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Abstract: A mean value engine model is used to study optimal control of a diesel-electric
powertrain. The resulting optimal controls are shown to be highly oscillating for certain
operating points, raising the question whether this is an artifact of discretization, modeling
choices or a phenomenon available in real engines. Several model extensions are investigated
and their corresponding optimal control trajectories are studied. It is shown that the oscillating
controls cannot be explained by the implemented extensions to the previously published model,
nor by the discretization, showing that for certain operating points the optimal solution is
periodic.

1. INTRODUCTION

The engine speed of a conventional vehicle is normally
decided by the wheel speed and the gear ratio. In a diesel-
electric powertrain this mechanical path between the com-
bustion engine and the wheels is replaced by an electric
path instead. This introduces an extra degree of freedom
since the engine speed can be controlled independently
of the wheel speed, which offers the potential of both
optimizing the performance and consumption since the
operating point of the diesel engine can be controlled more
freely than in a conventional powertrain. This of course
raises the question of how to use this extra degree of
freedom.

Previously it has been studied how to optimally control the
powertrain between two different power levels, see Siverts-
son and Eriksson [2015a,b]. For off-highway machinery the
driving patterns are normally very transient, something
that is captured in the World Harmonized Transient Cycle
(WHTC), see WHDC Working Group [2005], shown in
Fig. 1. The WHTC can be divided into 11 traction phases,
defined as the period between two idle periods, where idle
is assumed to occur when the engine speed is the idle speed
and no power is required. Here the phases where the engine
is motored, i.e. Pgen < 0 are ignored and Pgen is in those
cases set to zero.

To investigate the potential of the diesel-electric power-
train and how to best exploit the extra degree of free-
dom introduced by the electrification of the powertrain,
minimizing fuel for the WHTC is cast as an optimal
control problem (OCP). In a conventional powertrain
WHTC prescribes both engine speed and output power,
but here engine speed is a degree of freedom and also
optimized. If this OCP is solved for phase 8 in the WHTC
the resulting controls are very oscillatory, see Fig. 2,
t ∈ [670, 678], [684, 687]. It is mentioned in Sivertsson and
Eriksson [2015a] that the optimal solutions in transient
optimal control of a diesel-electric powertrain are often
oscillatory and in Asprion et al. [2014] the unconfirmed
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Fig. 1. The WHTC and its traction phases.

hypothesis is that the oscillations seen in the optimal
variable geometry turbine (VGT) control of a diesel engine
are due to decrease in the gas exchange losses. This is
due to that the exhaust manifold pressure oscillates with
the VGT position whereas the intake manifold pressure
remains unaffected due to the slower turbocharger dynam-
ics. This could indicate that the optimal solution is in fact
periodical as described in Gilbert [1976], Gilbert [1977].
Other possible explanations are either that the solution is
along a singular arc and that the controls are therefore
oscillatory, as discussed in Schwartz [1996], or that it is an
integration error exploited by the algorithm to decrease
the criteria as shown in Hellström et al. [2010]. In both
these cases it would be suspected that the frequency of
the oscillations depend on the discretization. To test this
hypothesis a single operating point is selected and studied
using a very fine time discretization.

2. CONTRIBUTIONS

The contributions of this paper is a deeper study of the
occurence of oscillating controls for diesel-electric power-
trains as a solution for optimal control problems. More
specifically it studies whether the observed oscillations
are an artifact of the discretization. It also investigates if
the oscillations can be explained by the models used and
whether or not extending the model impacts the oscillating
solutions. The paper also presents a fast and accurate
residual gas model suitable for use in an optimal control
context.
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Fig. 2. The optimal solution to phase 8 of the WHTC, with
ωice as a degree of freedom. The resulting controls are
highly oscillatory, see t ∈ [670, 678], [684, 687]

Table 1. Symbols used

Symbol Description Unit

p Pressure Pa
T Temperature K
ω Rotational speed rad/s
ṁ Massflow kg/s
P Power W
M Torque Nm
E Energy J
Π Pressure ratio -
V Volume m3

γ Specific heat capacity ratio -
cp Specific heat capacity constant pressure J/(kg · K)
cv Specific heat capacity constant volume J/(kg · K)
R Gas Constant J/(kg · K)

uf , uwg , Pgen Control signals mg/cycle, -, W
J Inertia kg · m2

BSR Blade speed ratio -
φ Fuel-air equivalence ratio -

λmin Air-fuel smoke-limit -
xr Residual gas fraction -

MFR Fuel to mass ratio -
qHV Lower heating value J/kg
rc Compression ratio -

3. MODEL

The basic model used can be downloaded in the LiU-D-
El-package from systems software [2014] and is described
in detail as MVEMo in Sivertsson and Eriksson [2014].
The modeled diesel-electric powertrain consists of a 6-
cylinder diesel engine with a fixed-geometry turbine and a
wastegate for boost control, with a generator mounted on
the output shaft. The states of the MVEM are engine and

Table 2. Subscripts used

Index Description Index Description

ice Engine GenSet Engine-Generator

im Intake manifold em Exhaust manifold

c Compressor ac After compressor

t Turbine wg Wastegate

f Fuel tc Turbocharger

a Air e Exhaust

gen Generator-electrical mech Generator-mechanical

ref Reference c, surge Compressor surge-limit

vol Volumetric d Displaced

fric Friction pump Pumping

ig Indicated gross eo Engine out

amb Ambient

turbocharger speeds, ωice/tc, and inlet and exhaust mani-
fold pressures, pim/im. The controls are injected fuel mass,
uf , wastegate position, uwg, and generator power, Pgen.
The engine model consists of two control volumes, intake
and exhaust manifold, and four restrictions, compressor,
engine, turbine, and wastegate. The governing differential
equations of the MVEM are:

dωice
dt

=
Pice − Pmech
ωiceJGenSet

(1)

dpim
dt

=
RaTim
Vim

(ṁc − ṁac) (2)

dpem
dt

=
ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

=
Ptηtm − Pc
ωtcJtc

(4)

For a complete list of the symbols used in the paper, see
Table 1-2.

4. PROBLEM FORMULATION

This paper uses the MVEM to study optimal stationary
operation, or lack of it in the case of oscillating controls.

4.1 Stationary optimization

As a reference for the dynamic optimization, three sta-
tionary optimization problems are first solved, to find the
following three stationary points for the given ωref , Pref -
combination: The maximum efficiency, φmax, the maxi-
mum fuel/air-ratio, ηmax, and the minimum fuel/air-ratio,

φmin. η =
Pgen
ṁfqHV

is the efficiency of the powertrain and φ

is the fuel/air-ratio. These problems are solved to find the
optimal operating point for stationary operation and also
the limits for stationary operation.

4.2 Dynamic optimization

The main optimal control problem studied is:

min
u(t)

∫ T

0

ṁf

s.t. ẋ(t) = f(x(t), u(t))

(x(t), u(t)) ∈ Ω(t)

(5)

where x is the state vector of the MVEM, ẋ is the state
equations (1)-(4), and u = [uf , uwg, Pgen]. The optimal
control problems are also subject to a set of constraints,
namely:



x(0) = x(T ) = x(ηmax), ẋ(T ) = 0

umin ≤ u(t) ≤ umax, xmin ≤ x(t) ≤ xmax
ωice(T ) = ωref or ωice(t) = ωref , Pgen(t) = Pref

Pice(x(t), u(t)) ≤ Pice,max(x(t)), φ(x(t), u(t)) ≤ 1

λmin
BSRmin ≤ BSR(x(t), u(t)) ≤ BSRmax, Πc ≤ Πc,surge

(6)
The constraints are actuator and state limits, as well as
constraints imposed by the components, such as maximum
power of the engine, Pice, surge-limit of the compressor,
Πc,surge, blade speed ratio-limit of the turbine, BSR, as
well as environmental constraints, i.e. an upper limit on φ
set by the smoke-limiter.

The driving mission-constraints are that the powertrain
starts in the operating point of maximum efficiency ηmax,
a point it should also end in, with the added requirement
that the end operating point should be stationary. The
generator power is also fixed to the reference value. Two
types of problems are then studied, one where the engine
speed is fixed to the reference speed, denoted ωice = fix,
and one where it is allowed to depart from this as long as
it starts and ends in ωice = ωref , denoted ωice = free.

5. NUMERICAL SOLUTION

The software package that is used to solve the optimal
control problem numerically is CasADi Andersson [2013].
First the problem is discretized using Radau collocation
with three collocation points in each control interval.
The states are thus approximated with a third order
polynomial, whereas the controls are approximated by
a second order polynomial in each control interval. The
states are required to be continuous over each control
interval boundary, whereas the controls are allowed to be
discontinuous. The resulting nonlinear program(NLP) is
solved using IPOPT, Wächter and Biegler [2006], with the
MA57 linear solver from the HSL package, HSL [2013]. For
the wastegate oscillation study 200 control intervals have
been used.

6. OSCILLATING CONTROLS

The stationary point of interest here is the one seen with
oscillating controls in Fig. 2 namely Pgen = 140 kW
and ωice = 1700 rpm. The three stationary OCPs (OSS)
described in Section 4.1 and the two dynamic OCPs
(OSD), ωice = fix and ωice = free, described in Section 4.2
are solved using CasADi/IPOPT/HSL and the results are
shown in Fig. 3. Looking at Fig. 3 it is clearly visible that
both OSDs result in a periodic oscillation. If the engine
speed is free the amplitude and frequency changes slightly,
however the nature of the oscillation remains the same.
The nature of the opening and closing goes against the
hypothesis that this should be oscillations due to a singular
arc or an effect of the integration error since the wastegate
only opens 9-11 times despite 200 control intervals with a
three controls in each interval, yielding an optimal period
of 90-110ms which is approximately 20 times the control
interval length. This indicates that the oscillations are in
fact optimal.

This is especially interesting for the case with fixed engine
speed, since then the effect can be isolated since all torque
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Fig. 3. Optimal states and controls for constant output
power, both stationary and dynamic. The dynamic
solutions are highly oscillatory.

losses only depend on engine speed except the pumping
torque, Mpump, see Appendix A.1. This means that the
oscillating control actually decreases the pumping torque,
as hypothesised in Asprion et al. [2014]. Looking at Fig. 3
the low pass filtering effect of the turbocharger can be
clearly seen since the wastegate opening and closing results
in a pem span of 60-100 kPa depending on if ωice = free/fix,
whereas the effect on pim is only 4-5 kPa. In Fig. 4
the pumping power, Ppump = ωiceMpump, are shown
relative Ppump(ηmax). Both x(φmin) and x(φmax) increase
Ppump compared to x(ηmax), as expected. The oscillation
changes Ppump several hundred percent away from what is
stationary optimal.

In Table 3 the gains of oscillating controls are quantified.
x(φmax) and x(φmin) both increase the pumping energy
Epump with 50% which also leads to a relative efficiency
decrease of 0.5% (0.2% absolute). The oscillating control
with fixed ωice decreases Epump with 2.4% and ωice free
with 4.1%. Since the friction losses are quadratic in engine
speed, ωice-free, increases the friction losses, but it is still
beneficiary since the relative efficiency increase is 0.52h
vs. 0.24h for ωice-fix (0.2h vs. 0.09h absolute).

The gains are small but nevertheless surprising since it’s a
dynamic phenomenon. Looking at Fig. 5 the wastegate’s
effect on the stationary efficiency as well as pumping
torque is shown. The efficiency is a convex function in uwg
whereas Mpump is concave, which if the analysis was per-
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point.

∆η ∆Efric ∆Epump ∆Eig

x(φmax) -0.542 0.0 56.3782 0.5448
x(φmin) -0.482 0.0 50.1279 0.4844
ωice = fix 0.024 0.0 -2.4073 -0.0223
ωice = free 0.052 0.8797 -4.0869 -0.0263

Table 3. Changes in efficiency and energies

relative x(ηmax) in percent, Ex =
∫ T

0
Px dt.
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Fig. 5. Wastegate position’s effect on the efficiency and
pumping torque during stationary conditions.

formed for stationary conditions would lead to the conclu-
sion that oscillating controls would increase the pumping
torque and consequently decrease the efficiency. However
the result is actually the opposite, oscillating between the
two worst controls from a stationary perspective, increases
the efficiency dynamically.

7. MODEL EXTENSIONS

To investigate whether the oscillating controls are results
of a modeling assumption a set of different model exten-
sions are considered. The extensions and their motivation
are:

• xr: Model for residual gas: In Sivertsson and Eriksson
[2014] it is shown that mean/max absolute relative er-
ror increase of assuming xr = 0 is [0.014/0.06] h ver-
sus measurements. However in the oscillating controls
the exhaust pressure changes very rapidly, something
that might have a significant effect on the amount of
residual gas trapped in the cylinder.

• ηvol,2: Pressure ratio dependent volumetric efficiency
model. In the volumetric efficiency model used, see
Appendix A.2, only the dependence of the intake
manifold pressure and engine speed are modeled. Of
course the changing pressure ratio over the engine
could have effects on the volumetric efficiency.

• Adiabatic: The isothermal exhaust manifold model
used, see Appendix A.3, neglects energy conservation
since it assumes that the gases flowing in and out
of the control volume have the same temperature,
therefore an adiabatic exhaust manifold model that

satisfies both conservation of mass and energy is
implemented.

The basic model is MVEMo which is then extended with
different combinations of these three models. The model
fit for the different models versus both dynamic(Dyn.) and
stationary measurements(Stat) are shown in Table 4. None
of the model extensions have any significant effects on the
model fit versus measurements.

7.1 Residual gas

In Wahlström and Eriksson [2011] the engine out tem-
perature model is based on an ideal Seiliger cycle model,
incorporating residual gas. The model is formulated as:
xr,0 = 0,Teo,0 = 800.
While ‖Teo,k+1 − Teo,k‖ >1e-6

qin =
ṁfqHV
ṁf + ṁac

(1− xr,k)

xp =1 +
qinxcv

cv,aT1r
γa−1
c

xv =1 +
qin(1− xcv)

cp,a( qinxcvcv,a
+ T1r

γa−1
c )

xr,k+1 =
Π

1/γa
e x

−1/γa
p

rcxv
T1 =xr,k+1Teo,k + (1− xr,k+1)Tim

Teo,k+1 =ηscΠ
1−1/γa
e r1−γa

c x1/γa−1
p(

qin

(
1− xcv
cp,a

+
xcv
cv,a

)
+ T1r

γa−1
c

)

(7)

The equations in (7) are nonlinear and depend on each
other and need to be solved using fixed point iterations.
In Wahlström and Eriksson [2011] it is shown that if
the solution from the previous time step is known, one
iteration suffices to get a good approximation of the engine
out temperature. In an optimization context it is difficult
to keep track of the solution form the previous time
step since the time steps are solved simultaneously. Also
a submodel that is evaluated for a varying number of
iterations is undesirable, especially since it complicates the
computation of derivatives. Therefore this type of model is
not implementable in an optimization context and a new
model is developed.

xr is modeled as a function of both pressure ratio over the
engine and the fuel to mass ratio. defined as:

MFR =
ṁf

ṁf + ṁac
(8)

xr =
xr,mod1

xr,mod2
=
cxr1Π2

e + cxr2Πe + cxr3
1 + cxr4MFR

(9)

In Fig. 6-top this gives a good agreement to the iterative
model, resulting in mean/max relative errors of [0.92/4.52]
%. Using that xcv becomes zero in the optimization for this
particular engine Teo can be computed according to

Teo =
(1− xr)( qHVMFR

cp,a
+ Timr

γa−1
c )

1

ηscΠ
1−1/γa
e r1−γac

− xrrγa−1
c

(10)

Teo and xr could be used as starting values and then one
iteration of the fixed point iteration can be performed.
However it turns out that not only is it more computations,
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residual gas model for phase 8 of the WHTC.

the model fit is actually worse. When simulated over the
entire WHTC the mean/max absolute relative error of
exhaust gas temperature, Teo for the model in (8)-(10)
relative the model in (7) are [0.025/0.22]%. If in addition to
(8)-(10) one fixed point iteration is used the errors increase
to [0.045/0.34] %. The model used is therefore the one
without iterations. In Fig. 6-bottom the fit vs. the model
in (7) is shown.

7.2 ηvol,2: Modified volumetric efficiency

The ηvol,2 model implemented is a modified version of the
model found in Eriksson and Nielsen [2014], consisting
of an ideal part and two polynomials, in ωice and pim
respectively.

ηvol,ideal =
rc −

(
pem
pim

)1/γa

rc − 1

ηvol,ωice =cηvol,1ω
2
ice + cηvol,2ωice + cηvol,3

ηvol =ηvol,ωiceηvol,ideal + cηvol,4pim + cηvol,5
The component model fit for stationary measurements are
slightly better than the model in (A.10), with mean/max
absolute relative errors of 0.62/2.68 % vs. 0.9/3.7 %
for (A.10), which is to be expected since the number of
tuning parameters increases from three to five.

7.3 Adiabatic exhaust manifold model

The adiabatic model, as described in Chevalier et al. [2000]
is implemented according to:

dpem
dt

=
Reγe
Vem

(Tem,k (ṁac + ṁf )− Tem (ṁt + ṁwg))

dTem
dt

=
ReTem
pemVem

(
γe

(
Tem,k (ṁac + ṁf )− Tem (ṁt + ṁwg)

)
− Tem(ṁac + ṁf − ṁt − ṁwg)

)
This means extending the model with an additonal state,
Tem. Tem,k, i.e. the temperature of the gases flowing into

Table 4. Mean absolute relative errors for
the different models versus measurements.

T=tuning set, V=validation set.

ωice pim pem ωtc

Dyn. T V T V T V T V

MVEMo 0.0 0.0 2.8 2.2 2.8 2.9 2.9 2.9
xr 0.0 0.0 2.8 2.2 2.8 2.9 2.9 2.9

xr+adiabatic 0.0 0.0 2.8 2.2 2.8 3.0 2.9 3.0
ηvol,2 0.0 0.0 2.8 2.3 2.9 3.0 3.0 3.2

ηvol,2 + xr+adiabatic 0.0 0.0 2.9 2.3 2.9 3.0 3.1 3.2

Stat. ṁc Pc ṁac Tem ṁexh Pt P+
mech

P−
mech

MVEMo 2.5 1.8 2.5 2.4 3.3 5.4 3.4 1.4
xr 2.5 1.8 2.4 2.5 3.3 5.5 3.3 1.5

xr+adiabatic 2.5 1.8 2.5 2.7 3.1 4.9 3.1 1.5
ηvol,2 2.5 2.0 2.7 2.3 3.2 5.5 5.1 1.4

ηvol,2 + xr+adiabatic 2.5 1.9 2.7 2.6 3.0 4.9 4.4 1.6
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Fig. 7. Relative pumping power of the optimal solutions
to the two OSDs for the different models, relative the
stationary optimal operating point. The oscillatory
solution can not be explained by any of the model
extensions.

the manifold is computed according to (A.13), that is
temperature after heat loss.

8. RESULTS

The two OSDs defined in Section 4.2 are solved for
the different models and the resulting optimal pumping
power, Ppump is plotted relative the stationary optimal
in Fig. 7. The oscillations cannot be explained by any of
the model extensions. The periodic nature of the solution
is present for all model extensions and the changes in
frequency and amplitude of the oscillations are minor.
In Table 5 the changes in energies and efficiency are
shown, which confirms the results seen in Fig. 7. The
decrease in pumping energy, ∆Epump, increases for each
model extension for ωice = fix, indicating that given a
standard mean value engine model it actually is optimal
to use periodic wastegate control in order to decrease the
pumping torque.

9. CONCLUSIONS

Optimal control of a diesel-electric powertrain is studied.
It is shown that the oscillatory solutions seen for certain
operating points are not directly discretization dependent.
Instead the solution is periodic with a period much greater
than the control interval length. Further it is seen that



Table 5. Changes in efficiency and energies of
the two OSDs, ωice = fix and ωice = free,

relative x(ηmax), for the different models.

∆η ∆Efric ∆Epump ∆Eig

MVEMo
fix 0.024 0.0 -2.41 -0.02
free 0.052 0.88 -4.09 -0.03

xr
fix 0.024 0.0 -2.52 -0.02
free 0.054 1.32 -3.64 0.02

xr+ fix 0.024 0.0 -2.58 -0.02
adiabatic free 0.068 1.74 -3.7 0.19

ηvol,2
fix 0.029 0.0 -3.14 -0.03
free 0.070 -2.23 -10.16 -0.31

ηvol,2 + xr+ fix 0.030 0.0 -3.23 -0.03
adiabatic free 0.080 -1.99 -10.21 -0.22

the pumping work of the engine decreases as a result of
the oscillations. To study if this effect is a result of over-
simplification in the previously published mean value en-
gine model, several model extensions are investigated and
their corresponding optimal control problems are solved.
Furthermore a new residual gas model, suitable for optimal
control, is presented. It is shown that the oscillating con-
trols cannot be explained by the implemented extensions
to the previously published model, showing that for certain
operating points for mean value engine models the optimal
solution is actually periodic.
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Appendix A. EXCERPTS FROM ORIGINAL MODEL

A.1 Torque model

Mice = Mig −Mfric −Mpump (A.1)

Mpump =
Vd
4π

(pem − pim) (A.2)

Mfric =
Vd
4π
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(
cfr1ω

2
ice + cfr2ωice + cfr3

)
(A.3)

Mig =
uf10−6ncylqHV ηig

4π
(A.4)

ηig = ηig,t(1−
1

r
γcyl−1
c

) (A.5)

ηig,t = Mf,1 + gf (Mf,2 −Mf,1) (A.6)

gf =
1 + tanh(0.1(ωice − 1500π/30))

2
(A.7)

Mf,1 = cMf,1,1ω
2
ice + cMf,1,2ωice (A.8)

Mf,2 = cMf,2,1ω
2
ice + cMf,2,2ωice + cMf,2,3 (A.9)

A.2 Volumetric efficiency

ηvol = cvol,1
√
pim + cvol,2

√
ωice + cvol,3 (A.10)

A.3 Exhaust pressure and temperature

qin =
ṁfqHV
ṁf + ṁac

(A.11)

Teo =ηscΠ
1−1/γa
e r1−γa

c

(
qin
cp,a

+ Timr
γa−1
c

)
(A.12)

Tem =Tamb + (Teo − Tamb)e
−

htotVpipe
(ṁf+ṁac)cp,e (A.13)

dpem
dt

=
ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (A.14)


