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ABSTRACT

This work is focused on structural approaches to
studying diagnosability properties given a system
model taking into account, both simultaneously
or separately, integral and differential causal inter-
pretations for differential constraints. We develop
a model characterization and corresponding algo-
rithms, for studying system diagnosability using
a structural decomposition that avoids generating
the full set of system ARRs. Simultaneous ap-
plication of integral and differential causal inter-
pretations for differential constraints results in a
mixed causality interpretation for the system. The
added power of mixed causality is demonstrated
using a case study. Finally, we summarize our
work and provide a discussion of the advantages
of mixed causality over just derivative or just inte-
gral causality.

1 INTRODUCTION
Fault Detection and Diagnosis, FDD, are essential for
Fault Tolerant Control and System Health Monitoring
tasks. Model-based Reasoning has seen significant
research activities from both the FDI (Blanke et al.,
2006) and the DX (Reiter, 1987) communities in the
last three decades. The two communities have devel-
oped different algorithms that are being proved to be
complementary (Cordier et al., 2004). The main ad-
vantage of the Model-based approach is inherent to
using models: re-usability. In more detail, both the
DX and FDI approaches use the redundancy in the sys-
tem description and measurements to develop a set of
residuals, which have been termed as conflicts (Reiter,
1987), ARRs (Cassar and Staroswiecki, 1997), Possible
Conflicts (Pulido and Alonso, 2004) and Structurally
Overdetermined sets (Krysander et al., 2008) by differ-
ent researchers.

In the last decade, a lot of work has been devoted
to analyze diagnosability and sensor placement in the
context of model-based diagnosis. Early works in the
DX community on fault diagnosability were devoted
to the definition and characterization of the diagnos-
ability concept, based on fault detection and isolation

results (Dressler and Struss, 2003). Recently, the pro-
cess has been carried out pre-computing the whole set
of existing ARRs for a given set of sensors, and analyz-
ing their discriminability properties (Travé-Massuyès
et al., 2006). Such approaches are infeasible for large
systems. More recently, (Krysander and Frisk, 2008;
Rosich et al., 2009) have explored alternative and more
efficient computational ways for diagnosability analy-
sis.

This work extends the more recent work by studying
the diagnosability properties given a system model and
a fixed set of sensors when different causal interpreta-
tions are considered for differential constraints. Our
approach focuses on analyzing the structural model of
the system to define and efficiently compute detectable
and isolable parts of the system. The first contribution
of this work is to consider either integral or derivative
causality in differential constraints while performing
system diagnosability analysis using the system model.
The second contribution considers mixed causality –
allowing the choice of derivative or integral causality
on individual different constraints – while analyzing
system diagnosability. How to deal with loops for both
approaches is discussed, and efficient algorithms for
computing causal matchings in each case are devel-
oped. Finally, we compare the different diagnosability
capabilities for integral, derivative and mixed causality
approaches.1

We have tested these concepts and algorithms in a
case study, a three-tank system, proving that the pro-
posed algorithms can be used to analyze diagnosability
of a system without exhaustive computation of the set
of residuals. Moreover, we show that diagnosability
is improved when mixed causality is considered. This
article is organized as follows. First, we introduce the
problem formulation, together with a case study used
to illustrate main concepts. Afterwards, the theoretical
background for the basic concepts used in the proposal
is provided. Later on, we analyze the diagnosability
properties of a system model under different causal

1A Matlab implementation is available at
http://www.fs.isy.liu.se/Software/
CausalIsolability/.
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interpretations for differential constraints. Finally, we
present and discuss results obtained using the approach
on the case study, and draw some conclusions.

2 PROBLEM FORMULATION
We use a simple three tank system model (Figure 1)
to introduce the problem and formulate the different
classes of residual generators that we discuss in the
paper. The three tank system model is represented by
the set of equations

c1 : q1 =
1

RV 1
(p1 − p2) c7 : y1 = p1

c2 : q2 =
1

RV 2
(p2 − p3) c8 : y2 = q2

c3 : q3 =
1

RV 3
(p3) c9 : y3 = q0

c4 : ṗ1 =
1

C1
(q0 − q1) c10 : ṗ1 =

dp1
dt

c5 : ṗ2 =
1

C2
(q1 − q2) c11 : ṗ2 =

dp2
dt

c6 : ṗ3 =
1

C3
(q2 − q3) c12 : ṗ3 =

dp3
dt

where pi is the pressure in tank i, qi the flow through
valve i, RV i the flow resistance of valve i, and Ci the
capacitance of tank i. Three sensors y1, y2, and y3,
measure p1, q2, and q0, respectively.
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Figure 1: Diagram of the three-tank system.

A sequential residual generator consists of a subset
of equations that are used to compute the unknown
variables included in these equations and a redundant
equation that checks the consistency between the obser-
vations and the considered subset of model equations.
It is assumed here that all algebraic loops can be solved
using symbolic or numerical solvers. This assumption
is realistic since commercial packages for simulating
differential-algebraic equations, e.g. Dymola, success-
fully use similar techniques to solve large dynamical
models (Fritzson, 2004).

A main concern is how to handle the dynamics in
the model. For this class of residual generators, in the
literature there have typically been two options; either
integral causality or differential causality (Chantler et
al., 1996; Blanke et al., 2006; Pulido and Alonso, 2004;
Travé-Massuyès et al., 2006). This means that during
computation, only differentiations or integrations are
allowed. However, when solving differential algebraic
equations, there is typically a need to include both dif-
ferentiation and integration in the same solver (Brenan

et al., 1996). For that reason, it is necessary to ana-
lyze the influence of combining both types of causal
assignments, i.e., mixed causality, when using dynamic
models.

As an example, consider the tank model and assume
differential causality. Then variables p1, q2, q0, q1, p2
can be sequentially computed from equations c7, c8,
c9, c4, c1 respectively and ṗ1 and ṗ2 are computed by
numerical differentiation using equations c10 and c11.

p1 := y1, ṗ1 :=
d

dt
p1, q2 := y2

q0 := y3, q1 := q0 − C1ṗ1

p2 := p1 −RV 1q1, ṗ2 =
d

dt
p2

A residual can then be computed using equation c5 as
r := C2ṗ2 − q1 + q2. The variables are computed in a
sequential way using numerical differentiation where
needed and in this case no algebraic loops need to be
solved.

Integral causality works in a similar way and as an-
other example, compute q2 and q0 using c8 and c9 as

q2 := y2, q0 := y3

and then solve for q1, p1, p2, ṗ1, and ṗ2 using the set
of equation c1, c4, c5, c10, c11:

q1 :=
1

RV 1
(p1 − p2), p1 :=

∫ t

0

ṗ1dτ

ṗ1 :=
1

C1
(q0 − q1), p2 :=

∫ t

0

ṗ2dτ

ṗ2 :=
1

C2
(q1 − q2)

Note that this is a differential loop that has to be solved
numerically, which can be done with any ODE-solver
technique. Loops are broken by integrators, and some-
times this is referred to as a spiral (Dressler and Struss,
1996). Finally, a residual can be computed using equa-
tion c7 as r := y1 − p1.

These two examples illustrate the main principle
of sequential residual generation with the differential
and the integral causality assumptions. Here one can
also note a fundamental difference between the two
cases. A loop including dynamic constraints, i.e. any
of c10, c11, c12, in the integral causality case did not
impose any difficulties since the loop could be directly
solved by pure integration. However, a similar loop can-
not be solved with a differential causality assumption.
This is because the loop corresponds to a differential
equation which can not be solved by only differentiat-
ing variables.

As will be demonstrated in Section 5, there are cases
where neither derivative nor integral causality is enough
and mixed causality has to be applied to compute all
variables. Thus, different causality interpretations im-
pose different constraints, which leads to the formu-
lation of different residual generators. Therefore, dif-
ferent causality interpretations will likely result in dif-
ferent maximal diagnosability properties for a given
model. The problem studied in this paper is thus to
derive efficient algorithms, which are not based on the
set of ARRs/MSOs derived using integral, derivative, or



mixed causality interpretation, and then use this model
to determine the diagnosability properties of the sys-
tem.

3 THEORETICAL BACKGROUND
This section recapitulates some basic formalism, con-
cepts, and notation needed to describe the theoretical
developments in Section 4.

3.1 Graph Representation of the Model
The class of models considered is general systems of
first-order differential-algebraic equations in the form

gi(x1, ẋ1, x2, z) = 0, i = 1, . . . ,m (1)

where z ∈ Rnz is the vector of known variables, x1 ∈
Rn1 the vector of unknown dynamic variables, and
x2 ∈ Rn2 the vector of unknown algebraic variables.
Since the objective is to analyze the effect of causal
assumptions it is convenient to add explicitly, for each
variable x1,i ∈ x1, constraints capturing the dynamics

ẋ1,i =
d

dt
x1,i, i = 1, . . . , n1 (2)

The constraints in (1) are algebraic and systems dynam-
ics are included in (2) which are referred to as dynamic
or differential constraints. Note that the constraints
expressed by equation (2) can be evaluated using two
different causal interpretations:

1. derivative causal interpretation (derivative causal-
ity, for short), where x1,i is differentiated to obtain
ẋ1,i; and

2. integral causal interpretation ( integral causality,
for short), where ẋ1,i is integrated to obtain x1,i.

Model analysis is based on the model structure rather
than the analytical equations. This makes it possible to
analyze large systems efficiently and with no numerical
problems. The disadvantage is that the structural results
may not be as precise as the analytical results. However,
analytic results are computationally expensive, and they
are often not possible to derive for nonlinear systems
in the form (1).

The structure of a model is commonly represented
by a bipartite graph as follows:
Definition 1. The structural model graph for the
model equations (1) and (2) is defined as a bipartite
graph, G(C,X,E), where C and X are node sets,
such that C = {c1, . . . , cm} is the set of constraints,
X = {x1, ẋ1, x2} the set of unknown variables, and
E ⊆ C × X edges such that (ci, xj) ∈ E if xj ∈ X
appears in constraint ci ∈ C.

Since the objective is to analyze consequences of
different causal interpretations of the differential con-
straints (2), the set of edges E is partitioned into
E = EX∪ED∪EI whereED is the set of edges corre-
sponding to differentiated variables ẋi in the differential
constraints (2), EI the non-differentiated variables xi
in the differential constraints, and EX the remaining
set of edges.

For example, the bi-adjacency matrix of the graph
representing the three-tank model is shown in Table 1,
whereX , D, and I indicates edges in EX , ED, and EI ,
respectively.

q0 q1 q2 q3 p1 p2 p3 ṗ1 ṗ2 ṗ3
c1 X X X
c2 X X X
c3 X X
c4 X X X
c5 X X X
c6 X X X
c7 X
c8 X
c9 X
c10 I D
c11 I D
c12 I D

Table 1: Bi-adjacency matrix for the structural model
of the three-tank system.

A number of simple graph operations and relations
will be used in our algorithms. Let G be a structural
model graph, E1 a set of edges, X1 a set of variables,
C1 a set of constraints.
• G(C,X,E)− E1 is the graph G(C,X,E \ E1).
• G−X1 and G−C1 are the graphs where a set of

variables and constraints respectively are removed
together with any corresponding connected edges.
• C(G), X(G), E(G) are the constraints, variables,

and edges respectively in a graph G.
• C(G,E1) and C(G,X1) are the set of constraints

in graph G connected to edges E1 or variables X1
respectively.
• G1(C1, X1, E1) ∪ G2(C2, X2, E2) is the graph
G(C1 ∪ C2, X1 ∪X2, E1 ∪ E2).
• G1(C1, X1, E1) ⊂ G2(C2, X2, E2) means that
C1 ⊂ C2, X1 ⊂ X2, and E1 ⊂ E2.

3.2 The Dulmage-Mendelsohn Decomposition
A key tool when analyzing structural models is the
Dulmage-Mendelsohn decomposition (Dulmage and
Mendelsohn, 1958), used in diagnosis in e.g. (Blanke
et al., 2006; Krysander and Frisk, 2008; Flaugergues et
al., 2009). The general Dulmage-Mendelsohn decom-
position is illustrated in Figure 2 where, by a suitable
reordering of constraints and variables, the bi-adjacency
matrix is converted to a triangular form. The sub-graph

G−

Gn

. . .

G2

G1

G+

X− X0 X+

C−

C0

C+

Figure 2: Dulmage-Mendelsohn decomposition.

G− with node sets C− and X− represents the underde-
termined part of the model, G0 with node sets C0 and
X0 the exactly determined part, and G+ with node sets
C+ andX+ the overdetermined part. It is the overdeter-
mined part that contains redundancy and can therefore



be used for diagnosis. In the exactly determined parts
there is a finer structure of Hall-components, here de-
noted Gi, which will be explained later. With some
slight abuse of notation, + and 0 will be used as op-
erators on both graphs and set of constraints in the
forthcoming sections.

A central concept used frequently in the following
sections is matching (Harary, 1969). A matching is a set
Γ of edges such that no two edges in Γ have common
nodes. A matching can, in the context of structural mod-
els, loosely be interpreted as which variable is solved in
which equation. A Dulmage-Mendelsohn decomposi-
tion characterizes all matchings for a given model and,
for example, a matching of variables X0 is given by
the diagonal of the exactly determined part in Figure 2.

3.3 Structural Detectability and Isolability
Given a structural model and the Dulmage-Mendelsohn
decomposition, we can now recapitulate standard defi-
nitions on structural detectability and isolability. These
definitions will then in Section 4 be extended to cover
the cases where there are causal constraints. Without
loss of generality, it is assumed that a fault f only influ-
ences one constraint, denoted cf . Then from (Blanke
et al., 2006; Krysander and Frisk, 2008):
Definition 2 (Structural Detectability). A fault f is
structurally detectable in a model if

cf ∈ C+

Following the ideas in (Krysander and Frisk, 2008),
a fault fi is isolable from a fault fj if fi is detectable
in the model G− cfj , i.e.

Definition 3 (Structural Isolability). A fault fi is struc-
turally isolable from fj in a model if

cfi ∈ (C \ {cfj})+

4 DIAGNOSABILITY UNDER CAUSAL
CONSTRAINTS

This section first introduces formal definitions on causal
detectability and isolability and then proceeds to de-
velop the algorithms and formal proofs of their correct-
ness.

4.1 Basic Definitions
As discussed in Section 2, a causal assumption imposes
an ordering on how the unknown variables are com-
puted in a system. If a proper order can be found the
system is solvable. This is better formulated as shown
in Figure 2, therefore, the first step en route to defining
detectability and isolability under a causality assump-
tion is to formally define solvability. Note that special
attention has to be given to the Hall components, see
Figure 2, which correspond to a set of variables that has
to be solved simultaneously in a set of constraints. For
the case where no causality constraints are imposed, a
solvability condition is then that there exists a complete
matching with respect to the unknown variables.

As discussed in Section 2, non-trivial loops involving
integral constraints can be solved sequentially. Then,
since it is assumed that algebraic loops can be solved,
solvability for integral causality is defined as follows:

Definition 4. A Hall component G is structurally solv-
able under integral causality if there exists a perfect
matching Γ in G such that

Γ ⊆ EX ∪ EI

The definition is quite natural. A matching, with
no derivative edges, that is complete in the unknown
variables gives a computational sequence. The com-
putational sequence may involve Hall components of
size larger than 1, i.e., more than one variable has to
be solved for simultaneously. If the Hall component
includes an integration, the computational loop is nat-
urally broken, and if it is a pure algebraic loop, it is
assumed that any such loop can be solved numerically.

For the derivative causality case, a similar definition
can be stated. Here it is important to note that a non-
trivial Hall component with a derivative edge can not
be solved using differentiation only. This is because
the equations in the Hall component correspond to a
differential-equation to be solved which implies that
differentiation is needed.
Definition 5. A Hall component G is structurally solv-
able under derivative causality if there exists a perfect
matching Γ in G such that
• Γ ⊆ EX ∪ ED, and
• Γ ∩ ED 6= ∅ implies that |Γ| = 1.
The second condition ensures that there are no non-

trivial loops with derivative edges.
For the mixed causality case, a matching Γ can struc-

turally solve all variables if all variables that are not
computed by integration can be solved using derivative
causality. Thus, the solvability definition for the mixed
causality case can then be stated based on Definitions 4
and 5.
Definition 6. A Hall component G is structurally solv-
able under mixed causality if there exists a perfect
matching Γ in G such that all Hall components in
G′(Γ) = G − C(G,Γ ∩ EI) − X(G,Γ ∩ EI) are
structurally solvable under derivative causality.

Using the definition in Section 3 that the monitorable
part of a model is its overdetermined part, i.e., C+

in Figure 2, solvability can be defined for the three
different causality interpretations. The set of constraints
that is structurally monitorable can be directly defined
using the following definition.
Definition 7. Given a causal assumption, a set of con-
straints C is structurally monitorable if
• C = C+, and
• there exists a complete matching Γ with respect to

all unknown variables in C such that all Hall com-
ponents in H(Γ) are structurally solvable under
the causal assumption.

The union of two structurally monitorable sets is also
monitorable and, therefore, there is a unique maximal
monitorable set which is the union of all monitorable
sets. This maximal set of constraints is of special im-
portance since this set is a direct counterpart to the
overdetermined part used in Definitions 2 and 3.
Definition 8. Given a causal assumption, causal ∈
{der, int,mix}, the set of structurally monitorable
constraints under the causal assumption, C+

causal, is
the maximal set of structurally monitorable constraints.



With the definition of C+
causal, extensions of Defini-

tions 2 and 3 are direct and summarized as:

Definition 9. A fault f is causally structurally de-
tectable in a model if

cf ∈ C+
causal

A fault fi is causally structurally isolable from fj in a
model if

cfi ∈ (C \ {cfj})+causal

Thus, algorithms that compute C+
causal for causal ∈

{der, int,mix} are sufficient to evaluate diagnosability
properties of a given model.

4.2 Computing Monitorable Part Under a Causal
Assumption

This section provides algorithms, and formal proofs,
on how to compute C+

causal and, for a given set of
equations, a causal matching. Computation of C+

causal
makes it possible to determine isolability properties
according to Definition 9 and with a causal matching it
is possible to derive sequential residual generators as
described in Section 2. Integral, derivative, and mixed
causality constraints will be treated separately.

Integral causality
To compute C+

causal under integral causality, the al-
gorithm in (Flaugergues et al., 2009) can be used.
An algorithm description is included here, which
is equivalent to the one in (Flaugergues et al.,
2009), using the notation introduced in Section 3.

Algorithm 1: Compute C+
int

function computeInteg(G(C,X,EX ∪ EI ∪ ED))
repeat

G := G+;
G1 := G− ED;
G := G− C(G,X(G−1 ));

until G−1 = ∅;
return C(G)

The algorithm works by iteratively removing variables
that can not be computed when no differential edges
can be used in a matching. To obtain a causal matching,
consider the graph G1 after the final iteration. First,
any matching in G1 is causal according to Definition 4.
Also, observe that when the iteration terminates it holds
that X(G) = X(G1) and that G = G+, which means
that the causal matching inG1 is also a causal matching
for the variables in C+

int.

Derivative causality
For the derivative causality case, note that the algorithm
from (Flaugergues et al., 2009) can not be used since
special attention has to be given to loops involving dif-
ferential constraints, i.e., condition 2 in Definition 5.
The algorithm works by first computing, in an itera-
tive manner, the set of all computable variables Xc un-
der derivative causality and then the structurally moni-
torable part under derivative causalityC+

der is computed.

Algorithm 2: Compute C+
der

function computeDeriv(G(C,X,EX ∪ EI ∪ ED))
Xc:= ∅;
repeat

Gnc := G−Xc;
Gni := Gnc − C(Gnc, EI);
Xc := Xc ∪X(G+

ni ∪G0
ni);

until X(G+
ni ∪G0

ni) = ∅;
G := G− C(G,X \Xc);
return C(G+)

Theorem 1. The output of Algorithm 2 satisfies the
condition in Definition 8 for derivative causality.

Proof. Consider C+
der and let the corresponding sub-

graph be denoted G+
d . As a first step, we will show that

C+
der is a subset of the output of the algorithm. Accord-

ing to the definition of C+
der, there exists a matching

Γ, Hall components H(Γ) = {G1, . . . , Gn}, and for
each component Gk there exists a matching Γk such
that Γk ⊂ EX ∪ ED, and Γk ∩ ED 6= ∅ implies that
|Γk| = 1. This is equivalent to the condition

E(Gk) ∩ EI = ∅ (3)

Assume that the Hall components are enumerated as
in Figure 2 and define Xk = ∪j≤kX(Gj). In the first
iteration G1 ⊂ Gnc since Xc = ∅. It follows from (3)
that no part of G1 is removed when Gni is created and
G1 ⊂ Gni. Using that G1 is a Hall component we get

G1 = G+
1 ∪G0

1 ⊂ G+
ni ∪G

0
ni

Hence X1 ⊂ Xc after the first iteration.
In the second iteration, it follows from the definition

of Gnc that G2 −Xc ⊂ Gnc. Furthermore, X1 ⊂ Xc
and condition (3) imply that none of the constraints in
C(G2 −Xc) is removed when Gni is computed, and
hence G2 −Xc ⊂ Gni.

Using that G2 − Xc has no underdetermined part,
G2 −Xc ⊂ Gni −Xc and X(Gni) ∩Xc = ∅ we get

G2 −Xc = (G2 −Xc)
+ ∪ (G2 −Xc)

0

⊂ (Gni −Xc)
+ ∪ (Gni −Xc)

0 = G+
ni ∪G

0
ni

and it follows that

X2 ⊂ Xc ∪X(G2 −Xc) ⊂ Xc ∪X(G+
ni ∪G

0
ni)

where the set on the right-hand side is the set Xc after
the second iteration.

We have shown that X2 ⊂ Xc after the second
iteration and we can continue in the same way and
show that Xk ⊂ Xc after k iterations and X(G+

d ) =
Xn ⊂ Xc after at most n iterations. It follows that
C+

der ∩C(G,X \Xc) = ∅, G+
d ⊂ G−C(G,X \Xc),

and we get C+
der ⊂ C(G+) in the final step of the

algorithm.
The next step is to show that the output of the algo-

rithm is a subset of C+
der. To do this it is sufficient to

show that the output is structurally monitorable, since
C+

der is the largest structurally monitorable subset of C.
In iteration k there exists a complete matching Γk with
respect to the variables in G+

ni ∪G0
ni; see Figure 3.



Γ1

Γ2

Figure 3: Causal Matching Γk in iteration k.

Let H(Γk) = {Gk1, . . . , Gknk
} denote the induced

Hall components. All Hall componentsGkj fulfills con-
dition (3), since E(G2)∩EI = ∅ by definition. Define
Γ = ∪kΓk, which is a complete matching with respect
to the variables in Xc in G − C(G,X \ Xc) and the
induced Hall components are given by ∪kH(Γk). After
the operation G := G − C(G,X \ Xc) the set C(G)
is a set of constraints where all unknown variables can
be computed under the derivative causality assump-
tion. By removing the exactly determined part of the
model a structurally monitorable set of constraints is
obtained.

The proof of Theorem 1 includes a constructive pro-
cedure to compute a causal matching Γ for the variables
included in C+

der.

Mixed causality

The mixed causality case is treated by first considering
an exactly determined model and proving, in a construc-
tive manner, that there always exist a causal matching
Γ. Then, this result is used to state an algorithm for
computing the set C+

mix.
For an exactly determined model, i.e. the graph

G satisfies that G = G0, the set H of Hall compo-
nents is uniquely defined and given by the Dulmage-
Mendelsohn decomposition described in Section 3.2.
Let the set of admissible edges A(G) be defined as

A(G) =
⋃
g∈H

E(g) (4)

These edges are called admissible since these
are the only edges in G included in some per-
fect matching of G. The following algorithm
computes a causal matching, assuming mixed
causality, for any exactly determined system.

Algorithm 3: Mixed causality matching
function
mixedCausalityMatching(G(C,X,EX ∪ EI ∪ ED))
Γ := ∅;
while A(G) ∩ Ei 6= ∅ do

Select any e ∈ A(G) ∩ EI ;
Γ := Γ ∪ {e};
G := G− C({e})−X({e});

end
Let Γ′ be any perfect matching of G;
Γ := Γ ∪ Γ′;
return Γ

Correctness of the algorithm is proven in the follow-
ing theorem:

Theorem 2. For a graph that satisfies G = G0, Algo-
rithm 3 returns a perfect matching Γ such that Γ fulfills
the conditions in Definition 6 for all Hall components
in G.

Proof. Since e is included in a perfect matching, there
exists a perfect matching in G − C({e}) − X({e})
as well, and A(G) is well defined in each iteration.
The set of admissible edges, A(G), is decreasing in
each iteration and after the final iteration a reduced
graph G is obtained with the property A(G) ∩ EI =
∅. Let the Hall components in the original graph be
denoted by {G1, . . . , Gn}. After the reduction each
Hall component Gk has a structure similar to the one
illustrated in Figure 4. Let the Hall components in

I D

I D

Figure 4: Reduced Hall component G′k

the reduced Hall component G′k be denoted by Hk =
{Gk1, Gk2, . . . , }. The Hall components in the reduced
graph are then given byH = ∪kHk and it follows from
A(G) ∩ EI = ∅ that

E(Gkj) ∩ EI = ∅ (5)

The matching Γ obtained by the algorithm can be parti-
tioned into sets Γk, k = 1, . . . , n, where each Γk is a
perfect matching in Gk.

It follows from the construction that G′k = Gk −
C(Γk∩EI)−X(Γk∩EI), and it follows from (5) that
all Hall components inG′k are solvable under derivative
causality.

Based on Theorem 2, the following result on how to
compute C+

mix is immediate.



Corollary 1. Given a structural model graph G, the
set of constraints in the overdetermined part G+ fulfills
Definition 8 for a mixed causality assumption.

Proof. The result in Theorem 2 states that, in an exactly
determined system there always exists a mixed causal
matching. From this follows that mixed causality is
as general as the no causality case and thus C+

mix =
C(G+).

The result can be summarized in the algorithm below.

Algorithm 4: Compute C+
mix

function computeMixed(G)
C1 := C(G+);
return C1

5 CASE STUDY: A THREE-TANK SYSTEM
The three-tank system model (shown in Fig. 1) is used
to illustrate the proposed approach. In this section,
the fault detectability analysis is performed, and then,
based on the detectability results, single fault isolability
analysis is carried out.

5.1 Structural Detectability Analysis
Algorithms 1, 2, and 4, automatically provide the mon-
itorable part of the model for integral, derivative, and
mixed causality respectively. The results show that all
the constraints influenced by the faults considered be-
long to C+

int, C
+
der, or C+

mix, hence, the system has full
detectability when any of the three interpretations is
considered.

5.2 Structural Isolability Analysis
To illustrate single fault isolability properties of the
model, we computed the isolability matrices for each
one of the causal interpretations considered. Tables 2, 3,
and 4 show the isolability matrices when derivative, in-
tegral, and mixed causality, respectively, is considered.
Columns and rows of the isolability matrix represent
the faulty candidates considered. An X in position
(i, j) indicates that fault j cannot be isolated from fault
i. Isolability matrices were computed using the algo-
rithms proposed and ideas of Definition 9.

When derivative causality is considered, the diag-
nosis system cannot provide full isolability, because
faults in RV1 and CT1 cannot be isolated from the rest
of the faults in the system, and faults in RV2

, RV3
, CT3

cannot be isolated among themselves. Only faults in
CT2

can be uniquely isolated using derivative causal-
ity, i.e., Ider = {CT2

}, {RV2
, RV3

, CT3
}. Integral

causality provide better isolability than the derivative
case: using integral causality faults in CT1

and CT2

can be isolated from the rest of the faults in the sys-
tem, i.e., Iint = {CT1

}, {CT2
}, {RV2

, RV3
, CT3

}. Fi-
nally, for mixed causality, provides the best results
for isolability: faults in RV1

, CT1
, CT2

can be iso-
lated from the other faults in the system, i.e., Imix =
{RV1

}, {CT1
}, {CT2

}, {RV2
, RV3

, CT3
}.

Thus, for this case study, isolability analysis results
show that Ider ≺ Iint ≺ Imix but in general, only
Ider ≺ Imix and Iint ≺ Imix can be guaranteed be-
cause always C+

int ⊆ C+
mix and C+

der ⊆ C+
mix. Maxi-

mum isolability cannot be achieved in this system using

RV1
RV2

RV3
CT1

CT2
CT3

RV1
X X X X X X

RV2
X X X

RV3
X X X

CT1
X X X X X X

CT2
X

CT3
X X X

Table 2: Isolability matrix for the three-tank system
when derivative causality is considered.

RV1
RV2

RV3
CT1

CT2
CT3

RV1
X X X X X X

RV2
X X X

RV3
X X X

CT1
X

CT2
X

CT3
X X X

Table 3: Isolability matrix for the three-tank system
when integral causality is considered.

RV1
RV2

RV3
CT1

CT2
CT3

RV1
X

RV2
X X X

RV3
X X X

CT1
X

CT2
X

CT3
X X X

Table 4: Isolability matrix for the three-tank system
when mixed causality is considered.

derivative or integral causality. When mixed causality
is considered, additional residuals are created from the
system models, and this improves the isolability. Fig. 5
shows a residual obtained for mixed causality. Looking
at the differential constraints in the residual, e10 uses
derivative causality, while both e11 and e12 use integral
causality. Only mixed causality allows for a residual to
isolate faults inRV1

(in this case this is the only residual
not containing the constraint e1). This residual was ob-
tained from the causal matching automatically provided
by Algorithm 3 when mixed causality is considered.

6 DISCUSSION AND CONCLUSIONS
In this paper we have presented a new framework for
analyzing the diagnosability of a system using differen-
tial, integral, and mixed causality. We have presented a
novel way to analyze diagnosability properties by an-
alyzing the structural model of the system. We have
proposed the theoretical framework and the algorithms
to compute the monitorable part for a system model for
the three causal interpretations considered, and used
this to establish the diagnosability properties of the
system. Moreover, using the computations for the mon-
itorable part, we provide the mechanisms to efficiently
compute causal matchings for each case.

Several approaches have been proposed in the litera-
ture to analyze diagnosability of systems, like the work
by (Travé-Massuyès et al., 2006), where diagnosabil-
ity is analyzed after the computation of the complete
set of ARRs. The approach presented in this paper
provides diagnosability results with different causal
interpretations by analyzing the model of the system,
and not a previously designed diagnosis system. Other
approaches (e.g., (Flaugergues et al., 2009)) propose
canonical decomposition methods that use invertibil-
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Figure 5: Additional residual obtained when mixed
causality is considered.

ity information to analyze diagnosability of the sys-
tem. The main difference with our approach is that in
(Flaugergues et al., 2009) differential constraints can be
seen as non invertible constraints if information about
the loops is not considered, hence, this approach is valid
only when integral causality is considered, but not for
the derivative and mixed causality cases.

The primary conclusions from this work are that: (1),
analysis of the diagnosability of a system considering
different causal interpretations can be efficiently done
using just the model of the system; and (2), when com-
puting the monitorable part of the system using mixed
causality, we can always guarantee that C+

int ⊆ C+
mix

and C+
der ⊆ C+

mix, which means that mixed causality
will always provide equal or better isolability results
than the integral or derivative causality approaches. In
this paper we considered all algebraic constraints to be
invertible. However, this work still needs to investigate
two important issues: (1) All nonlinear constraints may
not be invertible. Here the work of (Rosich et al., 2009)
may be applied, and we believe that this will produce
superior diagnosability results; (2) computation of the
numerical derivative of variables. In reality, this will
create a trade-off, especially when measurements are
noisy. One will likely have to trade-off robustness of the
approach to obtain better diagnosability results. This
is an open question that we will investigate in future
work.
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J. Montmain, M. Staroswiecki, and L. Travé-Massuyès.
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