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Abstract

A general framework and a method for model based diagno-
sis are suggested. In the framework, faults and modeling of
faults are formally described. Then the method is used to
construct a diagnosis system based on a structure of hypoth-
esis tests. Using these principles, it is possible to diagnose a
large variety of different types of faults. The framework and
the method are applied to the design of a diagnosis system
for an automotive engine. This application clearly shows the
strength of these principles because several different types
of sensor faults and leakage need to be diagnosed. The re-
sulting diagnosis system is demonstrated using experiments
on a real automotive engine.

1 Introduction

Model based fault diagnosis has gained increased interest
during the last 10 years. Reasons are the availability of
cheap and powerful microprocessors together with increased
demand on diagnosis performance in many areas, e.g. auto-
motive engines. Many studies have been devoted to theory,
e.g. see the reviews [1][2], but few results have shown the
practical use in real applications.

One problem with the previously presented diagnosis
methods is that they are each specialized to diagnose a cer-
tain type of faults. On the contrary, real application contain
rarely only one type of faults. Instead, the common situa-
tion is that there is a need to diagnose many different types
of faults.

As an attempt towards solving the above described prob-
lems, we here suggest a new framework in which all kinds
of diagnosis problems can be described. Also presented is
a new method structured hypothesis tests. Both the frame-
work and the method are quite general and therefore prob-
ably more useful in real applications than many other prin-
ciples. In addition, much more model knowledge can be
included in the design of the diagnosis system, which im-
plies that there is a high potential to obtain better diagnosis
performance.

The framework is described in Section 2 and the princi-
ple of structured hypothesis tests is described in Section 3.
These are then applied to the diagnosis of the air-intake sys-
tem of an automotive engine in Section 4 and 5. It is seen
that a large variety of different faults can be diagnosed. In
Section 6 the diagnosis system is then experimentally vali-
dated.

2 Fault Modeling and Fault Modes
This section presents the new framework for describing di-
agnosis problems. Within this framework, we can formally
describe faults and the modeling of faults. Only a short
description is given here, but a thorough discussion can be
found in [3].

A system can usually be separated into a number of com-
ponents. For each of these components a number of faults
can occur. Each of these faults can be classified into differ-
ent fault modes. For example, one component may be an
angle sensor and all bias faults, regardless of the size of the
bias, belongs to the same fault mode. We use the conven-
tion that one of the fault modes is the no fault case. From
this perspective, the characteristic property of a component
is that only one fault mode can be present at a time. Con-
sider for example a valve with fault modes “no fault”, “stuck
open”, and “stuck closed”. Obviously no two of these fault
modes can be present at the same time. It is also possible
to talk about fault modes for the whole system. To avoid
confusion, we will often use the terms component fault-mode
and system fault-mode.

Let F i
j be the j:th component fault-mode of the i:th com-

ponent. We will reserve the fault-mode F i
0 to be the “no

fault” case of the i:th component. The fault-mode F i
0 will

also be denoted NF i. Further let p be the number of com-
ponents and ni the number of different component fault-
modes for the i:th component. All component fault-modes
can then be collected in a table:

component component
number i fault-modes
1 F 1

0 ≡ NF 1, F 1
1 , . . . F 1

n1

2 F 2
0 ≡ NF 2, F 2

1 , . . . F 2
n2

...
...

p F p
0 ≡ NF p, F p

1 , . . . F p
np

A system fault-mode can then be composed by a vector of
component fault-modes. Thus the length of this vector is p.
The total number of possible system fault-modes are

∏
i ni.

We will use bold-face letters to denote system fault-modes.
Some examples of system fault-modes are

NF =[NF 1, NF 2, . . .NF p] (1a)

F1
1 =[F 1

1 , NF 2, . . .NF p] (1b)

F2
1 =[NF 1, F 2

1 , NF 3, . . .NF p] (1c)

F1
2&F2

1 =[F 1
2 , F 2

1 , NF 3, . . .NF p] (1d)



The first of these examples is the no-fault case of the whole
system. For the other examples, we have used the con-
vention that components, that have none of its component
fault-modes included in the notation for the system fault-
mode, are assumed to have component fault-mode NF i.

The system fault-modes in which only one of the com-
ponent fault-modes is not NF i are said to be single fault-
modes. For example, F1

1 and F2
1 in the example above, are

single fault-modes. Usually also the no-fault system fault-
mode, i.e. NF, is said to be a single fault-mode. Often,
only single fault-modes are considered. This corresponds
to an assumption that only one fault can be present at the
same time. Then the number of possible system fault-modes
becomes 1 +

∑
i(ni − 1).

2.1 Fault States
Each component i has a parameter θi which determines the
exact fault, or fault state, (which can be no fault) of the
component. The parameter space of θi is denoted Di. Then
each component fault-mode is associated with a subspace
Di

F i
j

of Di. That is, if fault mode F i
j is present in component

i, then θi ∈ Di
F i

j
.

The component parameters θi are collected in a vector
θ = [θ1, . . . θp] that represents the fault state of the whole
system. The parameter space of θ is Θ = D1×· · ·×Dp. Each
system fault-mode γ is associated with a subspace Θγ of Θ.
This means that Θ =

⋃
γ Θγ . For the single fault-modes in

the examples (1) we have

NF θ ∈ ΘNF = {θ ∈ Θ|∧i θi ∈ Di
NF i}

F1
1 θ ∈ ΘF1

1
= {θ ∈ Θ|θ1 ∈ D1

F 1
1

∧
i6=1 θi ∈ Di

NF i}
F2

1 θ ∈ ΘF2
1

= {θ ∈ Θ|θ2 ∈ D2
F 2

1

∧
i6=2 θi ∈ Di

NF i}

Note that in this framework, where faults are modeled as
parameters, it is possible to also describe faults that are
traditionally modeled as signals. In this case a signal is
seen as a parameter vector.

2.2 Models
The whole system model will be denoted M(θ). The model
M(θ) with a fixed value of θ then exactly specifies the sys-
tem when a specific fault (or no fault) is present. We will
also use the notation Mγ(θ) denoting a model of the system
when fault mode γ is present, i.e. Mγ(θ) = M(θ)|θ∈Θγ .

3 Model Based Diagnosis using
Structured Hypothesis Tests

This section discusses how diagnosis system can be con-
structed using a structure of hypothesis tests. The method
can be seen as a generalization of the method structured
residuals [1]. This link and also other aspects of the method
are thoroughly discussed in [3].

A key feature of the method is that the model of the sys-
tem can be fully utilized in a systematic way. Further, the
method is intuitive and very similar to the reasoning in-
volved when humans are doing diagnosis. Using hypothesis
testing the way it is done here, is quite general and several
other principles for diagnosis can be seen as special cases,
e.g. parameter estimation, observer schemes, and statistical
approaches.
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Figure 1: The diagnosis system.

The diagnosis system has a structure according to Fig-
ure 1. The inputs to the diagnosis system is the process
input u and the process output y. The signal d represents
inputs that are unknown to the diagnosis system, e.g. dis-
turbances. The output of the diagnosis system is the di-
agnosis statement, which contains information about which
fault modes that can explain the behavior of the process.
The diagnosis system consists of a set of hypothesis tests,
HT 1 to HT n, and the decision logic.

The null hypothesis for the i:th hypothesis test, i.e. H0
i , is

that the system fault-mode, present in the process, belongs
to a specific set Mi of system fault-modes. The alternative
hypothesis H1

i is that the present fault mode does not be-
long to Mi. This means that if hypothesis H0

i is rejected,
the present fault mode can not belong to Mi. In this way,
each separate hypothesis test contributes with a piece of in-
formations about which fault modes that can be present.
The purpose of the decision logic is then to combine this
information to form the diagnosis statement.

For example, let Fp denote the present system fault-mode
and assume that the diagnosis system contains the following
set of three hypothesis tests:

H0
1 : Fp ∈ M1 = {NF,F1} H1

1 : Fp ∈ MC
1 = {F2,F3}

H0
2 : Fp ∈ M2 = {NF,F2} H1

2 : Fp ∈ MC
2 = {F1,F3}

H0
3 : Fp ∈ M3 = {NF,F3} H1

3 : Fp ∈ MC
3 = {F1,F2}

Then if only H0
1 is rejected, we can draw the conclusion that

Fp ∈ MC
1 = {F2,F3}, i.e. the present system fault-mode

is either F2 or F3. If both H0
1 and H0

2 are rejected, we can
draw the conclusion that Fp ∈ MC

1 ∩ MC
2 = {F2,F3} ∩

{F1,F3} = {F3}, i.e. the present system fault-mode is F3.
From the above example, it is clear that the decision logic

is a simple intersection operation. The diagnosis statement
S then becomes a set of fault modes that can be expressed
as

S =
⋂
i

H1
i accepted

MC
i (2)

3.1 Hypothesis Tests
Much of the engineering work involved in constructing a di-
agnosis system is to use the model of the system, i.e. all



Mγ(θ), to construct the individual hypothesis tests. How-
ever, the first step is to decide the set of hypotheses to test.
Here we will consider only single fault-modes and for this
case, it is natural to use one hypothesis test for each system
fault-mode. Thus the set of hypothesis tests can be indexed
by γ, i.e. HTγ, and becomes

H0
γ : Fp ∈ Mγ (3a)

H1
γ : Fp ∈ MC

γ (3b)

γ ∈ {NF,F1
1, . . .F1

n1
,F2

0, . . .Fp
np
}

It turns out that some system fault-modes are related to
other system fault modes such that for some values of θ
they are impossible to separate. This has implications on
how the sets Mγ can be chosen. For example for most fault
modes, the limit when the fault size goes to zero is equal
to the fault mode “no fault”. This means that when fault
mode NF, i.e. no fault, is present, most null hypothesis can
not be rejected. The implication is that almost all sets Mγ

must include NF.
For each hypothesis test HTγ , we need to find a test quan-

tity and a rejection region. The sample data x for each
hypothesis is

x =
[
u(t0) u(t0 + 1) . . . u(t0 + N)
y(t0) y(t0 + 1) . . . y(t0 + N)

]

To simplify the notation, we have assumed that unit sample-
time is used. The test quantity is a function Tγ(x) from the
sample data x, to a scalar value which is to be thresholded
by a threshold Jγ . Thus the rejection region is defined im-
plicitly by the threshold Jγ together with the test quantity
Tγ(x). The hypothesis test HTγ is then defined as

Tγ(x) > Jγ reject H0
γ , i.e. accept H1

i (4a)

Tγ(x) < Jγ do not reject H0
γ (4b)

This means that we need to design a test quantity Tγ(x)
such that it is low if the data x match the hypothesis H0

γ ,
i.e. a fault mode in Mγ can explain the data. Also if the
data come from a fault mode not in Mγ , Tγ(x) should be
large.

As test quantity, we will use the following function:

Tγ(x) = min
θ∈Θγ

Vγ(θ,x) (5)

where Vγ(θ,x) is a measure measuring the validity of the
model Mγ(θ) with respect to the data x. In the special
case when the fault mode γ contains only one specific fault,
i.e. the fault mode corresponds to one specific value of θ,
then Θγ contains only one element and the model can be
written Mγ . The test quantity for this case becomes

Tγ(x) = Vγ(x) (6)

The details on how the test quantities are constructed
depends on the actual case and only for some specific classes
of systems, general design procedures have been proposed,
e.g. linear systems.

4 Application to an Automotive
Engine

This section and the next section describes how the diagno-
sis of the air-intake system of a real automotive engine can

be described and solved using the framework from the two
previous sections. The problem is to diagnose both sensor
faults and leakage. In two previous works, [4] and [5], these
two diagnosis problems were solved by using two different
methods. However, each of these methods is dedicated to
a certain type of faults and the two methods can not eas-
ily be combined into one single diagnosis system capable of
diagnosing both leaks and sensor faults.

4.1 Engine Description
The engine considered is 4 cylinder, 2.3 liter, turbo-charged,
spark-ignited SAAB production engine. Both during the
model building and the validation, the engine was run ac-
cording to the FTP-75 test-cycle.

A schematic picture of the air-intake system is shown in
Figure 2. Ambient air enters the system and an air-mass
flow sensor measures the air-mass flow rate ṁ. Next, the air
passes the compressor side of the turbo-charger and then the
intercooler. This results in a boost pressure pb that is higher
than ambient pressure. Next, the air passes the throttle and
this flow is denoted ṁth. Finally the air leaves the manifold
and enters the cylinder and this flow is denoted ṁcyl. Also
shown in the figure are the two possible leaks: the boost
leak somewhere between the air-mass flow sensor and the
throttle, and the manifold leak somewhere in the manifold.

Turbo

Intercooler

mth˙ mcyl˙

manifold leak

boost leak

Pb
Pm

α

ṁ

n

T

Figure 2: The turbo-charged engine. Air-mass flows that
are discussed in the text are marked with gray arrows.

4.2 Modeling
In this work, the air-intake system is modeled with only
static relations. This is sufficient because there is no need
for extremely fast detection of leakage or sensor faults. The
modeling work, including identification of parameters, was
presented in [5]. Below we give a short description of the
model.

The model for the fault-free system is described by the
following equations

ṁ = ṁth (7a)

ṁth = ṁcyl (7b)



where ṁth = f(pb, α, pm) and ṁcyl = g(pm, n). The func-
tions f(pb, α, pm) and g(pm, n) are both non-linear and
static.

A manifold leak will mostly result in an air flow ṁmanLeak

in the direction into the manifold. This air flow is described
by ṁmanLeak = kmhm(pm), where km is the area of the
leakage hole and hm(pm) is a non-linear and static function.

The model for the whole air-intake system with manifold
leak present is obtained by replacing Equation (7b) with

ṁth + ṁmanLeak = ṁcyl (8)

The boost leakage model is similar and for more details
about the model, see [5]. Both leakage models were val-
idated in [5] and good agreement with real data was ob-
tained.

5 Construction of the Diagnosis
System

This section presents the design of a diagnosis system for the
air-intake system. The objective is not to present a complete
design but rather to give some examples that illustrates how
the principles from Section 2 and 3 can be used in practice.

index component component
i name fault modes
B boost pipe NFB, BL
M manifold NFM , ML
BS boost pressure sensor NFBS, BB, BAF
MS manifold pressure sensor NFMS , MG, MC
TS throttle sensor NFTS , TLF
AS air mass-flow sensor NFAS, ALC

Table 1: The components and component fault-modes con-
sidered.

The different component fault-modes that will be consid-
ered are listed in Table 1 and the meaning of the fault-mode
abbreviations are given in Table 2

BL Boost Leak
ML Manifold Leak
BB Boost Pressure Sensor Bias
BAF Boost Pressure Sensor Arbitrary Fault
MG Manifold Pressure Sensor Gain-Fault
MC Manifold Pressure Sensor Cut-Off
TLF Throttle Sensor Linear Fault
ALC Air Mass-Flow Sensor Loose Contact

Table 2: The component fault-mode abbreviations..

As was said before, only single (system) fault-modes are
considered. The single fault assumption means that the set
of system fault-modes is implicitly determined by Table 1.
The definitions of each system fault-mode, i.e. Mγ(θ), are
given in Section 5.1, where the construction of the hypoth-
esis tests are described.

The fault state vector θ is

θ = [θB, θM , θBS , θMS , θTS , θAS ] =

[kb, km, (bpb
, c2(t)), gpm , (gα, bα), c1(t)]

where c1(t) and c2(t) are signals while the other parameters
are scalar constants. More information about the fault state
vector is given in the following section.

5.1 Description of the Hypothesis Tests
From Section 3, we know that the problem of designing
hypothesis test HTγ consists of determining Vγ(θ,x), Θγ ,
and Jγ . Because of space limitations, only for some of the
hypothesis tests, Vγ(θ,x) and Θγ are given below. Descrip-
tions for the other hypothesis tests can be found in [6].

No Fault NF
The model MNF corresponding to this fault mode is ob-
tained by using the fault-free model (7) in combination with

ṁs =ṁ (9a)

pb,s =pb (9b)

pm,s =pm (9c)

αs =α (9d)

ns =n (9e)

where the index s denotes that for example ṁs is the sensor
signal in contrast to ṁ which is the physical quantity. The
fault mode NF corresponds to one specific value of θ which,
in accordance with (6), means that TNF(x) = VNF(x). The
measure VNF(x) is defined as

VNF(x) =
1
N

N∑
t=1

(
ṁs − f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)

)2

Note that, to simplify notation, we have dropped the time-
argument of signals. The parameter space ΘNF is ΘNF =
{[0, 0, 0,0, 1, 1, 0,1]}, where bold-face numbers denotes vec-
tors.

Using this measure implies that if the present fault mode
is NF, then the test quantity becomes small and for all
other fault modes, the test quantity becomes large. In
a hypothesis test defined by (3) and (4) this means that
MNF = {NF}.
Manifold Leak ML
The model MML(km) corresponding to this fault mode
is given by (7a) and (8) together with the identities (9).
The scalar parameter km defines the area of the leakage
and is constrained by km ∈ DM

ML = ]0, 0.5]. The measure
VML(km,x) is

VML(km,x) =
1
N

N∑
t=1

(
ṁs − f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns) + kmhm(pm,s)

)2



Using this measure means that MML = {NF,ML}. The
expression of VML(km,x) contains two terms even though
only one of them is affected by the fault. The reason to
include the second term is, as was said in the end of Sec-
tion 3.1, that we want the test quantity to become large for
other faults, not belonging to fault mode ML.

Manifold Pressure Sensor Gain-Fault MG
The model MMG(gpm) corresponding to this fault mode
is obtained by using the fault free model (7) together with
identities (9) but replacing (9c) with pm,s = gpmpm. The
constraint on the scalar parameter gpm is gpm ∈ DMS

MG =
[0.5, 1[ ∪ ]1, 2]. The measure VMG(gpm ,x) is

VMG(gpm ,x) =
1
N

N∑
t=1

(
ṁs − f(pb,s, αs, pm,s/gpm)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s/gpm)− g(pm,s/gpm , ns))

)2

Using this measure means that MMG = {NF,MG}.

Manifold Pressure Sensor Cut-Off MC
This fault mode represents a cut-off in the electrical connec-
tion to the manifold pressure sensor. The model MMC(ν)
corresponding to this fault mode is obtained by using the
fault free model (7) together with identities (9) but replac-
ing (9c) with pm,s = gpmpm. The parameter gpm takes value
1 in the fault-free case and value 0 when there is a cut-off
present. This means that gpm ∈ DMS

MC = {0} when fault
mode MC is present. This corresponds to exactly one value
of θ which implies that TMC(x) = VMC(x). The measure
VMC(x) is defined as

VMC(x) =
1
N

N∑
t=1

p2
b,s

Using this measure means that MMC = {MC}.

Air Mass-Flow Sensor Loose Contact ALC
The model MALC(c1(t)) corresponding to this fault mode
is obtained by using the fault free model (7) together with
identities (9) but replacing (9a) with ṁs(t) = ṁ(t)c1(t).
The parameter c1(t) is a stochastic process taking values
such that c1(t) ∈ {0, 1}. This means that the parameter
space DAS

ALC becomes DAS
ALC = {0, 1}N −{0}N and the mea-

sure VALC(c1(t),x) is

VALC(c1(t),x) =
1
N

N∑
t=1

(
ṁs − c1f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns))

)2

Using this measure means that MALC = {NF,ALC}

Boost Pressure Sensor Arbitrary Fault BAF
The model MBAF(c2(t)) corresponding to this fault mode
is obtained by using the fault free model (7) together with
identities (9) but replacing (9b) with pb,s = pb + c2(t). The

parameter c2(t) is a stochastic process taking arbitrary val-
ues. This means that the parameter space DBS

BAF becomes
DBS

BAF = {0}×(RN−{0}N) and the measure VBAF(c2(t),x)
is

VBAF(c2(t),x) =
1
N

N∑
t=1

(
ṁs − f(pb,s − c2, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s − c2, αs, pm,s)− g(pm,s, ns))

)2

Using this measure means that MBAF = {NF,BB,BAF}.
5.2 Practical Considerations
The procedure to compute (5), i.e. to minimize Vγ(x), has
not been addressed so far. In many cases the minimization
procedure required is quite straightforward. The technical
details are not going to be discussed here, but the interested
reader is referred to general optimization literature, e.g. [7],
(see also the discussion in [3]). However, for some of the
hypothesis tests defined above, the computational load of
doing the actual minimization in (5) can be quite heavy.
One solution is to use a two-step procedure presented below.

First find a θ̂ that minimizes another function V̄γ(θ,x),
i.e.

θ̂ = arg min
θ∈Θγ

V̄γ(θ,x)

Then use as test quantity Tγ(x) = Vγ(θ̂,x).
If V̄γ(θ,x) is chosen so that the minimizing value θ̂, under

H0
γ , is close to the value that minimizes Vγ(θ,x), then it is

reasonable to assume that

min
θ∈Θγ

Vγ(θ,x) ≈ Vγ(θ̂,x)

This means that if we use the test quantity Tγ(x) = Vγ(θ̂,x),
we can expect approximately the same result compared to
if (5) was used.

In the implementation of the hypothesis tests defined
above, this two-step procedure is used in the tests HTBL,
HTML, HTALC, and HTBAF. In all these four cases,
V̄γ(θ,x) is chosen as one of the two terms in Vγ(θ,x).

For HTML, V̄ML(km,x) is

V̄ML(km,x) =
1
N

N∑
t=1

(
ṁs − f(pb,s, αs, pm,s)

)2

For the test HTALC, V̄ALC(c1(t),x) is

VALC(c1(t),x) =
1
N

N∑
t=1

(
ṁs − c1f(pb,s, αs, pm,s)

)2

This function can be conveniently minimized by choosing

c1 =

{
0 ṁs < ε

1 ṁs ≥ ε

For the test HTBAF, V̄BAF (c2(t),x) is

V̄BAF(c2(t),x) =
1
N

N∑
t=1

(
ṁs − f(pb,s − c2, αs, pm,s)

)2



This function is conveniently minimized by choosing

c2(t) = f−1(ṁs(t), αs(t), pm,s(t))− pb,s

where f−1(ṁs(t), αs(t), pm,s(t)) is the “inverse” of
f(pb,s, αs, pm,s) and gives an estimate of pb,s.

6 Experimental Validation
The diagnosis system described in the previous section was
implemented in Matlab and tested extensively on the auto-
motive engine described in Section 4. Leaks were applied
by using exchangeable bolts. One bolt were mounted in the
wall of the manifold and the other in the wall of the air
tube in front of the throttle. All other faults were emulated
in software by applying appropriate changes to the sensor
signals. For each fault mode, a number of different fault
sizes were tested. Below we will describe off-line experi-
ments. Also on-line experiments were performed and these
are described in [6].

The data length was N = 1000 which corresponds to
100 s. No special effort was made to find optimal thresh-
old values Jγ ; they were all chosen to be Jγ = 0.4. With
these choices, good functionality was obtained for all kinds
of faults but because of space limitation, we have selected
to present only one case: a manifold leak, i.e. system fault-
mode ML. The result of this case is shown in Table 3. Each
row show the result of one individual hypothesis test HTγ .
The value of the test quantity Tγ(x) for each hypothesis
HTγ is shown in the second column. The threshold Jγ is
shown in the third column (in this example, all were chosen
to the same value). If Tγ(x) > Jγ , i.e. H0

γ is rejected, then
the fourth column shows the the set MC

γ .

γ Tγ(x) Jγ MC
γ

NF 0.4921 0.4 ALC BAF BB BL MC MG ML TLF

BL 0.4985 0.4 ALC BAF BB MC MG ML TLF

ML 0.1881 0.4

BB 0.423 0.4 ALC BAF BL MC MG ML TLF

MG 0.328 0.4

MC 3742 0.4 ALC BAF BB BL MG ML NF TLF

TLF 0.3623 0.4

ALC 0.4921 0.4 BAF BB BL MC MG ML TLF

BAF 0.4642 0.4 ALC BL MC MG ML TLF

Diagnosis Statement: MG ML TLF

Table 3: The hypothesis tests and the diagnosis statement
for fault mode ML.

For the case shown in the table, the hypotheses H0
NF,

H0
BL, H0

BB, H0
MC, H0

ALC, and H0
BAF are rejected. Ap-

plying the intersection of the decision logic, i.e. (2), im-
plies that the diagnosis statement contains 3 possible system
fault-modes that can explain the behavior of the process.

The actual fault was fairly small, which is reflected in the
result that it could not be uniquely isolated. The diagnosis
statement contains the fault modes MG, ML, and TLF.
This should be interpreted as that in addition to the present
fault mode ML, the fault modes MG and TLF can also
explain the behavior of the process. In other experiments,
where the fault was larger or the system was excited more,
the fault mode ML could be uniquely isolated.

7 Conclusions
A framework and a method for describing and solving diag-
nosis problems has been suggested. The framework formal-
izes the description of faults and then the diagnosis problem
is solved by the method which is based on hypothesis test-
ing.

Previous methods are each specialized for one type of
faults. In contrast, the principles presented here, are ca-
pable of handling a large variety of different faults. There-
fore they are also more useful in real applications, where
typically many different types of faults need to be consid-
ered. In addition, more model knowledge can be included in
the design of the diagnosis system, which implies that there
is a large potential to obtain better diagnosis performance.
Both the framework and the method are also quite general
and several other principles of diagnosis can be seen as spe-
cial cases, e.g. parameter estimation, structured residuals
[1], and statistical methods.

The framework and the method are applied to the design
of a diagnosis system for the air-intake system of an auto-
motive engine. This application clearly shows the strength
of these principles because several different types of sen-
sor faults and leakage need to be diagnosed. With previ-
ous methods presented in [4] and [5], this was not possible.
The features of the constructed diagnosis system are demon-
strated by using experiments on a real automotive engine.
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University, Linköping, Sweden, 1999.

[4] M. Nyberg and L. Nielsen. Model based diagnosis for the
air intake system of the SI-engine. SAE Paper, (970209),
1997.

[5] M. Nyberg and A. Perkovic. Model based diagnosis of
leaks in the air-intake system of an SI-engine. SAE Pa-
per, (980514), 1998.

[6] M. Nyberg. Model based diagnosis of both sensor-faults
and leakage in the air-intake system of an SI-engine.
SAE Paper, (1999-01-0860), 1999.

[7] D. Luenberger. Linear and Nonlinear Programming. Ad-
dison Wesley, 1989.


