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Abstract

An algorithm is developed for computing which
sensors to add to obtain maximum fault detectabil-
ity and fault isolability. The method is based
on only the structural information in a model
which means that large and non-linear differential-
algebraic models can be handled in an efficient
manner. The approach is exemplified on a model
of an industrial valve where the benefits and prop-
erties of the method is clearly shown.

1 Introduction
Fault diagnosis and process supervision is an increasinglyim-
portant topic in many industrial applications and there are
many publications in this area, see for example[Blanke et
al., 2003] and the references therein. To be able to perform
model based supervision, some redundancy is needed and this
redundancy is typically provided by sensors mounted on the
process. Scientific attention has mainly been devoted to the
design of a diagnosis system, given a model of a process
equipped with a set of sensors. Not as much attention has
yet been devoted to decide which sensors to include in the
process.

There are many types of performance measures in diagno-
sis, for example detection performance, false alarm probabil-
ities, time to detection etc. In this paper, sensors are placed
such that maximum detectability and isolability is possible,
i.e. faults in different components should, as far as possible,
be able to be isolated from each other. Since sensor place-
ment is often done early in the design phase, possibly before
a reliable process model can be developed, the method devel-
oped in this paper is based on a structural process model. This
is a coarse model description that can be obtained early and
without major engineering efforts. Also, this means that large
and non-linear differential-algebraic models can be handled
in an efficient manner. The drawback with structural meth-
ods is that only best case results are obtained, see[Krysander,
2006] for a more on depth discussion on this.

2 Problem Formulation
Before the main objective of the paper is formally presented,
a small example is discussed that illustrates the fundamental

problems in sensor placement for fault diagnosis. The ex-
ample is modeled by a fifth order linear system of ordinary
differential equations. This example will be used through-
out the paper, although the results will be equally applicable
to large scale, non-linear, differential-algebraic models. The
model consists of the following equations

e1 : ẋ1 = −x1 + x2 + x5

e2 : ẋ2 = −2x2 + x3 + x4

e3 : ẋ3 = −3x3 + x5 + f1 + f2

e4 : ẋ4 = −4x4 + x5 + f3

e5 : ẋ5 = −5x5 + u + f4

wherexi are the state variables,u a known control signal, and
fi the faults we want to detect and isolate. Since there are no
specified sensors there is no redundancy and the faults are not
detectable.

In this example, faults are modeled by fault signals that are
included in the model equations andfi 6= 0 indicates a fault.
A more general way to include faults is to assign assumptions,
or support, to the equations. This type of fault modeling can
also easily be used with the approach that will be presented
later but for sake of simplicity, fault signal modeling willbe
used in the paper. Also, from now on only single faults will
be considered andfi will then be used to denote both the fault
signal and the fault mode.

Now, defineminimal sensor setwhich is a minimal set of
sensors to add to achieve maximum fault isolability.
Definition 1 (Minimal sensor set) LetS be the set of possi-
ble sensor locations, i.e. the set of measurable variables,and
let S be a multiset defined onS. ThenS is a minimal sensor
set if adding the sensors inS give maximum fault isolability
and all proper subsets ofS do not.
Note thatS is a multiset, which is similar to a set but allows
multiple instances of a member. Generalizations of the stan-
dard set operations like union and intersection are straightfor-
ward. Multisets are used instead of regular sets since it may
be necessary to add more than one sensor measuring the same
variable.

Returning to the example, a first question is then what are
the minimal sensor sets achieving detectability of all faults?
Here it is assumed that sensors measure a state-variable or a
function thereof. It can be shown, using conditions for fault
detectability in linear systems, that{x1}, {x2}, {x3, x4} are
all minimal sensor sets achieving detectability of all faults.



A second step is to not only require detectability, but also
isolability properties. Here isolability refers to isolability as
it is commonly used in FDI and the consistency based di-
agnosis AI community, see e.g.[Cordieret al., 2004]. For
details on how isolability is defined in this paper, see Sec-
tions 3 and 4. It can be shown that there are5 minimal sensor
sets that achieve maximal fault isolation:{x1, x3}, {x1, x4},
{x2, x3}, {x2, x4}, and{x3, x4}. Thus, adding sensors mea-
suring the variables in any of these sets, or a superset of the
variables, achieves maximum fault isolability.

Now, it is of course the case that the new sensors may also
become faulty. If we want also faults in the new sensors to be
isolable from the other faults we may have to add additional
sensors. In this case, if maximum fault isolability is desired
also for faults in the new sensors, there are9 minimal sensor
sets where one sensor set is two sensors measuringx1 and
one forx3, i.e. the multisetS = {x1, x1, x3}.

The problem formulation can now be stated as:

Given a model and possible sensor locations, find
all minimal sensor sets with the maximum possible
fault isolability.

The methods developed in sections that now follow
aim at addressing this problem for general, non-linear and
differential-algebraic models. Doing this analytically is diffi-
cult since then inference concerning solutions to the model
equations is needed. Instead, a method based on utilizing
only the structure of the model is employed. This gives
generic results that hold in a best-case situation. An advan-
tage is that large models can be handled in an efficient man-
ner. See Section 3 for some further results on the relation be-
tween structural and analytical properties of a model. See also
[Krysander, 2006] for an in depth discussion on this topic.

3 Theoretical Background

The sensor placement problem will here be solved using a
structural representation of the model. The structural repre-
sentation of a set of equationsM with unknown variablesX
is a bipartite graph with variables and equations as node sets.
The known variables are, in this paper, omitted in the struc-
ture because they will not be needed for the analysis. There is
an edge in the graph between a node representing an equation
e ∈ M and node representing an unknown variablex ∈ X if
the variablex is contained ine. A bipartite graph can be de-
scribed by a biadjacency matrix where the rows and columns
correspond to the node sets and the position(i, j) is one if
there is an edge between nodei andj, and a zero otherwise.

Structural methods can be applied to dynamical systems
and the structure of the dynamic example formulated in Sec-
tion 2 is shown in Figure 1 as a biadjacency matrix of the
bipartite graph. The position(ei, xj) is one ifxj or any time-
derivative appear in equationei. This structural representa-
tion of dynamical systems has been used in for example[Frisk
et al., 2003] and[Ploix et al., 2005]. There exist other struc-
tural representations of dynamical systems, but the one used
here is a compact representation suitable for the sensor place-
ment problem[Krysander, 2006].
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Figure 1: Structure of the linear example in Section 2. Gray
areas indicate non-zero elements.

3.1 Dulmage-Mendelsohn decomposition
We will frequently use the Dulmage-Mendelsohn decom-
position [Dulmage and Mendelsohn, 1958] which is illus-
trated in Figure 2. The decomposition defines a partition
(M0,M1, . . . ,Mn,M∞) of the set of equationsM , a similar
partition of the set of unknownsX, and a partial order on the
setsMi. If the rows and columns are rearranged according to
this order, the biadjacency matrix has the form shown in Fig-
ure 2. There are zero entries in the white parts of the matrix
and there might be ones in the gray-shaded parts. Three main
parts ofM can be identified in the partition,M0 is called the
structurally underdetermined part,∪n

i=1Mi is the structurally
just-determined part, andM∞ is the structurally overdeter-
mined part. In the figure, each pair(Mi,Xi) is related to a
block which is denoted bybi.
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Figure 2: Dulmage-Mendelsohn decomposition

Diagnosis related treatments of Dulmage-Mendelsohn de-
composition can be found in e.g.[Blanke et al., 2003;
Krysander, 2006].

3.2 Structural formulation of fault diagnosis
In this section, we will give structural characterizationsof
fault diagnosis properties. By doing this, the sensor place-
ment problem can be formulated as a graph theoretical prob-
lem.

LetM denote a set of equations andF a set of single faults.
Without loss of generality, it is possible to assume that a sin-
gle fault can only violate one equation. If a fault signalf ap-
pears in more than one equation, we simply replacef in the
equations with a new variablexf and add equationf = xf

which then will be the only equation violated by this fault.
An example of this procedure is also given in the example in
Section 5. Letef ∈ M be the equation that might be violated



by a faultf ∈ F . For the example introduced in Section 2,
ef1

= ef2
= e3, ef3

= e4, andef4
= e5.

An equation is, in the generic case, monitorable if it is con-
tained in the structurally overdetermined part ofM [Blanke
et al., 2003]. If the structurally overdetermined part of a set
of equationsM is denoted byM+, then the structural char-
acterization of detectability can be defined as follows.

Definition 2 A fault f is structurally detectable in a model
M if ef ∈ M+.

Returning to the example and illustrating the correspon-
dence between detectable faults and structurally detectable
faults, assume that a sensory measuringx4 has been added
to the process and included in the model bye6 : y = x4.
The faultsf3 andf4 are the detectable faults and a residual
capable of detecting them is

r = 20y + 9ẏ + ÿ − u = 5f3 + ḟ3 + f4

which in fact is the only residual generator for this model
modulo post filtering. Thus, faultsf1 and f2 are not de-
tectable. The structurally overdetermined partM+ of the
modelM = {e1, e2, e3, e4, e5, e6} is equal to{e4, e5, e6}.
The equationsef3

= e4 andef4
= e5 corresponding to the

detectable faultsf3 andf4 belong toM+, but not the equa-
tions corresponding to the other faults. This implies accord-
ing to Definition 2 that the detectable faults,f3 andf4, are
the structurally detectable faults inM which is in accordance
with the analytical result above.

Detection is a special case of isolation, i.e. a fault is de-
tectable if the fault is isolable from the no-fault mode. By not-
ing this similarity, it holds that a faultfi, isolable fromfj , can
violate a monitorable equation in the model describing the be-
havior of the process having a faultfj . The equations valid
with a faultfj is M \ {efj

} and the monitorable part of these
equations is, in the generic case, equal to(M \{efj

})+. This
motivates the following structural characterization of isola-
bility.

Definition 3 A fault fi is structurally isolable fromfj in a
modelM if efi

∈ (M \ {efj
})+.

The structural detectability and isolability definitions will
next be used in a structural approach for solving the sensor
placement problem.

4 A Structural Approach
Theoretical results and an algorithm to solve the problem
posed in Section 2 is here formulated using the theory in Sec-
tion 3. Due to space limitations, all proofs are omitted but can
be found in[Krysander and Frisk, 2007].

A general assumption of the approach is that the model
does not contain any underdetermined part. This is not a re-
strictive assumption since any complete physical model will,
given an initial condition, have a unique solution and thereby
no underdetermined part. Without loss of generality, it is also
assumed that no fault affects more than one equation and that
possible sensors measure a function of one unknown variable.
In case there are possible sensors that measure some function
h of more than one unknown variable, include a new equation
xnew = h(x) in the model.
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Figure 3: Hasse diagram of the partial order over the set of
strongly connected componentsB.

4.1 Sensor placement for detectability
A basic building block in the final algorithm will be to find
minimal sensor sets that achieve structural detectabilityof
faults in an exactly determined set of equations. This section
will be devoted to solving this sub-problem by first outlining
the solution for the example system from Section 2 and then
formally stating the solution. Although the example is given
by analytical equations, all results in this section are based on
the structural model only.

The example model is, without any additional sensors, an
exactly determined set of equations with5 equations and5
unknown variablesxi, i.e. all faults are undetectable. Con-
sider first the faultf3. To make this fault detectable, accord-
ing to Definition 2, an additional sensor is needed such that
equationef3

= e4 becomes a member of the overdetermined
part of the model.

It is straightforward to verify thatf3 becomes detectable
if and only if any of the variables{x1, x2, x4} are mea-
sured. For example, measuringx4 makes the new measure-
ment equation together with equationse4 ande5 an overde-
termined set of equations. For this set of equations, a residual
generator which is sensitive to faultf3 can easily be derived.
A similar line of reasoning can be made when measuringx1

or x2.
Then, why arex1, x2, andx4 exactly those measurements

that give detectability off3? The explanation can be seen in
Figure 1 where it can be noted that blockb1 is connected with
b2 via a non-zero element in position(1, 2) and in a similar
fashion isb2 connected tob4. Thus, there is a connection
between variablesx1, x2, andx4, which is precisely the vari-
able in blockb4 including faultf3. Measuringx3, i.e. the
variable inb3, do not give detectability off3 since there is no
connection betweenb3 and blockb4.

The above reasoning indicates that some order between the
strongly connected components might be useful. Let the ex-
actly determined part of Figure 2 be the adjacency matrix of
a directed graph on the set of strongly connected components
bi. A non-zero element in block(i, j) indicates a directed
edge frombi to bj . A partial order on the blocks can then be
defined asbi ≤ bj if and only if there is a path frombi to
bj . Figure 3 shows the Hasse diagram of the ordering of the
strongly connected components for the example.

With this ordering one can state exactly which parts of
an exactly determined model that becomes overdetermined
when adding a sensor. The following lemma formalizes the
discussion above. This also gives, according to Definition 2,
which faults that become detectable as a result of adding a
sensor.
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Figure 4: Hasse diagram of the partial order for the linear
example over the set of fault classes. In Figure 1 it can be
seen that[f1] = [f2]. Classes[f1] and [f3] are the maximal
elements of the partial order.

Lemma 1 Let M be an exactly determined set of equations,
bi a strongly connected component inM , and e 6∈ M an
equation corresponding to measuring any variable inbi.
Then

(M ∪ {e})+ = {e} ∪ (∪j:bj≤bi
Mj)

Achieving detectability of one fault affecting a strongly con-
nected component immediately implies detectability of all
faults affecting the same component. Therefore it makes
sense to define an equivalence relation on the set of faults
where all faults influencing the same strongly connected com-
ponent are equivalent. A set of equivalent faults is denotedas
[fi] wherefi is one element in the equivalence class. Now,
based on Lemma 1, it is clear that measuring a variable in a
block ordered higher than the block the fault enters achieves
detectability. LetP ⊆ X be a set of possible sensor locations
and introduce the set

D([fi]) = {x|bj ∈ B ∧ bi ≤ bj ∧ x ∈ Xj ∩ P}

whereXj is the set of variables corresponding to blockbj ,
B the set of strongly connected components, andbi the block
that is influenced by the faults in[fi]. The setD([fi]) is thus
the set of variables such that measuringany variable in the
set achieves detectability of all faults in the equivalenceclass
[fi].

Returning to the example and utilizing the result above,
one can see that detectability off4 comes automatically when
adding sensors to achieve detectability of either the faults in
[f1] or [f3]. This is becauseb5 is less or equal than bothb3

andb4 and according to Lemma 1, blockb5 is automatically
included in any overdetermined set of equations when[f1] or
[f3] are made detectable. This means that it is only neces-
sary to ensure detectability for a subset of the fault classes to
ensure detectability of all faults. To illustrate exactly which
classes, introduce an order on the equivalence classes ofF ,
defined as[fi] ≤ [fj ] if bi ≤ bj wherebk is the block where
the faults in[fk] enters the model. Figure 4 shows the Hasse
diagram of the partial order for the example model. Here one
can see that in the example it is necessary and sufficient to
ensure detectability of the maximal elements of the partial
order. In the example the set of possible sensor locations is
X, but with aP that is a proper subset ofX one might have
the case where a maximal fault class is not detectable regard-
less of which sensors inP that is added. In such a case, one
need to consider the maximal elements among the detectable
fault classes.

The following theorem proves the general result and sum-
marizes the discussion of this section.
Theorem 1 LetM be an exactly determined set of equations,
F the corresponding set of faults,P ⊆ X the set of possi-
ble sensor locations, andMS the equations corresponding

to adding a set of sensorsS. Then maximal detectability of
faultsF in M ∪ MS are obtained if and only ifS has a non-
empty intersection withD([f ]) for all [f ] ∈ Fm whereFm is
the set of maximal fault classes among the fault classes with
D([f ]) 6= ∅.

The above result can be summarized in an algorithm that
given a modelM , faultsF , and a set of possible sensor loca-
tionsP , computes the family of detectability setsD.

1 function D = Detectability(M ,F ,P )
2 Compute block and fault class orders usingM ;
3 Fm = set of maximal fault classes[f ] s.t.D([f ]) 6= ∅;
4 D={D([f ])|[f ] ∈ Fm};

Our objective was not to compute the set of detectability sets
D, but rather minimal sensor sets. For this, note that a hitting
set for a family of sets is a set that has non-empty intersection
with each set in the family. Thus, a minimal hitting set algo-
rithm [Reiter, 1987; de Kleer, 1987] applied to the family of
setsD can be used to efficiently find all minimal sensor sets.

For the example model, as previously noted, the maxi-
mal fault classes are[f1] and[f3] and the corresponding de-
tectability sets areD([f1]) = {x1, x2, x3} and D([f3]) =
{x1, x2, x4}. Theorem 1 gives that the minimal sensor sets
that achieve detectability of all faults are{x1}, {x2}, and
{x3, x4}, which are the same sensor sets as was determined
in Section 2.

4.2 Sensor placement for isolability of detectable
faults

This section describes the basic ideas of how to find the min-
imal sensor sets such that maximum single fault isolabilityis
obtained under the assumption that all faults are structurally
detectable. In the next section this assumption will be re-
moved.

The problem of achieving maximum isolability of the set
of single faultsF can be divided into|F | sub-problems, one
for each fault, as follows. For each faultfj ∈ F , find all
measurements that make the maximum possible number of
faults fi ∈ F \ {fj} isolable fromfj . The solution to the
isolability problem will then be obtained by combining the
results from all sub-problems.

Each sub-problem can be formulated as a detectability
problem, as will be shown next. Assume thatM is a model,
including sensors such that all faults are detectable, andMS

represents a set of equations describing an additional sensor
setS. Given the sensor setS, a faultfi is isolable fromfj in
the modelM ∪MS if efi

∈ ((M ∪MS) \ {efj
})+ according

to Definition 3. By introducingM ′ = M \ {efj
}, this can be

written as
efi

∈ (M ′ ∪ MS)+ (1)

which according to Definition 2 means thatfi is structurally
detectable inM ′ ∪ MS . Hence the maximum possible num-
ber of faultsfi ∈ F \ {fj} are isolable fromfj in M ∪ MS

if the maximum possible number of faultsfi ∈ F \ {fj}
are structurally detectable in the model(M ∪ MS) \ {efj

}.
This shows that each sub-problem can be formulated as a de-
tectability problem.

Next, we use the example formulated in Section 2 to out-
line the solution of one sub-problem before formally stating
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Figure 5: Block structure of the example in Section 2 ex-
tended with measurements ofx3 andx4.

the solution. Assume that we have added sensors measuring
{x3, x4} such that all faults are detectable. Furthermore, as-
sume that these sensors can be faulty and denote these faults
f5 andf6 respectively. A row permuted structure of the ob-
tained modelM = {e1, e2, . . . , e7} is shown in Figure 5.

Consider the sub-problem associated with faultf1. The set
M ′ in (1) is equal toM \{ef1

} = M \{e3}. The sub-problem
is, given the modelM \ {e3}, to find the minimal additional
sensor setsS such that as many of the faultsf2, f3, . . . , f6 as
possible become detectable inM ′ ∪ MS .

The fault f2 is not included inM ′ and cannot be struc-
turally detectable inM ′ ∪ MS for any sensor setS. This im-
plies thatf2 is not isolable fromf1 with any sensor addition
and this also follows from the fact that these to faults violate
the same equation. The faultsf3, f4, andf6 in the structurally
overdetermined part(M ′)+ = {e4, e5, e7} are according to
Definition 2 structurally detectable inM ′ and require no ad-
ditional measurements. Faultf5 in the just-determined part
{e1, e2, e6} is not detectable, butf5 can become detectable
in M ′ ∪ MS if S is appropriate selected.

Sufficient and necessary requirements onS can be com-
puted by the functionDetectability described in Sec-
tion 4.1. By applying this function to the structurally just-
determined part ofM ′, i.e. the sub-graph ofM ′ defined
by the node sets{e1, e2, e6} and {x1, x2, x3}, we get that
D([f5]) = {x1, x2, x3}. Hence, one of the variables in the
detectability set{x1, x2, x3} must be measured to make the
faultsF \ {f1, f2} detectable inM ′ ∪ MS and this implies
that all faults inF \{f1, f2} are isolable fromf1 in M ∪MS .
The solution to the sub-problem related to faultf1 will be the
computed detectability set. The next theorem formalizes the
solution of a sub-problem like the one discussed above.

Theorem 2 LetM be a set of equations with no structurally
underdetermined part,F a set of structurally detectable
faults in M , P ⊆ X the set of possible sensor locations,
andMS the equations added by adding the sensor setS. Let
M0 be the just-determined part ofM \ {efj

}, F 0 the faults
contained inM0, andD = Detectability(M0, F 0, P ).
Then the maximum possible number of faultsfi ∈ F \ {fj}
are structurally isolable fromfj in M ∪ MS if and only ifS
have a non-empty intersection with all sets inD.

The result of the theorem can be summarized in a function
that given a modelM , a set of detectable faultsF in M , the
possible sensor locationsP , and a faultf ∈ F , computes
the family of detectability setsD that solves the isolability
sub-problem forf .

1 function D = IsolabilitySubProblem(M ,F ,P ,f )
2 M0 = just−determined part ofM \ {ef};
3 F 0 = the set of faultsF included inM0;
4 D = Detectability(M0,F 0,P );

An additional sensor set that maximizes the set of fault pairs
(fi, fj) such thatfi is structurally isolable fromfj must have
a non-empty intersection with all detectability sets foundin
all sub-problems.

1 function D = Isolability(M ,F ,P )
2 D = ∅;
3 for fi ∈ F
4 F ′ = F \ {fi};
5 D = D∪ IsolabilitySubProblem(M ,F ′,P ,fi);
6 end

The minimal sensor sets that maximize the isolability can be
found by applying a minimal hitting set algorithm to the sets
in the outputD.

For the example shown in Figure 5, the families
of detectability sets of the different sub-problems are
{{x1, x2, x3}} for f1, f2, andf5, {{x1, x2, x4}} for f3 and
f6, and ∅ for f4. We have found two distinct detectabil-
ity sets and the minimal hitting sets are{x1}, {x2}, and
{x3, x4}. These sets are the minimal additional measure-
ments that achieve maximum single fault isolability.

4.3 Sensor placement for both detectability and
isolability

We have shown how isolability can be achieved in a model
where all faults are structurally detectable. Next, we willex-
tend the presented solution to models where faults may not
be structurally detectable in the original model.

The solution is first outlined for the example described in
Section 2. The faults in this model are not detectable and we
want to find all minimal sensor sets that maximize fault de-
tectability and isolability. We have shown in Section 4.1 that
the minimal sets of measurements to achieve full detectabil-
ity are {x1}, {x2}, and{x3, x4}. If we add for example a
sensor measuringx1 described by an equationes, we get a
new modelM ∪ {es} where all faults are detectable. Since
all faults are detectable, the previously described methodto
achieve maximum isolability can be applied to the model
M ∪ {es}. The minimal sensor sets that solve this prob-
lem are{x3} and{x4}. By combining this result with the
fact that a sensor measuringx1 has been added to obtain
detectability, it follows that{x1, x3} and {x1, x4} are two
possible sensor sets that achieve maximum detectability and
isolability. To compute all minimal sensor sets that achieve
maximum isolability, we also have to investigate the solutions
when we choose to measure{x2} or {x3, x4} to obtain full
detectability. By solving one isolability problem for eachof
the minimal sensor sets that achieves full detectability, we get
that the minimal sensor sets are{x1, x3}, {x1, x4}, {x2, x3},
{x2, x4}, and{x3, x4} which are the same sets as in Sec-
tion 2.

The following description summaries the suggested algo-
rithm that given a modelM with no structurally underdeter-
mined part, the faultsF , and the possible sensor locations
P , computes the familyS of all minimal sensor sets that



achieve maximum isolability. In the algorithm the join op-
eration of two multisetsA andB will be used. The join op-
eration is denoted byA ⊎ B and is defined as the multiset
containing all elements inA ∪ B with a multiplicity equal
to the sum of the multiplicities inA and B. For example
{x1, x2} ⊎ {x1} = {x1, x1, x2}.

1 function S = SensorPlacement(M ,F ,P )
2 S = ∅;
3 M0 = just−determined part ofM ;
4 F 0 = the set of faultsF included inM0;
5 D = Detectability(M0,F 0,P );
6 Sd = MinimalHittingSets(D);
7 for Si ∈ Sd

8 Create the extended modelMe = M ∪ MSi
;

9 Fe = the faults included inMe;
10 D = Isolability(Me,Fe,P );
11 Si = MinimalHittingSets(D);
12 S = S ∪ {Si ⊎ S′|S′ ∈ Si};
13 end
14 Delete non−minimal sensor sets inS;

4.4 Adding sensors with faults
Sensors might have corresponding sensor faults. When
adding a sensor, it is possible that a new fault is introduced
into the model and in this section it is shown how these addi-
tional sensor faults can be handled.

Consider again the example introduced in Section 2 and
assume now that we want to find all minimal sensor sets that
maximize the fault isolability when all sensors introduce new
possible faults. To do this, we will follow the algorithm
SensorPlacement and describe how some of the lines
should be modified to cope with additional sensor faults.

The additional sensors that have a corresponding sensor
fault have to be specified in the algorithm. This is done by
introducing an additional input setPf ⊆ P where sensors
measuring variables inPf may become faulty and the other
sensors may not. For the examplePf is equal toP .

The purpose of line 5 and 6 is to compute all sensor sets
that achieves full detectability. In Section 4.1, it was shown
that{x1}, {x2}, or {x3, x4} are the minimal sensor sets that
make the original faultsf1, . . . , f4 detectable and the next
theorem shows that all additional sensors faults will automat-
ically become detectable.

Theorem 3 LetM be a model with no underdetermined part
and letx be a measured variable with a sensor described by
an equatione /∈ M . Then, a sensor fault violatinge will be
structurally detectable inM ∪ {e}.

The result of this theorem is for the example that{x1},
{x2}, and {x3, x4} are the minimal sensor sets that make
all faults, including the new faults introduced by the added
sensors, detectable. Hence the inputs to the function
Detectability described in Section 4.1 do not need to
be changed at all.

On line 7, a minimal sensor setSi that achieves full de-
tectability is selected and on line 8 the equationsMSi

are
added to the original model to form the extended modelMe.
If the sensors may become faulty, i.e. ifs ∈ Si belongs to
Pf , then these faults must be added to the model as done in

ControllerE/P

P2 QT1 P1

Ps

x

Figure 6: DAMADICS valve

Figure 5. These faults and the original faults inF are then
stored on line 9 inFe.

The purpose of lines 10-11 is to, given the extended model
Me, find the familySi of all minimal additional sensor sets
S′ achieving maximum isolability among both the faults in
Fe and the sensor faults associated with the additional sen-
sorsS′. The next result states that ifS′ achieves maximum
isolability among the faultsFe, thenS′ also achieves the max-
imum isolability among all faults including the faults intro-
duced by the sensors inS′.

Theorem 4 LetM be a model with no underdetermined part
andF a set of structurally detectable faults inM . Further-
more, letMS be an equation set describing additional sen-
sors andFS the associated set of sensor faults. Then for any
sensor faultf ∈ FS and for any faultf ′ ∈ (F ∪ FS) \ {f},
it holds thatf is isolable fromf ′ andf ′ is isolable fromf in
M ∪ MS .

The theorem shows that once sensors and sensor faults
have been added to the original model on line 8, the minimal
additional sensor sets to achieve maximum isolability can be
computed exactly as before, i.e., the lines 10-14 need not be
changed. In conclusion, the only difference in the function
SensorPlacement when considering sensor faults is to
add the additional inputPf that should be used in the cre-
ation of the extended modelMe on line 8.

A difference in the result from the case when not con-
sidering sensor faults is that the solution might include
two sensors measuring the same variable. For the exam-
ple, the minimal sensor sets when considering sensor faults
are {x1, x1, x3}, {x1, x1, x4}, {x1, x2, x3}, {x1, x2, x4},
{x1, x3, x4}, {x2, x2, x3}, {x2, x2, x4}, {x2, x3, x4}, and
{x3, x3, x4, x4}.

5 Example
The example used to illustrate the results is an industrial
valve. A schematic figure of the valve is shown in Figure 6
and consists of three main components: the control valve, a
by-pass valve, and a spring-and-diaphragm pneumatic servo-
motor to operate the valve plug. The figure also shows an in-
ternal control loop that is used to increase the accuracy of the
valve plug positioning. Details of this model is not included
in this presentation and interested readers are referred toe.g.
[Syfertet al., 2003] and the references therein. The structure
of the model that is used here is derived in[Düşteg̈or et al.,
2006].
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Figure 7: Order among strongly connected components and
faults for the Damadics valve model.

The original model included a specified set of sensors but
since the objective here is to perform sensor placement anal-
ysis, almost all sensors has been removed. Three sensors has
been kept, measurements of the two ambient pressuresP1,
P2, and the measurement of the valve positionx that is used
in the internal control loop. A fault, denotedf10 in the model,
influences2 equations and therefore a dummy variablexf10,
and an equationxf10 = f10 is introduced to ensure that the
assumption that each fault only influences1 equation holds.
In this example, all unknown variablesexceptthe dummy
variablexf10 are assumed to be possible sensor locations. Of
course no fault variablesfi can be measured. This leaves us
with a model, which has no underdetermined part, consist-
ing of 17 equations in16 unknown variables and12 different
faults.

First, to determine which sensors that are necessary to
obtain detectability of all faults, the partial orders on the
strongly connected components and the fault equivalence
classes are computed. Figure 7 shows the Hasse diagrams
for both partial orders. In Figure 7-b it is clear that there
are three maximal elements of the order,{f1, f5}, {f18}, and
{f9, f16}. Thus, obtaining detectability of these faults will
automatically provide detectability of all other faults. It is
noted in Figure 7-a which strongly connected components the
maximal faults influence. Theorem 1 then gives that a sen-
sor set achieving detectability has a non-empty intersection
D([f ]) for each maximal fault class. The unknown variables
that appear in each relevant strongly connected component
areX1 = {Pz}, X5 = {Q}, X6 = {Qv}, X11 = {Qv3}
and thenD({f1, f5}) = {Q,Qv}, D({f18}) = {Q,Qv3},
andD({f9, f16}) = {Pz}. By computing minimal hitting
sets for these three sets one obtains two minimal sensor sets
{Pz, Q} and{Pz, Qv, Qv3} and it can be verified using Def-
inition 2 that all faults then become detectable.

Adding any of the above set of sensors only achieves de-
tectability of the faults and does not give full isolability. Run-
ning the algorithm from Section 4.4, computing sensor sets
that achieves maximum isolability also for faults in the new
sensors, gives8 minimal sensor sets. The minimal sensor sets

has7 or 8 sensors and one minimal set is to add sensors mea-
suring the variables{Ps, Pz, Pz, Q,Q,Qv3, x}. Note here
that we need to add2 sensors each for the variablesPz and
Q. With these sensors, all faults are isolable from each other
except for the pairs{f4, f11}, {f1, f5}, and{f9, f16}. This is
because these faults cannot be isolated by adding more sen-
sors measuring unknown variables since they appear in the
same equation in the model. The only solution is to do further
fault modeling[Frisk et al., 2003] or, possibly rather unreal-
istic, include a sensor that measures the fault signal directly
as in[Commaultet al., 2006].

6 Related Work
Sensor placement for diagnosis and fault detection is a well
studied problem considering many different aspects. This dis-
cussion on relations to other works will focus on three papers
that all have problem formulations with strong similarities to
this paper.

In [Commaultet al., 2006] the sensor placement problem is
addressed using input-output separators in a graph-based rep-
resentation of the system model. A main difference to our pa-
per is that Commault et.al. aims at adding sensors such that,
in the linear case, it is possible to obtain a diagonal transfer
matrix from faults to residual. This is often a rather unreal-
istic goal since this is only possible if there are more sensors
than faults and for example if the added sensors may become
faulty it is generically not possible to solve the posed prob-
lem. In addition it is in the paper assumed that fault signals
can be measured which is an unrealistic assumption.

The basic problem formulation in[Raghurajet al., 1999]
is almost identical to our paper but the model description is
a little bit different. It is a graph-based description and they
do not allow cycles in the graph and this results in loss of
isolability performance in the solution. A drawback with their
proposed solution is that their algorithm does not find all min-
imal sensor sets, the result does not even need to be minimal.
However, it should be possible to use a minimal hitting set al-
gorithm, instead of their greedy search, to obtain all minimal
solutions to their posed problem. Another pair of differences
are that they do not consider faults in the added sensors and
also that faults entering in more than one equation is treated
in a non-standard way. For example, in their approach it is
not possible to add sensors such that the faults in the model

ẋ = Ax +

[

1 1
1 2

]

f

are isolable which is clearly possible.
A third related work is[Travé-Massuỳes et al., 2006]

where the problem is approached by hypothesizing sensors
and then computing the set of analytical redundancy rela-
tions (ARR), using all possible causalities, tracing the sup-
port of each ARR and then obtain isolability properties of the
model. Trav́e-Massuỳes et.al. assumes exoneration, i.e. that
a fault always makes the corresponding residuals to exceed
their thresholds, which is not assumed in our paper since this
is a rather unrealistic assumption. Our approach computes
which sensors to add to obtain a certain isolability perfor-
mance while[Travé-Massuỳeset al., 2006] does it the other
way around, adding all possible sensors and then removing



sensors until isolability performance decreases. One can ex-
pect severe complexity problems with such an approach since
the number of ARR:s is exponential in the redundancy of the
model[Krysanderet al., 2007] and by adding all possible sen-
sors you obtain maximum redundancy. Another difference
worth noting is that the performance measure in their paper
is a scalar value, the diagnosability degree, equal to the quo-
tient of the number of fault classes by the number of faults.
However, different sensor setups may have different isolabil-
ity properties and still have the same diagnosability degree.
This is the reason why the complete isolability relation, rather
than e.g. the diagnosability degree, is used as a performance
measure in our paper. Similar to our paper, Travé-Massuỳes
et.al. also includes the case where the new sensors also may
become faulty. However, typically this also means that you
may have to add more than one sensor to a specific variable
and this is not covered in[Travé-Massuỳeset al., 2006] indi-
cating possibly incomplete results.

7 Conclusions
The sensor placement problem has been addressed in this pa-
per. The objective is to add sensors such that maximum fault
isolability can be achieved. It is often the case that some pro-
cess variables cannot be measured and this information need
to be considered in an analysis. In addition, new sensors may
of course also become faulty and these faults must also be in-
cluded in the analysis. Typically, this means that more than
one sensor have to be added measuring a specific signal.

A key contribution is a new algorithm for sensor placement
that cope with all aspects mentioned above. Given a model,
the possible sensor locations and a specification of which sen-
sors that may be faulty the algorithm computes all minimal
sensor sets that make, as far as possible, faults isolable from
each other. Typically there is a cost associated with each type
of sensor, for example price, maintenance cost, reliability etc.
This means that the sensor set with the least number of sen-
sors may not be the best choice. Since the result of the al-
gorithm containall minimal sensor sets, it is straightforward
to pose an optimality condition regarding cost to find the best
choice of sensors to add.

The algorithm has been applied to a non-trivial industrial
valve model with 17 equations and 15 possible sensor po-
sitions. The result was 8 minimal sensor sets that achieve
maximum isolability also for faults in the added sensors. The
minimal sensor sets have 7 or 8 sensors and several of them
contain 2 sensors at the same position. A Matlab implemen-
tation of the algorithm is available athttp://www.fs.
isy.liu.se/Software/SensPlaceTool/.
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