underdetermined part {z1, 3, 24}, {22, 22,23}, {2, 22,24}, {z2, 25,24}, and
and letz be a measured variable with a sensor described b3, ¥3, T4, T4}

an equatiore ¢ M. Then, a sensor fault violating will be

structurally detectable id/ U {e}. 5 Example

The result of this theorem is for the example that}, @ The example used to illustrate the results is an industrial
{z2}, and {z3, x4} are the minimal sensor sets that makevalve. A schematic figure of the valve is shown in Figure 6
all faults, including the new faults introduced by the addedand consists of three main components: the control valve, a
sensors, detectable. Hence the inputs to the functioby-pass valve, and a spring-and-diaphragm pneumatic-servo
Det ect abi | i t y described in Section 4.1 do not need to motor to operate the valve plug. The figure also shows an in-
be changed at all. ternal control loop that is used to increase the accuradyeof t

On line 7, a minimal sensor sé&t that achieves full de- valve plug positioning. Details of this model is not inclade
tectability is selected and on line 8 the equatidids, are in this presentation and interested readers are referredyto
added to the original model to form the extended maddegl [Syfertet al, 2003 and the references therein. The structure
If the sensors may become faulty, i.e.sifc S; belongs to  of the model that is used here is derived Dilstegr et al,,

Py, then these faults must be added to the model as done 2004.



b e has7 or 8 sensors and one minimal set is to add sensors mea-

,T suring the variable Ps, P, P.,Q, Q, Q.3,z}. Note here
| that we need to add sensors each for the variabl&s and

b i oo ok Q. With these sensors, all faults are isolable from each other
JINCN /N S Un fsh {fis} {fo o} except for the pair§ f4, f11}, {f1, f5}, and{ fo, fi}. Thisis
’ ’ 1 because these faults cannot be isolated by adding more sen-
{a, fun} sors measuring unknown variables since they appear in the
same equation in the model. The only solution is to do further
Ut sk o} fault modeling[Frisk et al, 2003 or, possibly rather unreal-
istic, include a sensor that measures the fault signal tiirec
{f1a} as in[Commaultet al., 2004 .
(a) Order among strongly (b) Order among the
connected components. Itequivalence classes on
is also noted, with dashedthe set of faults. 6 Related Work
arrows, where some impor- Sensor placement for diagnosis and fault detection is a well
tant faults appear in the studied problem considering many different aspects. Tikis d
model. cussion on relations to other works will focus on three paper

that all have problem formulations with strong similassti®
Figure 7: Order among strongly connected components anthis paper.
faults for the Damadics valve model. In [Commaultet al,, 2004 the sensor placement problem is
addressed using input-output separators in a graph-beged r
uEesentation of the system model. A main difference to our pa-
arer is that Commault et.al. aims at adding sensors such that,
Hgéhe linear case, it is possible to obtain a diagonal temsf
matrix from faults to residual. This is often a rather unteal
istic goal since this is only possible if there are more senso
than faults and for example if the added sensors may become
faulty it is generically not possible to solve the posed prob
lem. In addition it is in the paper assumed that fault signals
can be measured which is an unrealistic assumption.
The basic problem formulation ifRaghurajet al, 1999

; ; ; is almost identical to our paper but the model description is
variablez 1o are assumed to be possible sensor locations. déslittle bit different. It is a graph-based description ahet

course no fault variableg can be measured. This leaves US 4o not allow cycles in the graph and this results in loss of

with & model, which has no underdetermined part, COnSiSti'solabili erformance in the solution. A drawback witleth
ing of 17 equations in6 unknown variables antR different ty performa . . . .
faults. proposed solution is that their algorithm does not find ali-mi

First, to determine which sensors that are necessary timal sensor sets, the result does not even need to be minimal.
O - . Plowever, it should be possible to use a minimal hitting set al
obtain detectability of all faults, the partial orders ore th orithm, instead of their greedy search, to obtain all madim
strongly connected components and the fault equw_alenc olution’s to their posed problem. Anotﬁer pair of differemnc
%?sbsgt?] araertfgrg?gé?g' Eg#ireuzes;'_%wif ighilggstsf a?',{?]%rrzrglse that they do not consider faults in the added sensors and
are threepmaximal elements o?the ordefi, fs}, { fis}, and also that faults entering in more than one equation is tdeate
by JoJr 1J18) in a non-standard way. For example, in their approach it is

{fs, f16}- Thus, obtaining detectability of these faults will : ;
automatically provide detectability of all other faultst is not possible to add sensors such that the faults in the model

noted in Figure 7-a which strongly connected components the ) 1 1

maximal faults influence. Theorem 1 then gives that a sen- &= Ar+ [1 2} f

sor set achieving detectability has a non-empty intersecti

D([f]) for each maximal fault class. The unknown variablesare isolable which is clearly possible.

that appear in each relevant strongly connected component A third related work is[Trave-Massugs et al., 2004

areX; = {P.}, X5 = {Q}, X6 = {Q.}, X11 = {Qu.3}  where the problem is approached by hypothesizing sensors

and thenD({ f1, fs}) = {Q,Q.}, D({f1s}) = {Q,Q.3},  and then computing the set of analytical redundancy rela-

and D({fo, fis}) = {P.}. By computing minimal hitting tions (ARR), using all possible causalities, tracing thp-su

sets for these three sets one obtains two minimal sensor sgisrt of each ARR and then obtain isolability properties &f th

{P,,Q} and{P,,Q,,Q,3} and it can be verified using Def- model. Trag-Massugs et.al. assumes exoneration, i.e. that

inition 2 that all faults then become detectable. a fault always makes the corresponding residuals to exceed
Adding any of the above set of sensors only achieves detheir thresholds, which is not assumed in our paper sinse thi

tectability of the faults and does not give full isolabiligun-  is a rather unrealistic assumption. Our approach computes

ning the algorithm from Section 4.4, computing sensor setsvhich sensors to add to obtain a certain isolability perfor-

that achieves maximum isolability also for faults in the newmance whileg[ Trave-Massugset al, 2006 does it the other

sensors, give8 minimal sensor sets. The minimal sensor setsway around, adding all possible sensors and then removing

The original model included a specified set of sensors b
since the objective here is to perform sensor placement an
ysis, almost all sensors has been removed. Three sensors
been kept, measurements of the two ambient presdtres
P,, and the measurement of the valve positiothat is used
in the internal control loop. A fault, denotefd, in the model,
influences2 equations and therefore a dummy variabjey,
and an equatiom 1o = fio is introduced to ensure that the
assumption that each fault only influendesquation holds.
In this example, all unknown variablesceptthe dummy



sensors until isolability performance decreases. Onexan e Conflicts versus analytical redundancy relations: a com-
pect severe complexity problems with such an approach since parative analysis of the model based diagnosis approach
the number of ARR:s is exponential in the redundancy of the from the artificial intelligence and automatic control per-
model[Krysandeeet al., 2007 and by adding all possible sen-  spectiveslEEE Transaction on Systems, Man, and Cyber-
sors you obtain maximum redundancy. Another difference netics — Part B34(5):2163-2177, 2004.

worth noting is that the performance measure in their PaP€fge Kleer, 1987 J. de Kleer. Diagnosing multiple faultar-

is a scalar value, the diagnosability degree, equal to tbe qu ~ ificial Intelli .07_

; gence 32(1):97-130, 1987.

tient of the number of fault classes by the number of faults, ) ] ) )

However, different sensor setups may have different isislab LDUSte@r et al, 2004 Dilek Dustegr, Erik Frisk, Vincent

This is the reason why the complete isolability relatiothea Structural analysis of fault isolability in the DAMADICS
than e.g. the diagnosability degree, is used as a perfoenanc Penchmark. Control Engineering Practice 14(6):597—
measure in our paper. Similar to our paper, Erlassugs 608, 2006.

et.al. also includes the case where the new sensors also mEyulmage and Mendelsohn, 1958.. L. Dulmage and N. S.
become faulty. However, typically this also means that you Mendelsohn. Coverings of bipartite graph€anadian
may have to add more than one sensor to a specific variable Journal of Mathematicsl0:517-534, 1958.

and this is not covered iTrave-Massugset al., 2004 indi- [Frisket al, 2009 Erik Frisk, Dilek Diistegr, Mattias

cating possibly incomplete results. Krysander, and Vincent Cocquempot. Improving fault
; isolability properties by structural analysis of faulty-be
7 Conclusions havior models: application to the DAMADICS benchmark
The sensor placement problem has been addressed in this pa-problem. InProceedings of IFAC Safeprocess, ®8ash-
per. The objective is to add sensors such that maximum fault ington, USA, 2003.
Cosa vaables cannot be measured and this mformation nelifySander and Frisk, 2007, Krysander and E. Fisk.
to be considered in an analysis. In addition, new sensors may Some theoretical results on sensor placement for diag-
: | -7 nosis based on fault isolability specifications. Techni-
of course also become faulty and these faults must also be in- cal Report LITH-R-2770. ISY. Linkoina. Sweden. 2007
cluded in the analysis. Typically, this means that more than ht t _F/)/ fs i ,I s / g gl* Ccat i ' | '
one sensor have to be added measuring a specific signal. P- I WMWY TS. 1 Sy. T1U. se/Fubl C? Lonst.
A key contribution is a new algorithm for sensor placementlKrysanderet al,, 2007 Mattias Krysander, JaAslund, and
that cope with all aspects mentioned above. Given a model, Mattias Nyberg. An efficient algorithm for finding min-
the possible sensor locations and a specification of which se  imal over-constrained sub-systems for model-based diag-
sors that may be faulty the algorithm computes all minimal nosis. Accepted for publication in IEEE Transactions on
sensor sets that make, as far as possible, faults isolafste fr ~ Systems, Man, and Cybernetics — Part A: Systems and Hu-
each other. Typically there is a cost associated with egméaty ~ mans 2007.
of sensor, for example price, maintenance cost, religlgiit.  [Krysander, 200 Mattias Krysander.Design and Analysis
This means that the sensor set with the least number of sen- of pjagnosis Systems Using Structural Metha@sD the-
sor;hmay not .be”the. t.)estI choice. Since the re_sur:tfof thedal- sis, Linkdpings universitet, June 2006.
gorithm contairall minimal sensor sets, it is straightforwar . . .
to pose an optimality condition regarding cost to find thet bes[P0ix et al, 2003 S. Ploix, M. Desinde, and S. Touaf. Au-
choice of sensors to add. tomatic design of detection tests in complex dynamic sys-
The algorithm has been applied to a non-trivial industrial tems. In Proceedings of l6t.h IFAC World Congress,
valve model with 17 equations and 15 possible sensor po- Frague Prague, Czech Republic, 2005.
sitions. The result was 8 minimal sensor sets that achievERaghuragt al, 1999 R. Raghuraj, M. Bhushan, and
maximum isolability also for faults in the added sensorse Th  R. Rengaswamy. Locationg sensors in complex chemi-
minimal sensor sets have 7 or 8 sensors and several of them cal plants based on fault diagnostic observability ciiteri
contain 2 sensors at the same position. A Matlab implemen- AIChE, 45(2):310-322, 1999.

Fationl of the algo;ithm is availabltla at ¢ p: /I/ wwv. fS. [Reiter, 1987 R. Reiter. A theory of diagnosis from first
i sy.liu.se/Software/ SensPl aceTool /. principles. Artificial Intelligence 32(1):57-95, 1987.
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