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Abstract: A plug-in hybrid electric vehicle(PHEV) is a promising way of achieving the benefits
of the electric vehicle without being limited by the electric range. This paper develops an
adaptive control strategy based on a map-based ECMS approach. The control is developed and
implemented in a simulator provided by IFP Energies nouvelles for the PHEV benchmark. The
implemented control strives to be as blended as possible, whilst still ensuring that all electric
energy is used in the driving mission. The controller is adaptive to reduce the importance of
correct initial values but since the initial values affect the consumption a method is developed
to estimate the optimal initial value for the controller based on driving cycle information. This
is seen to work well for most driving cycles with promising consumption results. The controller
also fulfills all requirements set by the PHEV Benchmark.
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Minimization Strategy

1. INTRODUCTION

A hybrid electric vehicle(HEV) utilizes both electric en-
ergy and energy from fuel to meet the demands set by
the driver. This may lead to a reduction in environmental
impact and fuel consumption of the vehicle. A Plug-In
HEV(PHEV) is a HEV with possibility to recharge the
battery from the grid. This adds the potential of using the
vehicle as an electric vehicle, without the range limitations
in a pure electric vehicle. The supervisory control algo-
rithm for these more complex powertrains play an impor-
tant role in realizing the full potential of the powertrain.
In order to evaluate different strategies the IFP Energies
nouvelles(IFPEN) is organizing a benchmark for a PHEV,
see PHEV Benchmark Rules (2012).

This paper extends the adaptive map-based Equivalent
Consumption Minimization Strategy(ECMS) developed
in Sivertsson et al. (2011) to the PHEV problem and it
is implemented for the simulator made available in the
PHEV benchmark. The optimal torque distribution and
generator speed is calculated offline and stored in tables.
Then an online control is developed which fulfills the
requirements of the benchmark for reasonable initial values
and finally a strategy for estimating the optimal initial
value is developed that together with the adaptive control
fulfills the benchmark requirements.

2. IFPEN PHEV BENCHMARK

In the IFPEN PHEV Benchmark a simulator is provided
for which a supervisory control algorithm is to be designed.
This simulator is a quasi-static model of the Chevrolet
Volt with vehicle and battery dynamics and all energy
converters modeled using stationary maps. The Chevro-
let Volt has three energy converters, internal combustion
engine(ENG), electric motor(EM), and generator(GEN),

connected through a planetary gearset(GB). Both electric
machines can work in both motoring and generating mode.
The powertrain also incorporates three clutches that al-
lows the vehicle to be driven in the following four modes:

• Mode 1: One motor pure electric vehicle. Only the
EM is connected to the GB.

• Mode 2: Two motor pure electric vehicle. Both the
EM and GEN are connected to the GB.

• Mode 3: Series HEV. Only the EM is connected to
the GB. The ENG and GEN works as an auxilliary
power unit, producing electric power.

• Mode 4: Power split HEV. All energy converters are
connected to the GB.

In the benchmark the controller should output desired
torque from the ENG, EM, and mechanic brakes, the
speed of the GEN, the position of the three clutches,
and if the engine should be on or off. The inputs to the
controller are the requested torque from the driver model,
Treq, minimum allowed regenerative torque, battery state
of charge(SOC), vehicle speed, average speed in the driving
cycle, vavg, and approximate driving cycle length, Dtot.
The aim of the benchmark is to minimize the criteria
described in Table A.1 with a battery that is fully charged
at the beginning of the driving cycle and may be depleted
at the end of the driving cycle. There are also rules on
how close the controller has to follow the desired velocity
profile, see PHEV Benchmark Rules (2012).

2.1 Models

The models implemented in the simulator are briefly
described below. For more details see PHEV Bench-
mark Rules (2012).



Vehicle Model The vehicle motion equation is imple-
mented as (1) where Twh is the torque from the powertrain
at the wheels and Tb is the torque applied by the brakes.

dv
dt = rwh

Jveh

(
Twh − Tb − rwh(mg sin θ + c0 + c1v + c2v

2)
)

(1)

Battery Model The battery model is of equivalent circuit
type and implemented as:

Ib =
Uoc

2Rc
−

√
U2
oc − 4RcPb

4R2
c

(2)

Pech = IbUoc (3)

∆SOC = −dt Ib
Q0

(4)

Transmission The transmission is a planetary gear set
with three clutches, c1, c2, and c3. The kinematic relations
between the energy converters and the wheels are:

ωENG = ωGENc3 (5)

ωEM = ωwhγfd(1 + γrs)− ωGENc2(1− c1)γrs (6)

Ts = TEMη
sgn(TEM )
GB (7)

Tr = Tsγrsc2η
sgn(Ts)
GB (8)

TGEN = Tr − c3TENG (9)

Tc = (1 + γrs)(
(1− c2)Ts +

c2
γrs

(TGEN + c3TENG)

)
(10)

Twh = Tcη
sgn(Tc)
GB γfd (11)

Consumption There are two consumptions provided in
the simulator and used in this paper, fuel consumption and
a fuel equivalent of the electricity consumption. They are
defined as:

mf =

∫
ṁf

ρfDreal
(12)

mf,equiv =

∫
Pech

ηavgqLHV ρfDreal
(13)

Where ṁf is the fuel flow, ρf the density of the fuel,
Dreal is the distance travelled, Pech the electrochemical
power, ηavg the average efficiency from fuel to electricity,
and qLHV is the lower heating value of the fuel.

3. PROBLEM FORMULATION

Looking at the scoring metrics and CO2 data in Table A.1-
A.2 the problem can be reformulated as delivering the
torque requested by the driver, or as close as possible if
the requested torque is infeasible, in a fuel and computa-
tionally efficient way. Even though the CO2 emissions are
higher for electricity production, the higher efficiencies of
the electric energy converters compared to the efficiency
of the combustion engine, results in that the minimization
of the well-to-wheel CO2 emissions can be interpreted as
fuel consumption minimization. So the aim is to minimize
the energy use, with emphasis on the fuel consumption,
while fulfilling the driver requests. This problem is well
represented by the equivalent consumption minimization
strategy(ECMS) where the sum of fuel and battery power
is minimized. However, battery and fuel power aren’t
directly comparable and therefore an equivalence factor
λ relating the two is needed, for more information on

ECMS see Paganelli et al. (2002); Sciarretta et al. (2004);
Musardo and Rizzoni (2005). The problem is formulated
as:

min (H = Pf + λPech) (14)

[TEM , TENG, ωGEN ,Mode] = argmin(H) (15)

Subject to:

Twh = Treq
Tmin(ω) ≤ T ≤ Tmax(ω)

0 ≤ ω ≤ ωmax

Pb,min(SOC) ≤ Pb ≤ Pb,max(SOC)

(16)

Where the torque and speed limits are applied to each
individual energy converter.

4. OFFLINE OPTIMIZATION

Since the kinematic relations change with the actuation
of the clutches the optimization problem to be solved
differs between the modes. Due to the difficult nature of
the problem the optimal solution is not calculated online.
Instead in order to find which mode to use when, the
minimum cost for each mode is calculated offline and
stored in tables for a given set of Treq, ωwh, and λ. The
SOC is found to only have minor effects on the optimal
solution, therefore that effect is ignored. To ensure that
(16) are all fulfilled, or in the case of Treq = Twh, the
produced torque is as close to the requested as possible
for that mode, the cost function in (14) is augmented so
that the closest point, that fulfills all the inequalities, is
selected. In order to find which mode is optimal for each
combination of Treq, ωwh, and λ, the optimal torque and
speed setpoints also has to be found. But instead of just
storing all the control variables in tables a few insights
can be gained from the kinematic relations in (5)-(11) to
reduce the amount of memory used:

• TEM can be calculated from Treq in all modes. There-
fore Mode 1 requires no tables.

• Mode 2: Only ωGEN has to be stored and since Pf = 0
it is independent of λ

• Mode 3: TEM , ωEM , and therefore PEM are given
by Treq and ωwh. The optimal output power from
the generator should be on the optimal operating
line of the engine-generator combination(GENSET).
Therefore only the optimal output power for each
PEM , λ combination has to be stored together with
the optimal operating line of the GENSET.

This results in 7-tables to be stored, shown in Fig. 1. That
is:

• Mode-selection (3-D)
• Mode 2: ωGEN (2-D)
• Mode 3: PGENSET (2-D), ωopt−line (1-D), and Topt−line

(1-D)
• Mode 4: ωGEN (3-D), and TGEN (3-D)

The optimization is performed for a rather dense grid in
Treq, ωwh, and λ. In order to minimize the amount of
memory used the Treq, ωwh, or λ resulting in the smallest
error in the interpolation scheme used in the online imple-
mentation if removed, is removed in an iterative manner.
This is performed for all tables, so each table has its
own discretization. To simplify the implementation and
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Fig. 1. Structure of the stored data

to reduce the memory consumption Mode 4 is only used
when Treq > 0.

5. CONTROLLER

The outline of the controller is shown in Fig. 2. The
controller consists of three main subsystems. The first
subsystem calculates the value of the equivalence factor,
λ, using the SOC and driving cycle data. The second
subsystem controls which mode to engage and the third
calculates the torque and speed setpoints for the energy
converters.

The modes block consists of five subsystems, one for
each mode and one for engine start. The mode controller
outputs which mode to activate and if the engine should
be started or not. In order to avoid too frequent engine
starts/stops two thresholds are used, ton and toff . The
controller has to try to turn the engine on/off for a
duration longer than ton/toff before it is turned on/off.
The torques and speed are then calculated using the tables
calculated offline and the kinematic relations for that mode
defined in (5)-(11). Care is also taken not to exceed any of
the constraints in (16).

6. ENERGY MANAGEMENT

The energy management of a PHEV can be divided into
two categories. The first is to make use of all the stored
energy in the battery, that is run as an electric vehicle
until the SOC is under a certain limit, and then operate
as a hybrid in charge sustaining mode. This strategy is
commonly denoted charge deplete-charge sustain strategy
(CDCS). The main advantage of this strategy is that it
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Fig. 2. Structure of the controller. The controller consists
of three main subsystems, one where the equivalence
factor is calculated, one where the mode is selected,
and one where the torque and speed setpoints are
calculated.

is guaranteed to make use of the stored electric energy
and does not need information about the future driving
mission. The second strategy is to mix usage of fuel
and electricity throughout the driving cycle, a strategy
known as blended strategy. It is well established in the
litterature that a blended strategy may result in lower
fuel consumption than CDCS, see for instance Larsson
et al. (2010). However, in order for a blended strategy to
make use of all the energy in the battery the length of
the driving cycle has to be known. In the driving cycles
provided by the PHEV Benhmark organizers only the
approximate distance as well as the mean speed is known.
In the provided driving cycles this approximate distance
can deviate from the actual distance of the driving cycle
by up to almost 10%.

6.1 Equivalence factor adaptation

In order to make use of all the stored energy in the
battery, a mix between the blended and CDCS strate-
gies is implemented. The strategy is to undershoot the
approximate distance by 10%, and use that as a horizon for
the blended strategy. If the actual distance is longer than
that used for the blended strategy, the control goes over
into charge sustaining mode. This is achieved by setting
a SOC reference, SOCc that is linear in ratio of travelled
distance vs. expected distance, see Fig. 3, a method also
used in Tulpule et al. (2009). The minimum SOCc is set
to 0.315 in order to ensure that SOC(end) ≥ 0.3. The
strategy used in Sivertsson et al. (2011) is then extended
to fit the PHEV problem. The strategy is to adapt the
equivalence factor according to a tangent function in SOC.
The idea is that as long as the SOC is near the desired
SOC the control should remain rather constant. But when
the SOC approaches the limits the control needs to adapt.
In Sivertsson et al. (2011) this is used in a HEV where the
aim is to maintain the SOC around a constant level. Here,
since it is a PHEV, it is desirable to use the energy stored
in the battery, therefore the center of the tan-function is
SOCc. The used SOC-window is also decreased linearly
with distance traveled. This is to allow larger deviations
early in the driving mission, and then make the control
follow the SOCc narrower towards the end of the driving
cycle. The λ-adaptation is given by (17) where l1 and ls are
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Fig. 3. The outline of the basic control shape

Table 1. The change in consumptions com-
pared to λc,opt for different values of λc. All

controls ensure SOC(end) ≥ 0.3.

Cycle-info λc ∆mf [%] ∆mf,equiv [%] SOC(end)

10xFUDS 3 -0.65 -0.19 0.3099
Dtot = 119.9km λc,opt=2.65 - - 0.3076
Dreal = 119.9km 2 10.35 2.32 0.3066

10xNEDC 3 27.02 15.87 0.3420
Dtot = 119.9km λc,opt=2.63 - - 0.3197
Dreal = 110.1km 2 0.80 0.56 0.3162

10xUS06 3 -0.03 -0.71 0.3147
Dtot = 119.9km λc,opt=2.85 - - 0.3103
Dreal = 128.9km 2 5.30 2.20 0.3078

constants that control the slope and range of the tangent
function, and dSOC is the allowed deviation from SOCc.

λ = λc − l1 tan(
lsπ

2dSOC
(SOC − SOCc)) (17)

A benefit with this formulation is that the smaller dSOC
is, the steeper the slope around SOCc becomes and the
faster the control reacts to deviations. In Fig. 3 the shape
of the control is shown for the case when the approximate
distance is correct. That is the SOCc undershoots the
distance traveled, and thus results in the control going
over to charge sustaining mode. Also shown is that the
allowed SOC deviation gets smaller with distance. The
variable λc still has to be decided. In Table 1 the change in
consumptions compared to the consumptions with optimal
λc and end SOC are shown for different values of λc
and different driving cycles. A λc is considered optimal
if the λ trajectory follows SOCc. But since SOCc is based
on undershooting the approximate driving cycle length,
there are λc values that result in lower consumptions, this
is however hard to predict. It is seen that the optimal
value changes with the driving cycle. The control ensures
SOC(end) ≥ 0.3 for all λc but it might come with a
substantial increase in consumption if the λc value is
wrong.

In Fig. 4 the λ and SOC trajectories for the different
values of λc on the US06 driving cycle is shown. Due to the
driving mission length provided only being approximate,
the control undershoots the length in order to make sure
all electric energy is used. The US06 cycle is however 7%
longer than the length provided, resulting in an undershoot
of roughly 16% for the controller. It is seen that the control
for λc 6= λc,opt does not follow the SOCc, instead it follows
SOCc ± dSOC. For λc = 2 this results in a control that
switches rapidly between λ ≈ 2.5 and λ ≈ 5, something
that comes with a large consumption penalty.
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Fig. 4. The SOC and λ-trajectories for different λc values
on the US06 driving cycle. A poor λc may lead to a
switching characteristic of the control.

Table 2. The change in consumption with
adaptive λc for different λc,init, compared to

λc,opt.

Cycle-info λc,init ∆mf [%] ∆mf,equiv [%] SOC(end)

10xFUDS 3 0.10 -0.29 0.3110
Dtot = 119.9km λc,init,opt=2.65 -0.57 -0.05 0.3075
Dreal = 119.9km 2 -0.87 -0.16 0.3081

10xNEDC 3 15.61 0.45 0.3306
Dtot = 119.9km λc,init,opt=2.55 -0.16 0.08 0.3188
Dreal = 110.1km 2 1.69 0.45 0.3184

10xUS06 3 0.07 -0.41 0.3143
Dtot = 119.9km λc,init,opt=2.85 0.03 -0.18 0.3109
Dreal = 128.9km 2 0.39 -0.05 0.3101

6.2 Adaptive control of λc

In order to avoid the switching nature of the λ-control
seen in Fig. 4 the idea is to adapt λc if the SOC deviates
too much from SOCc. This is done with a PI-controller
according to:

λc = λc,init +Kp(SOCc − SOC) +Ki

∫
(SOCc − SOC)dt (18)

The values of Kp and Ki control how fast the controller
adapts, but a faster controller comes with a slight con-
sumption penalty. In Table 2 the consumption change com-
pared to λc,opt without adaptive λc is shown for different
driving cycles and λc,init. A λc,init is considered optimal
if it roughly produces a SOC trajectory that follows the
desired trajectory without λc deviating too far from λc,init.
It is seen that the adaptive λc performs as well as λc,opt,
better in some cases, worse in some cases. But most of
all it reduces the effect of poor initial values. This is also
confirmed in Fig. 5 where the SOC and λ-trajectories are
shown for the US06 driving cycle. The switching nature is
almost completely removed, resulting in a near constant λ
value during the entire blended phase.

6.3 Estimating λc,init

Even if the developed control has been seen to perform
well for all reasonable initial λc, the consumption is still
affected by it. Therefore it is desirable to achieve an
estimate as close as possible to the optimal λc. In Fig. 6,
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Fig. 5. The SOC and λ-trajectories with adaptive λc for
different values on λc,init on the US06 driving cycle.
The adaptive λc reduces the effect of poor initial
values.

the optimal λc,init is plotted against approximate distance
for the driving cycles used. It is seen that the shape of
the profiles is similar for all driving cycles. The all electric
range, that is the distance for λc,init > 2, differs up to
almost 100% for the different driving cycles. In Fig. 7 the
approximate distance required to exceed the all electric
range is plotted against mean speed. Even if the mean
speed isn’t enough to describe the driving cycle, since
neither slope nor how transient it is is captured by the
mean speed, the all electric range is approximated by a
linear function, shown in Fig. 7. Artemis Urban is plotted
in magenta to mark that it is considered an outlier and
is not included when the line is fitted. Since the losses in
the vehicle motion equation (1) are quadratic in speed,
a straight forward assumption would be that the all-
electric range decreases with mean speed, an assumption
that is also used here. The approximate distance is then
corrected with the proposed linear correction, in order to
compensate for the different all-electric ranges. The result
is shown in Fig. 8. It is seen that the correction shifts the
points to the same region, a trend that is well captured
by an exponential function. The final scheme to estimate
λc,init is of the form:

Dcorr = Dtot − (k1vavg + k2) (19)

λc,init = k3(1− exp(−k4Dcorr + k5)) (20)

In Table 3 the results for the full controller with λc,mod is
compared to the results for λc,opt. Even if the estimated
λc,init is not too far from the optimal, the consumption
can differ substantially. Interesting to note is that the
driving cycle with the largest λc,init error shows the best
result. Looking at Fig. 9 this appears to be due to that
the λc,mod-control has a higher λ value when entering
charge sustaining-mode which results in a less switching
behaviour and lower consumption.

Another important property of the λc,init estimation is
that it should be such that it avoids unnecessary engine
starts if the driving mission is within the all electric
range. This is achieved for all tested driving cycles except

50 100 150 200 250 300
2

2.2

2.4

2.6

2.8

3

3.2

Distance [km]

λ c,
 o

pt

 

 
NEDC
US06
FUDS
FHDS
Artemis urban
Artemis extra urban
Artemis Highway

Fig. 6. The optimal λc,init as a function of approximate
distance for different driving cycles. The general shape
of the curves are similar, however the all-electric range
differs between the cycles.

0 5 10 15 20 25 30
40

60

80

100

120

140

D
st

ar
t [k

m
]

v
avg

 [m/s]

 

 
Cycles used
Artemis Urban
Model

Fig. 7. The approximate distance required to exceed the
all-electric range for different driving cycles and a
linear model to capture the behaviour. Artemis Urban
is considered an outlier and is not included when the
line is fitted.

−50 0 50 100 150 200 250
2

2.2

2.4

2.6

2.8

3

3.2

D
scaled

λ c

 

 

Cycles used
Model
Artemis Urban

Fig. 8. λc,init,opt vs. corrected approximate distance and
how it is modeled. Artemis Urban is considered an
outlier and is not included when the curve is fitted.

Table 3. The change in consumption with mod-
eled λc,init, compared to λc,opt.

Cycle-info λc,init,mod ∆mf [%] ∆mf,equiv [%] SOC(end)

10xFUDS(λc,init,opt=2.65) 2.518 13.62 2.32 0.3066

10xNEDC(λc,init,opt=2.55) 2.533 0.80 0.56 0.3162

10xUS06(λc,init,opt=2.85) 2.741 5.30 2.20 0.3078

20xArtemis Urban(λc,init,opt=2.84) 2 -6.69 -1.41 0.3104

FHDS (1 unnecessary start) and Artemis Extra-Urban (2
unnecessary starts), which is deemed acceptable.
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Table A.1. The scoring metrics used in the
benchmark

Metric Weigth

Performance(30%)

Acceleration 0-100km/h [s] 7.5%
Acceleration 70-120km/h [s] 7.5%

Acceleration 0-1000m on 4% slope [s] 7.5%
Braking Distance from 100km/h [m] 7.5%

Energy and Economy(50%)
Total energy use (fuel+electricity) [MJ/km] 15%

Fuel consumption [MJ/km] 20%
Well-to-wheel CO2 emissions [kg/km] 15%

Computational performance (20%)
Processor use [simulation time] 10%

Memory use [MB] 10%

7. CONCLUSIONS

An adaptive map-based implementation of ECMS is devel-
oped and implemented for the IFPEN PHEV benchmark
problem. The control strives to be as blended as possible,
but still ensuring that all electric energy is used. The
control tries to follow a SOC reference that is linear in
traveled distance, but to ensure that all electric energy
is used this distance is underestimated. The equivalence
factor is adapted according to a function in SOC, a func-
tion whose center adapts according to how well the SOC
reference is followed. Finally a method for estimating the
initial value for the controller from driving cycle data is
developed.

The resulting controller fulfills all the requirements of the
benchmark. SOC(end) ≥ 0.3 for all tested cycles, and the
velocity profile error is within the tolerances prescribed
by the benchmark. The control is also seen to adapt
despite an initial estimate different from the optimal value.
It also avoids unnecessary starts for most tested driving
cycles that are within the all electric range. The controller
provides a fuel economy that is within [-6, 13]% of what
is considered optimal and is implemented in such a way
that it only needs approximate driving mission length and
average velocity.

Table A.2. Data for CO2 emissions

Gasoline well-to-tank emissions 12.5gCO2/MJ of fuel
Gasoline combustion 73.4gCO2/MJ of fuel

Electricity production(Europe average) 94.7gCO2/MJ of electric energy

Appendix A. BENCHMARK DATA
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