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Abstract: Fault diagnosis in the presence of noise and model errors is of fundamental importance. In
the paper, the meaning of fault isolation performance is formalized by using the established notion of
coverage and false coverage from the field of statistics. Then formal relations describing the relationship
between fault isolation performance and the residual related design parameters are derived. For small
faults, the measures coverage and false coverage are not applicable so therefore, a different performance
criteria, called sub-coverage, is proposed. The performance of different AI-based fault isolation schemes
is evaluated and it is shown that the well known principle of minimal cardinality diagnosis gives a very
bad performance. Finally, some general design guidelines that guarantee and maximize the fault isolation
performance are proposed.
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1. INTRODUCTION

The FDI (Fault Detection and Isolation) problem, as often
described within the control community, is to detect and isolate
any possible faults given sensor and actuator signals only. A
typical solution, see [4, 12, 1], is to use a set of thresholded
residuals together with a fault isolation scheme, which, based
on the fact that the thresholded residuals respond differently to
different faults, isolates the fault.

In a real application, there are typically model errors and noise.
This fact limits our ability to construct a diagnosis system that
perfectly detects and isolates the present fault. However, there
is also design freedom available such as the threshold levels,
the set of residuals to be included, and which isolation strategy
to use. Thus, under the premises of noise and model errors,
the design freedom should be utilized such that the ability of
detecting and isolating faults is optimized.

The discussion above reveals first of all, that there is a need for
an exact measure of FDI performance. Secondly it is important
to understand how this FDI performance changes when differ-
ent design parameters are changed. In the literature, only a few
studies have addressed these issues. In [9], FDI performance
was studied in the framework of structured hypothesis tests. In
[3] these issues were posed as open questions.

In several works [10, 13, 3], it has been recognized that fault
isolation in FDI can be solved by using algorithms developed
within the field of AI, see [7, 14]. Advantages of these AI al-
gorithms, compared to their counterpart from the control com-
munity, e.g. [4], are that they can easily handle multiple faults
and their computational efficiency. Because of these advantages
we have in the present paper chosen to focus entirely on fault
isolation algorithms from AI. However, the results can be easily
generalized to cover fault isolation techniques from the control
community such as structured residuals [4].

In the paper, a first contribution is to formalize what we mean
by FDI performance, especially for noisy and uncertain sys-
tems. For this we use the established notion of coverage and
false coverage from the field of statistics. Then as a second
contribution, we derive formal relations describing the relation-
ship between FDI performance and the residual related design

parameters. Further it is noted that a different performance
criteria is needed for small faults, and we therefore introduce
a third performance measure called sub-coverage. We then dis-
cuss the intrinsic FDI performance of different AI-based fault
isolation schemes. It is notable that the well known principle
of minimal cardinality diagnosis gives a very bad performance
for the case of small faults. Based on the performance measure
and investigations, we develop some general design guidelines
that, if followed, guarantee and maximize the fault isolation
performance. Finally we illustrate the theory and the guidelines
on a small application example.

2. STOCHASTIC VIEW ON DIAGNOSIS

In many papers, both from the control community [4, 12, 1]
and especially in AI [6, 3], the systems to be diagnosed are
assumed not to contain noise. This means that an observation in
the model is either deterministic given the states, or completely
unknown, depending on if a fault is present and also which
fault that is present. The view taken here is that a system
contains stochastic parts which implies that, given the states,
observations have probability distributions rather than exact
values. Based on this idea we will below give a basic stochastic
framework for diagnosis.

2.1 The System

The system to be diagnosed consists of a number of compo-
nents, and we assume here that the behavioral mode of a com-
ponent is either non-faulty or faulty, abbreviatedNF and F re-
spectively. The behavioral mode of the complete system, called
system behavioral mode or simply mode, can be described by
a vector of length equal to the number of components, e.g. in
a system with 5 components the system behavioral mode could
be [NF,F,NF,NF, F ].

Further, we assume that the system has a vector-valued tra-
jectory z which is possible to observe. The vector z includes
measured sensor values and actuated control values. Since we
have a stochastic view on diagnosis, we consider z to be a
random variable. For each system behavioral mode, we assume
that z has exactly one given pdf (probability density function).
Later in Section 6 we will relax this assumption.



2.2 The Diagnosis System

We consider a diagnosis system to be a system that takes an
observation as input and computes candidates, i.e. a set C of
system behavioral modes, as output. The candidate set C is
assumed to be a function of the observation and supposed to
be the system behavioral modes that are likely explanations of
the observation.

Formally we define observation as follows.

Definition 1. (Observation). An observation zT of z is samples
of z at times specified by the index set T .

Here we allow T to be a finite or infinite set. Examples of T
are T = {0}, T = {0, 1, 3}, T = [0, 2], and T =]∞, 0].

Since z is a random variable, and zT is a function of z, also zT
will be a random variable. Since the pdf of z was assumed to be
given uniquely for each system behavioral mode b, also zT will
have a unique pdf denoted fb(zT ). Lastly, since the candidate
set C is a function of the observation zT , also C is a random
variable which for each mode will have a unique pdf.

3. STATISTICAL PERFORMANCE MEASURES OF
DIAGNOSIS SYSTEMS

Two performance measures of set estimators known from statis-
tical decision making theory [2] will here be introduced as per-
formance measures for diagnosis systems regarding their fault
isolation capability. Note that in these performance measures,
fault detection becomes a special case of fault isolation so we
will refer only to fault isolation performance from now on.

3.1 Coverage Probability

Suppose that we want to diagnose a system that is operating in
an unknown mode. It is almost never possible for a diagnosis
system to exactly determine the present mode. A more realistic
objective is that the candidate set C should at least with some
high probability contain the present mode and the first perfor-
mance measure formalizes this idea.

Definition 2. (Coverage Probability). Given a diagnosis system
computing the candidate set C, the coverage probability is a
function of b given by

P (b ∈ C |b) (1)

Practical Relevance of Coverage

Let NF denote the fault free system behavioral mode. False
alarm can formally be described as the negation of coverage
with respect to the mode NF. False alarms lead to expensive
and unnecessary troubleshooting. Further, they degrade both
the perceived product quality and the confidence in the diagno-
sis system. Therefore false alarms are in general not accepted
in industrial applications.

Consider next the event b 6∈ C in the case that the present mode
is b where b 6= NF. If the user of the diagnosis result takes
action based on the fact that b can not be the present mode,
severe and expensive mistakes might be done. For example, if
a repair technician excludes the possibility that b is the present
mode, he will replace non-faulty parts and still not succeed with
his repair mission.

From this discussion it is clear that lack of coverage is in
general not acceptable in industrial applications.

3.2 False Coverage Probability

It is not sufficient to evaluate the isolation performance of
a diagnosis system by using only its coverage probabilities.

Ideally we also want to exclude all modes that are not the
present mode.

Definition 3. (False Coverage Probability). Given a diagnosis
system computing the candidate set C, the false coverage
probability is a function of b and b′ given by

P (b′ ∈ C |b), where b′ 6= b (2)

Note that, in contrast to coverage probability which is a function
defined on each mode, the false coverage probability is a
function defined on each non-equal pair of modes.

Practical Relevance of False Coverage

False coverage means that b′ ∈ C even though another mode
b is the present one. This is of course not a desired situation
since it implies that the user of the diagnosis result has to
undertake unnecessary safety or repair actions or to convey
further analysis to exclude the mode b′. However we consider it
not as serious as lack of coverage.

4. DIAGNOSIS SYSTEMS USING AI-BASED FAULT
ISOLATION

As said in the introduction, we consider diagnosis systems
consisting of a set of diagnostic tests together with a fault
isolation scheme using techniques from the field of AI. Further,
we consider diagnostic tests in the view of hypothesis testing
in accordance with [9]. It should be noted that this view is
compatible with traditional fault isolation techniques from both
FDI and AI, see [3].

The main idea is the following. Each diagnostic test δk is a

hypothesis test with a null hypothesisHk
0 and a rejection region

Rk. The diagnostic test takes an observation zT as input and

generates a binary decision as output as follows. If zT ∈ Rk,

then Hk
0 is rejected, otherwise Hk

0 is not rejected. The null

hypothesisHk
0 is here represented as a set of system behavioral

modes. When the null hypothesis is rejected, the conclusion

from the diagnostic test is that none of the modes in Hk
0 is the

one that has generated the observation zT , i.e. the present mode

must be in the complement set Hk
0

C
. Using AI terminology, a

rejected null hypothesis Hk
0 is a so called conflict.

In the isolation scheme, the conclusions from the individual
diagnostic tests are merged. In its simplest form, the isolation
scheme is a simple intersection of the conclusions from the
tests, i.e.

C =
⋂

k
Hk

0
is rejected

Hk
0

C
(3)

This principle has been used in both FDI and AI [9, 3] even
though more efficient representations and computations have
been utilized.

For an example, let F2 denote the system behavioral mode
with a fault in component 2 only, let F12 denote the system
behavioral mode with faults in components 1 and 2 only,
etc. Then consider the following table which we call decision
structure:

NF F1 F2 F3 F12 F23 F13 F123

δ1 0 X X 0 X X X X
δ2 0 X 0 0 X X X X
δ3 0 0 X X X X X X

(4)

A 0 in row i and column j means that the mode of column j
is a member of the null hypothesis of the test corresponding to

row i, i.e. Hi
0. Assume that F2 is the present mode and that the



null hypotheses of the tests δ1 and δ3 have been rejected. Then,
according to (3),

C = H1

0

C
∩H3

0

C
=

= {F1,F2,F12,F23,F13,F123}∩

{F2,F3,F12,F23,F13,F123} =

= {F2,F12,F23,F13,F123} (5)

A problem with the fault isolation scheme (3), and as seen even
in this small example, is that the candidate set C will in general
be very large and include many other modes in addition to the
present one. This problem is well known and has in the field of
AI been solved by, in a second step 1 , filtering out less likely
modes fromC. This is often called focusing and is based on the
idea of a preference relation ≤p defined on the set of system
behavioral modes.

For example, in (5), if single faults are preferred compared
to multiple faults, the result is a focused set of candidates
CF = {F2}, which is actually the perfect result since F2 was
the mode assumed to be present. Formally, the set CF can be
defined as

CF = {b ∈ C | ¬∃b′ ∈ C : b′ >p b} (6)

The preference relation ≤p can be defined using different
principles of which the concepts of minimal diagnoses [7, 14,
5] and minimal cardinality diagnoses [15] are the two most
common. In Section 7, these preference relations and also the
case without focusing, i.e. (3), will be compared with respect to
the fault isolation performance measures presented in Section 3.

5. BOUNDS FOR THE PERFORMANCE MEASURES

In this section we will present bounds for the performance
measures presented in Section 3. The idea of these bounds
is to estimate the performance measures (1) and (2) by using
only the performance of the individual diagnostic tests. The
performance of each diagnostic test is specified in terms of

the probability P (reject Hk
0 | b) which, in the field of statistics,

is called power function [2]. For convenience we will use the
shorter writing P (rejk | b).

The rationale behind bounds of this type is that the design
freedom in designing diagnosis systems of the type described in
Section 4 lies in the selection and construction of the diagnostic
tests. Thus, it is critical to know the relationship between
the performance of the individual tests and the performance
of the complete diagnosis system. By utilizing these bounds,
performance requirements on the individual tests can be derived
from diagnosis-system performance requirements.

In the bounds we will use the notation Ωb for the index set of
tests which contain mode b in its null hypothesis, i.e.

Ωb = {i|b ∈ Hi
0} (7)

In the decision structure, Ωb is the rows with 0 in column b. For
example, in (4), ΩF3 = {1, 2}.

Basic probability theory gives the general relations P (A) +
P (B)− 1 ≤ P (A∧B) ≤ min(P (A), P (B)) and max(P (A),
P (B)) ≤ P (A ∨B) ≤ P (A) + P (B) for two arbitrary events
A and B. Using these relations we can derive the bounds given
in the following theorem.

Theorem 1. Let B be the set of modes that are more preferred

than mode b, i.e. B = {b̄|b̄ >p b}. If Ωb̄ ⊆ Ωb for some b̄ ∈ B,
then

P (b ∈ CF | b′) = 0 (8)

1 Note that computationally, this filtering (i.e. focusing) does not necessarily
need to be implemented as a second step.

for all b′. Otherwise, for mode b′ it holds that

1 − |B| −
∑

k∈Ωb

P (rejk|b
′) +

∑

b̄∈B

max
j∈Ω

b̄
\Ωb

P (rejj|b
′)

≤ P (b ∈ CF | b′) ≤

min
(

1 − max
k∈Ωb

P (rejk|b
′), min

b̄∈B

∑

j∈Ω
b̄
\Ωb

P (rejj |b
′)
)

(9)

The proofs of the results in this paper can be found in [11]. Note
that no assumption about the correlation between the response
of different tests has been made in the theorem above.

From Theorem 1 a number of bounds can be derived both
for coverage probability and false coverage probability. For
example if a bound for coverage probability in the case of no

focusing is needed, let b = b̄ and B = ∅.

Later in the paper we will use the following simplified upper
bound for false coverage probability.

Corollary 1. (False Coverage Probability). It holds that

P (b ∈ CF | b′) ≤ 1 − max
k∈Ωb

P (rejk|b
′) (10)

Next, by using the assumption

P (rejk|b) = 0, for all b ∈ Hk
0 (11)

a simplified lower bound for coverage probability can be de-
rived. Note that (11) implies that we assume that the false alarm
probability is zero.

Corollary 2. (Coverage Probability). Assume that (11) holds
and let B be defined as in Theorem 1. If Ωb̄ ⊆ Ωb for some

b̄ ∈ B, then

P (b ∈ CF | b) = 0 (12)

for all b. Otherwise, it holds that

1 − |B| +
∑

b̄∈B

max
j∈Ω

b̄
\Ωb

P (rejj |b) ≤ P (b ∈ CF | b) (13)

6. RELAXING THE ASSUMPTION OF UNIQUE
DISTRIBUTIONS

In Section 2.1 we assumed that zT , and consequently C and
CF , have exactly one given pdf for each mode b. This assump-
tion is quite restrictive since it requires that the behavior of a
fault is relatively well known. Thus it is desirable to relax this
assumption. We do this here by assuming that for a specific
mode b, the random variable zT has a pdf in a set Φb.

The next issue is the performance measures presented in Sec-
tion 3. For example, the coverage probability P (b ∈ CF |b) is
no longer well defined since the fact that b is the true mode
does not give a single distribution for zT and consequently not
for CF . Our solution to this problem is to instead consider a
coverage probability conditioned on one specific distribution in
the set Φb. Thus we write

P (b ∈ CF |zT ∼ fb(zT )) fb(zT ) ∈ Φb (14)

For convenience we will mostly write P (b ∈ CF |fb(zT ))
instead of (14). When using the coverage probability mea-
sure (14), and only the set Φb is specified, we do not get a
single coverage probability for a specific mode b but instead
a set, possibly infinite, of coverage probabilities. Thus, the next
question is how to use such a performance measure.

First, note that a mode bmay contain both small and large faults.
For example consider the mode bias of a sensor. There are both
small biases, close to zero and large ones. Because we consider
stochastic noisy systems, it is not realistic to require good



performance for both small and large faults. For example to
require that the diagnosis system detects and uniquely isolates
a very small bias is not realistic, but it may be realistic to
require both good detection and isolation for large biases. Thus,
the required performance of a diagnosis system need to be
formulated differently for small and large faults respectively.

Formally, we start by partitioning the set Φb into two subsets

Φsig
b and Φinsig

b , representing significant faults and insignif-
icant faults respectively. We will below use different perfor-
mance requirements for these two sets. The idea of this parti-

tioning is that Φsig
b contains the pdf’s of those faults that are

critical to detect and isolate. The set Φinsig
b is then the pdf’s of

the faults that neither need to be detected or isolated, typically
the smallest faults. The only requirement on these faults is that
they should not lead to problems like “erroneous isolation”
which can for example be seen as the event that a fault is present
in only one component c1 and at the same time the candidate
sets tell that some other components are faulty but not c1.

6.1 Performance Measures for Significant Faults

For each pdf belonging to Φsig
b , we use the following measures

corresponding to coverage and false coverage probability re-
spectively:

P (b ∈ CF | fb(zT )) (15)

P (b′ ∈ CF | fb(zT )) b′ 6= b (16)

Still, the number of performance measures will typically be
infinite. A solution to handle this is given later, together with
the application example, in Section 9.

6.2 Performance Measure for Non-significant Faults

For the distributions belonging to Φinsig
b , we use another per-

formance measure based on the requirement that faults associ-

ated with Φinsig
b should not lead to problems like erroneous

isolation. The basic idea is that for modes in Φinsig
b , we do

not care about false coverage at all and we do not aim at
coverage. Instead we aim only for something that we will call
sub-coverage. Note that to not care about false coverage means
that if b is the present mode, it is acceptable to also have other
modes b′ included in CF .

The idea of sub-coverage is that we consider it fully acceptable
to say that a component is non-faulty even though it is faulty.
For example, if b = [NF,F,NF, F ] is the present mode

and zT has a distribution belonging to Φinsig
b , it is accept-

able if [NF,F,NF, F ] 6∈ CF as long as [NF,NF,NF, F ],
[NF,F,NF,NF ], or [NF,NF,NF,NF ] belong to CF .

To formalize this, use ψi to denote the behavioral mode of
the i:th component which means that b can be written as b =
[ψ1, ψ2, . . . , ψn]. Then let ≤O be a relation 2 , defined on the
set of system behavioral modes, such that b′ ≤O b, where b′ =
[ψ′

1, ψ
′
2, . . . , ψ

′
n], if and only if ∀i ∈ {1, 2, . . . n} : ψ′

i = NF ∨
ψ′

i = ψi. By using this relation we replace the performance
measure of coverage probability (15) with a measure that we
call sub-coverage probability:

P (∃b̄ ∈ CF : b̄ ≤O b | fb(zT )) (17)

Note that the aim to make sub-coverage probability large in-
cludes the aim to make probability of “erroneous isolation” low.

2 If system behavioral modes are represented by their sets of faulty compo-
nents the relation ≤O is equivalent to the subset relation.

6.3 Bounds for Sub-Coverage

The aim now is to derive a useful bound for the probability
of sub-coverage. We do this for the special case when the
preference relation ≥p is such that b′ ≥p b implies b′ ≤O b.

Theorem 2. If the preference relation ≥p is such that b′ ≥p b
implies b′ ≤O b, then for any fb(zT ) ∈ Φb, it holds that

P (∃b̄ ∈ CF : b̄ ≤O b | fb(zT )) ≥ P (b ∈ C | fb(zT )) (18)

Proof. If b ∈ C then there is a mode b′, where b′ ≥p b, and

b′ ∈ CF . Since it holds that b′ ≥p b implies b′ ≤O b, it follows
that

∃b̄ ∈ CF : b̄ ≤O b (19)

Thus, we have proven that b ∈ C implies (19). This fact means
that (18) holds trivially. �

As seen this theorem shows that if we aim for coverage in C we
get also sub-coverage.

7. COMPARISON OF FOCUSING PRINCIPLES

In this section we will compare the diagnosis system perfor-
mance when using minimal and minimal cardinality diagnosis
as focusing strategies and also the case without focusing. We
use the performance measures defined in the previous section,
i.e. coverage, false coverage, and sub-coverage. For sake of
simplicity, we assume that (11) holds.

7.1 No Focusing

First, consider the strategy to not use focusing, i.e. CF = C.
Since we assume that (11) holds, the bound (13) with B = ∅
gives directly that P (b ∈ CF |fb(zT )) = 1. Since CF ⊆ C also
P (b ∈ C|fb(zT )) = 1, which implies, according to Theorem 2,

that also P (∃b̄ ∈ CF : b̄ ≤O b | fb(zT )) = 1. Thus both
coverage and sub-coverage are guaranteed.

In general, false coverage can not be avoided. A typical exam-
ple is if [F,NF,NF ] is the present mode. Then, assuming we
have coverage, it holds that [F,NF,NF ] ∈ C but also that
[F, F,NF ] ∈ C since it is typically not possible to construct
a diagnostic test which responds to the mode [F,NF,NF ]
but not to [F, F,NF ]. Such a response would require that the
second fault always compensates for the first one, something
that is a rare situation in most real systems. Therefore, if b is

the present mode, and we have coverage, all modes b̄ ≥O b will
in the generic case be part of CF . Thus, we can not avoid false
coverage.

7.2 Focusing

We saw in the previous section that no focusing gives perfect
performance with respect to coverage and sub-coverage, but
very bad false coverage performance. The bad false coverage
performance is the reason why focusing is used and we will in
this section quantify how focusing improves the false coverage
performance but also how the coverage performance is reduced
if no special care is taken. We will later, in Section 7.3 and 7.4,
see also that the sub-coverage performance may be severely
affected depending on the actual focusing strategy chosen.

First consider the coverage probability. If NF is more preferred
than any other mode, which should hold in any sensible focus-
ing strategy, coverage in the case the present mode is NF is
guaranteed from the bound (13) since the set B will be empty
and we assume that (11) holds. For other modes, we do not
get coverage automatically. When mode b is present, we need



the tests to respond in a way such that all modes b̄ >p b are
eliminated fromCF . A sufficient condition to achieve coverage
with high probability is obtained from the bound (13). This

relation says that for each b̄ >p b it is sufficient to have one test

that responds to b but not to b̄ with high probability. Then the
sum will be close to |B| which implies that the bound becomes
close to 1. Thus, the selection and design of a set of tests with
this property for all significant faults is critical to obtain high
coverage probability.

As said above, the only reason to use focusing is to lower the
probability of false coverage. Given a mode b, consider the

modes b̄ for which it holds that b̄ <p b or b̄ >p b. For these

modes it holds that b ∈ CF implies b̄ 6∈ CF . Therefore we

have P (b̄ 6∈ CF |fb(zT )) ≥ P (b ∈ CF |fb(zT )). Thus, if we
aim for high probability of coverage of b, which is of primary
importance, we get also low false coverage probability of the

pair (b̄, b).

Next, if b̄ ≮p b and b̄ ≯p b, low false coverage probability
can be guaranteed via the upper bound in (9) or the simplified
bound (10). If the simplified bound is used, it tells us that a
sufficient condition to get low false coverage probability is to,

for each mode b̄ where b̄ ≮p b and b̄ ≯p b, have one test with

b̄ ∈ Hk
0 and which responds with high probability when b is

present.

7.3 Minimal Diagnoses

Now consider the case of focusing by means of the principle of
minimal diagnoses [7]. This principle says that ≥p=≤O. That
means for example that if [F,NF,NF ] ∈ C and [F, F,NF ] ∈
C, the mode [F,NF,NF ] is preferred and thus, [F, F,NF ] 6∈
CF . The underlying idea of this focusing principle is that if
a diagnosis system says that mode [F,NF,NF ] is consistent
with observations, there is no reason to believe that the a-priori
much less probable mode [F, F,NF ] is the present mode.

All discussions in Section 7.2 regarding coverage and false
coverage performance are valid for the case minimal diagnosis
focusing. In addition we can note that, as a direct consequence
of Theorem 2, the probability of sub-coverage is always greater
than the coverage probability when minimal diagnoses focusing
is used.

7.4 Minimal Cardinality Diagnoses

Next consider the focusing strategy minimal cardinality. This
principle says that b1 ≥p b2 if the number of faulty components
in b1 is less or equal to the number of faulty components in
b2. For example, [F,NF,NF ] >p [NF,F, F ]. As in the case
of minimal diagnosis focusing, all discussions in Section 7.2
regarding coverage and false coverage performance are valid
for the case of minimal cardinality diagnosis focusing. How-
ever, there is an important difference regarding sub-coverage,
something that is revealed by the following example. Assume
that we have a diagnosis system with the following decision
structure and that each test δk is designed to respond to the
mode of a column if the row contains an X in the column.

F1 NF F2 F3 F12 F23 F13

δ1 0 X X 0 X X X
δ2 0 X 0 X X X X
δ3 0 0 X X X X X

(20)

Assume the mode F23 is present with an insignificant fault and
because the fault is small, only tests T1 and T2 respond. This
implies that C = {F1,F12,F23,F13}. Minimal cardinality
focusing gives CF = {F1}. It is obvious that sub-coverage
is not obtained. Note that in the case of minimal diagnosis

focusing, sub-coverage is obtained (even coverage) sinceCF =
{F1,F23}.

The important conclusion of this study is that if an insignificant
fault is present, we have no control of whether tests respond or
not, and thus we can not guarantee any level of sub-coverage
probability when using minimal cardinality focusing.

8. GUIDELINES FOR DESIGN OF DIAGNOSIS SYSTEMS

In Section 6 we have presented three fault-isolation performance-
measures: coverage probability, false coverage probability, and
sub-coverage probability. In this section we aim at giving some
general design guidelines such that desired performances with
respect to these three measures are obtained or maximized. First
however we give some general presumptions as a starting point.

In Section 3.1 it was argued that lack of coverage can not be
accepted in industrial applications. Therefore, but also to make
our analysis tractable, we decide to aim for coverage probability
one, i.e. P (b ∈ CF |fb(zT )) = 1 for significant faults.

In Section 3.2 it was argued that false coverage is not as serious
as lack of coverage. Therefore, and because we would often get
an unsolvable problem if we would require false coverage with

probability zero, we will not aim at P (b̄ ∈ CF |fb(zT )) = 0
when b̄ 6= b and the fault is significant. Instead we aim at

P (b̄ ∈ CF |fb(zT )) ≤ ǫ where ǫ may be fixed or dependent

on the pair (b̄, b).

We assume that the diagnosis system design starts with a
default set of diagnostic tests where each test δk has a residual

generator rk and a set Hk
0 . This situation is common for

example if the diagnosis system design starts with a search for
residual generators via structural analysis [8].

The design freedom then consists of: (i) selecting the rejection
region, i.e. the threshold and possibly some residual filtering,
of each test δk, (ii) from the default set select tests δk to be
included in the diagnosis system, and (iii) to select the focusing
strategy.

8.1 Selection of Rejection Region

A necessary requirement for coverage is thatP (b ∈ C|fb(zT )) =
1 and from Theorem 1, it can be shown that a necessary and
sufficient condition to achieve this is that the rejection region,
for each diagnostic test δk, fulfills

P (rejk|fb(zT )) = 0 for all b ∈ Hk
0 (21)

This rule is, as seen in Section 7.2, however not sufficient
to obtain coverage in the case when focusing is used. When

b̄ ≥p b, coverage can only be guaranteed if we also have at

least one test that responds to b but not to b̄. Further, from (10)
it is clear that also to obtain low false coverage probability, it
is important to have tests that responds as much as possible to

modes b 6∈ Hk
0 . These facts means that we must follow the

constraint (21) but in addition, it is in general advantageous to
maximize the probability P (rejk|fb(zT )). This leads us to our
first design guideline:

G1. For each diagnostic test δk, select the maximal rejection
region such that P (rejk|fb(zT )) = 0 for all modes b ∈

Hk
0 and all distributions fb(zT ) ∈ Φinsig

b̄
∪ Φsig

b̄
.

8.2 Selection of Diagnostic Tests to Include

Following design guideline G1 is necessary to obtain coverage
but as seen in Section 7.2 not sufficient if focusing is used. As
was stated above, a sufficient condition is to, for each pair of



modes such that b̄ >p b, have at least one test that responds

to b with probability one but not to b̄. From Section 7.2 it has
already been concluded that if coverage of a b is secured, we

only have to consider false coverage of modes b̄ where b̄ ≮p b

and b̄ ≯p b. This leads us to our next design guideline:

G2. For each pair of modes (b̄, b), make sure that for all

distributions fb̄ ∈ Φinsig

b̄
∪ Φsig

b̄
and fb ∈ Φsig

b there is,

included in the diagnosis system, at least one test δk such

that b̄ ∈ Hk
0 , P (rejk|fb̄(zT )) = 0, and

a) P (rejk|fb(zT )) = 1 if b̄ >p b

b) P (rejk|fb(zT )) ≥ 1 − ǫ if b̄ 6<p b and b̄ 6>p b

8.3 Selection of Focusing Strategy

Note that a consequence of the discussion in Section 7.1 is
that fulfillment of guideline G2 is in general not possible if
we don’t use a focusing strategy. This implies that, of the
three choices of no focusing, minimal diagnoses, and minimal
cardinality diagnoses, we have to use minimal diagnoses or
minimal cardinality diagnoses.

We have seen in Section 7 that the choice of focusing method
affects the ability to obtain sub-coverage. Of the two choices
left, i.e. minimal diagnoses and minimal cardinality diagnoses,
minimal diagnosis is the best choice since it guarantees high
sub-coverage probability when we have high coverage proba-
bility. This is our final design guideline:

G3. Use the focusing strategy minimal diagnoses.

8.4 Summarizing Theorem

We end this section by summarizing the discussion in a theo-
rem.

Theorem 3. If guidelines G1, G2, and G3 are followed, we
obtain a diagnosis system where:

a) P (b ∈ CF |fb(zT )) = 1 for all fb(zT ) ∈ Φsig
b and for all

b, i.e. coverage is guaranteed for all significant faults,

b) P (∃b̄ ≤O b : b̄ ∈ CF | fb(zT )) = 1 for all fb(zT ) ∈

Φinsig
b and for all b, i.e. sub-coverage is guaranteed for all

insignificant faults,

c) P (b′ ∈ CF | fb(zT )) ≤ ǫ for all fb̄ ∈ Φinsig

b̄
∪ Φsig

b̄

and fb ∈ Φsig
b and for all pairs (b̄, b), i.e. false coverage

probability less than ǫ is guaranteed.

Further, no other choice of rejection region for each test gives
strictly better performance in all measures of coverage, sub-
coverage, or false coverage probability.

9. EXAMPLE

Consider a system with a pump P and two sensors S1 and S2.
The angular velocity x of the pump is measured by sensor S1.
The angular velocity determines the output pressure which is
measured by sensor S2. The measurement signals are denoted
y1 and y2 respectively. All three components are assumed to
be either in a non-faulty NF or faulty mode F . The system
behavioral modes are denoted by their faulty components, e.g.
S1 means the mode where only the sensor S1 is faulty.

Next, we assume that the following model is available:

P = NF → ua = u (22a)

ẋ = f(x) + ua (22b)

S1 = NF → y1 = x (22c)

S2 = NF → y2 = g(x) (22d)

S2 = F → y2 = g(x) + c (22e)

where c is an unknown constant. Even though not written out
explicitly we assume that all equations also are affected by
noise terms with unspecified pdf’s. Note that, and as will be
shown below, it is for our purpose not important to know these
unspecified pdf’s explicitly.

According to our framework, the set of pdf’s Φb, for each

mode b, is assumed to be partitioned into two sets Φsig
b and

Φinsig
b . However, in this example, these sets are not specified

explicitly. Instead we pick out, from each set Φsig
b , a pdf f∗

b (zT )
that represents a benchmark fault. Then the benchmark fault
is defined explicitly and we assume that the pdf f∗

b (zT ) is

representative for the whole set Φsig
b in the sense that for each

fb(zT ) ∈ Φsig
b it holds that P (rejk|fb(zT )) ≥ P (rejk|f

∗
b (zT ))

for all k.

It is assumed that only modes P, S1, S2, and S1S2 are impor-
tant to detect and isolate and thus, only these are considered to
have significant faults and consequently also benchmark faults.
The benchmark fault for mode P is defined by replacing equa-
tion (22a) by ua = u + ∆umin, and the benchmark fault for
mode S1 is defined by replacing equation (22c) by y1 = x +
amin. Further the benchmark fault for mode S2 is defined by
c = cmin. Finally, the benchmark fault for mode S1S2 is the
combination of the benchmark faults for S1 and S2.

Next, structural analysis, see [8], is used to find the equation
sets that can be used to derive residual generators and their
corresponding null hypotheses. The result is that 7 sets are
found and the decision structure for potential tests δk, to be
constructed from these equation sets found, is the following.

equation set NF P S1 S2 S1S2

δ1 (22a), (22b), (22c) 0 X X 0 X
δ2 (22a), (22b), (22d) 0 X 0 X X
δ3 (22c), (22d) 0 0 X X X
δ4 (22a), (22b), (22c), (22d) 0 X X X X
δ5 (22a), (22b), (22e) 0 X 0 0 0
δ6 (22c), (22e) 0 0 X 0 X
δ7 (22a), (22b), (22c), (22e) 0 X X 0 X

(23)

In the decision structure above only modes which have signifi-
cant faults are shown. All other multiple-fault modes have X :s
only in their columns.

9.1 Diagnosis System Design

Now we have all the elements needed to start the design of the
diagnosis system. By following guideline G3 we will use the
focusing strategy minimal diagnoses. By using guideline G2 we
will now describe how to, from the list of potential tests (23),
select a subset of tests ∆ to be included in the diagnosis system.

Given the focusing strategy and the significant faults con-
sidered, it follows that there is one requirement in guideline
G2a for each pair in Ra = {(NF,P), (NF,S1), (NF,S2),
(NF,S1S2), (S1,S1S2), (S2,S1S2)} and in guideline G2b,
one for each pair in Rb = {(S1,S2), (S1,P), (S2,P),
(S2,S1), (P,S1), (P,S2), (P,S1S2), (S1S2,P)}.

To illustrate how to fulfill these requirements, consider the pair
(S2,S1S2) ∈ Ra. To fulfill guideline G2 for (S2,S1S2) we

need a test where S2 ∈ H0

k . Potential tests fulfilling this are
tests δk indexed {1, 5, 6, 7}. Note that, since we intend to follow
guideline G1, it will hold that P (rejk|fS2

(zT )) = 0 for any test
δk, k ∈ {1, 5, 6, 7}, if included in the diagnosis system. If we
choose to include δ5, a consequence of fulfilling G1 is also that
P (rej

5
|fS1S2

(zT )) = 0. This implies that, since we are looking
for tests that fulfill G2a for the pair (S2,S1S2), there are only
the potential tests {1, 6, 7} left. Thus to fulfill guideline G2a for



(S2,S1S2) we would need at least one of the potential tests in
π1 = {1, 6, 7} to be included in the diagnosis system.

For all other pairs in Ra ∪ Rb, sets πi of potential tests are
obtained in the same way. A necessary requirement for a
diagnosis system with tests ∆ to fulfill G2, is that the set ∆
has a non-empty intersection with all sets πi.

By applying a minimal hitting set algorithm [7], we get that the
minimal test sets are {1, 2, 3, 5}, {2, 3, 5, 6}, and {2, 3, 5, 7}.
Hence a set of tests ∆ included in a diagnosis system fulfilling
G2 must necessarily be a superset of some of these minimal
test sets. This is however not sufficient since both G2a and G2b
specify requirements on P (rejk|fb(zT )) for all fb ∈ Φsig

b .

Assume that we decide to investigate if the minimal test
set {1, 2, 3, 5} fulfills the requirement on P (rejk|f

∗
b (zT ))

for all pairs in Ra ∪ Rb. For this set, all requirements on
P (rejk|f

∗
b (zT )) specified by G2a and G2b correspond to non-

zero entries in the following table.

NF P S1 S2 S1S2

δ1 0 p1 p4 0 1
δ2 0 p2 0 p6 1
δ3 0 0 p5 p7 p8

δ5 0 p3 0 0 0

(24)

Then from guidelines G2a and G2b we can derive the re-
quirements that max(p1, p2, p3) = 1, max(p4, p5) = 1,
max(p6, p7) = 1, and pi > 1 − ǫ for all i = 3, . . . 8. The
constant ǫ is the guaranteed false coverage probability that in
this example is chosen as ǫ = 0.1.

The next step is to construct residual generators for the selected
equation sets and investigate if the requirements in (24) are
achievable by filtering and thresholding of these residuals. Ob-
server based residual generators are derived for k = {1, 2, 5}
and a static residual generator is derived using equation set 3
in (23). Then the pdf’s f∗

b (zT ) corresponding to the benchmark
faults are estimated using data from the real process. These
estimated pdf’s are then used for selecting, by means of thresh-
olding and filtering, the rejection region in accordance with G1.

Assume that there are thresholds for the residuals such that
the following performance P (rejk|f

∗
b (zT )) for the benchmark

faults has been confirmed:

NF P S1 S2 S1S2

1 0 1 1 0 1
2 0 0.8 0 1 1
3 0 0 0.95 0.97 0.98
5 0 0.9 0 0 0

(25)

By using this matrix, the bounds for P (b ∈ C|b′) in Theorem 1,
where b′ corresponds to the rows and b to the columns, are:

NF P S1 S2 S1S2

NF 1 0 0 0 0
P 0 1 [0 0.1] 0 [0 0.1]
S1 0 [0 0.05] 1 0 0
S2 0 [0 0.03] 0 1 0
S1S2 0 [0 0.02] 0 0 1

The interpretation of the first row is that, when the present mode
is NF then CF = {NF} with probability 1. In row 3, we can
see that when S1 is the present mode then S1 ∈ CF but P

will also be included in CF with a probability less than 0.05.
No other modes will be included in CF . All diagonal elements
are 1, i.e. complete coverage of all significant faults have been
obtained. All non-diagonal elements are less or equal to 0.1
and this means that the false coverage probability is less than
10%. In fact, the false coverage probability is better than the
guaranteed 10% for all modes except for P .

10. CONCLUSIONS

The first contribution of the paper is the formalization of
“fault isolation performance” in noisy and uncertain systems.
For this we have used the established notion of coverage and
false coverage from the field of statistics. Further it has been
noted that a different performance criteria is needed for small
faults, and we have therefore introduced the third performance
measure sub-coverage. We have also derived formal relations
describing the relationship between fault isolation performance
and the null-hypotheses and rejection regions of the tests.
Further, the intrinsic fault isolation performance of different
AI-based fault isolation schemes has been evaluated and it
has been concluded that the well known principle of minimal
cardinality diagnosis gives a very bad performance for the case
of small faults. Finally, based on the performance measure
and investigations, we have developed some general design
guidelines that, if followed, guarantee and maximize the fault
isolation performance.
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