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Abstract

A comparative analysis shows how vehicle motion models fié@int complexity, capturing various character-
istics, influence the solution when used in time-criticatimal maneuvering problems. Vehicle models with
combinations of roll and pitch dynamics as well as load tigreare considered, ranging from a single-track model
to a double-track model with roll and pitch dynamics comUdiméth load transfer. The optimal maneuvers in
a 90-turn and a double lane-change scenario are formulated @isnonn-time optimization problems, and are
solved using numerical optimization software. The resuittined with the different models show that variables
potentially important for safety systems, such as the yaey sdip angle, and geometric path, are qualitatively the
same. Moreover, the numeric differences are mostly witifewapercent. The results also indicate that although
input torques differ about 50—100 % for certain parts of tr@nauver between the most and least complex model
considered, the resulting vehicle motions obtained ardaginirrespective of the model. Our main conclusion is
that this enables the use of low-order models when desighimgnboard optimization-based safety systems of
the future.

1. INTRODUCTION

With recent advancements in optimization technology arfthveoe, new approaches unfold for the development
of active vehicle safety systems and driver assistancetdgobies, seeg.g, [1]. The solution to an optimal control
problem can give valuable insight into the performance biifias of the system being investigated. Also, it can
be used as an inspiration for new control strategies. Thatiealto the optimization problem will depend on
the choice of model configurations and optimization objedj investigated in [2] and [3]. There, we developed
an optimization methodology with special emphasis on ticeleting and uncertain road-surfaces, and this work
continues the development towards more complex chassislsod

Motivated by the above, this study investigates the siitidgrand differences in the solutions obtained when
several vehicle chassis models, capturing different dyoamoperties such as roll and pitch dynamics with load
transfer, are employed in optimal maneuvering problem dim is to perform a comparative study on how dif-
ferent vehicle motion models affect the optimal controugion in certain critical situations. The long-term goal of
this work is real-time control. Hence, the models inveg#ddare fairly simplistic compared to models traditionally
employed for vehicle simulation purposes. For exampleitdet suspension kinematics and gear dynamics have
been neglected. One motivation for this is that the modeld@be used together with dynamic optimization al-
gorithms, requiring twice continuously differentiablenfttions in the model description. In addition, and perhaps
more importantly, we are interested in investigating whegracteristics of a maneuver that can be captured with
this kind of models.

Optimal control of vehicles has been investigated prevjomsliterature, see [1, 4, 5, 6] for a few examples.
Further, in [7, 8] an optimization problem for over-actuhtehicles is solved using similar software as used in this
paper. A majority of the work in these references focus onezifip vehicle and tire model. Thus, to the best of
our knowledge, no comprehensive approach to perform cdegres of different chassis models in an optimization
scenario has been made, which motivates the study predesrted

The evaluation of the models is performed on two differenhewsvering problems: A 96turn and a double
lane-change situation, where the objective is to minimiieeexecution time of the maneuver. This formulation
is one example of how to trigger a critical situation where Wehicle is performing at its very limit in terms of
maneuvering.

2. MODELING

The emphasis in the vehicle modeling is on the chassis dysarkive different chassis models of various com-
plexity are considered. The wheel dynamics and tire forcdeting are the same in the five cases, where the former
is expressed by a first-order rotational dynamic system.tifdéorces are described by Pacejka’s Magic Formula
tire model in combination with weighting functions [9] foradeling combined longitudinal and lateral slip.



2.1 ChassisModels

The single-track (ST) model [10, 11], illustrated in Figureis used as a basis model for the vehicle motion
modeling. The left and right wheels on each axle are lumpgetteer, and the model has two translational and one
rotational degrees of freedom. The model dynamics are

. . 1 .

Vx — Wi = E(Fx!f cogd) + Fyr — Fy¢sin(9)), (1)

. . 1 .

Vy + VW = E(Fy,f cog9d) + Fyr +Fxt sin(d)), 2
Izzl;[] == |ny7fCOE(6) _IrFy,r‘f’lf'z)gfsin(é)7 (3)

wheremis the total vehicle mass;; is the vehicle inertia about theaxis, ( is the yaw rated is the steer angle,
Vx, Vy are the longitudinal and lateral velocities at the centegratity, I+, I; are the distances from the center of
gravity to the front and rear wheel base, &qdF, are the longitudinal and lateral tire forces acting at tioafiand
rear wheels. The nominal normal force resting on the regmeaheel is given by

I It
FZO,f = mgl_r7 FZO,I’ = mg|_7 (4)

whereg is the constant of gravity arld= I + ;.
Four extensions of the ST model are considered in this study:

e Single-track model with roll dynamics (ST-roll), where atditional degree of freedom about tRexis is
included.

e Single-track model with pitch dynamicsie., an additional degree of freedom about ykaxis—and longi-
tudinal load transfer (ST-pitch).

e Double-track model with roll dynamics and lateral load sf@n (DT-roll).
e Double-track model with roll and pitch dynamics and bothdibadinal and lateral load transfer (DT-roll-
pitch).

In the double-track models, each of the four wheels are neddsparately. In Figure 2, the DT-roll-pitch model

is illustrated, with the roll angle and the pitch anglé. The chassis rotational motion in the roll and pitch

directions is characterized by the vehicle chassis irelitieandlyy, respectively. Further, in the derivation of the

models it was assumed that the suspension system of thdevehit be modeled with a spring-damper system.
Consequently, the moment produced by the suspension siyrstbmroll direction is given by

Tp = (Kot +Kgr)@+ (Dgt +Dgr)o, (5)
and correspondingly in the pitch direction according to
To = K8 + Dg0, (6)

whereK andD are model parameters for the stiffness and damping, regelgct-or the derivation and complete
dynamic equations for DT-roll-pitch, see [12]. The dynamdgiations for the longitudinal load transfer are given

by
Fotlt —Forly = KgB8+Dgh, Z F.i =mg )
i=fr
for ST-pitch, where the time-dependent normal foregsandF,, have been introduced. The relation (7) is also

valid for DT-roll-pitch with the substitutior, 1 = F,1 + F,» andF,; = F,3+ F,4. The lateral load transfer is
determined by the relations

~W(Fz1—Fz2) = Kg 19+ Do 19, ®)
—W(F,3—Fz4) =Ko r @+ Dy @, 9

wherew is defined in Figure 2.
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Figure 1 Basic single-track model. Figure 2 Double-track model with roll and pitch dynamics.

2.2 Wheel and Tire Dynamics

The wheel dynamics is formulated as a first-order system tlighwheel angular velocity as the state and the
driving and braking torques acting on the wheels defined as inputs, according to

Ti_IWOq_FX,iRW:(l i:far0r15253545 (10)

wherely, is the wheel inertia anB,, is the wheel radius. The longitudinal skpand the slip angler are introduced
following [9], and are given by
Ry — Vyii

Ki= ——, 11
I Vi (11)

dii—i—ai——arctan( y'), i=f,rorl23,4, (12)

Vi Vi

whereo is the relaxation length ang;, vy, are the translational velocities resolved in the wheel &#amNote

that Figures 1-2 depict the static slip angles, describimgraly geometric relation, in contrast to the dynamic slip

angles in (12). The vehicle and wheel model parameters #(12) used in this study are specified in Table 1.
The tire forces are modeled by Pacejka’s Magic Formula inkionation with weighting functions [9] for

modeling the combined longitudinal and lateral slip. Thegitudinal and lateral tire forceBy andFy, read

Froi = HxF2i SIN(Cxj arctariBy ki — Ex (By,iki — arctarByki))), (13)
Bxa,i = By coqarctar{Byiki)), (14)
Gxa,i = €09Cyq j arctariByq i ai)), (15)

I:x,i = l:xO,tia,h (16)

Fyo, = tyF2isin(Cy; arctariBy;ai — Ey;(Byia; — arctarBy;a;))), a7
Byx,i = By1jcoqarctariBy,;qi)), (18)
Gyxi = cogCyx arctar{Byx iki)), (19)

Fyi = Fyo,Gyk,i, i = f,ror12,3,4, (20)

where Ly, ty are the longitudinal and lateral friction coefficients éBdC, E are model parameters. In Table 2
the tire model parameters in (13)—(20) used in this studypaogided. The parameters were derived from [9]
and correspond to a tire on dry asphalt. Further, the stateblas for the respective vehicle and wheel model
configuration are summarized in Table 3.

3. OPTIMIZATION

The models presented in the previous section are formubatdidferential-algebraic equation systems according to
X(t) = G(x(t),y(t),u(t)), wherex is the state vectoy, are the algebraic variables, ands the input signal vector.
The time-dependency of the variables will be implicit in ttest of the paper. The wheel driving and braking
torques,T = (Tf Tr), as well as the steer angfeof the front wheels are considered as inputs. For simplicity
we assume that the front wheels have the same steer angle @otible-track models. To allow an equitable
comparison with the single-track models, the double-tnracdels only have two wheel-torque inputs as well,
which are equally distributed between the wheels at theeye axlej.e, T1 =T, =T;/2 andTs =Ta = T;/2,
whereTy, Ty, T3, andT, are the corresponding wheel torques for wheel 1-4. Futtihetire-force model is written



Table 1 Vehicle and wheel parameterg1—12). Table 2 Tire model parameters {@3)~20).

Notation Value Unit Notation Front Rear
It 1.3 m Ux 1.20 1.20
Iy 1.5 m Bx 11.7 111
w 0.8 m Cx 1.69 1.69
m 2100 kg Ex 0.377 0.362
I 765 kgn? Ly 0.935 0.961
lyy 3477 kgnt By 8.86 9.30
22 3900 kgnt Cy 1.19 119
Rw 0.3 m Ey -1.21 -1.11
lw 4.0 kgn? Cxa 1.09 1.09
o 0.3 m B 124 124
g 9.82 ms? B -10.8 -10.8
h 0.5 m Cyx 1.08 1.08

Ko, Kor 89000 Nm(rad)! By1 6.46  6.46

Dy, Doy 8000  Nms(rad)! By2 420 4.20
Ko 363540 Nm(rad)!
D¢ 30960 Nms(rad)!

Table 3 State variables for the different vehicle chassidehoonfigurations, including wheel dynamics.

Model Notation States

Single-track ST Vi, Wy, @, @x , &, A, Oy

Single-track with roll dynamics ST-roll Vi, Vy, U, @, Wr, @, At , Oy

Single-track with pitch dynamics  ST-pitch Vi, Wy, U, 8, @t , @y, At , O
Double-track with roll dynamics  DT-roll Vi, Vy, @, 0, Wy, W3, Wy, 01, 02, A3, 0y

Double-track with roll and pitch ~ DT-roll-pitch vy, vy, , @, 6, w1, W, w3, 4, A1, 02,03, 04

as the equation systehfx, y,u) = 0. The chassis and tire dynamics are implemented using tlleling language
Modelica [13]. The optimization problem is formulated otbe time horizort € [0,t]. The objective of the
optimization is to minimize the final timg of the maneuver. Accordingly, the dynamic optimizationkemn to
be solved is written as:

minimize tf (21)
subject to Timin < T < Timax i = f,T, (22)
18] < Bnax, 18] < Smax (23)
X(0) =xo, Y(0) = Yo, (24)
X(tr) =X, Y(t) =Y. (25)
f(Xp,Yp) <0, (26)
x=G(x,y,u), h(x,y,u)=0, (27)

wherexg, yo are the initial conditions for the differential states afgkaraic variablesy, , y;, are the desired values

at the final time = t¢, and(Xp, Yp) is the position of the center of gravity of the vehicle. Ingiiee, the initial and
final conditions are only applied to a subset of the modekmeis. Furtherf (Xp,Y,) is a mathematical description

of the road constraint for the center of gravity of the vehiidr the respective maneuver. These constraints are
formulated as super-ellipses with different radii and éegrin theXY-plane.

The continuous-time optimal control problem (21)—(27)dklved for each model and maneuver using the open-
source software JModelica.org [14], according to the meéhr@sented in [2]. In particular, the continuous-time
optimization problemis discretized using direct colldcatmethods [15], and the resulting discrete-time nonlinea
optimization problem (NLP) is solved numerically using state-of-the-art interior-point solver Ipopt [16]. The
Jacobian and the Hessian related to the problem are requitéé iterative numerical optimization procedure.
Considering the complexity of the employed chassis andntioelels, exact calculation of these quantities with
automatic differentiation [17] significantly reduces ceryence times and increases numerical stability compared
to the case with numerical approximations. For furtheritietan the solution methodology, see [2].



4. RESULTS

The minimum-time optimization problem (21)-(27) was sdl¥er the 90-turn and the double lane-change ma-
neuver. The solution of the problem was determined for edi¢heovehicle models presented in Section 2. The
steer angle and steer rate-of-change were limitég = 30 deg andyax = 60 deg/s, respectively, corresponding
to reasonable driver limitations. The lower wheel torqueitiations were set t0t min = Trmin = — i Mg The
upper wheel torque limits were set @ max = 0 and Ty max = UxrFa,, Which implies a rear-wheel driven vehi-
cle. The choice of torque limitations originates from tha thaximum braking torque that can be applied on the
wheels is significantly larger than the corresponding aedbn torque. Further, the driving torque limit was set
to prevent excessive wheel spin equivalent to large slipsat his is motivated since the employed empirical tire
models are based on tire force measurements that for exgrat@treasons are only possible to obtain for a limited
area in thex-k plane. In addition, the wheel velocities were limited to lo@mmnegative, since solutions with wheel
backspin are not desired.

4.1 Optimal Maneuver in the 90°-Turn

In the turn maneuver, the vehicle start position was s€X§@, Yp0) = (37.5,0) m, i.e., in the lower right corner in
Figure 3. The initial velocity wagy = 70 km/h and the vehicle was aligned with the road directig= 17/2. The
target vehicle position was set (¥p,, Ypt; ) = (0,37.5) m, where the vehicle heading was in the road direction,
yr, = 1. The computed optimal maneuvers for the different vehiblessis models in the 8@urn are presented
in Figure 3. The variable represents the absolute vehicle velocity #nd the body-slip angle, defined as

Wi
B= arctan(—y) .
Vx

Figure 4 shows the sum of the longitudinal and lateral tirede resolved in the road-surface plane. Also visualized
is the nominal yaw momen¥l; generated from the tire forceise., the moment about an axis orthogonal to the
road. These quantities are visualized as function of theedrdlistances for comparability reasons. Figures 5-6
show theForce-Slip (FS)-diagrams-as first introduced in [2]—for ST and DT-roll-pitch. Hereetimormalized

resultant tire-force, defined as
ViRt
—— i=frorl234,

l:z,i ’

is visualized as a surface, varying oweandk. The corresponding time-optimal solution is drawn on thidace,
as well as projected underneath in the plane. In Table 4, the execution times for the maneuver forekpective
model are specified. The execution times vary 4 % at most,iwgicurs between ST-pitch and DT-roll. However,
no significant differences between the five chassis modeisidered in this study are observed.

I:l,res:

Similarities Between the Solutions
The first observation when investigating the results in Féddiis that the solutions practically coincide for several
variables, being, 6, (¢, andB. This implies that variables often utilized in safety sys¢go indicate maneuvering
instability are invariant to model complexity, at least foe models considered here. The geometric trajectories
shown in the upper left plot of Figure 3 are also similar. Tdrgést deviations of the geometric trajectories, which
occur between ST-pitch and DT-roll during the exit phase,agproximately 15 % of the road width. However,
the differences between ST and DT-roll-pitch are minor diglout the maneuver.

As seen in Figure 45y andMg are similar, with only minor quantitative differences beem the models. This
observation can also be deduced from the tire force plotigjumre 3 and is important considering that is used as
a high-level input in several safety systems, such as insg@veontrollers and rollover-prevention systems. There
are larger numeric discrepancie$in at least during shorter periods of the maneuver. In a paysatup, however,
model parameters such as the friction coefficients, vehielss, and tire parameters are uncertain. Thus, for safety

Table 4 Time for executing the maneuver for each model caafign in the 90-turn.

Model Execution time
ST 4.27s
ST-roll 4.27s
ST-pitch 4.20s
DT-roll 4.37s
DT-roll-pitch 4.34s
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Figure 4 Longitudinal force k, lateral force k, and yaw moment }] developed by the tires, for the 9@urn,

illustrated as functions of the driven distance s. Note th@larities between the models foy Bnd M.

reasons conservative bounds on the control variables rogimecessary in onboard applications, consequently
reducing the effects of the differences observed for tHemiht models even further.

Investigating the results further, Figure 3 shows that ffferént models result in characteristics that are similar
in several aspects. Prior to turning into the corner, aluohs exhibit a slight rightward maneuvering while
accelerating. This is followed by a braking phase, wheré froint and rear wheels are used. In the braking phase,
initially a significant braking torque is applied, which ieagually reduced as the vehicle approaches the turn, see
T: andT, in Figure 3. Unsurprisingly, larger lateral forces are gatexd in the turn. Half-way through the turn, at
t = 2 s, all solutions apply an increasing driving torque, whackelerates the vehicle out of the turn. In the final
stage, maximum driving torque is applied for all models.

Differences Between the Solutions
The most prominent differences between the solutions apeite control inputs and variables closely coupled to
the longitudinal dynamics, such @g, T;, andvin Figure 3, andry in Figure 4. In the initial braking phase, starting
att =~ 0.4 s, the chassis for ST-pitch and DT-roll-pitch are subtbea forward load transfer. This is utilized by
applying a larger braking effort at the front wheels, $eén Figure 3. At the rear wheels a large braking torque is
initially applied for ST-pitch and DT-roll-pitch. This tque is then rapidly reduced as the longitudinal load transfe
results in less load on the rear wheels, §earoundt = 0.5 s in Figure 3.

Comparing ST with DT-roll, and ST-pitch with DT-roll-pit¢chhe double-track models reduce front-wheel
braking earlier. This is a consequencelgfbeing equally distributed between the front wheels for thelde-
track models. Thus, when braking while cornering, the inmleeels will have less load and thus risk to lock up
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Figure 5 Resultanttire forces for ST inthe*Sturn.  Figure 6 Resultant tire forces for DT-roll-pitch in the
90°-turn (blue—left wheel, red—right wheel).

for large braking torques. Similarly, during the exit phadeere lateral load transfer still is present, a too large
driving torque will spin out the inner rear wheel. Therefamesmaller driving torque is applied for DT-roll and
DT-roll-pitch compared to ST, ST-roll, and ST-pitch.

In Figure 3, the steer angle varies between the model$ ~AD.7 s, a smalled is obtained for ST-pitch and
DT-roll-pitch, since the sought lateral for€gs for the current levels of front load and braking effort regsia
different slip anglexs. Also, for ST-pitch a strategy with more emphasis on brakéngbtained, with the lateral
force being slightly smaller. Hence, a loweris natural. Shortly after, sharp peaks are seen in the stege a
for ST-pitch and DT-roll-pitch arount= 1.1 s. Considering the resulting forces developed at the frdvels
at this time resolved in the chassis frame, there exist tfferént strategies to achieve these: Either by utilizing
front wheel braking together with a moderate steering graylby only applying a large steering angle and obtain
the longitudinal contribution froni, ¢ sin(d) solely. The latter seems to be what, to some extent, is ediliz
for ST-pitch and DT-roll-pitch, and the advantage could bmae beneficial contribution to the yaw moment.
Additionally, for DT-roll-pitch, front-wheel braking cdd conflict with lock-up for the inner wheel, thus braking
might be disfavored. However, the gain in final time of usiithexr of the strategies seems to be minor.

The FS-diagrams in Figure 5-6 display slightly differeip sharacteristics for the two models. For ST, the
solver chooses the slip quantities to reside closer to tbedouate axes, especially for the front wheel. The DT-
roll-pitch model, having dynamically varying normal fos;@xhibits different slip trajectories for the left andtrig
wheels.

4.2 Optimal Maneuver in the Double Lane-Change

The geometric track-boundaries for the double lane-chamggeuver are specified according to the standardized
test ISO 3888-2 [18], often used for vehicle stability ewions. The vehicle starts at the left-hand side ofXe
plotin Figure 7, a(Xp0, Yp0) = (0,1) m, with an initial velocity ofvg = 80 km/h. Mid-way through, an obstacle
forces the vehicle into an evasive maneuver. Finally, thaécke rejoins the initial drive lane at the final position
(Xpts, Ypt;) = (61,0.6) m. The initial and final vehicle heading angles were sapge= yx, = 0. In Figure 7, the
time-optimal solutions for the double lane-change maneaxe shown. In Figure &x, Ky, andMz are shown

as function of the driven distaneesimilarly to Figure 4. In Figures 9 and 10 the FS-diagramgte solutions
obtained with the ST and DT-roll-pitch models are shown. €Rkecution times for the different models in the
double lane-change maneuver are specified in Table 5. A©&®8®-turn, the execution times are similar and
differing at most by 4 %.

Similarities Between the Solutions

The global trajectories, shown in Figure 7, are almost ias#gle. This is partially a consequence of the narrow
path formed by the track boundaries. However, strong rekerob is also obtained for several other variables , as
for exampley, B, R r, andF,; in Figure 7. The total lateral forde,, as well as the yaw momeM; in Figure 8,

Table 5 Time for executing the maneuver for each model coafign in the double lane-change situation.

Model Execution time
ST 2.75s
ST-roll 2.79s
ST-pitch 2.68s
DT-roll 2.79s
DT-roll-pitch 2.75s
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show very similar behavior, almost coinciding for the maéntp of the maneuver. Note the similaritiesHpand
Mz even for considerable differenceshg, for example around= 10 m.

Analyzing the solutions more in-depth, all models resuftihdriving torque during the initial stage, followed
by a short braking phase at the rear wheels,Tsée Figure 7. Subsequently, various levels of driving torque
applied when approaching the obstacle, followed by a brpkhmase utilizing both front and rear wheel braking.
For the second half of the maneuver, similar strategies eee for all models. A moderate driving torque is
applied, interrupted by a smooth but significant increage=a® s. At this stage the rear lateral foreg shifts
from negative to positive, thus only using a portion of thaikable lateral tire-forceuy,F.r. Consequently, a
longitudinal force is employed without adversely affegtthe lateral forces.

Differences Between the Solutions

As for the 90-turn, differences between the solutions are most visibléhe longitudinal dynamics. This is
particularly noticeable for the wheel torqudg, and T, in Figure 7, differing both in magnitude and point of
operation. In the initial braking phase, the braking efierslowly reduced for ST, ST-roll, and DT-roile., the
models without pitch dynamics, and eventually a modesimyitorque is applied, s€k in Figure 7. The models
with pitch dynamics (ST-pitch and DT-roll-pitch) insteagisult in a maneuvering that shortly regain a driving
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Figure 9 Resultant tire forces for ST in the doubld-igure 10 Resultant tire forces for DT-roll-pitch in the
lane-change maneuver. double lane-change (blue—left wheel, red—right wheel).

torque, which then slowly is reduced. In the pitch-dynammtxiels, the rearward load transfer is here utilized,
enabling larger rear-wheel tire-forces because of theeas®d normal load on the rear wheels. Approaching the
obstacle, the pitch-dynamics models show an earlier teiidoraking phase, presumably because of their larger
velocity. For the models without pitch dynamics, a driviogque at the rear wheels is shortly applied, followed
by a very short rear-wheel braking aroung 0.9 s in Figure 7. The reason for this behavior is probably lthtee

the increased yaw rate, where a reduced rear-wheel lairerdbtceF,, is desired. This can here be achieved by
acquiring a large longitudinal slip.

The steering anglé in Figure 7 exhibits overall equivalent behavior througttbe maneuver for the different
models, with the steer rate-of-change limjax being active during a majority of the maneuver. However, at
t = 1.3 s a distinct peak appears for DT-roll solely. This seemswasdiscussed for ST-pitch and DT-roll-pitch
in the 90-turn—to be a consequence of the existence of two diffetestegjies resulting in equivalent optimization
objective. Instead of braking the front wheel, for DT-roleage steering angle can be observed which result in a
braking component determined By sin(5). By this strategy, combined with a double-track model, gddront
lateral force can be realized, while simultaneously reagithe speed without the risk of wheel lock-up. For DT-
roll-pitch this strategy is not applied, since reducing $peed at this point in time seems to be neither necessary
nor desired, when analyzing andT,. For the single-track models, the risk of wheel lock-up ighis situation
not imminent. Hence, the absence of the large steer-anglegy.

Investigating the FS-diagrams for the solutions for ST afieér@l-pitch, displayed in Figures 9 and 10, the
solutions exhibit a quite narrow area of operation indhe& plane. Also, combined slip is not utilized to the same
extent as for the 98turn. Observing the slip trajectories closer, the reareldexhibit larger slip values than the
front wheels, in particular for DT-roll-pitch. This is colegl to the time-critical nature of the maneuver, which
becomes even more significant for DT-roll-pitch, which hgsamic normal loads.

5. CONCLUSIONS

Five different vehicle motion models were considered, iagfrom a single-track model to a double-track model
with roll and pitch dynamics including load transfer. Thasedels were investigated in a 9furn and a double
lane-change maneuver, and the optimal control problenf@fding the minimum-time solution in each case were
solved.

The solution behavior for the different models is similas@veral key aspects for both maneuvers, as observed
in Figures 3 and 7. For example, variables often used inysafettems, such as the yaw rate, the slip angle,
and the roll angle, only exhibit minor discrepancies. Theuintorques differ significantly during parts of the
maneuver. However, the overall lateral forces and yaw masnggnerated by the tiresandMz in Figures 4
and 8—for the different models have similar charactesstiith only quantitative differences in between. The
largest discrepancies occur in the longitudinal forcesFigure 8 the largest difference in absolute value of the
longitudinal force between ST and DT-roll-pitch is approgitely 50 %. However, this major difference is only
seen for shorter time intervals and does not have much ingratiie other variables. Moreover, considering an
online implementation, torque and force bounds have to bemeservatively because of uncertainty in model
parameters and disregarded dynamics, which will supphésdlifference.

All of these observations are important, since they impbt trariables traditionally considered as high-level
inputs in safety systems, suchig, may be generated by optimization using models with low dewity, e.g, the
single-track model. These high-level inputs can then Hzedi as inputs to a low-level optimizer, which benefit
more from complex models for distributing the desired t@rtputhe respective wheel. This fact, together with the
increased amount of sensor data and computational powialaieain modern road vehicles, opens up for the use
of simplistic models when designing the onboard optimaathased safety systems of tomorrow.
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