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Abstract
The FDI approach to model-based diagnosis is con-
sidered. We present a method for residual gener-
ation that combines integral and derivative causal-
ity, and also utilizes equation system solvers and
theory of differential-algebraic equation systems.
To achieve this, a framework for computation of
variables from sets of dependent differential and/or
algebraic equations is introduced. The proposed
method is applied to a model of the gas flow in an
automotive diesel engine. The application clearly
shows the benefit of using a mixed causality ap-
proach for residual generation compared with solely
integral or derivative causality.

1 Introduction
With the rising demand for reliability and safety of techni-
cal systems, fault diagnosis has become increasingly impor-
tant. In the FDI approach to model-based fault diagnosis, a
mathematical model of the system, together with measure-
ments, is utilized to generate residuals, used to detect and
isolate faults present in the system. One residual generation
approach [Staroswiecki and Declerck, 1989] is to, by means
of structural analysis, use a part of the model, i.e. a subset
of equations, to compute a subset of the unknown variables
and then use a redundant equation as residual. The gener-
ation of a residual will thus consist of a finite sequence of
variable computations ending with an evaluation of an un-
used equation, where the computation in each step only re-
quire variables that are known, i.e. measured, or have been
computed in some previous step. Similar methods have been
used in [Blanke et al., 2003], [Cassar and M., 1997], [Ploix
et al., 2005], [Travé-Massuyès et al., 2006], and [Pulido and
Alonso-Gonzlez, 2004].

In these previous methods, the most common approach has
been to use one equation at a time to compute one single un-
known variable in each step. This has been done by using
scalar equation solvers for algebraic equations, and by apply-
ing either integral or derivative causality for differential equa-
tions.

However, complex models contain dependencies between
equations. This fact gives rise to differential and algebraic
loops or cycles, see [Blanke et al., 2003], [Katsillis and
Chantler, 1997], which corresponds to systems of dependent
differential and/or algebraic equations. Thus, it is important
that a method for residual generation is able to handle such
systems of equations. Furthermore, as illustrated in this paper,
it may be unnecessarily limiting to consider solely integral or
derivative causality.

The main contribution in this paper is a method for resid-
ual generation that utilizes equation system solvers and com-
bines integral and derivative causality into a mixed causality
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approach. To achieve this, we present a unifying framework
for computation of variables from sets of dependent differen-
tial and algebraic equations which utilizes theory for solving
and analyzing general differential-algebraic equations. In the
proposed method, the causality of differential equations is de-
fused and the way a differential equation is handled depends
on the context in which the variables appear, the available
tools for equation solving, the available tools for approximate
differentiation of measurements, and knowledge about initial
conditions.

The paper is organized as follows. Section 2 presents
preliminaries and some basic theory and references for
differential-algebraic equations and structural analysis. In
Section 3, a framework for computation of variables from sets
of dependent differential and algebraic equations is presented.
Sections 4 to 6 presents the proposed method. In Section 7,
an application example clearly shows the benefits of using
a mixed causality approach compared with either integral or
derivative causality. Section 8 concludes the paper. Due to
the limitation of space, proofs are omitted but can be found in
[Svärd and Nyberg, 2008].

2 Preliminaries
Consider a model M(E, X, Z) or M for short, consisting of a
set of equations E = {e1, . . . , em} relating a set of unknown
variables X = {x1, . . . , xn}, and a set of known variables
Z = {z1, . . . , zp}. Introduce a third set, D = {ẋ1, . . . , ẋn},
containing the derivatives of the variables in X. Without loss
of generality, we assume that the equations in the set E are in
the form

ei : fi (ẋ, x, z) = 0, 1 ≤ i ≤ m (1)

where ẋ, x, and z are vectors of the elements in the sets D, X,
and Z, respectively.

Define the set of trajectories of variables in Z that are con-
sistent with the model M(E, X, Z) as

O (M) = {z : ∃x; fi (ẋ, x, z) = 0, 1 ≤ i ≤ m} . (2)

The set O (M) is referred to as the observation set of the
model M. A residual generator is here formally defined as
follows.

Definition 1 (Residual Generator for M(E, X, Z)). A system
with input z and output r is a residual generator for the model
M(E, X, Z) and r is a residual if z ∈ O (M) ⇒ r = 0.

2.1 Differential-Algebraic Equation Systems
It is assumed that the model (1) contains both differential and
algebraic equations, that is, it is a differential-algebraic equa-
tion (DAE) system, or descriptor system. DAE-systems ap-
pear in large classes of technical systems like mechanical-,
electrical-, and chemical systems. Further, DAE-systems are
also the result when using physically based object-oriented
modeling tools, e.g. Modelica, [Mattson et al., 1998].



A common approach when analyzing and solving general
DAE-systems, is to first seek a reformulation of the original
DAE into a simpler and well-structured description with the
same set of solutions, see [Kunkel and Mehrmann, 2006], and
[Brenan et al., 1989]. To classify how difficult such a reformu-
lation is, the concept of index has been introduced. There are
different index concepts depending on what kind of reformu-
lation that is sought. In this paper we will use the differential
index, which is defined as the number of times that all or parts
of the DAE must be differentiated with respect to time in order
to write the DAE as an ordinary differential equation (ODE),
see for example [Brenan et al., 1989]. The reformulation thus
aims to write the original DAE as an ODE, i.e. a system in
state-space form.

2.2 Structure of the Model
Let C ⊆ E and introduce the notations

varX(C) =
{

xj ∈ X : ∃ei ∈ C,
∂fi

∂xj
�≡ 0 ∨ ∂fi

∂ẋj
�≡ 0

}
,

varD(C) =
{

ẋj ∈ D : ∃ei ∈ C,
∂fi

∂ẋj
�≡ 0

}
.

Let G = (E, X, A) be a bi-partite graph where E and X are
the (disjoint) sets of vertices, and

A = {(ei, xj) : xj ∈ varX({ei}), ei ∈ E, xj ∈ X} , (3)

the set of arcs. We will call the bi-partite graph G = (E, X, A)
the structure of the model M(E, X, Z). Note that with this
representation, there is no structural difference between the
variable xj and the differentiated variable ẋj . An equivalent
representation of G is the bi-adjacency matrix defined as

B = {bij : bij = 1 if (ei, xj) ∈ A, 0 otherwise} . (4)

A matching Γ on the bi-partite graph G is a subset of A
such that no two arcs have common vertices. A matching with
maximum cardinality is a maximum matching. A matching is
a complete matching with respect to E (or X), if the matching
covers every vertex in E (or X).

By directing the arcs contained in a matching on the bi-
partite graph G in one direction, and the remaining arcs in the
opposite direction, a directed graph can be obtained from G.
A directed graph is said to be strongly connected if for every
pair of vertices xi and xj there is a directed path from xi to
xj . The maximal strongly connected subgraphs of a directed
graph is called its strongly connected components (SCC), see
for example [Asratian et al., 1998].

There exists a unique structural decomposition of the bi-
partite graph G = (E, X, A), referred to as the Dulmage-
Mendelsohn (DM) decomposition, [Dulmage and Mendel-
sohn, 1958], [Murota, 1987]. It decomposes G into irre-
ducible bi-partite subgraphs G+ = (E+, X+, A+), G0

i =
(E0

i , X0
i , A

0
i ), 1 ≤ i ≤ s, and G− = (E−, X−, A−), re-

ferred to as DM-components, see Figure 1. The component
G+ is the over-determined part of G, G0 =

⋃s
i=1 G0

i the just-
determined part, and G− the under-determined part. The DM-
components G0

i = (E0
i , X0

i , A
0
i ) correspond to the SCC of the

directed graph induced by any complete matching on the bi-
partite graph G0, [Murota, 1987].

3 Computability of Variables
Introduce the notation XI for the subset of X defined as
XI = {xi : i ∈ I}, where I ⊆ {1, . . . , n}. A similar
convention will be used to denote subsets of D, Z, and E.
Also, Ī will be used to denote the complement of the set I
in {1, . . . , n}, i.e. Ī = {1, . . . , n} \ I . To retrieve the indices
of a set of variables (or equations), the operator ind(·) is in-
troduced, i.e. ind(XI) = I . Now, let I ⊆ {1, 2, . . . , n} and
J ⊆ {1, 2, . . . , m}, and consider the sets XI and EJ .

X+ X 0 X -

E +

E 0

E -

0 0

0

E 1
0

E s
0

0

Figure 1: The bi-adjacency matrix showing the DM-
decomposition of G. The line along the diagonal in corre-
sponds to a maximum matching on G.

Definition 2 (Computability). The variables XI are com-
putable from the equations EJ if, given trajectories of the vari-
ables XĪ ∪ Z, trajectories of XI can be computed with the
available tools.

3.1 Tools for Computation of Variables
Computability of a set of variables from a set of equations
generally depends not only on the analytical properties of the
equations in the set, but also on the set of tools that are avail-
able for use. In this paper, three types of tools are considered:

DE Solving Tools: Tools for solving explicit ordinary differ-
ential equations;

AE Solving Tools: Tools for solving algebraic (not differen-
tial) equation systems;

Differentiating Tools: Tools for approximate differentiation
of measured (known) variables.

An AE solving tool is typically some software package for
symbolic or numerical equation solving. A differentiating tool
can for example be an implementation of a low-pass filter or
a smoothing-spline approximate differentiator, [Wei and Li,
2006]. In this paper, we assume that AE solving tools are
available through existing standard software packages like e.g.
Maple or Mathematica, and design and implementation of AE
solving tools will not be considered. We also assume that DE
solving tools are always available, i.e. that the states of an
explicit ordinary differential equation (a DAE of differential
index 0) can be computed if the initial conditions of the states
are known and consistent. This can be motivated by the fact
that there exist several efficient methods for solving ODEs,
see for example [Brenan et al., 1989]. Implementations are
available in for example MATLAB and SIMULINK. Of course
the assumption is not always valid and numerical solving of
ODEs involves difficulties and problems such as stability and
stiffness but this is not in the scope of this paper.

Proposition 1 (Computability). The variables XI are com-
putable from the equations EJ if

1. the available AE solving tools admits a transformation
of EJ into

ẋId = gd (ẋĪ , xĪ , xId , xIa , z) (5a)

xIa = ga (ẋĪ , xĪ , xId , z) , (5b)

where Id = ind(varD(EJ)) ∩ I , and Ia = I \ Id,

2. the initial conditions of the variables in XId are known
and consistent, and

3. the derivatives in varD(EJ) ∩ DĪ can be obtained with
the available differentiating tools.

Remark 1. If all equilibrium points of the system (5a) are,
or with for example state-feedback can be made, (globally)
asymptotically stable, the effect of the initial conditions are
neglectable and condition 2 can be removed, see for exam-
ple [Khalil, 2002].



Remark 2. One alternative to differentiate unknown vari-
ables directly, is to propagate known variables through a set
of equations so that derivatives of unknown variables can be
expressed as derivatives of known, i.e. measured, variables.
Assume for example that we want to compute the derivative
ẋ1 and we also have that x1 = z1. To compute ẋ1, we use a
differentiating tool to compute ż1 and then use ẋ1 = ż1.

There are two important special cases of computability. If
the variables XI are computable from EJ and Ia = I , Id =
∅, i.e.

xI = g (ẋĪ , xĪ , z) , (6)

the variables XI are said to be algebraically computable from
EJ . Conversely, if Id = I and Ia = ∅, i.e.

ẋI = g (ẋĪ , xĪ , xI , z) , (7)

the variables XI are said to be differentially computable from
EJ . If a set of variables is algebraically computable, so called
derivative causality is used, and if a set of variables is differ-
entially computable integral causality is used, see [Blanke et
al., 2003]. Thus, if a set of variables is computed according
to (5), or if a subset of variables in a model is algebraically
computable and another subset of variables is differentially
computable, both integral and derivative causality is used, i.e.
mixed causality.
Remark 3. If the variables XĪ are regarded as known vari-
ables and the sets Id and Ia are both non-empty, (5) is equiv-
alent to a semi-explicit DAE of differential index 1. Further-
more, (6) corresponds to an algebraic equation or equiva-
lently an explicit DAE of differential index 1, and (7) to an ex-
plicit ODE or an explicit DAE of differential index 0, see [Bre-
nan et al., 1989].

3.2 Initial Conditions and Estimation of
Derivatives

The availability of initial conditions in general depends on the
knowledge about the underlying system represented by the
model. For complex physical systems, object-oriented model-
ing tools, e.g. Modelica [Mattson et al., 1998], are frequently
used to build models. Often, this leads to that differentiated
variables in the models correspond to physical quantities such
as pressures and temperatures, which makes initial conditions
known.

If the derivatives of a set of variables can be computed or
not, depends both on the available set of differentiating tools
and the quality of the measurements of the known variables.
There are several approaches for approximate differentiating,
e.g. smoothing spline approximation [Wei and Li, 2006]. An
extensive survey of methods can be found in [Barford et al.,
1999]. Derivative estimation is not in the scope of this paper,
and will not be further considered.

4 A Method for Residual Generation
One approach to residual generation for a model is to sequen-
tially compute subsets of the unknown variables from subsets
of the equations, and then use an unused equation as resid-
ual. The generation of a residual will then consist of a finite
sequence of variable computations, ending with an evaluation
of a residual equation. The computation of variables in each
step can thus only use variables that has been computed in
some previous step, and known variables. To describe which
variables that should be computed from which set of equa-
tions and in which order the variables should be computed,
we introduce the concept variable set matching.

4.1 Variable Set Matching
Assume that I = {I1, . . . , Is} and J = {J1, . . . , Jt} are
partitions of {1, . . . , n} and {1, . . . , m} respectively, and let
the corresponding induced partitions of X and E be denoted
X = {XI1 , . . . , XIs} and E = {EJ1 , . . . , EJt}.

Let Λ be a function from X to E and assume that
(XIi , EJi) ∈ Λ and (XIj , EJj ) ∈ Λ. Define the binary re-
lation ≺ on X × E such that (XIi , EJi) ≺ (XIj , EJj ) iff
XIi ∩ varX(EJj ) �= ∅

Definition 3 (Variable Set Matching). The function Λ is a
variable set matching for X on E if

1. Λ is injective,

2. for every (XIi , EJi) ∈ Λ it holds that the variables XIi

are computable from EJi , and

3. the directed graph defined by ≺ on Λ contains no di-
rected cycles.

Remark 4. The first property ensures that Λ is complete with
respect to the variable set X. The third property prevents that
computation of the variables in XIi requires the variables in
XIj , which in turn requires the variables in XIi .

Proposition 2. The variables X are computable from the
equations E if there exist partitions of X and E such that there
exists a variable set matching Λ for X on E.

The binary relation ≺ on the variable set matching Λ de-
fines a computation order for X on E. A computation order
can thus be represented as a directed acyclic graph.

4.2 Computation Sequence
If the variables X are computable from E, the variable set
matching Λ specifies which variables that should be computed
from which equations. The order in which the variables in X
must be computed is specified by the computation order ≺.
From a computation order, a computation sequence can be
obtained.
Definition 4 (Computation Sequence for X on E). A linear or-
der obtained by topological ordering of the directed (acyclic)
graph defined by ≺ on the variable set matching Λ is a com-
putation sequence for X on E.

In general, a computation sequence obtained from a com-
putation order is not unique.

Assume that the variables X are computable from E, and
that X = {XI1 , . . . , XIs} and E = {EJ1 , . . . , EJt} are the
partitions of X and E for which a variable set matching Λ ex-
ists. If we define R = {1, . . . , m}\{⋃s

i=1 Ji}, the set ER will
contain those equations that are not used in the computation
of the variables in X, and will be referred to as the redundant
equation set associated with the variable set matching Λ.

By using trajectories of the known variables in Z and the
equations in E \ ER, trajectories of all variables in X can
be computed according to the computation sequence. As
the trajectories of all variables in X are computed, we can
compute a residual from a redundant equation e i ∈ ER as
r = fi(ẋ, x, z). The equation ei will be referred to as the
residual equation. We have motivated the following proposi-
tion.
Proposition 3. A computation sequence for X on E to-
gether with an equation ei ∈ ER is a residual generator for
M(E, X, Z).

To illustrate the concepts presented above, we study a small
academic example.
Example 1. Consider the following set of equations

e1 : ẋ1 + x1x2 + x5 + z1 = 0
e2 : ẋ2 + x1 + x2 + x3 + z2 = 0
e3 : ẋ3 + x3 − x4 = 0
e4 : x3 + x4 + x5 + z3 = 0
e5 : x5 + z4 = 0
e6 : h(x1, x4, z5) = 0,

where it is assumed that neither x1 nor x4 can be com-
puted from e6. Let E = {e1, e2, e3, e4, e5, e6}, X =



{x1, x2, x3, x4, x5}, Z = {z1, z2, z3, z4, z5}, and D =
{ẋ1, ẋ2, ẋ3, ẋ4, ẋ5}.

By first studying the equations e1 and e2, we see that
{x1, x2} can be (differentially) computed from {e1, e2}, if the
initial conditions of x1 and x2 are known and consistent, and
the available AE solving tools admit that e1 can be solved for
ẋ1 and e2 for ẋ2. We also see that if e3 can, with the available
AE solving tools, be solved for ẋ3 and e4 for x4, the equation
set {e3, e4} becomes

ẋ3 = −x3 + x4

x4 = −x3 − x5 − z3,

which is on the form (5). Thus, if also the initial condition of
x3 is known, {x3, x4} are computable from {e3, e4}. If we
assume that our AE solving tools admits that e5 is solved for
x5, {x5} is (algebraically) computable in {e5}. With X and
E partitioned as X = {{x1, x2}, {x3, x4}, {x5}} and E =
{{e1, e2}, {e3, e4}, {e5}, {e6}}, we now define the function

Λ = {({x1, x2}, {e1, e2}), ({x3, x4}, {e3, e4}), ({x5}, {e5})}
from X to E . Since {x5} ∩ varX({e3, e4}) = {x5} ∩
{x3, x4, x5} = {x5}, it holds that ({x5}, {e5}) ≺
({x3, x4}, {e3, e4}), and by similar calculations, we con-
clude that ({x5}, {e5}) ≺ ({x1, x2}, {e1, e2}), and
({x3, x4}, {e3, e4}) ≺ ({x1, x2}, {e1, e2}). The directed
graph defined by ≺ on Λ is pictured below.

({x3, x4}, {e3, e4}) �� ({x1, x2}, {e1, e2})

({x5}, {e5})

�� ����������������

Since the directed graph contains no directed cycles, the func-
tion Λ is injective, and all variables are computable in respec-
tive equations for each element of Λ, we conclude that Λ is a
variable set matching for X on E. From the directed graph, we
obtain the computation sequence

({x5}, {e5}), ({x3, x4}, {e3, e4}), ({x1, x2}, {e1, e2}). (8)

The variables in X can then be computed in the order specified
in (8). The only redundant equation in E is thus e 5, and hence
the residual is computed as r = h(x1, x4, z5).

5 Finding Computation Sequences
The problem of designing a residual generator for the model
M(E, X, Z) can be divided into the following steps

1. Find a variable set matching;
2. Obtain a computation sequence from the computation or-

der associated with the variable set matching;
3. Use a redundant equation as residual equation.

Step 2 is trivial, there are many efficient algorithms for topo-
logical ordering, see for example [Cormen et al., 2001]. Since
also step 3 is trivial, the key point is to find a variable set
matching.

5.1 Finding Variable Set Matchings
A variable set matching Λ for X on E is a function from
a partition X = {XI1 , . . . , XIs} of X to a partition E =
{EJ1 , . . . , EJt} of E, that fulfills the properties specified in
Definition 3. To be more specific, it must hold that for every
XIi ∈ X there exists EJj ∈ E such that XIi are computable
from EJj , and that the directed graph defined by the relation
≺ on Λ contains no cycles.

As said in Section 3, computability of variables from a set
of equations depends on both the analytical properties of the
equations in the set and the set of tools available for use. Nat-
urally, a necessary condition for XIi to be computable from
EJj is that XIi ⊆ varX(EJj ). Regarding the tools, we assume
the following.

Assumption 1. AE solving tools require that |EJ | = |XI |.
Assumption 2. AE solving tools prefer, for e.g. numerical
reasons, equation sets of small cardinality before equation
sets with large cardinality.

An implication of Assumption 2 is that if the variables XI
are computable from EJ , but there exists a variable set match-
ing Λ = {(XI1 , EJ1), . . . , (XIs , EJs)} for XI on EJ , it is
preferable to compute the variables XI from the smaller equa-
tion sets EJi .

Finding Equation Sets with Minimum Cardinality
Due to Assumption 2, we should find partitions of X and
E with maximum cardinality. Thus, variable set matchings
should contain equation (and variable) sets of minimum car-
dinality. However, equation sets of cardinality one can not
always be used due to dependencies between equations. The
dependencies will naturally induce cycles in the intended vari-
able set matching.

Consider the bi-partite graph G = (E, X, A), represent-
ing the structure of the model M(E, X, Z) according to Sec-
tion 2.2. Let I and J be subsets of {1, . . . , n} and {1, . . . , m}
respectively, such that the submodel M̄(EJ , XI , Z) of M is
just-determined. Let Ḡ = (EJ , XI , Ā) denote the correspond-
ing bi-partite graph representing the structure of M̄. Motivated
by the fact that the DM-components are irreducible bi-partite
subgraphs, we apply the DM-decomposition to the graph Ḡ
to obtain the DM-components Ḡi = (EJi , XIi , Āi). Since
Ḡ is just-determined, the DM-components Ḡi are exactly the
SCCs of the directed graph induced by any maximum match-
ing on Ḡ, see for example [Murota, 1987]. The following
proposition holds.

Proposition 4. Let Ḡ = (EJ , XI , Ā) be a just-determined
part of G = (E, X, A) and Ḡi = (EJi , XIi , Āi), 1 ≤ i ≤ s its
strongly-connected components. The set

Λ = {(XI1 , EJ1), . . . , (XIs , EJs)} (9)

is a variable set matching for XI on EJ if for every
(XIi , EJi) ∈ Λ, the variables XIi are computable from EJi .

A justified question is then if there exists a variable set
matching for XI on EJ , whose equation sets have less car-
dinality than the equation sets originating from the SCCs ac-
cording to Proposition 4.

Proposition 5. Let Ḡi = (EJi , XIi , Āi) be a SCC of Ḡ, then
there exist no variable set matching with elements of cardinal-
ity larger than one for XIi on EJi .

Proposition 5 implies that it is impossible to partition EJ
into blocks with less cardinality than the SCC, without ending
up with a cycle that prohibits a variable set matching.
Remark 5. SCCs are utilized in [Porté et al., 1988] and
[Katsillis and Chantler, 1997] to determine the causal or-
der [Iwasaki and Simon, 1986] of the variables in a model
consisting of algebraic and differential equations. However,
the causal order depends only on the occurrences of variables
in the equations and does not consider computability, i.e. ana-
lytical properties of the involved equations, initial conditions,
and available tools. SCCs are also used to partition sparse
systems of equations into the so called BLT-form in tools for
non-causal simulation, see for example [Fritzon, 2004].

5.2 An Algorithm for Finding Variable Set
Matchings

Proposition 4 states a sufficient condition for finding a vari-
able set matching. Motivated by this and the implication of
Proposition 5, we propose Algorithm 1 for finding a variable
set matching for XI on EJ .

The function findAllSCC in Algorithm 1 returns equa-
tion and variable sets corresponding to the SCCs of the spec-
ified just-determined equation set, with respect to the speci-
fied set of variables. There are efficient algorithms for finding



Algorithm 1: findVariableSetMatching
Input: A just determined set of equations EJ , a set of variables

XI , a set of AE solving tools TAES, and a set of
differentiating tools TD

Output: A variable set matching Λ for XI on EJ

Λ := ∅;
S := findAllSCC(EJ ,XI);
foreach (EJi , XIi) ∈ S do

if isComputable(EJi ,XIi ,TAES ,TD) then
Λ := Λ ∪ (XIi , EJi);

else
return ∅;

end
end
return Λ;

SCCs in directed graphs, see for example [Tarjan, 1972]. The
function isComputable determines if the specified set of
variables can be computed from the specified set of equations.
This function is described in Algorithm 2, and will be further
considered in Section 6.

5.3 Connection to MSO Sets
The problem of residual generation for a given model can,
as said in beginning of this section, be divided into the three
parts: 1) find a variable set matching, 2) obtain a computation
sequence from the variable set matching, 3) use a redundant
equation as residual equation. From the discussion above, it
is clear that to find a variable set matching it is sufficient to
consider a just-determined part of the given model. Hence, to
design a residual generator it is sufficient to consider a part
of the model that consist of a just-determined part and one
redundant equation, that is, a minimal over-determined set of
equations or in the structural case, a minimal structurally over-
determined (MSO) set. The method for residual generation
outlined in the beginning of this section, can thus be refined:

1. Find a MSO set in the model;

2. Find a variable set matching in the MSO set;

3. Obtain a computation sequence from the computation or-
der associated with the variable set matching;

4. Use the redundant equation as residual equation.

There exist several efficient algorithms for finding all MSO
sets in a model, see for example [Krysander et al., 2008].

6 Analyzing Computability of Variables
Consider the variable set XI and equation set EJ . From the
development in Section 5.1, it is clear that we can limit our
analysis to the case when |XI | = |EJ |, and EJ corresponds to
a strongly-connected component.

The decomposition into strongly-connected components is
based on the structural representation of the model adopted in
Section 2. With this representation, there is no difference be-
tween a variable xj and the corresponding differentiated vari-
able ẋj . The strongly-connected components therefore con-
tains both differentiated and non-differentiated variables and
thus both differential and algebraic equations. This means
that the equation sets corresponding to SCCs are differential-
algebraic equations. One approach for further analysis of
computability of XI from EJ is then to apply methods for an-
alyzing and solving differential-algebraic equations (DAEs).

6.1 Analyzing Computability by Utilizing
Differential-Algebraic Equation Theory

Motivated by theories for analyzing and solving differential-
algebraic equation systems, we seek a reformulation, or trans-
formation, of EJ into the form (5) according to Proposition 1.
The ability to perform such a transformation, depends on
the analytical properties of the equations in EJ , as well as

the available AE solving tools. Having obtained a transfor-
mation of EJ into one differential part (5a), and one alge-
braic part (5b), it is also desirable that both the differential
and algebraic part are further decomposed into smaller just-
determined parts, due to Assumption 1 and 2. We illustrate
our approach for analyzing computability with an example.
Example 2. Consider the set of equations

e1 : ẋ1 − ẋ2 + x1x4 + x2 + x2
5 + x7x9 = 0

e2 : ẋ1 + ẋ2 + x2x3 + 2x5x
2
8 = 0

e3 : ẋ3 − x2
2x3x6 + ẋ7 = 0

e4 : x1x9 + x4 + x5 = 0
e5 : x2 + x4 − x5 + ẋ8 = 0
e6 : x2x3x5 + x6 + ẋ9 = 0,

which for simplicity contains no known variables. The
bi-adjacency matrix representing the structure of the equa-
tion set E = {e1, e2, e3, e4, e5, e6} with respect to X =
{x1, x2, x3, x4, x5, x6} is shown in (10). It is clear that E cor-
responds to a SCC of size 6.

Equation Unknown
x1 x2 x3 x4 x5 x6

e1 1 1 1 1
e2 1 1 1 1
e3 1 1 1
e4 1 1 1
e5 1 1 1
e6 1 1 1 1

(10)

First consider the equation set {e1, e2, e3}, which contains
the differentiated variables {ẋ1, ẋ2, ẋ3}. If we consider the
structure of {e1, e2, e3} with respect to {ẋ1, ẋ2, ẋ3}, we ob-
tain the bi-adjacency matrix shown in (11). We can now par-
tition {e1, e2, e3} into the equation sets {e1, e2}, and {e3},
corresponding to SCCs of size two and one, with respect to
the structure in (11).

Equation Unknown
ẋ1 ẋ2 ẋ3

e1 1 1
e2 1 1
e3 1

(11)

If our AE solving tools admits that {e1, e2} is transformed
into

ẋ1 =
1
2

(−x2 − x2x3 − x1x4 − x2
5 − 2x5x

2
8 − x7x9

)
(12a)

ẋ2 =
1
2

(
x2 − x2x3 + x1x4 + x2

5 − 2x5x
2
8 + x7x9

)
,

(12b)

and {e3} into

ẋ3 = x2
2x3x6 − ẋ7, (13)

we have that {x1, x2} are differentially computable from
{e1, e2}, and {x3} is differentially computable from {e3} if
the initial conditions of {x1, x2} and {x3} are known and con-
sistent and the derivative {ẋ7} can be computed with the avail-
able differentiating tools.

Now instead turn to the equation set {e4, e5, e6}. From the
bi-adjacency matrix in (10), we then see that {e4, e5, e6} can
be partitioned into the equation sets {e4, e5} and {e6}, which
corresponds to SCCs of size two and one respectively. Under
the assumption that our AE solving tools admits a transforma-
tion of {e4, e5} into

x4 =
1
2

(−x2 − x1x9 − ẋ8) (14a)

x5 =
1
2

(x2 − x1x9 + ẋ8) , (14b)



and of {e6} into

x6 = −x2x3x5 − ẋ9, (15)

we see that {x4, x4} are algebraically computable from
{e4, e5} and {x6} is algebraically computable from {e6}, if
the derivatives {ẋ8} and {ẋ9} can be computed with the avail-
able differentiating tools.

We have then transformed the original set of equations E
into the form (5), with (12) and (13) corresponding to (5a),
and (14) and (15) to (5b). Thus, we have I d = {1, 2, 3},
Ia = {4, 5, 6}, and Ī = {7, 8, 9}. Hence, if the initial condi-
tions of {x1, x2, x3} are known and consistent, and the deriva-
tives {ẋ7, ẋ8, ẋ9} can be computed with the available differ-
entiating tools, the variables X are computable from E.

6.2 An Algorithm for Analyzing Computability
Motivated by Example 2 and the three conditions in Propo-
sition 1, we propose the following procedure for analyzing if
XI are computable from EJ

1. Partition I into {Ia, Id}, according to Id =
ind(varD(EJ)) ∩ I , Ia = I \ Id;

2. Determine if the initial conditions of the variables XId

are known and consistent;
3. Determine if the derivatives varD(EJ ) ∩ DĪ can be com-

puted with the available differentiating tools;

4. Partition J into Ja and Jd, such that varD(EJa)∩DId =
∅;

5. Find the SCCs of Ga = (EJa , XIa , Aa). For each SCC
Ga

i = (EJa
i
, XIa

i
, Aa

i ), determine if XIa
i

can be com-
puted from EJa

i
with the available AE solving tools;

6. Find the SCCs of Gd = (EJd , DId , Ad). For each SCC
Gd

i = (EJd
i
, DId

i
, Ad

i ), determine if DId
i

can be computed
from EJd

i
with the available AE solving tools.

A complete, fully automated, algorithm can be found in Al-
gorithm 2. The function isInitCondKnown determines if
the initial conditions of the specified variables are available
and consistent. The function isAESolvable determines if
the specified variables are computable from the specified set
of equations with the available set of AE solving tools. The
function isDifferentiable determines if the derivatives
of the specified variables can be computed with the available
set of differentiating tools. The function regards propagation
of derivatives as described in Remark 2.

Given ideal AE solving tools, ideal differentiating tools,
and consistent initial conditions for the variables XId , where
Id = ind(varD(EJ) ∩ DI), Algorithm 2 returns true iff the
equation set EJ can be transformed into the form (5), possibly
with either of the sets Id or Ia empty. From this and Remark 3
it follows that with ideal AE solving tools, ideal differentiat-
ing tools, and consistent initial conditions for the variables
Xind(varD(E)), a variable set matching for X on E can be found
with Algorithm 1 iff E is just-determined and its SCCs can be
transformed to semi-explicit DAEs of differential index 1 or
explicit DAEs of differential index 1 or 0, i.e. SCCs in the
form (5), (6), or (7).
Remark 6. Although only SCCs corresponding to semi-
explicit DAEs of differential index one can be handled with
Algorithm 2, equation sets that are of higher differential index
as a whole can often be handled with the proposed method.
Consider the equation set

e1 : ẋ1 − x2 = 0
e2 : ẋ2 − x3 = 0
e3 : x1 − z1 = 0,

which is a DAE of differential index 3, taken from [Matt-
son and Söderlind, 1993]. If we assume that our AE and

Algorithm 2: isComputable
Input: A just-determined set of equations EJ , a set of variables

XI , a set of AE solving tools TAES, and a set of
differentiating tools TD

Output: True if the variables XI are computable from EJ , else
false.

Id := ind(varD(EJ ) ∩ DI);
if not isInitCondKnown(XId) then

return false;
end
if not isDifferentiable(varD(EJ ) ∩ DĪ ,TD) then

return false;
end
Ia := I \ Id;
Jd := ∅;
Ja := ∅;
foreach i ∈ J do

if varD({ei}) ∩ DI = ∅ then
Ja := Ja ∪ {i};

else
Jd := Jd ∪ {i};

end
end
Sa := findAllSCC(EJa ,XIa);
foreach (EJa

i
, XIa

i
) ∈ Sa do

if not isAESolvable(EJi ,XIi ,TAES) then
return false;

end
end
Sd := findAllSCC(EJd ,DId);
foreach (EJd

i
, DId

i
) ∈ Sd do

if not isAESolvable(EJd
i

,DId
i

,TAES) then
return false;

end
end
return true;

differentiating tools are ideal, Algorithm 1 returns the vari-
able set matching Λ = {(x1, e3), (x3, e2), (x2, e1)}, where
each element corresponds to a SCC of size 1. The associ-
ated computation sequence is (x1, e3), (x2, e1), (x3, e2) and
the variables {x1, x2, x3} can be computed from {e1, e2, e3}
as x1 = z1, x2 = ẋ1, and x3 = ẋ2. Thus, even though the
original system is a DAE of differential index 3, the proposed
method can be used to find a variable set matching since the
SCCs of {e1, e2, e3} are DAEs of differential index 1.

7 Application Example
In this section, the proposed method for residual generation is
applied to a complex model of the gas flow in an automotive
diesel engine.

7.1 The Engine Model
The modeled engine is a six cylinder Scania diesel engine
equipped with exhaust gas recirculation (EGR) and a vari-
able geometry turbocharger (VGT). The model focuses on
the gas flow in the engine and is described in [Wahlström,
2006]. To be better suited for residual generation, it was mod-
ified in [Kingstedt and Johansson, 2008]. The modified model
contains in total 50 equations, 47 unknown variables, and 11
known variables. The variables represent physical quantities
such as pressures, temperatures, and rotational speeds. The
model consists of 8 differential equations and 42 algebraic
equations, i.e. the model is a differential-algebraic equation.

7.2 Configurations of the Algorithm
For comparison, the algorithm was applied to the engine
model with three different configurations. The following pa-
rameters were used for configuration
• Availability of initial conditions;



• Characteristics of AE solving tools;

• Characteristics of differentiating tools.

These parameters naturally influences the possibility to com-
pute variables in different ways, and thus also the possibility
to find variable set matchings.

The configurations used are shown in Table 1. With con-
figuration C1 the only way a set of variables can be computed
from a set of differential equations is algebraically since no
initial conditions are available, cf. (6). This is often referred
to as derivative causality, see [Blanke et al., 2003]. This ap-
proach for handling differential equations has been used in
for example [Izadi-Zamanabadi, 2002] and [Dustegor et al.,
2004]. With configuration C2 on the other hand, the only way
to compute a set of variables from a set of differential equa-
tions is according to (7), with the additional condition that
DĪ = ∅, since no derivatives are available. This is in the
literature referred to as integral causality, which is the way
differential equations are handled in for example [Pulido and
Alonso-Gonzlez, 2004] (still their framework supports the use
of both integal and derivative causality). Configuration C 3
thus handles both integral and derivative causality and if a set
of variables is computable from a set of equations depends
on the analytical properties of the equations in the set and the
available AE solving tools, according to Proposition 1. In all
three configurations it is assumed that the AE solving tools
only can handle equation sets with one element, i.e. SCCs of
size one.

Initial Conditions AE Sol. Tools Diff. Tools
C1 no scalar equations yes
C2 yes scalar equations no
C3 yes scalar equations yes

Table 1: Configurations of the algorithm

7.3 Results

By using an implementation of the engine model in MAT-
LAB/SIMULINK, and a MATLAB implementation of Algo-
rithm 1, the proposed method was applied to the engine
model. The implementation utilizes the fact discussed in Sec-
tion 5.3 and hence as a first step, all MSO sets are computed.
This step was achieved with the toolbox described in [Frisk et
al., 2006].

In total, 90 MSO sets were found in the engine model. In
Table 2 it is shown in which of the MSO sets a variable set
matching could be found with the different configurations of
the algorithm. With configuration C1, a variable set matching
could only be found in one of the MSO sets, with configu-
ration C2 in four of the MSO sets, and with configuration C3
a variable set matching could be found in 35 of the 90 MSO
sets.

Detailed Study of a Specific MSO Set
We will now consider one of the MSO sets where a variable
set matching could be found with configuration C 3, but not
with the configurations C1 and C2. The MSO set, referred to
as MSO set 4 in Table 2, contains 36 equations and 35 un-
known variables. Of the 36 equations, only five are differen-
tial equations. By using an equation named e36 as residual
equation, a variable set matching could be found. The struc-
ture of the corresponding just-determined part of MSO 4 is
shown in Figure 2.

The found variable set matching contains variable sets cor-
responding to 32 SCCs of size one, and one SCC of size three.
The SCCs are marked with a square in Figure 2. The SCC of
size three contains the variable set {T1, Te, xr} and equation

set {e11, e12, e13}, which are on the form
e11 : f11 (ẋr, xr, T1, Wei, pim, Wt, pem) = 0

e12 : f12

(
Ṫ1, T1, Te, xr, Tim

)
= 0

e13 : f13 (T1, Te, xr, Weq , pim, Wt, pem) = 0.

To compute {T1, Te, xr} from {e11, e12, e13}, a scalar equa-
tion solver implemented in MATLAB was used to compute
ẋr from e11, Ṫ1 from e12, and Te from e13. The equations
{e11, e12, e13} could then be written on the form (5) and since
the initial conditions of xr and T1 were known, {T1, Te, xr}
were computable from {e11, e12, e13}.

In the SCC of size one corresponding to the equation set
{e1}, the variable Wegr was algebraically computed by us-
ing the differentiated variable ṗim. The derivative ṗim was
computed with a smoothing spline approximate differentiator
implemented in MATLAB, and propagation of measured vari-
ables. In a similar way, the variables Wt and Pc were alge-
braically computed from {e2} and {e21}, respectively. This
was done by using the derivatives ṗem and Ẇt.

Since integral causality were used to compute variables
from the equation set {e11, e12, e13}, and derivative causal-
ity to compute variables from the equation sets {e1}, {e2},
and {e21}, it is clear that no residual generator could have
been created from MSO set 4, with e36 as residual equation,
if either integral or derivative causality had been used.
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Figure 2: The bi-adjacency matrix showing a just-determined
part of MSO set 4. The SCCs are marked with a square.

8 Conclusions
We have presented a mixed causality approach to resid-
ual generation, that combines integral and derivative causal-
ity and also utilizes equation system solvers and theory of
differential-algebraic equations. An important part of the pro-
posed method is a framework for computation of variables
from sets of dependent differential and/or algebraic equations.
In the mixed causality approach, the way a differential equa-
tion is handled depends on the context in which variables ap-
pear, the available tools for equation solving and approximate
differentiating of measurements, and knowledge about initial
conditions.

Complete algorithms for finding residual generators with
the proposed method, as well as analysis of computability of
variables from dependent differential-algebraic equation sys-
tems, have been presented. The algorithms have been applied
to a model of the gas flow in an automotive diesel engine. By
applying three different configurations of the algorithm, corre-
sponding to integral and derivative causality alone and mixed
causality, it has been shown that considerably more residual
generators can be found in the engine model with the mixed
causality approach.



MSO set

1 2 4 5 7 8 10 11 12 20 21 23 24 25 39 40 41 43 44 45 46 51 53 57 58 60 61 62 63 74 76 85 86 88 90

C1 x

C2 x x x x

C3 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

Table 2: A table showing in which of the MSO sets a variable set matching could be found with the different configurations of
Algorithm 1.
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