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Abstract: A systematic design method for reducing bias in observers is developed. The method
utilizes an observable default model of the system together with measurement data from the real
system and estimates a model augmentation. The augmented model is then used to design an
observer which reduces the estimation bias compared to a default observer. A key result is the
theoretical analysis that characterizes the possible augmentations is also conducted. The method
is applied to a truck engine where the resulting augmented observer reduces the estimation bias
with 50 % in an ETC.
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1. INTRODUCTION

In all model based control or diagnosis systems, the perfor-
mance of the system is directly dependent on the accuracy
of the model. Further, modeling is time consuming and,
even if much time is spent on physical modeling, there
will always be errors in the model. This is especially true
if there are constraints on the model complexity, as is the
case in most real time systems. Another scenario is that
a model developed for some purpose, e.g. control, exists
but needs corrections before it can be used in for example
diagnosis.

In many applications, for example engine control and
engine diagnosis, it is crucial to have unbiased estimates. In
model based diagnosis, the true system is often monitored
by comparing measured signals to estimated signals. If
the magnitude of the difference, the residual, is above a
certain limit a decision that something is wrong is made.
In engine control, the goal is to maximize torque output
while keeping the emissions below legislated levels and the
fuel consumption as low as possible. For diesel engines this
is especially hard since the control system does not have
any feedback information from a λ- or NOx-sensor and
have to rely on estimated signals instead. In both cases,
biased estimates impairs the performance.

The objective of this work is to develop a systematic
method for reducing estimation bias in model based ob-
servers without involving further modeling efforts.

The model utilizes an observable model of, and measure-
ment data from a true system. The given model, referred to
as the default model, and the measured inputs and outputs
from the true system are used to estimate a suitable
model augmentation. Then, the augmented model is used
to design an observer that is shown to give estimates with
reduced bias compared to an observer based on the default
model. A key result is a theoretical characterization of all
possible augmentations. Finally the method is evaluated

on a non-linear diesel engine model with experimental data
from an engine test cell.

2. PROBLEM FORMULATION

Previous experience at Scania CV AB of state estimation
based on an existing state-space model of a truck engine
reveals that the model captures dynamic behavior reason-
ably well but suffers from stationary errors. Designing an
observer based on this model results in biased estimates
and how to reduce this problem in a systematic manner is
the topic of this paper.

The starting point is an existing model, referred to as the
default model, that is provided in state-space form

ẋ = f(x, u) (1a)

y = h(x), (1b)

where x is the state-vector, u the known control inputs,
y the measurement vector, and f and h are non-linear
functions.

The objective is to find a systematic way to design an
observer that gives an unbiased estimate of either the
complete state x or a function of the state z = g(x). This
should be done even though the default model is subjected
to significant bias errors. A direct approach to compensate
for constant, or slowly varying, biases is to augment the
default model with bias variables q as

ẋ = f̃(x, u, q) (2a)

q̇ = 0 (2b)

y = h̃(x, q) (2c)

and design the observer using this augmented model. If the
augmentation captures the true modeling errors and the
augmented system is observable, the observer estimates
can be made unbiased.

An obvious question is then how to introduce the bias
variable q in the model equations. One way is through



process knowledge but in this paper we propose an esti-
mation procedure based on available measurement data.
Besides the natural restriction, that the augmented model
(2) is observable, it is also desirable to not introduce more
extra bias states than necessary. It is therefore desirable to
find a bias vector q with as low dimension as possible that
manages to reduce the bias. Another reason for finding a
low dimensional bias is that, since the model is a first-
principles physical model, bias in multiple states may be
explained by one underlying bias affecting all these states.
For example, bias in two pressures can originate from a
bias in the mass flow between the two volumes or an
incorrect modeling of energy conservation can give rise to
bias in several states connected to the energy.

In the model (1) there are two natural ways to introduce
biases, in the dynamic equation (1a) or in the measurement
equation (1b). In the truck engine application the sensors,
intake and exhaust manifold pressures and turbine speed,
are considered more reliable than the model and the
bias augmentation is therefore introduced in the dynamic
equations according to

ẋ = f(x − Aqq, u) (3a)

q̇ = 0 (3b)

y = h(x). (3c)

where a stationary point of the system is moved by Aqq.
The matrix Aq is thus a description on how the underlying
bias variable q influences the stationary value of the state
variable x. The model (3) will be referred to as the
augmented model.

2.1 Problem outline

Based on the discussion above, the problem studied in the
sections to follow can now be stated as: Given a default
model (1) and available measurement data, find a low
order bias augmented model (3) and design an observer
that estimates x with reduced bias compared to using the
default model. The observer should also be implementable
in an Engine Control Unit (ECU).

To solve the problems, some issues need to be addressed.
First, which matrices Aq are at all possible? Not all
are possible since we require that the augmented system
should be observable and a characterization of possible
augmentations is derived in Section 3. Among these pos-
sible bias augmentations, which should be used? Section 4
describes three approaches for how to estimate a, for bias
compensation, suitable low order Aq based on measure-
ment data. Section 5 finally summarizes the procedure and
Section 6 presents two examples of the proposed estimator
design methodology applied to a Scania diesel engine using
simulated and real measurement data respectively.

2.2 Discretization

As a first step, the nonlinear augmented model (3) is trans-
formed to a linearized time discrete model. A reason for
the discretization is the demand on the implementation,
which will be done in the ECU as a time discrete system.
An Euler forward discretization with step size Ts seconds is
used. The reasons for the linearization are, to simplify the
observability analysis and to get a model that fits into the

EKF frame-work used in the observer design. It is further
assumed that conclusions on observability made locally
can be used to draw conclusions of the global observability
properties of the model. This gives the following model
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3. POSSIBLE AUGMENTATIONS

Augmenting a model with more states may affect the
observability of the model. Since the purpose of the aug-
mented model is to use it for estimation, observability has
to be maintained also after the augmentation. To find
which augmentations that are possible an observability
investigation of the augmented model is performed. The
aim is to derive a necessary and sufficient condition on
Aq such that the augmented model is observable. The ob-
servability criterion used is known as the Popov-Belevitch-
Hautus(PBH)-test (Kailath, 1980).

Theorem 1. A pair (C,F ) is observable if and only if the
matrix

O =

(

C
F − λI

)

has full column rank for all λ ∈ C.

To proceed, two assumptions regarding the default model
are made. First, the default model is used for observer
design and is therefore assumed to be observable. Second,
A is assumed to be invertible, which is the case in the
application example. Now, using Theorem 1 and the two
assumptions above, the main result of this section can be
formulated as

Theorem 2. Assume that (C,A) in (4) is an observable
pair and that A is non-singular, then the augmented
system is observable if and only if

ImAq ∩ Ker C = {0}

which is equivalent to CAq having full column rank.

Proof. The PBH-test applied to the augmented model (4)
gives

Oaug =





C 0
I + TsA − λI −TsAAq

0 I − λI





Since the default model is assumed to be observable, the
upper left block in Oaug has full column rank for all λ and
Oaug can lose rank only for λ = 1. It is therefore sufficient
to check the column rank of

(

C 0
TsA −TsAAq

)

Which is equivalent to requiring that the only solution to

Cx = 0

TsA(x − Aqq) = 0

is x = 0, q = 0. Since A is non-singular this is equivalent
to,



Cx = 0

x = Aqq

Hence the augmented system is observable if and only if

ImAq ∩ Ker C = {0}

or, equivalently, that the matrix CAq has full column rank.
�

This means that the space spanned by the columns in Aq

can not lie in the null space of C for the augmented model
to be observable.

A closer look at the requirement that CAq has to have
full column rank convey some interesting results. Firstly,
it is easily seen that the number of augmented states,
nq = dim q, never can exceed the number of measurement
signals, ny = dim y, i.e. nq ≤ ny. Secondly, imagine a C
that has one or several zero columns, then the product
CAq will not contain any information from those rows in
Aq corresponding to the zero columns in C. That is, those
rows in Aq that correspond to zero columns in C will not
contribute to the observability.

Also note that the following results regarding observability
are not dependent on the method chosen for discretization.
As long as Ts is chosen small enough the results are valid
also for, e.g. zero-order-hold (Kalman et al., 1963).

Example 1. Possible augmentations of a small system with
invertible A, and

C =

[

1 0 0
0 1 0

]

(1) An augmentation

Aq =

[

1 0
0 0
0 1

]

is not observable since CAq =

[

1 0
0 0

]

and does not have full column rank. The reason for
this is that the second column in Aq only has non-
zero components in the row corresponding to the zero
column in C.

(2) However, if either of the two zeros in the second
column of Aq is interchanged to, for example a one,
the augmentation becomes observable.

Aq =

[

1 0
0 1
0 1

]

⇒ CAq =

[

1 0
0 1

]

⋄

4. AUGMENTATION ESTIMATION

The next question is how to find a suitable augmentation,
that fulfills the requirements derived in Section 3, using
data (y, u) from the real system. Three approaches for how
to estimate a suitable augmentation have been developed.
In the following, I + TsA is substituted for F to increase
readability.

4.1 Approach 1

The first approach utilizes the discretized linearization
directly,

xt+1 = Ftxt + (I − Ft)Aqqt + Btut

yt = Ctxt

Inverting the measurement equation and inserting the
resulting x in the dynamic equation, gives

Aqqt = (I − Ft)
−1(C†

t+1yt+1 − FtC
†
t yt − Btut),

where † denotes the pseudo inverse. To find a suitable aug-
mentation, the Aqqt’s are collected in a matrix, RAqqt

=
[Aqq1, . . . , AqqN ], which is analyzed by singular value
decomposition (SVD). Here it is crucial that the SNR is
high enough, otherwise the noise is a dominating part of
Aqqt and an SVD would give a basis for the noise, not the
bias. However, if the SNR is high enough the SVD gives a
basis for the space in which the bias moves and Âq can be
chosen to span that space.

An advantage with this approach over the other two is that
there is no need for computing any intermediate observer
for estimating the augmentation. A disadvantage, besides
that C has to have full column rank, is that, since no filter
is involved, it is sensitive to measurement noise.

4.2 Approach 2

The second approach is based on an SVD of the residuals
originating from an observer based on the default model.
Here, the observer is an extended Kalman filter (EKF)
(Kailath et al., 2000), where the noise covariance matrices
Q and R are design parameters tuned by the user. The
estimation error becomes,

et+1 = xt+1 − x̂t+1|t+1

= Ftxt + (I − Ft)Aqq + Btut−

(Ftx̂t|t + Btut + Kt(yt+1 − CtFtx̂t|t − CtBtut))

= {yt+1 = CtFtxt + Ct(I − Ft)Aqq + CtBtut}

= (Ft − KtCtFt)et + (I − KtCt)(I − Ft)Aqq (7)

Equation (7) requires that the estimation error is known
which normally is not the case, hence the residuals,

rt = yt − ŷt|t = Ct(xt − x̂t|t) = Ctet, (8)

are used for estimating an augmentation. The fact that
residuals from an observer is used instead of the mea-
surements makes this approach less sensitive to low SNR,
compared to Approach 1.

Here, solely stationary parts of the residuals are involved
when searching an appropriate augmentation, Aq. In the
example the stationary parts are separated out through
visual inspection of the data at hand. It would be possible
to use also dynamical parts of the residuals and a dynami-
cal inverse. The reason for not utilizing these is to prevent
dynamical estimation errors from affecting the estimation
of the constant or slowly varying bias. This results in

rstat = Cstatestat

= Cstat(I − Fstat + KstatCstatFstat)
−1×

(I − KstatCstat)(I − Fstat)Aqqstat

According to this Aq can be found by first finding the
stationary residuals in a set of system operating points,
collect these in the same way as in Approach 4.1, and per-
form an SVD. The SVD returns a basis for the residuals,
Vr, and Aq can be estimated as

Âq = (Cstat(I − Fstat + KstatCstatFstat)
−1×

(I − KstatCstat)(I − Fstat))
†Vr (9)



4.3 Approach 3

An alternative to Approach 2 for finding Aq is to augment
the default model with as many extra states as possible.
According to Theorem 2, CAq has to have full column
rank. This means that Aq can have a maximum of ny

columns, one non-zero element per column, and these non-
zero elements have to correspond to non-zero columns
of C. Run the observer based on the augmented model,
perform an SVD on the stationary parts of the augmented
states, and assemble Aq.

An advantage with this approach is that no inversions
as those in (9) are needed. A disadvantage is that the
order of the observer may become quite large during the
augmentation estimation. In the worst case the order of
the augmented model will be twice the order of the default
model.

Example 2. Here the maximum possible augmentation is
illustrated for a default model with

C =

[

1 0 0
0 1 0

]

Let × denote a non-zero element, then some possible
augmentations are

A1
q =

[

× 0
0 ×
0 0

]

, and A2
q =

[

0 ×
× 0
0 0

]

since

CA1
q =

[

× 0
0 ×

]

, and CA2
q =

[

0 ×
× 0

]

,

which have full column rank. While an augmentation

A3
q =

[

× 0
0 0
0 ×

]

is not possible since CA3
q =

[

× 0
0 0

]

does not have full column rank. ⋄

4.4 Remarks

The SVD returns a matrix, Vr, containing orthogonal
vectors spanning the space in which the bias moves and
the corresponding singular values. The singular values
constitute the diagonal of a matrix, Sr and the i:th
diagonal element corresponds to the i:th column in Vr. The
singular values in Sr are ordered in descending order which
means that the far left columns, corresponding to large
singular values, represent the most dominating directions
along in the space in which the bias moves. Therefore the
dimension of q can be found by comparing the singular
values in Sr, and picking the most significant ones. Then
the corresponding columns of Vr are used in the estimation
of Âq.

Also note that, according to the discussion in the end
of Section 3, the properties of C place restrictions on
which Aq:s that are possible to find. The conclusion
of that discussion is that rows in Aq corresponding to
zero columns in C become zero in the estimation step.
As a consequence, the observer based on an estimated
augmentation may not be able to reduce the bias in
the estimates to acceptable levels. This problem can be
circumvented in, for example one of the two following ways.
The first is for an engineer to design an Aq not possible to

find through estimation, for example through knowledge of
the underlying physics. The second is to add extra sensors
to the true system to acquire a full column rank C which
enables estimation of all rows in Aq.

The example below illustrates the remarks regarding the
affects the properties of C have on the augmentation
estimation.

Example 3. Consider a true system with

F =

[

1 1 −1
−1 0 1
1 1 −1

]

, and C =

[

1 0 0
0 1 0

]

and a true bias,

Aq =

[

1
1
1

]

Then the estimation of Aq, according to (9), will have the
following structure

Âq =

[

×
×
0

]

That is, rows in Âq corresponding to zero columns in C
can not be estimated. ⋄

5. METHOD

The procedure can be summarized in three steps.

Step 1 - Linearize and discretize the model if necessary.
Normally, the default model is a non-linear time contin-
uous model, (1), and has to be linearized and discretized.
There are several ways to discretize a model, Euler
forward/backward, central difference etc, that have dif-
ferent stability properties.

Step 2 - Find an appropriate augmentation, Aq, and
compile an augmented model (4). Here the designer has
a choice, either to estimate an augmentation from mea-
sured data using one of the three approaches presented
in Section 4, or introduce an augmentation found in
some other way. With good knowledge of the system,
the designer might have some idea of what is causing
the bias in the estimates and can chose an appropriate
Aq.

Step 3 - Design an observer based on the augmented
model (3) and the Aq found in Step 2.

6. EXPERIMENTAL EVALUATION

To evaluate the approach two experiments are performed
on a non-linear model of a truck engine.

In the first experiment the method is applied to synthetic
data created by introducing known biases in a non-linear
model of a Diesel engine with three states. The states,
x1, x2, and x3, represent intake and exhaust manifold
pressures, and turbine speed respectively, see Appendix A.
In the second experiment, real data from the engine is used
together with the engine model to illustrate the gain in a
real application.

In many real applications it is convenient to have a filter
when estimating an augmentation to reduce the influence
of measurement noise, therefore approach 2 is chosen in



both these experiments. The observer based on the default
model is referred to as the default observer while the
observer based on the augmented model is referred to as
the augmented observer.

6.1 Simulation study

The introduced bias is represented by

Aq =

[

1 −2
2 1
0 0

]

and two slowly varying biases q1 and q2. This Aq means
that there are two independent biases affecting the pres-
sures in the model which varies between approximately 0
and 10 % of the state values. The default system has the
linear measurement equation where y1 = x1 and y2 = x3.
However, according to the discussion in Section 4.4, an
augmentation as the one introduced in this example can
not be estimated without a direct connection between x2

and y. Therefore the measurement equation is extended
with an extra sensor for x2. To make the simulation more
realistic, white system and measurement noise are added
in the creation of the synthetic data. Using the synthetic
data and the default model the augmentation estimation
results in

Sr ≈

[

136 0 0
0 30 0
0 0 0.01

]

, and Âq ≈

[

0.892 −0.452
0.452 0.892
0.017 0.006

]

where Sr indicates that there are two slowly varying biases
present. Hence, Âq is estimated using the first two columns
of Vr and (9).

At a first look Âq does not appear similar to Aq. However,

the crucial fact is that the columns of Âq and Aq span,
approximately, the same space. A closer look reveals that
the elements in the bottom row is significantly smaller than
the other elements, and that the factor between row one
and two are approximately 2. That is, the only thing that
differs, besides a scaling, is that the signs do not match.

An observer is created using EKF methodology and a
model augmented according to this estimated Âq. The
performance is compared to the default observer. The state
estimates of x1 and x2 are presented in Figure 1 together
with the true states. The reason for not presenting x3 is
lack of space and that the quality of the estimates are
comparable to the estimates of x1.

It can be seen that the augmented observer estimates x2

better than the default observer while they both seem to
estimate x1 equally well.

Since it is hard to make any further observations regarding
the estimate of x1 based on the estimates themselves the
estimation errors are plotted in Figure 2. Here it can be
seen that all estimates become better with the augmented
observer than with the default observer.

6.2 Application to real measurement data

In a final experiment the procedure is applied to a real
application where the exhaust manifold pressure is esti-
mated without using a sensor measuring it. The exhaust
manifold pressure is chosen since it is hard to measure due
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Fig. 1. True states and estimated states using default and
augmented observer in the simulation study.
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Fig. 2. Estimation errors using default and augmented
observer in the simulation study.

to strong pulsations in the exhaust gases. An augmentation
is estimated using data from two stationary operating
points in the European transient cycle (ETC) of about
1500 samples each resulting in

Sr ≈

[

1303 0 0
0 24 0
0 0 0.92

]

, and Âq ≈

[

−0.981
0.186
−0.051

]

where Sr indicates that there is one dominant slowly
varying bias present. Hence, Âq is estimated using the first
column of Vr and (9).

In this example an exhaust pressure sensor is used both
for the estimation of Âq and in the evaluation of the
augmented observer. However, note that the extra pres-
sure sensor is not used in the augmented observer. This
illustrates that additional sensors can be utilized in the
design steps to gain more knowledge about the system.
Here the additional sensor provides valuable information
when Âq is estimated since there is no prior knowledge of
what states the bias influences. This is natural since most
information can be extracted if all states are measured
during the design, however it is not a necessity for the



Table 1. Mean and maximum estimation errors
using default and augmented observer for the

application to real measurement data.

Max abs. error Mean error
Def. Aug. Def. Aug.

x1[Pa] 5430 5220 -931 -794
x2[Pa] 280534 289219 -20112 -11163

x3[rad/s] 1217 1220 18.88 -10.52

proposed procedure. Utilizing this possibility one must
be cautious and check the observability of the augmented
system that does not rely on the additional sensors that
are used for estimating Âq.

The augmented observer is compared to the default ob-
server. Here the true states are approximated with non-
causal, low-pass filtered measurements, where the filter has
a cut off frequency of 2 Hz. In Table 1 it can be seen that
the mean errors are about 50 % smaller for the augmented
observer than for the default observer while the maximum
absolute errors are approximately the same. Note that
an ETC is a quite dynamic cycle and does not contain
many stationary parts. With this in mind, and the fact
that the aim of the method is to reduce stationary bias, a
reduction of the mean error with about 50 % in an ETC
is a promising result. Figure 3 shows the state estimates
and Figure 4 shows the estimation errors. In Figure 4 it
can be seen that the maximum estimation errors occur in
transients and, since the method used reduces stationary
bias, it is the mean error that is of main interest.
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Fig. 3. State estimates using default and augmented ob-
server applied to real measurement data.

7. CONCLUSIONS

A method for bias compensation in model based observers
is developed. The idea is to find a low dimension augmen-
tation of the model that describes the model biases. This
augmented model is used to design an augmented observer,
that results in a state estimate with reduced bias. A key
result is a theoretical characterization of all possible bias
augmentations.
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Fig. 4. Estimation errors using default and augmented
observer applied to real measurement data.

The method is successfully applied to a diesel engine with
variable geometry turbine (VGT) and exhaust gas recircu-
lation (EGR), using a non-linear default model and input,
and output data from an engine in a test cell. It is shown
that an augmentation according to the suggested augmen-
tation procedure reduces the mean estimation error, i.e.
the bias.

Appendix A. ENGINE MODEL & DATA

The model, on which the method is applied, is a third
order non-linear state space model of a six cylinder Scania
diesel engine with VGT and EGR. The model states are
intake and exhaust manifold pressures and turbine speed,
and the inputs are injected amount of fuel, engine speed,
VGT and EGR positions. It is based on a model developed
in (Wahlström and Eriksson, 2006) but slightly simplified.
The simplifications are that the states for the EGR mass
fraction and actuator dynamics are removed.

The data is collected in collaboration with Scania. The
data is from a six cylinder Scania diesel engine with
VGT and EGR in a test cell and was collected during
an European Transient Cycle (ETC).
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