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Abstract In several works, e.g. Nyberg and Krysander [2003]; Ploix

) o ] et al.[2003]; Cordieret al.[2004], it has been recognized that
Fault diagnosis in the presence of noise and model  fayt isolation in FDI can be solved by using algorithms de-
errors is of fundamental importance. In the paper,  yeloped within the field of Al, see Kleer and Williams [1987];
the meaning of fault isolation performance is for-  Reiter [1987]. Advantages of these Al algorithms, compared
malized by using the established notion of coverage  tg their counterpart from the control community, e.g. Gartl
and false coverage from the field of statistics. Then  [1998], are that they can easily handle multiple faults it
formal relations describing the relationship between  computational efficiency. Because of these advantages we
fault isolation performance and the residual related  haye in the present paper chosen to focus entirely on fault is
design parameters are derived. For small faults, the  |ation algorithms from Al. However, the results can be gasil
measures coverage and false coverage are not ap- generalized to cover fault isolation techniques from the-co
plicable so therefore, a different performance crite-  tro] community such astructured residual&ertler [1998].

ria, called sub-coverage, is proposed. The perfor- , G .
mance of different Al-based fault isolation schemes In the paper, a first contribution is to formalize what we
is evaluated and it is notably shown that the well ~Mean by FDI performance, especially for noisy and uncer-
known principle of minimal cardinality diagnosis ~ t@in Systems. For this we use the established notiorout
gives a bad performance. Finally, some general erageandfalse povgragérom th_e field of statistics. Then as
design guidelines that guarantee and maximize the a secon_d con_trlbutlon, we derive formal relations des_ngb|
fault isolation performance are proposed. the relatlo_nshlp between FDI performr_:mce and the res@dal r
lated design parameters. Further it is noted that a difteren
performance criteria is needed for the smallest faults,vead
1 Introduction therefore introduce a third performance measure calldd
coverage We then discuss the intrinsic FDI performance of
The FDI (Fault Detection and Isolation) problem, as often dejifferent Al-based fault isolation schemes. It is notalbiatt
scribed within the control community, is to detect and isahe well known principle ofminimal cardinality diagnosis
late any possible faults given sensor and actuator sign&ys o gives a bad performance for the the smallest faults. Based
A typical solution, see Gertler [1998]; Patten al. [2000]; on the performance measure and investigations, we develop
Blankeet al.[2003], is to use a set of thresholded residuals t@ome general design guidelines that, if followed, guaente
gether with a fault isolation scheme, which, based on the fagnd maximize the fault isolation performance. Finally we il

that the thresholded residuals respond differently teed#fit |ustrate the theory and the guidelines on a small applicatio
faults, isolates the fault. example.

In a real application, there are typically model errors and
noise. This fact limits our ability to construct a diagnhosys-
tem that perfectly detects and isolates the present faolv-H L . .
ever, there is also design freedom available such as thsﬁhthre-2 Stochastic view on diagnosis
old levels, the set of residuals to be included, and which iso
lation strategy to use. Thus, under the premises of noise dndmany papers, both from the control community Gertler
model errors, the design freedom should be utilized sudh tja998]; Pattonet al. [2000]; Blankeet al. [2003] and espe-
the ability of detecting and isolating faults is optimized. cially in Al Kleer et al.[1992]; Cordieret al.[2004], the sys-
The discussion above reveals first of all, that there is a neteins to be diagnosed are assumed not to contain noise. This
for an exact measure of FDI performance. Secondly, it imeans that an observation in the model is either deterriginist
important to understand how this FDI performance changgiven the states, or completely unknown, depending on if a
when different design parameters are changed. In the-litefault is present and also which fault that is present. Thevvie
ture, only a few studies have addressed these issues. In kken here is that a system contains stochastic parts which i
berg [1999], FDI performance was studied in the framewonllies that, given the states, observations have probadikt
of structured hypothesis tests. In Cordétral. [2004] these tributions rather than exact values. Based on this idea We wi
issues were posed as open questions. below give a basic stochastic framework for diagnosis.



2.1 The System Practical Relevance of Coverage

The system to be diagnosed consists of a number of compotetNF denote the fault free system behavioral mode. False
nents, and we assume here that the behavioral mode of a catarm can formally be described as the negation of coverage
ponent is either non-faulty or faulty, abbreviatdd” and I with respect to the mod™F. Thus the probability of false
respectively. The behavioral mode of the complete systealarm become®(NF ¢ C |NF). False alarms lead to ex-
called system behavioral moda simply mode can be de- pensive and unnecessary troubleshooting. Further, they de
scribed by a vector of length equal to the number of compgrade both the perceived product quality and the confidence
nents, e.g. in a system with 5 components the system behiwthe diagnosis system. Therefore false alarms are in gener
ioral mode could béN F, F, NF, NF, F]. not accepted in industrial applications.

Further, we assume that the system has a vector-valued traConsider next the event¢ C' in the case that the present
jectory z which is possible to observe. The vectoincludes mode isb whereb # NF. If the user of the diagnosis result

measured sensor values and actuated control values. takes action based on the fact tibatan not be the present
mode, severe and expensive mistakes might be done. For ex-
2.2 The Diagnosis System ample, if a repair technician excludes the possibility thist

the present mode, he will replace non-faulty parts andrstill

We consider aliagnosis systerto be a system that takes ansucceed with his repair mission.
observatioras input and computesindidatesi.e. a seC' of From this discussion it is clear that lack of coverage is in
system behavioral modes, as output. The candidat€’set general not acceptable in industrial applications.
assumed to be a function of the observation and supposed to
be the system behavioral modes that are likely explanatibns3.2 False Coverage Probability
the observation. It is not sufficient to evaluate the isolation performance of

Formally we define observation as follows. a diagnosis system by using only its coverage probabilities
— . . . For example, a diagnosis system that always outputs that all
Definition 1 (Observation) An observationer of 2 is sam- gy gtem bephavioral modes are candidates would ha?ve coverage
ples ofz at times specified by the index et probability 1 for all modes. Ideally we also want the canttida
Here we assum@ to be a finite set. Examples @f are7 = setC to exclude all modes that are not the present mode.

{0} and7 = {0, 1, 3}. Definition 3 (False Coverage Probability) Given a diagno-
Since we have a stochastic view on diagnosis, we consiggs system computing the candidate Gethefalse coverage

27 to be arandom variable. For each system behavioral mog@epbabilityis a function ob andd’ given by

we assume that; has exactly one given pdf (probability den- , ,

sity function), denoted,(z7). Later in Section 6 we will P € Clb), whereb’ #b (2)

relax this assumption. Since the candidate($é a function  Note that, in contrast to coverage probability which is a

of the observation, alsoC is a random variable which for fnction defined on the set of all modes, the false coverage

each mode will have a unique pdf. probability is a function defined on the set of all non-equal
pair of modes.
3 Statistical Performance Measures of Practical Relevance of False Coverage

Diagnosis Systems False coverage means thidt € C' even though another

Two performance measures of set estimators known from sfaodeb is the present one. This is of course not a desired sit-
tistical decision making theory Casella and L.Berger [f99@ation since it implies that the user of the diagnosis reast
will here be introduced as performance measures for diagno® undertake unnecessary safety or repair actions or taegonv
systems regarding their fault isolation capability. Ndtattin  further analysis to exclude the motle However we consider
these performance measures, fault detection becomesialspdid10t as serious as lack of coverage.

case of fault isolation so we will refer only to fault isolati

performance from now on. 4 Diagnosis Systems using Al-Based Fault

Isolation

3.1 Coverage Probability As said in the introduction, we consider diagnosis systems
Suppose that we want to diagnose a system that is operating@msisting of a set of diagnostic tests together with a faak
an unknown mode. It is almost never possible for a diagnod&ion scheme using techniques from the field of Al. Further,
system to exactly determine the present mode. A more rewle consider diagnostic tests in the view of hypothesisrtgsti
istic objective is that the candidate ggtshould at least with in accordance with Nyberg [1999]. It should be noted that thi
some high probability contain the present mode and the fitdew is compatible with traditional fault isolation teclouies
performance measure formalizes this idea. from both FDI and Al, see Cordiet al.[2004].
The main idea is the following. Each diagnostic téstis
Definition 2 (Coverage Probability) Given a diagnosis sys- a hypothesis test with a null hypothedi& and a rejection
tem computing the candidate g€t the coverage probability region R*. The diagnostic test takes an observatignas
is a function ob given by input and generates a binary decision as output as folldws. |
27 € RF, thenHY is rejected, otherwisél}s is not rejected.
P(beC|b) (1) The null hypothesigi} is here represented as a set of system



behavioral modes. When the null hypothesis is rejected, ttiveo most common. In Section 7, these preference relations
conclusion from the diagnostic test is that none of the modaad also the case without focusing, i.e. (3), will be comgare
in HY is the one that has generated the observatigni.e. with respect to the fault isolation performance measures pr

the present mode must be in the complemenf&gt. Using Sented in Section 3.
Al terminology, a rejected null hypothesig} is a so called
conflict. 5 Bounds for the Performance Measures
In the isolation scheme, the conclusions from the individugh this section we will present bounds for the performance
diagnostic tests are merged. In its simplest form, the i&ola measures presented in Section 3. The idea of these bounds
scheme is a simple intersection of the conclusions from theto estimate the performance measures (1) and (2) by using
tests, I.e. only the performance of the individual diagnostic testse Th
xC performance of each diagnostic test is specified in terntseof t
C= (] H () probability P(reject % | b) which, in the field of statistics, is
k calledpower functionCasella and L.Berger [1990]. For con-
venience we will use the shorter writiy(rej,, | b).
This principle has been used in both FDI and Al Nyberg The rationale behind bounds of this type is that the design
[1999]; Cordieret al. [2004] even though more efficient rep-freedom in designing diagnosis systems of the type destribe
resentations and computations have been utilized. in Section 4 lies in the selection and construction of thedia
For an example, IeF2 denote the system behavioral modeostic tests. Thus, it is critical to know the relationshgs b
with a fault in component 2 only, |€F12 denote the sys- tween the performance of the individual tests and the perfor
tem behavioral mode with faults in components 1 and 2 onlyjance of the complete diagnosis system. By utilizing these
etc. Then consider the following table which we addkision bounds, performance requirements on the individual tests c

HE is rejected

structure be derived from diagnosis-system performance requiresnent
INF F1 F2 F3 F12 F23 F13 F123 In the bounds we will use the notatiéh, for the index set
570 X X 0 X X X < of tests which contain modein its null hypothesis, i.e.
| 0 X 0 0 X X X X Qp = {ilb € H}} (7)

03| 0 0 X X X X X X In the decision structure); is the rows with 0 in columm.

(@) ! -
A 0 in row and columrny means that the mode of colurgn Folgae;(s:rgfé%eigil(i?)zszﬁgory{gli\’/Zilthe general relatidt(s) +
isa r'm.ember‘of the null hypothesis of the test corresponmnglg(]_[;)_1 < P(AAB) < min(P(A), P(B)) andmax(P(A)
row i, i.e. Hy. Assume thaF2 is the present mode and thatP(B)) < P(AVB) < P(A)+P(B3 for two arbitrary events
Epﬁ err:ug?goﬁ?jtizgstgs(g the tesis andd; have been rejected. A andB. Using these relations we can derive the bounds given
' ' in the following theorem.

¢= H&C i ch - Theorem 1 Let B be the set of modes that are more preferred
= {F1,F2,F12,F23,F13,F123}N than modeb, i.e. B = {blb >, b}. If QO C Q, for some
{F2,F3,F12,F23,F13,F123} = be B, then
/
={F2,F12,F23,F13,F123} (5) PbeCp|b)=0 ®)

A problem with the fault isolation scheme (3), and as sedfr all o' Otherwise, for mod# it holds that

even in this small example, is that the candidateCsetill in - -

general be very large and include many other modes in addi—1 — 1Bl - Z P(reji[b) + p: jgggf‘gb P(rej;|')

tion to the present one. This problem is well known and has in ke, beB

the field of Al been solved by, in a second Stefiltering out <PbeCr|V)<

less likely modes fron@”. This is often calledocusingand is . - . o

based on the idea of a preference relatigndefined on the ™ (1 — max P(rej,|b), e > Plejlb )) ©)

set of system behavioral modes. JEQ\

_ For example, in (5), if single faults are preferred over mulrhe proof of Theorem 1 as well as all other results in the pa-

tiple faults, the result is a focused set of candida@fgs =  per can be found in Nyberg and Krysander [2007]. Note that

{F2}, which is actually the perfect result sin&2 was the o assumption about the correlation between the response of

mode assumed to be present. Formally, the“setan be de- jfferent tests has been made in the theorem above.

fined as From Theorem 1 a number of bounds can be derived both

_ ) Y for coverage probability and false coverage probabilitgr F

Cr={be ] eC: b >y b) © example if a bound for coverage probability in the case of no

The preference relatiofi,, can be defined using different prin-focusing is needed, lét= b andB = (.

ciples of which the concepts ofinimal diagnose&leer and Later in the paper we will use the following simplified upper

Williams [1987]; Reiter [1987]; Hamschest al. [1992] and bound for false coverage probability.

minimal cardinality diagnose3uhrim et al. [1991] are the Corollary 1 (False Coverage Probability) It holds that

INote that computationally, this filtering (i.e. focusing)es not PbeCr|b)<1-—max P(rejk|b’) (10)
necessarily need to be implemented as a second step. ke



Next, by using the assumption faults are classified as insignificant and large as significan
i A in pricniple this must not be true. For instance, it can vegjlw
P(rej|b) = 0, forall b € Hy (1) pe the case that the set of significant fad@lf&’ contains some
a simplified lower bound for coverage probability can be daery small faults, even though this probably makes it hataler
rived. Note that (11) implies that we assume that the falgiesign a diagnosis system that fulfills requirements aateti
alarm probability is zero. with the significant faults.

Corollary 2 (Coverage Probability) Assume thagl1)holds 6.1 Performance Measures for Significant Faults
and let B be defined as in Theorem 1.} C 2, for some

7 For each pdf belonging tb:"¢, we use the following measures
b € B, then . b "
corresponding to coverage and false coverage probalsity r
PbeCrl|b)=0 (12) spectively:
for all b. Otherwise, it holds that P(b e Cr|fo(z1)) (15)
P e Cr|folzr)) b #£Db (16)

1—|B|+ ) max P(rej;|b) < P(be Cp|b) (13)
EijEQE\Qb Still, the number of performance measures will typically be
infinite. A solution to handle this is given later, togethathw

6 Relaxing the Assumption of Unique the application example, in Section 9.
Distributions 6.2 Performance Measure for Non-significant
In Section 2.1 we assumed that, and consequentlg' and Faults

Cr, have exactly one given pdf for each maddhis assump- For the distributions belonging ®;"**?, we use another per-
tion is quite restrictive since it requires that the behaeioa  formance measure. To explain this, assume that the present
faultis relatively well known. Thus it is desirable to reldis gt in the system is insignificant, i.e. associated withisa d
assumption. We do this here by assuming that for a Spec'ﬂ?bution in (I)'li)nsig. Then if NF is not present irCr, i.e. a

modeb, the random variable; has a pdfin a seb;,. lear indication of that the system is faulty, then a reabtma
The next issue is the performance measures presente@auiremem is that at least some mod&in should indicate
Section 3. For example, the coverage probabhity € C'r[b)  yhat there is a fault in some of the components that are indeed
is no longer well defined since the fact thds the true mode ¢, ity £ this would not be the cas€lr would indicate a fault
does not give a single distribution fof- and consequently not j,\ 51y in a part of the system not related to the present,faul
for C'r. Our solution to this problem is to instead consider g -, would for example completely mislead a mechanic try-
coverage probability conditioned on one specific distrdout ing to repair the system.
in the setb,. Thus we write To achieve this, we will, for modes i®;"**’, not aim at
P(b e Crlzr ~ folz1)) folzr) € By (14) strict coverage. Instead we aim only for something that we
. . ! will call sub-coverage Further we do not care about false
_For convenience we will mostly writd(b € CF|fb(.Z7)) coverage at all which means thabifs the present mode, it is
instead of (14). When using the coverage probability MeZzceptable to also have other modemcluded inC.
sure (14), and only the set, is specified, we do not get a - The idea of sub-coverageis that we consider it fully
single coverage probability for a specific mddeut instead a acceptable to say that a component is non-faulty even
set, possibly infinite, of coverage probabilities. Thus, tiext though it is faulty. For example, i = [NF,F,NF, F]

question is how to use such a performance measure. is the present mode and; has a distribution belong-

First, note that a modemay contain both small and Iargein to q)znsig’ it is acceptable if[NF,F,NF,F| ¢

faults. For example consider the mode bias of a sensor. Th
are both small biases, close to zero and large ones. Becws%r&Fa]fULO?\?F%%Fb’eﬁﬁbjyogf]' INF,F,NF,NF], or

consider stochastic noisy systems, it is not realistic tpire To formalize this, usep; to denote the behavioral mode

good performance for both small and large faults. For exarg- - ! .
; ; ; ; thei:th component which means thiatcan be written as
ple to require that the diagnosis system detects and uriqu I: (1, o, ..., a]. Then let<o be a relatiof, defined on

isolates a very small bias is not realistic, but it may beiséal .
. ' o . the set of system behavioral modes, such that, b, where
to require both good detection and isolation for large tsase, [0, ..., ifand only if¥i € {1,2,...n} : ¢! =

Thus, the required performance of a diagnosis system neﬁdﬁ: ) : ; ;
. V 1, = ;. By using this relation we replace the perfor-
to be formulated differently for small and large faults resp mance measure of coverage probability (15) with a measure

tively. "
Formally, we start by partitioning the sé, into two sub- that we callsub-cm_/erage pr_obablllty
sets®;" and ®;"*%, representingsignificant faultsand in- P(Ebe Cr:b<o b fo(z1)) an

significant faultsrespectively. We will below use different _
performance requirements for these two sets. The ideaof tﬁi‘3 .Bounds. for SUb_ Coverage -
partitioning is that;" contains the pdfs of those faults that! '€ M now is to derive a useful bound for the probability

" . insig of sub-coverage. We do this for the special case when the
are critical to detect and isolate. The gg{"*"Y is then the

. , reference relatiotr, i chthat’ >, b impliest’ <o b.
pdf’s of the faults that neither need to be detected or isdlat P 0F 1S SU Zp 0 IMPIESL <o

Note that the partitioning into significant faults and insfg 2If system behavioral modes are represented by their seasithj f
icant faults may be the result of an FMEA. Typically smaltomponents the relatiodo is equivalent to the subset relation.



Theorem 2 If the preference relatioe>,, is such that’ >, b  are eliminated fron€'r. A sufficient condition to achieve cov-
impliest’ <o b, then for anyf,(z7) € @y, it holds that erage with high probability is obtained from the bound (13).
- _ This relation says that for eadh>,, b it is sufficient to have

PEbeCr:b=ob|filer)) 2 PO € Clfi(27)) (18) gne test that responds bdbut not tob with high probability.
PROOF Ifb € C then there is a mod#, wherel’ >, b, T1henthe sum will be close {d&| which implies that the bound
andb’ € Cp. Since it holds thab’ >, b impliest’ <o b, it becomes close to 1. Thus, the selection and design of a set of
follows that - - tests with this property for all significant faults is créicto

~ ~ obtain high coverage probability.

BbeCr:b<ob (19) As said above, the only reason to use focusing is to lower
the probability of false coverage. Given a mdgdeconsider
the modes$ for which it holds that <, borb >, b. For these
modes it holds tha € Cr impliesb ¢ Cr. Therefore we
HaveP(b ¢ Cr|fy(21)) = P(b € Cr|fy(27)). Thus, if we
aim for high probability of coverage @&f which is of primary
. . . importance, we get also low false coverage probability ef th
7 Comparison of Focusing Principles pair (b, b).

In this section we will compare the diagnosis system perfor- Next, if b £, b andb %), b, low false coverage probability

mance when using minimal and minimal cardinality diagnosan be guaranteed via the upper bound in (9) or the simplified

as focusing strategies and also the case without focusieg. Ppund (10). If the simplified bound is used, it tells us that a

use the performance measures defined in the previous sectiificient condition to get low false coverage probabilitya,

i.e. coverage, false coverage, and sub-coverage. For $ak&opeach modeé whereb #£, b andb %, b, have one test with

simplicity, we assume that (11) holds. b € H} and which responds with high probability wheris
present.

Thus, we have proven that C implies (19). This fact means
that (18) holds trivially.

As seen this theorem shows that if we aim for coverage
C we get also sub-coverage.

7.1 No Focusing

First, consider the strategy to not use focusing,Ce.= ¢. /-3 Minimal Diagnoses
Since we assume that (11) holds, the bound (13) Witk 0 Now consider the case of focusing by means of the princi-
gives directly thatP(b € Crp[fy(27)) = 1. SinceCr €  ple of minimal diagnoseKleer and Williams [1987]. This
CalsoP(b € C|fy(27)) = 1, which implies, according to principle says that-,=<,. That means for example that
Theorem 2, that als®’(3b € Cr : b <o b|fo(27)) = 1. if [F,NF,NF|] € C and [F,F,NF] € C, the mode
Thus both coverage and sub-coverage are guaranteed. [F,NF,NF] is preferred and thu§F, F, NF] ¢ Cr. The

In general, false coverage can not be avoided. A typical exnderlying idea of this focusing principle is that if a diagis
ample is if(F, N F, N F is the present mode. Then, assumingystem says that mod&, N F, N F| is consistent with obser-
we have coverage, it holds tHat N F, NF| € C'butalsothat yations, there is no reason to believe that the a-priori much
[F, F, NF] € Csince itis typically not possible to construct §ess probable mode”, F, N F] is the present mode.
diagnostic test which responds to the mo#leN F, NF] but A discussions in Section 7.2 regarding coverage and false
notto[F, F, N F]. Such aresponse would require that the segpyerage performance are valid for the case minimal diagno-
ond fault always compensates for the first one, somethirtg thgs focusing. In addition we can note that, as a direct conse-
is a rare situation in most real systems. Thereforé,i$f the quence of Theorem 2, the probability of sub-coverage is al-

present mode, and we have coverage, allmédes b willin  \ays greater than the coverage probability when minimal di-
the generic case be part 6f. Thus, we can not avoid false 5gnoses focusing is used.

coverage.

7.2 Focusing 7.4 Minimal Cardinality Diagnoses

We saw in the previous section that the strategy of no fogus

gives perfect performance with respect to coverage and Stg)é)&\ents inby is less or equal to the number of faulty com
X .
coverage, but very bad false coverage performance. The Shents inby. For example/F, NF, NF] >, [NF, F, F].

false coverage performance is the reason why focusing & usg_ . e : . . ; .
s in the case of minimal diagnosis focusing, all discussion

and we will in this section quantify how focusing improve ; :
ection 7.2 regarding coverage and false coverage perfor
the false coverage pet formance_ but alsc_) how the coverage rjgzrasnce are valid fgor thegcase of r%inimal cardinality d?a zosi
_forman_ce is reduced if no special care is taken. We will Jat using. However, there is an important difference r%gard
in Section 7.3 and 7.4, see also that the sub-coverage per oF sub-c;overage slomething that is revealed by the foligwi
mance may be Sﬁverely affected depending on the actual g)(gample. Assumé that we have a diagnosis system with the
cusing strategy chosen. following decision structure and that each tésts designed

First consider the coverage probabilityNfF is more pre- : .
ferred than any other mode, which should hold in any sensil}%gesgg?fn:ﬂ the mode of a column if the row containsian

focusing strategy, coverage in the case the present modé&’

i}}Iext consider the focusing strategynimal cardinality This
l%i_nciple says thab; >, by if the number of faulty com-

NF is guaranteed from the bound (13) since the/3eatill be |NF F1 F2 F3 F12 F23 F13

empty and we assume that (11) holds. For other modes,wedo™5;, | 0 X X 0 X X X

not get coverage automatically. When mdde present, we S| 0 X 0 X X X X (20)
need the tests to respond in a way such that all médes b ds | 0 0 X X X X X




Assume the mod&23 is present with an insignificant fault G1. For each diagnostic te§t, select the maximal rejection
and because the fault is small, only teétsand J, respond. region such thaP(rej,| fy(27)) = 0 for all modesb €
This implies thatC' = {F1,F12,F23,F13}. Minimal car- H} and all distributionsf,(z7) € q)'li)"sig U q;;"ig_

dinality focusing give<’r = {F1}. Itis obvious that sub-

coverage is not obtained. Note that in the case of minim8l2 Selection of Diagnostic Tests to Include

diagnosis focusing, sub-coverage is obtained (even cgegraro|iowing design guideline G1 is necessary to obtain cayera

sinceCr = {F1,F23}. _ _ ___ _butas seen in Section 7.2 not sufficient if focusing is used. A
_ The important conclusion of this study is that if an insignifyyas stated above, a sufficient condition is to, for each fair o
icant fault is present, we have no control of whether tests rg,gdes such that >, b, have at least one test that responds

spond or not, and thus we can not guarantee any level of sy, \vith probability one but not té. From Section 7.2 it has

coverage probability when using minimal cardinality foCUSyready heen concluded that if coverage éfia secured, we

ing. only have to consider false coverage of motlesered £, b

8 Guidelines for Design of Diagnosis Systems andb ¥, b. This I(.aads usto E)ur next design guideline: -
In Section 6 we have presented three fault-isolatioi- Fpr gach pair of 3;'29@’ bZ;gmake sure thf; for all (,j's'
performance-measures: coverage probability, false egeer ~ fributions f; € ©;""% U ®7* and f, € ¢, there is,
probability, and sub-coverage probability. In this settice included in the diagnosis system, af least onedgstich
aim at giving some general design guidelines such that de- thatb € Hg, P(rej,|fz(27)) = 0, and
sired performances with respect to these three measures are a) P(rej,|fy(27)) = 1if b >, b
obtained or maximized. First however we give some general . S1_cifh 7
presumptions as a starting point. b) P(rejs|fo(27)) 2 1 —eif b £, bandb %, b

In Section 3.1 it was argued that lack of coverage can ngt3 Selection of Focusing Strategy

be accepted in industrial applications. Therefore, bud ®@S Note that a consequence of the discussion in Section 7.1 is

- ; e fifat fulfillment of guideline G2 is in general not possible if
probability one, i.e.P(b € Cr|fy(27)) = 1 for significant \ye don't use a focusing strategy. This implies that, of the

faults. three choices of no focusing, minimal diagnoses, and mihima

_In Section 3.2 it was argued that false coverage is not as §&ina|ity diagnoses, we have to use minimal diagnoses or
rious as lack of coverage. Therefore, and because we wo ?Limal cardinality diagnoses.

often get an unsolvable problem if we would require false \ye have seen in Section 7 that the choice of focusing
coverage with probability zero, we will not aim &(b € ethod affects the ability to obtain sub-coverage. Of the tw
Cr|fo(27)) = 0 whenb # b and the faulth is significant. o gices left, i.e. minimal diagnoses and minimal cardtgali
Instead we aim aP(b € Cr|fy(27)) < e wheree may be  giagnoses, minimal diagnosis is the best choice since it gua

fixed or dependent on the_ pair, b.)' . . antees high sub-coverage probability when we have high cov-
We assume that the diagnosis system design starts W't@rage probability. This is our final design guideline:
default set of diagnostic tests where eachdgétas a residual

generator, and a set}. This situation is common for ex- G3. Use the focusing strategyinimal diagnoses
ample if the diagnosis system design starts with a search for ..
residual generators via structural analysis Krysanded20 @4 Summanz_lng Theorem_ ) ) o

The design freedom then consists of: (i) selecting the r¥Ve end this section by summarizing the discussion in a theo-
jection region, i.e. the threshold and possibly some regidd€m-
filtering, of each tesdy, (ii) from the default set selecttesis Theorem 3 If guidelines G1, G2, and G3 are followed, we
to be included in the diagnosis system, and (iii) to seleet ttobtain a diagnosis system where:

focusing strategy. a) P(be Crlfy(=r)) = Lforall fy(2r) € 5 and for all
8.1 Selection of Rejection Region b, i.e. coverage is guaranteed for all significant faults,
A necessary requirement for coverage is thath < b) P(HE <o b:bec Cplfy(zr)) = 1forall fo(z7) €
C|fs(27)) = 1 and from Theorem 1, it can be shown that  §:"*'% and for all b, i.e. sub-coverage is guaranteed for
a necessary and sufficient condition to achieve this is tieat t all insignificant faults,
rejection region, for each diagnostic tést fulfills insi s

c) P(t/ € Crlfi(z7)) < eforall fj € & U &2

H k

_ P.(rej’“|fb(ZT).) =0 . for all be Hy (_2%) and f, € ;" and for all pairs(b, b), i.e. false coverage
This rule is, as seen in Section 7.2, however not sufficient to  propability less tharn is guaranteed.
obtain coverage in the case when focusing is used. When
b, coverage can only be guaranteed if we also have at least
test that responds tb but not tob. Further, from (10) it is
clear that also to obtain low false coverage probabilitys it
important to have tests that responds as much as possible to
modesh ¢ Hf. These facts means that we must follow th% Example
constraint (21) but in addition, it is in general advantagetm Consider a system with a punipand two sensorS; andsSs.
maximize the probability’(rej, | f»(27)). This leads us to our The angular velocity: of the pump is measured by senstt
first design guideline: The angular velocity determines the output pressure wisich i

g#éther, no other choice of rejection region for each testsg
strictly better performance in all measures of coveragd-su
coverage, or false coverage probability.



measured by senssh. The measurement signals are denotetie focusing strategy minimal diagnoses. By using gui@elin

y1 andys respectively. All three components are assumed ®2 we will now describe how to, from the list of potential

be either in a non-faultyv ' or faulty modeF'. The system tests (23), select a subset of teAt$o be included in the diag-

behavioral modes are denoted by their faulty componermts, enosis system.

S1 means the mode where only the senSois faulty. Given the focusing strategy and the significant faults con-
Next, we assume that the following model is available:  sidered, it follows that there is one requirement in guiteli

G2a for each pair iR, = {(NF,P), (NF,S;), (NF,S,),

P=NF—=u,=u (228) B S1S5), (S1,S1S%), (Sa,S152)} and in guideline G2b,
&= f(z) + uaq (22b)  one for each pair inR, = {(S1,S2), (S1,P), (S2,P),
S1=NF —y ==z (22c) (S2,81), (P,S1), (P,S2), (P,S1S2), (S1S2,P)}.
Sy =NF — yo = g() (22d) To illustrate how to fulfill these requirements, consides th
Sy = F — yp = gl2) +c (22¢) pair (Sz2,S1S2) € R,. To fulfill guideline G2 for(S2, S1S2)

we need a test whei®, € HJ. Potential tests fulfilling this
wherec is an unknown constant. Even though not written ouire tests),, indexed{1, 5,6, 7}. Note that, since we intend to
explicitly we assume that all equations also are affected Ipgllow guideline G1, it will hold thatP(rej, | fs,(27)) = 0
noise terms with unspecified pdf’s. Note that, and as will bier any tests,, £ € {1,5,6,7}, if included in the diagnosis
shown below, it is for our purpose notimportant to know thesgystem. If we choose to includ®, a consequence of ful-
unspecified pdf’s explicitly. filling G1 is also thatP(rej;| fs,s, (7)) = 0. This implies
According to our framework, the set of pdfid, for each that, since we are looking for tests that fulfill G2a for thérpa
modeb, is assumed to be partitioned into two s@’ and (S2,S:1S2), there are only the potential tesfs, 6,7} left.
@Znsz‘g_ However, in this example, these sets are not Spea'ihus to fulfill guideline G2a fo(S2, S1S2) we would need

: . : i at least one of the potential testszin = {1,6,7} to be in-
fied explicitly. Instead we pick out, from each &}, a pdf ! : ' v
[ (z7) that represents henchmark fault Then the bench- cluded in the diagnosis system.

mark fault is defined explicitly and we assume that the pdf For al! othgr pairs inR, U Ry, setsm; of potentllal tests
. ) . 9 in th are obtained in the same way. A necessary requirement for a
f; (21) is representative for the whole sef' in the sense i, nosis system with tests to fulfill G2, is that the set

that for eachf,(27) € ®;* it holds thatP(rej,|f,(27)) > has a non-empty intersection with all sets

P(reji| f; (27)) for all k. By applying a minimal hitting set algorithm Kleer and

_ Itis assumed that only modd3, S;, Sz, andS;S; are wjjliams [1987], we get that the minimal test sets are
important to detect and isolate and thus, only these aréd:on 1,2,3,5}, {2,3,5,6}, and{2,3,5,7}. Hence a set of tests
ered to have significant faults and consequently also bench-incjuded in a diagnosis system fulfiling G2 must neces-
mark faults. The benchmark fault for modeis defined by sarily be a superset of some of these minimal test sets. This

replacing equation (22a) by, = v + Aumin, and the bench- s however not sufficient since both G2a and G2b specify re-
mark fault for modes; is defined by replacing equation (22c)

4 quirements orP(rej, | fy(27)) for all f, € @3
by y1 = @ + amin. Further the benchmark fault formode o5 me that we decide to investigate if the minimal test
is defined by = cnin. Finally, the benchmark fault for mode

: nin: set{1,2,3, 5} fulfills the requirement orP(rej, | f; (27 )) for
2182 is the combination of the benchmark faults &y and all pairs in R, U R,. For this set, all requirements on
2.

Next, structural analysis, see Krysander [2006], is used ﬁrrgjél]j;bri(ezg i)n) tshpeefcc;ﬂg\?vi% %ﬁeand G2b correspond to non-

find the equation sets that can be used to derive residual gen-

erators and their corresponding null hypotheses. Thetrissul INF P S; S» S:S

that 7 sets are found and the decision structure for potentia 511 0 p1. pa O 1

testsdy, to be constructed from these equation sets found, is So| 0 po 0O peg 1 (24)

the following. S5 0 0 ps pr o ps

equation set NF P S; S, S:S, 0| 0 p3 0 O 0

g; 833 gggi 8;8)) 8 § )0( )0( § Then from guidelines G2a and G2b we can derive the re-
55 | (22¢) (22d) 0 0 X X X quirements thatmax(py,p2,p3) = 1, mgx(p4,p5) = 1,
5, | (22a) (22b) (22¢) (22d)| 0 X X X X max(pﬁ,p7_) =1,andp; > 1—¢cforalli = 3,...8. The _
55 | (22a) (22b) (22¢) O X 0 0 0 constant is the guaranteed false coverage probability that in
5o | (22¢) (22€) O 0 X 0 X this example is c_hosen as=0.1. .
5, | (22a) (22b) (22¢) (22¢)| 0 X X 0 X The next step is to construct residual generators for the se-

(23) lected equation sets and investigate if the requiremer{&iin

are achievable by filtering and thresholding of these residu
In the decision structure above only modes which have sigls. Observer based residual generators are derived for
nificant faults are shown. All other multiple-fault modewka {1,2,5} and a static residual generator is derived using equa-

X:sonly in their columns. tion set3 in (23). Then the pdf'sf}(z7) corresponding to
. i i the benchmark faults are estimated using data from the real
9.1 Diagnosis System Design process. These estimated pdf's are then used for selecting,

Now we have all the elements needed to start the designbyf means of thresholding and filtering, the rejection region
the diagnosis system. By following guideline G3 we will useccordance with G1.



Assume that there are thresholds for the residuals such thaBystems, Man, and Cybernetics—Part B: Cyberngtics
the following performancé(rej, | f (27)) for the benchmark  34(5):2163-2177, 2004.

faults has been confirmed: J. J. Gertler.Fault Detection and Diagnosis in Enginerering

INF P S; S; SiS: SystemsMarcel Dekker, Inc., 1998.
Lo 110 1 W. Hamscher, L. Console, and J. de Kleer, edit®eadings
200 08 0 1 1 (25)  in Model-Based DiagnosisMorgan Kaufmann Publishers,
3/ 0 0 095 097 0.98 1992,
51 0 09 0 0 0

J. De Kleer and B.C. Williams. Diagnosing multiple faults.
By using this matrix, the bounds fdP(b € C|V') in Theo- Artificial Intelligence 32:97-130, 1987.

rem 1, wheré' corresponds to the rows ahdo the columns, 5 pe Kleer, A. K. Mackworth, and R. Reiter. Characterizing

are. diagnoses and systemattificial Intelligence 56, 1992.
|INF P Si  S2 8iS Mattias KrysanderDesign and Analysis of Diagnosis Systems
NF |1 0 0 0 0 Using Structural MethodsPhD thesis, Linkdpings univer-
P 0 1 [001] 0 [00.1] sitet, June 2006.
g; 8 {8 883} (1) (1) 8 M. Nybe_rg and M. K_rysan_der._ Combining Al, F[_)I,_ and
S1Ss| 0 [00.02] 0 0 1 statistical hypothesis-testing in a framework for diageos

In Proceedings of IFAC Safeproc€8s Washington, USA,
The interpretation of the first row is that, when the present 2003.
mode isN F thenCr = {NF'} with probability 1. In row 3, M. N -

. . Nyberg and M. Krysander. Statistical proper-
we can see that whey is the presentmode thén € Crbut - “4jos™ and design criterions for Al-based fault isola-
P will also be mcluded i’y with a probabl_hty less thaf.05. tion.  Technical Report LiTH-ISY-R-2843, Dept. of
No other modes will be included ﬁF..AII@agonalelements Electrical Engineering Linkdpings univers’itet, 2007.
are 1, I.e. complete coverage of all significant faults @@ g :hitp:/mmww.vehicular.isy.liu.se/Publications/.
obtained. All non-diagonal elements are less or equal to 0.1 ) ) ] ] . ]
and this means that the false coverage probability is less tHVl. Nyberg. Automatic design of diagnosis systems with appli
10%. In fact, the false coverage probability is better than t ~ Cation to an automotive engin€ontrol Engineering Prac-

guaranteed 10% for all modes except far tice, 7(8):993-1005, 1999.
_ R. J. Patton, P. M. Frank, and R.N. Clarkssues of Fault
10 Conclusions Diagnosis for Dynamic SystemSpringer, 2000.

The first contribution of the paper is the formalization aitift  S. Ploix, S. Touaf, and J. M. Flaus. A logical framework for
isolation performance” in noisy and uncertain systems. Forisolation in fault diagnosis. IfProceedings of IFAC Safe-
this we have used the established notion@ferageandfalse process’03Washington, USA, 2003.

coveragdrom the field of statistics. Further it has been noteg Reiter. A theory of diagnosis from first principlestificial
that a different performance criteria is needed for _|n§|gn| Intelligence 32:57-95, 1987.

cant faults, and we have therefore introduced the thirdoperf , , i

mance measursub-coverage We have also derived formal S Tuhrim, J. Reggia, and S. Goodall. An experimental study
relations describing the relationship between fault isota ~ Of Criteria for hypothesis plausibility.Journal of Experi-
performance and the null-hypotheses and rejection regibns mental & Theoretical Artificial Intelligence3(2):129-144,
the tests. Further, the intrinsic fault isolation perfonoa of 1991.

different Al-based fault isolation schemes has been etadua

and it has notably been concluded that the well known princi-

ple of minimal cardinality diagnosigives a bad performance

for the case of small faults. Finally, based on the perforrean

measure and investigations, we have developed some general

design guidelines that, if followed, guarantee and max@miz

the fault isolation performance.
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