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Linköping University,

SE–581 83 Linköping, Sweden,
firstname.lastname@liu.se

† Department of Automatic Control,
Lund University,

SE–221 00 Lund, Sweden,
firstname.lastname@control.lth.se

Abstract
A comparative analysis shows how vehicle motion models of different complexity, capturing various character-
istics, influence the solution when used in time-critical optimal maneuvering problems. Vehicle models with
combinations of roll and pitch dynamics as well as load transfer are considered, ranging from a single-track model
to a double-track model with roll and pitch dynamics combined with load transfer. The optimal maneuvers in
a 90◦-turn and a double lane-change scenario are formulated as minimum-time optimization problems, and are
solved using numerical optimization software. The resultsobtained with the different models show that variables
potentially important for safety systems, such as the yaw rate, slip angle, and geometric path, are qualitatively the
same. Moreover, the numeric differences are mostly within afew percent. The results also indicate that although
input torques differ about 50–100 % for certain parts of the maneuver between the most and least complex model
considered, the resulting vehicle motions obtained are similar, irrespective of the model. Our main conclusion is
that this enables the use of low-order models when designingthe onboard optimization-based safety systems of
the future.

1. INTRODUCTION
With recent advancements in optimization technology and software, new approaches unfold for the development
of active vehicle safety systems and driver assistance technologies, see,e.g., [1]. The solution to an optimal control
problem can give valuable insight into the performance capabilities of the system being investigated. Also, it can
be used as an inspiration for new control strategies. The solution to the optimization problem will depend on
the choice of model configurations and optimization objectives, investigated in [2] and [3]. There, we developed
an optimization methodology with special emphasis on tire modeling and uncertain road-surfaces, and this work
continues the development towards more complex chassis models.

Motivated by the above, this study investigates the similarities and differences in the solutions obtained when
several vehicle chassis models, capturing different dynamic properties such as roll and pitch dynamics with load
transfer, are employed in optimal maneuvering problems. The aim is to perform a comparative study on how dif-
ferent vehicle motion models affect the optimal control solution in certain critical situations. The long-term goal of
this work is real-time control. Hence, the models investigated are fairly simplistic compared to models traditionally
employed for vehicle simulation purposes. For example, detailed suspension kinematics and gear dynamics have
been neglected. One motivation for this is that the models are to be used together with dynamic optimization al-
gorithms, requiring twice continuously differentiable functions in the model description. In addition, and perhaps
more importantly, we are interested in investigating what characteristics of a maneuver that can be captured with
this kind of models.

Optimal control of vehicles has been investigated previously in literature, see [1, 4, 5, 6] for a few examples.
Further, in [7, 8] an optimization problem for over-actuated vehicles is solved using similar software as used in this
paper. A majority of the work in these references focus on a specific vehicle and tire model. Thus, to the best of
our knowledge, no comprehensive approach to perform comparisons of different chassis models in an optimization
scenario has been made, which motivates the study presentedhere.

The evaluation of the models is performed on two different maneuvering problems: A 90◦-turn and a double
lane-change situation, where the objective is to minimize the execution time of the maneuver. This formulation
is one example of how to trigger a critical situation where the vehicle is performing at its very limit in terms of
maneuvering.

2. MODELING
The emphasis in the vehicle modeling is on the chassis dynamics. Five different chassis models of various com-
plexity are considered. The wheel dynamics and tire force modeling are the same in the five cases, where the former
is expressed by a first-order rotational dynamic system. Thetire forces are described by Pacejka’s Magic Formula
tire model in combination with weighting functions [9] for modeling combined longitudinal and lateral slip.
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2.1 Chassis Models
The single-track (ST) model [10, 11], illustrated in Figure1, is used as a basis model for the vehicle motion
modeling. The left and right wheels on each axle are lumped together, and the model has two translational and one
rotational degrees of freedom. The model dynamics are

v̇x− vyψ̇ =
1
m
(Fx, f cos(δ )+Fx,r −Fy, f sin(δ )), (1)

v̇y+ vxψ̇ =
1
m
(Fy, f cos(δ )+Fy,r +Fx, f sin(δ )), (2)

Izzψ̈ = l f Fy, f cos(δ )− lrFy,r + l f Fx, f sin(δ ), (3)

wherem is the total vehicle mass,Izz is the vehicle inertia about thez-axis,ψ̇ is the yaw rate,δ is the steer angle,
vx, vy are the longitudinal and lateral velocities at the center ofgravity, l f , lr are the distances from the center of
gravity to the front and rear wheel base, andFx, Fy are the longitudinal and lateral tire forces acting at the front and
rear wheels. The nominal normal force resting on the respective wheel is given by

Fz0, f = mg
lr
l
, Fz0,r = mg

l f

l
, (4)

whereg is the constant of gravity andl = l f + lr .
Four extensions of the ST model are considered in this study:

• Single-track model with roll dynamics (ST-roll), where an additional degree of freedom about thex-axis is
included.

• Single-track model with pitch dynamics—i.e., an additional degree of freedom about they-axis—and longi-
tudinal load transfer (ST-pitch).

• Double-track model with roll dynamics and lateral load transfer (DT-roll).

• Double-track model with roll and pitch dynamics and both longitudinal and lateral load transfer (DT-roll-
pitch).

In the double-track models, each of the four wheels are modeled separately. In Figure 2, the DT-roll-pitch model
is illustrated, with the roll angleφ and the pitch angleθ . The chassis rotational motion in the roll and pitch
directions is characterized by the vehicle chassis inertias Ixx andIyy, respectively. Further, in the derivation of the
models it was assumed that the suspension system of the vehicle can be modeled with a spring-damper system.
Consequently, the moment produced by the suspension systemin the roll direction is given by

τφ = (Kφ , f +Kφ ,r)φ +(Dφ , f +Dφ ,r)φ̇ , (5)

and correspondingly in the pitch direction according to

τθ = Kθ θ +Dθ θ̇ , (6)

whereK andD are model parameters for the stiffness and damping, respectively. For the derivation and complete
dynamic equations for DT-roll-pitch, see [12]. The dynamicequations for the longitudinal load transfer are given
by

Fz, f l f −Fz,r lr = Kθ θ +Dθ θ̇ , ∑
i= f ,r

Fz,i = mg, (7)

for ST-pitch, where the time-dependent normal forcesFz, f andFz,r have been introduced. The relation (7) is also
valid for DT-roll-pitch with the substitutionFz, f = Fz,1 +Fz,2 andFz,r = Fz,3 +Fz,4. The lateral load transfer is
determined by the relations

−w(Fz,1−Fz,2) = Kφ , f φ +Dφ , f φ̇ , (8)

−w(Fz,3−Fz,4) = Kφ ,r φ +Dφ ,r φ̇ , (9)

wherew is defined in Figure 2.
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Figure 2 Double-track model with roll and pitch dynamics.

2.2 Wheel and Tire Dynamics
The wheel dynamics is formulated as a first-order system withthe wheel angular velocityω as the state and the
driving and braking torquesT acting on the wheels defined as inputs, according to

Ti − Iwω̇i −Fx,iRw = 0, i = f , r or 1,2,3,4, (10)

whereIw is the wheel inertia andRw is the wheel radius. The longitudinal slipκ and the slip angleα are introduced
following [9], and are given by

κi =
Rwωi − vx,i

vx,i
, (11)

α̇i
σ
vx,i

+αi =−arctan

(

vy,i

vx,i

)

, i = f , r or 1,2,3,4, (12)

whereσ is the relaxation length andvx,i , vy,i are the translational velocities resolved in the wheel frames. Note
that Figures 1–2 depict the static slip angles, describing apurely geometric relation, in contrast to the dynamic slip
angles in (12). The vehicle and wheel model parameters in (1)–(12) used in this study are specified in Table 1.

The tire forces are modeled by Pacejka’s Magic Formula in combination with weighting functions [9] for
modeling the combined longitudinal and lateral slip. The longitudinal and lateral tire forces,Fx andFy, read

Fx0,i = µxFz,i sin(Cx,i arctan(Bx,iκi −Ex,i(Bx,iκi −arctanBx,iκi))), (13)

Bxα ,i = Bx1,i cos(arctan(Bx2,iκi)), (14)

Gxα ,i = cos(Cxα ,i arctan(Bxα ,iαi)), (15)

Fx,i = Fx0,iGxα ,i , (16)

Fy0,i = µyFz,i sin(Cy,i arctan(By,iαi −Ey,i(By,iαi −arctanBy,iαi))), (17)

Byκ ,i = By1,i cos(arctan(By2,iαi)), (18)

Gyκ ,i = cos(Cyκ ,i arctan(Byκ ,iκi)), (19)

Fy,i = Fy0,iGyκ ,i , i = f , r or 1,2,3,4, (20)

whereµx,µy are the longitudinal and lateral friction coefficients andB, C, E are model parameters. In Table 2
the tire model parameters in (13)–(20) used in this study areprovided. The parameters were derived from [9]
and correspond to a tire on dry asphalt. Further, the state variables for the respective vehicle and wheel model
configuration are summarized in Table 3.

3. OPTIMIZATION
The models presented in the previous section are formulatedas differential-algebraic equation systems according to
ẋ(t) = G(x(t),y(t),u(t)), wherex is the state vector,y are the algebraic variables, andu is the input signal vector.
The time-dependency of the variables will be implicit in therest of the paper. The wheel driving and braking
torques,T =

(

Tf Tr
)

, as well as the steer angleδ of the front wheels are considered as inputs. For simplicity
we assume that the front wheels have the same steer angle in the double-track models. To allow an equitable
comparison with the single-track models, the double-trackmodels only have two wheel-torque inputs as well,
which are equally distributed between the wheels at the respective axle,i.e., T1 = T2 = Tf /2 andT3 = T4 = Tr/2,
whereT1, T2, T3, andT4 are the corresponding wheel torques for wheel 1–4. Further,the tire-force model is written
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Table 1 Vehicle and wheel parameters in(1)–(12).

Notation Value Unit

l f 1.3 m
lr 1.5 m
w 0.8 m
m 2 100 kg
Ixx 765 kgm2

Iyy 3 477 kgm2

Izz 3 900 kgm2

Rw 0.3 m
Iw 4.0 kgm2

σ 0.3 m
g 9.82 ms−2

h 0.5 m
Kφ , f ,Kφ ,r 89 000 Nm(rad)−1

Dφ , f ,Dφ ,r 8 000 Nms(rad)−1

Kθ 363 540 Nm(rad)−1

Dθ 30 960 Nms(rad)−1

Table 2 Tire model parameters in(13)–(20).

Notation Front Rear

µx 1.20 1.20
Bx 11.7 11.1
Cx 1.69 1.69
Ex 0.377 0.362
µy 0.935 0.961
By 8.86 9.30
Cy 1.19 1.19
Ey -1.21 -1.11

Cxα 1.09 1.09
Bx1 12.4 12.4
Bx2 -10.8 -10.8
Cyκ 1.08 1.08
By1 6.46 6.46
By2 4.20 4.20

Table 3 State variables for the different vehicle chassis model configurations, including wheel dynamics.

Model Notation States

Single-track ST vx,vy, ψ̇ ,ω f ,ωr ,α f ,αr

Single-track with roll dynamics ST-roll vx,vy, ψ̇ , φ̇ ,ω f ,ωr ,α f ,αr

Single-track with pitch dynamics ST-pitch vx,vy, ψ̇ , θ̇ ,ω f ,ωr ,α f ,αr

Double-track with roll dynamics DT-roll vx,vy, ψ̇ , φ̇ ,ω1,ω2,ω3,ω4,α1,α2,α3,α4

Double-track with roll and pitch DT-roll-pitch vx,vy, ψ̇ , φ̇ , θ̇ ,ω1,ω2,ω3,ω4,α1,α2,α3,α4

as the equation systemh(x,y,u) = 0. The chassis and tire dynamics are implemented using the modeling language
Modelica [13]. The optimization problem is formulated overthe time horizont ∈ [0, t f ]. The objective of the
optimization is to minimize the final timet f of the maneuver. Accordingly, the dynamic optimization problem to
be solved is written as:

minimize t f (21)

subject to Ti,min ≤ Ti ≤ Ti,max, i = f , r, (22)

|δ | ≤ δmax, |δ̇ | ≤ δ̇max, (23)

x(0) = x0, y(0) = y0, (24)

x(t f ) = xt f , y(t f ) = yt f , (25)

f (Xp,Yp)≤ 0, (26)

ẋ= G(x,y,u), h(x,y,u) = 0, (27)

wherex0, y0 are the initial conditions for the differential states and algebraic variables,xt f , yt f are the desired values
at the final timet = t f , and(Xp,Yp) is the position of the center of gravity of the vehicle. In practice, the initial and
final conditions are only applied to a subset of the model variables. Further,f (Xp,Yp) is a mathematical description
of the road constraint for the center of gravity of the vehicle for the respective maneuver. These constraints are
formulated as super-ellipses with different radii and degrees in theXY-plane.

The continuous-time optimal control problem (21)–(27) is solved for each model and maneuver using the open-
source software JModelica.org [14], according to the method presented in [2]. In particular, the continuous-time
optimization problem is discretized using direct collocation methods [15], and the resulting discrete-time nonlinear
optimization problem (NLP) is solved numerically using thestate-of-the-art interior-point solver Ipopt [16]. The
Jacobian and the Hessian related to the problem are requiredin the iterative numerical optimization procedure.
Considering the complexity of the employed chassis and tiremodels, exact calculation of these quantities with
automatic differentiation [17] significantly reduces convergence times and increases numerical stability compared
to the case with numerical approximations. For further details on the solution methodology, see [2].
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4. RESULTS
The minimum-time optimization problem (21)–(27) was solved for the 90◦-turn and the double lane-change ma-
neuver. The solution of the problem was determined for each of the vehicle models presented in Section 2. The
steer angle and steer rate-of-change were limited toδmax= 30 deg anḋδmax= 60 deg/s, respectively, corresponding
to reasonable driver limitations. The lower wheel torque limitations were set toTf ,min = Tr,min = −µx, f mg. The
upper wheel torque limits were set toTf ,max = 0 andTr,max = µx,rFz0,r , which implies a rear-wheel driven vehi-
cle. The choice of torque limitations originates from that the maximum braking torque that can be applied on the
wheels is significantly larger than the corresponding acceleration torque. Further, the driving torque limit was set
to prevent excessive wheel spin equivalent to large slip ratios. This is motivated since the employed empirical tire
models are based on tire force measurements that for experimental reasons are only possible to obtain for a limited
area in theα-κ plane. In addition, the wheel velocities were limited to be nonnegative, since solutions with wheel
backspin are not desired.

4.1 Optimal Maneuver in the 90◦-Turn
In the turn maneuver, the vehicle start position was set to(Xp,0,Yp,0) = (37.5,0) m, i.e., in the lower right corner in
Figure 3. The initial velocity wasv0 = 70 km/h and the vehicle was aligned with the road direction,ψ0 = π/2. The
target vehicle position was set to(Xp,t f ,Yp,t f ) = (0,37.5) m, where the vehicle heading was in the road direction,
ψt f = π . The computed optimal maneuvers for the different vehicle chassis models in the 90◦-turn are presented
in Figure 3. The variablev represents the absolute vehicle velocity andβ is the body-slip angle, defined as

β = arctan

(

vy

vx

)

.

Figure 4 shows the sum of the longitudinal and lateral tire forces resolved in the road-surface plane. Also visualized
is the nominal yaw momentMZ generated from the tire forces,i.e., the moment about an axis orthogonal to the
road. These quantities are visualized as function of the driven distances for comparability reasons. Figures 5–6
show theForce-Slip (FS)-diagrams—as first introduced in [2]—for ST and DT-roll-pitch. Here the normalized
resultant tire-force, defined as

Fi,res=

√

F2
x,i +F2

y,i

Fz,i
, i = f , r or 1,2,3,4,

is visualized as a surface, varying overα andκ . The corresponding time-optimal solution is drawn on this surface,
as well as projected underneath in theα-κ plane. In Table 4, the execution times for the maneuver for the respective
model are specified. The execution times vary 4 % at most, which occurs between ST-pitch and DT-roll. However,
no significant differences between the five chassis models considered in this study are observed.

Similarities Between the Solutions
The first observation when investigating the results in Figure 3 is that the solutions practically coincide for several
variables, beingφ , θ , ψ̇ , andβ . This implies that variables often utilized in safety systems to indicate maneuvering
instability are invariant to model complexity, at least forthe models considered here. The geometric trajectories
shown in the upper left plot of Figure 3 are also similar. The largest deviations of the geometric trajectories, which
occur between ST-pitch and DT-roll during the exit phase, are approximately 15 % of the road width. However,
the differences between ST and DT-roll-pitch are minor throughout the maneuver.

As seen in Figure 4,FY andMZ are similar, with only minor quantitative differences between the models. This
observation can also be deduced from the tire force plots in Figure 3 and is important considering thatMZ is used as
a high-level input in several safety systems, such as in yaw-rate controllers and rollover-prevention systems. There
are larger numeric discrepancies inFX, at least during shorter periods of the maneuver. In a physical setup, however,
model parameters such as the friction coefficients, vehiclemass, and tire parameters are uncertain. Thus, for safety

Table 4 Time for executing the maneuver for each model configuration in the 90◦-turn.

Model Execution time

ST 4.27 s
ST-roll 4.27 s
ST-pitch 4.20 s
DT-roll 4.37 s
DT-roll-pitch 4.34 s
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reasons conservative bounds on the control variables mightbe necessary in onboard applications, consequently
reducing the effects of the differences observed for the different models even further.

Investigating the results further, Figure 3 shows that the different models result in characteristics that are similar
in several aspects. Prior to turning into the corner, all solutions exhibit a slight rightward maneuvering while
accelerating. This is followed by a braking phase, where both front and rear wheels are used. In the braking phase,
initially a significant braking torque is applied, which is gradually reduced as the vehicle approaches the turn, see
Tf andTr in Figure 3. Unsurprisingly, larger lateral forces are generated in the turn. Half-way through the turn, at
t ≈ 2 s, all solutions apply an increasing driving torque, whichaccelerates the vehicle out of the turn. In the final
stage, maximum driving torque is applied for all models.

Differences Between the Solutions
The most prominent differences between the solutions appear for the control inputs and variables closely coupled to
the longitudinal dynamics, such asTf , Tr , andv in Figure 3, andFX in Figure 4. In the initial braking phase, starting
at t ≈ 0.4 s, the chassis for ST-pitch and DT-roll-pitch are subjected to a forward load transfer. This is utilized by
applying a larger braking effort at the front wheels, seeTf in Figure 3. At the rear wheels a large braking torque is
initially applied for ST-pitch and DT-roll-pitch. This torque is then rapidly reduced as the longitudinal load transfer
results in less load on the rear wheels, seeTr aroundt = 0.5 s in Figure 3.

Comparing ST with DT-roll, and ST-pitch with DT-roll-pitch, the double-track models reduce front-wheel
braking earlier. This is a consequence ofTf being equally distributed between the front wheels for the double-
track models. Thus, when braking while cornering, the innerwheels will have less load and thus risk to lock up
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for large braking torques. Similarly, during the exit phasewhere lateral load transfer still is present, a too large
driving torque will spin out the inner rear wheel. Therefore, a smaller driving torque is applied for DT-roll and
DT-roll-pitch compared to ST, ST-roll, and ST-pitch.

In Figure 3, the steer angle varies between the models. Att ≈ 0.7 s, a smallerδ is obtained for ST-pitch and
DT-roll-pitch, since the sought lateral forceFy, f for the current levels of front load and braking effort requires a
different slip angleα f . Also, for ST-pitch a strategy with more emphasis on brakingis obtained, with the lateral
force being slightly smaller. Hence, a lowerδ is natural. Shortly after, sharp peaks are seen in the steer angle
for ST-pitch and DT-roll-pitch aroundt = 1.1 s. Considering the resulting forces developed at the frontwheels
at this time resolved in the chassis frame, there exist two different strategies to achieve these: Either by utilizing
front wheel braking together with a moderate steering angle, or by only applying a large steering angle and obtain
the longitudinal contribution fromFy, f sin(δ ) solely. The latter seems to be what, to some extent, is utilized
for ST-pitch and DT-roll-pitch, and the advantage could be amore beneficial contribution to the yaw moment.
Additionally, for DT-roll-pitch, front-wheel braking could conflict with lock-up for the inner wheel, thus braking
might be disfavored. However, the gain in final time of using either of the strategies seems to be minor.

The FS-diagrams in Figure 5–6 display slightly different slip characteristics for the two models. For ST, the
solver chooses the slip quantities to reside closer to the coordinate axes, especially for the front wheel. The DT-
roll-pitch model, having dynamically varying normal forces, exhibits different slip trajectories for the left and right
wheels.

4.2 Optimal Maneuver in the Double Lane-Change
The geometric track-boundaries for the double lane-changemaneuver are specified according to the standardized
test ISO 3888-2 [18], often used for vehicle stability evaluations. The vehicle starts at the left-hand side of theXY-
plot in Figure 7, at(Xp,0,Yp,0) = (0,1) m, with an initial velocity ofv0 = 80 km/h. Mid-way through, an obstacle
forces the vehicle into an evasive maneuver. Finally, the vehicle rejoins the initial drive lane at the final position
(Xp,t f ,Yp,t f ) = (61,0.6) m. The initial and final vehicle heading angles were set toψ0 = ψt f = 0. In Figure 7, the
time-optimal solutions for the double lane-change maneuver are shown. In Figure 8,FX, FY, andMZ are shown
as function of the driven distances, similarly to Figure 4. In Figures 9 and 10 the FS-diagrams for the solutions
obtained with the ST and DT-roll-pitch models are shown. Theexecution times for the different models in the
double lane-change maneuver are specified in Table 5. As for the 90◦-turn, the execution times are similar and
differing at most by 4 %.

Similarities Between the Solutions
The global trajectories, shown in Figure 7, are almost inseparable. This is partially a consequence of the narrow
path formed by the track boundaries. However, strong resemblance is also obtained for several other variables , as
for exampleψ̇ , β , Fy, f , andFy,r in Figure 7. The total lateral forceFY, as well as the yaw momentMZ in Figure 8,

Table 5 Time for executing the maneuver for each model configuration in the double lane-change situation.

Model Execution time

ST 2.75 s
ST-roll 2.79 s
ST-pitch 2.68 s
DT-roll 2.79 s
DT-roll-pitch 2.75 s
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lane-change maneuver, illustrated as functions of the driven distance s. Note the similarities between the models
for FY and MZ.

show very similar behavior, almost coinciding for the main parts of the maneuver. Note the similarities inFY and
MZ even for considerable differences inFX, for example arounds= 10 m.

Analyzing the solutions more in-depth, all models result infull driving torque during the initial stage, followed
by a short braking phase at the rear wheels, seeTr in Figure 7. Subsequently, various levels of driving torqueare
applied when approaching the obstacle, followed by a braking phase utilizing both front and rear wheel braking.
For the second half of the maneuver, similar strategies are seen for all models. A moderate driving torque is
applied, interrupted by a smooth but significant increase att = 2 s. At this stage the rear lateral forceFy,r shifts
from negative to positive, thus only using a portion of the available lateral tire-forceµy,rFz,r . Consequently, a
longitudinal force is employed without adversely affecting the lateral forces.

Differences Between the Solutions
As for the 90◦-turn, differences between the solutions are most visible in the longitudinal dynamics. This is
particularly noticeable for the wheel torques,Tf and Tr in Figure 7, differing both in magnitude and point of
operation. In the initial braking phase, the braking effortis slowly reduced for ST, ST-roll, and DT-roll,i.e., the
models without pitch dynamics, and eventually a modest driving torque is applied, seeTr in Figure 7. The models
with pitch dynamics (ST-pitch and DT-roll-pitch) instead result in a maneuvering that shortly regain a driving
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Figure 10 Resultant tire forces for DT-roll-pitch in the
double lane-change (blue–left wheel, red–right wheel).

torque, which then slowly is reduced. In the pitch-dynamicsmodels, the rearward load transfer is here utilized,
enabling larger rear-wheel tire-forces because of the increased normal load on the rear wheels. Approaching the
obstacle, the pitch-dynamics models show an earlier initiated braking phase, presumably because of their larger
velocity. For the models without pitch dynamics, a driving torque at the rear wheels is shortly applied, followed
by a very short rear-wheel braking aroundt = 0.9 s in Figure 7. The reason for this behavior is probably linked to
the increased yaw rate, where a reduced rear-wheel lateral tire-forceFy,r is desired. This can here be achieved by
acquiring a large longitudinal slip.

The steering angleδ in Figure 7 exhibits overall equivalent behavior throughout the maneuver for the different
models, with the steer rate-of-change limitδ̇max being active during a majority of the maneuver. However, at
t = 1.3 s a distinct peak appears for DT-roll solely. This seems—aswas discussed for ST-pitch and DT-roll-pitch
in the 90◦-turn—to be a consequence of the existence of two different strategies resulting in equivalent optimization
objective. Instead of braking the front wheel, for DT-roll alarge steering angle can be observed which result in a
braking component determined byFy, f sin(δ ). By this strategy, combined with a double-track model, a large front
lateral force can be realized, while simultaneously reducing the speed without the risk of wheel lock-up. For DT-
roll-pitch this strategy is not applied, since reducing thespeed at this point in time seems to be neither necessary
nor desired, when analyzingTf andTr . For the single-track models, the risk of wheel lock-up is inthis situation
not imminent. Hence, the absence of the large steer-angle strategy.

Investigating the FS-diagrams for the solutions for ST and DT-roll-pitch, displayed in Figures 9 and 10, the
solutions exhibit a quite narrow area of operation in theα-κ plane. Also, combined slip is not utilized to the same
extent as for the 90◦-turn. Observing the slip trajectories closer, the rear wheels exhibit larger slip values than the
front wheels, in particular for DT-roll-pitch. This is coupled to the time-critical nature of the maneuver, which
becomes even more significant for DT-roll-pitch, which has dynamic normal loads.

5. CONCLUSIONS
Five different vehicle motion models were considered, ranging from a single-track model to a double-track model
with roll and pitch dynamics including load transfer. Thesemodels were investigated in a 90◦-turn and a double
lane-change maneuver, and the optimal control problems forfinding the minimum-time solution in each case were
solved.

The solution behavior for the different models is similar inseveral key aspects for both maneuvers, as observed
in Figures 3 and 7. For example, variables often used in safety systems, such as the yaw rate, the slip angle,
and the roll angle, only exhibit minor discrepancies. The input torques differ significantly during parts of the
maneuver. However, the overall lateral forces and yaw moments generated by the tires—FY andMZ in Figures 4
and 8—for the different models have similar characteristics, with only quantitative differences in between. The
largest discrepancies occur in the longitudinal forces; inFigure 8 the largest difference in absolute value of the
longitudinal force between ST and DT-roll-pitch is approximately 50 %. However, this major difference is only
seen for shorter time intervals and does not have much impacton the other variables. Moreover, considering an
online implementation, torque and force bounds have to be set conservatively because of uncertainty in model
parameters and disregarded dynamics, which will suppress this difference.

All of these observations are important, since they imply that variables traditionally considered as high-level
inputs in safety systems, such asMZ, may be generated by optimization using models with low complexity, e.g., the
single-track model. These high-level inputs can then be utilized as inputs to a low-level optimizer, which benefit
more from complex models for distributing the desired torque to the respective wheel. This fact, together with the
increased amount of sensor data and computational power available in modern road vehicles, opens up for the use
of simplistic models when designing the onboard optimization-based safety systems of tomorrow.
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