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Abstract: Four methods for compression ratio estimation based on cylinder pressure
traces are developed and evaluated for simulated and experimental cycles. Three methods
rely upon a model of polytropic compression for the cylinderpressure. It is shown
that they give good estimates with a small bias at low compression ratios. A variable
projection algorithm with a logarithmic norm of the cylinder pressure yields the smallest
confidence intervals and shortest computational time for these three methods. This method
is recommended when computational time is an important issue. The polytropic pressure
model lacks information about heat transfer and therefore the estimation bias increases
with compression ratio. The fourth method includes heat transfer, crevice effects, and
a commonly used heat release model for firing cycles. This method estimates the
compression ratio more accurately in terms of bias and variance. The method is more
computationally demanding and thus recommended when estimation accuracy is the most
important property. In order to estimate the compression ratio as accurately as possible,
motored cycles with high initial pressure should be used.Copyright c©2005 IFAC
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1. INTRODUCTION

A newly developed engine, which can continuously
change the compression ratio between 8.1 and 14.7 by
tilting the mono-head, has been developed at SAAB
Automobile AB. This ability to change the compres-
sion ratio opens up new opportunities to increase the
efficiency of spark ignited (SI) engines by down sizing
and super charging. But if the compression ratio gets
stuck at too high ratios, the risk of engine destruction
by heavy knock increases rapidly. If the compression
ratio gets stuck at too low ratios, we get an unnec-
essary low efficiency, and therefore an unnecessary
high fuel consumption. It is therefore vital to monitor
and diagnose the continuously changing compression
ratio. Due to geometrical uncertainties, a spread of the
compression ratio among the different cylinders is in-
herent (Amann, 1985), and since it is hard to measure
the compression ratio directly, estimation is required.
The questions asked here are related to: 1) accuracy, 2)
convergence speed and 3) over all convergence. The

approach investigated is to use cylinder pressure to
estimate the compression ratio. A desirable property
of the estimator is that it must be able to cope with
the unknown offset introduced by the charge ampli-
fier, changing thermodynamic conditions, and possi-
bly also the unknown phasing of the pressure trace in
relation to the crank angle revolution.

Two models for the cylinder pressure with different
complexity levels, a polytropic model and a single-
zone zero-dimensional heat release model (Gatowski
et al., 1984) are used. To estimate the parameters in
the cylinder pressure models, three different optimiza-
tion algorithms minimizing the prediction error are
utilized:

(1) A linear subproblem approach, where groups of
the parameters are estimated one at a time and
the predictor function is rewritten to be linear for
the group of estimated parameters. Thus linear
regression can be used at every step for estimat-
ing the particular group of parameters.



(2) A variable projection method(Björck, 1996),
where one iteration consists of two steps: The
first step estimates the parameters that are linear
in the predictor function, holding the nonlinear
constant. The second step is to perform a line
search in the direction of the negative gradient at
the parameters found from step one. This method
classifies as a separable least squares method.

(3) Levenberg-Marquardt method, i.e. a Gauss-Newton
method with regularization, where numerical ap-
proximations of the gradient and the Hessian are
used here.

Based on these models and optimization algorithms,
four different compression ratio estimation methods
applicable for both motored and fired cycles are given.
It is explicitly stated how to use the methods for firing
cycles as well as for motored, but the methods are only
evaluated for motored cycles. The major step forward
in this paper compared to Klein et al. (2004) is the
evaluation on experimental data.

2. CYLINDER PRESSURE MODELING

Two models are used for describing the cylinder pres-
sure trace and they are refered to as the polytropic
model and the standard model.
Polytropic model A simple and efficient model is the
polytropic compression model,

p(θ)V (θ)n = C (1)

wherep(θ) is the cylinder pressure,V (θ) is the vol-
ume function,n is the polytropic exponent andC is
a cycle-to-cycle dependent constant. The model de-
scribes the compression and expansion phase of the
engine cycle well, but not the combustion phase (Hey-
wood, 1988). Therefore, for a firing cycle only data
between inlet valve closing (IVC) and start of com-
bustion (SOC) will be used, but for motored cycles all
data during the closed part of the cycle, i.e. between
IVC and exhaust valve opening (EVO), is utilized.
Standard model Gatowski et al. (1984) develops, tests
and applies the heat release analysis procedure used
here. It maintains simplicity while still including the
effects of heat transfer and crevice flows. The model
has been widely used and the phenomena that it takes
into account are well known (Heywood, 1988).
The pressure differentialdp can be written as
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This ordinary differential equation is valid between
IVC and EVO and can easily be solved numerically
if a heat-release traceδQch is provided, e.g. modeled
by the Vibe function.

Cylinder pressure referencing Piezoelectric pressure
transducers are used for measuring the in-cylinder
pressure, which will cause a drift in the pressure trace,
i.e. the absolute level is unknown and it is slowly
varying. This drift is so slow that it is considered to be

constant during one engine cycle. The offset can be es-
timated with various methods (Randolph, 1990). Here
the offset in the measured cylinder pressurepm(θ) is
determined by comparing it to the intake manifold
pressurepim just before inlet valve closing (IVC),
for several samples ofpim. Due to standing waves in
the intake runners and flow losses over the valves at
certain operating points, the referencing might prove
to be insufficient. This is investigated by including
a parameter for cylinder pressure bias in estimation
methods 3 and 4, described in the next section.

3. ESTIMATION METHODS

Four methods are developed and investigated for
compression ratio estimation. These methods are de-
scribed below and their relations are summarized at
the end of this section. All four methods are formu-
lated as least-squares problems in a set of unknown
parametersx

min
x

‖ε(x)‖2
2 (3)

where a residualε(x) is formed as the difference
between a model and measurement. The differences
between the methods lie in how the residuals are
formed, and in the iterative methods used for solving
the resulting problem (3).

The termination criterion for all methods are the
same; If the relative improvement in the residual
‖ε(x)‖2 is less than1·10−6 in an iteration, the method
terminates.

3.1 Method 1 – Sublinear approach

The first method uses the polytropic model (1)

p(θ) (Vd(θ) + Vc)
n = C (4)

to estimate the polytropic exponentn, the compres-
sion ratiorc and the constantC. The method itera-
tively solves two problems, one to determine the poly-
tropic exponentn, and the other to determine the clear-
ance volumeVc (i.e. rc = (max [Vd(θ)] + Vc) / Vc).

Applying logarithms on (4) yields the residual

ε1a(C1, n) = ln p(θ)− (C1 −n ln(Vd(θ)+Vc)) (5)

which is linear in the parametersC1 = lnC andn,
if Vc is fixed. Another residual, that can be derived
from (4), is

ε1b(C2, Vc) = Vd(θ) − (C2 p(θ)−1/n − Vc) (6)

which is linear in the parametersC2 = C1/n andVc,
if n is fixed. The basic idea is to use the two resid-
uals,ε1a andε1b, iteratively to estimate the parame-
tersn, Vc andC by solving two linear least-squares
problems. Using a Taylor expansion, see Klein (2004,
pp.141), the following approximate relation between
the residuals is obtained

ε1a(θ, x) ≈
n

Vd(θ) + Vc
ε1b(θ, x) (7)

The relation (7) must be taken into account and the
residual ε1a is therefore multiplied by the weight



w(θ) = Vd(θ) + Vc, to obtain comparable norms in
the least-squares problem. To use the weightw(θ) is
of crucial importance, and without it the algorithm
diverges (Klein, 2004, pp.85). Convergence of the
method can however not be proved. If the residuals
were equal, i.e.ε1a = ε1b, the problem would be
bilinear and the convergence linear (Björck, 1996).
Each iteration in the algorithm is performed in three
steps:

Step 0: Initialize the parametersx = [Vc C n].
Step 1: Solve the weighted linear least-squares prob-
lem

min
n,C1

‖w · ε1a‖
2
2

with Vc from the previous iteration.
Step 2: Solve the linear least-squares problem

min
Vc,C2

‖ε1b‖
2
2

with n from step 1.
Step 3: Check the termination criterion, if not fulfilled
return to step 1.

3.2 Method 2 – Variable projection

The second method also uses the polytropic model (1),
together with a variable projection algorithm. A non-
linear least-squares problemmin

x
‖ε(x)‖2

2 is separable

if the parameter vector can be partitionedx = (y z)
such that

min
y

‖ε(y, z)‖2
2 (8)

is easy to solve. Ifε(y, z) is linear iny, ε(y, z) can be
rewritten as

ε(y, z) = F (z)y − g(z) (9)

For a givenz, this is minimized by

y(z) = [FT (z)F (z)]−1F (z)T g(z) = F †(z)g(z)
(10)

i.e. by using linear least-squares, whereF †(z) is
the pseudo-inverse ofF (z). The original problem
min

x
‖ε(x)‖2

2 can then be rewritten as

min
z

‖ε(y, z)‖2
2 = min

z
‖g(z) − F (z)y(z)‖2

2 (11)

and
ε(y, z) = g(z) − F (z)y(z) = g(z) − F (z)F †(z)g(z)

= (I − PF (z))g(z) (12)

where PF (z) is the orthogonalprojection onto the
range of F (z), thus the name variable projection
method.

Rewriting the polytropic model (1) as

ε2(C1, n, Vc) = ln p(θ) − (C1 − n ln(Vd(θ) + Vc))
(13)

results in an equation that is linear in the parameters
C1 = lnC and n, and nonlinear inVc. It is thus
expressed on the form given in (9). A computationally
efficient algorithm for compression ratio estimation,
based on Björck (1996, p.352), is summarized in ap-
pendix A.

3.3 Method 3 – Levenberg-Marquardt and polytropic
model

The third method uses the polytropic model (1), as
methods 1 and 2 did, with an additive pressure sensor
model added according to

pm(θ) = p(θ) + ∆p (14)

in order to make the pressure referencing better. The
pressure offset∆p is constant during one cycle. Fur-
thermore, errors in the crank angle phasing∆θ be-
tween the volume and pressure are also included in the
polytropic model, which gives the following residual

ε3(Vc, n, C, ∆p, ∆θ) = pm(θ)−∆p−C ·(Vd(θ+∆θ)+Vc)
−n

(15)

A Levenberg–Marquardt method (Gill et al., 1981) is
used to solve this nonlinear least-squares problem.

3.4 Method 4 – Levenberg-Marquardt and standard
model

The fourth method uses the single-zone model (2)
from Gatowski et al. (1984) which, in contrast to
the other methods, also includes heat transfer and
crevice effects. The model parameters used are given
in (Klein, 2004, p.44). Due to the complexity of this
model, the sublinear approach and variable projection
approach are not applicable, and therefore only the
Levenberg–Marquardt method is used. The increased
complexity also causes identifiability problems for
some of the parameters, since there exist many de-
pendencies in between them. This is the case for the
crevice volumeVcr and the clearance volumeVc, in
which estimating the two parameters at the same time
results in coupled and biased estimates. Therefore one
of them is set constant, in this case the crevice vol-
ume (Klein, 2004, pp.94).

3.5 Summary of methods

Table 1 shows the relations between the methods. For
firing cycles, methods 1, 2 and 3 use cylinder pres-
sure data between IVC and SOC only, in contrast to
method 4 which uses data from the entire closed part
of the engine cycle. For motoring cycles, all data dur-
ing the closed part of the cycle is utilized by all meth-
ods. It is also noteworthy that if the clearance volume
Vc is considered to be known, methods 1 and 2 can be
reformulated to instead estimate an additive pressure
bias. Details are given in Klein (2004, pp.143).

Table 1. Relation between methods.

Alg./Model Polytropicp Standardp
Sublinear Method 1
Variable projection Method 2
Levenberg-Marquardt Method 3 Method 4



4. SIMULATION RESULTS

Since the true values of the compression ratios of the
engine are unknown, simulations of the cylinder pres-
sure trace are necessary to perform and use for eval-
uating the four proposed methods. Cylinder pressure
simulations were made using the standard model (2)
with representative single-zone parameters, for integer
compression ratios between 8 and 15. The results of
these simulations were published in Klein et al. (2004)
and are therefore only briefly recapitulated here.

Estimation results Figure 1 shows a summary of all
estimates and table 2 displays e.g. the mean relative
estimation error and the mean computational time.
The estimations were made using Matlab 6.1 on a
SunBlade 100, which has a 64-bit 500 Mhz processor.

Table 2. Relative mean error and 95 % rela-
tive confidence interval (RCI) in estimated
rc for all compression ratios. The mean
computational time and number of itera-

tions in completing one cycle are given.

M REmeanRCI REmaxstd Time #Iter
[%] [%] [%] [-] [ms] [-]

1 0.9 4.4 1.3 0.038 52 5.8
2 -1.0 2.9 -1.1 0.034 18 3.0
3 -3.6 5.2 -4.3 0.110 73 3.9
4 0.2 0.3 0.3 0.002 2 · 105 9.0
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Fig. 1. Mean and 95% confidence interval of the
estimated compression ratio for motored cycles
using the four methods, compared to the true
compression ratio. The estimate should be as
close as possible to the dotted horizontal line.

Analysis of estimation resultsThe first three meth-
ods rely upon the assumption of a polytropic compres-
sion and expansion. It is shown that this is sufficient
to get a rough estimate of the compression ratio for
motored cycles, especially for a lowrc and by letting
the polytropic exponent become small. For a highrc

it is important to take the heat transfer into account,
and then only method 4 is accurate within 0.5 % for
all operating points. Method 4 is however slow and

not suitable for on-line implementation. Method 2 on
the other hand is substantially faster and still yields
estimates that are within 1.5 %. Using motored cycles
assures that all pressure information available is uti-
lized, and thereby decreases the confidence intervals.

A sensitivity analysis, with respect to crank angle
phasing, cylinder pressure bias, crevice volume and
heat transfer, shows that the third and fourth method
are more robust. They therefore deal with these pa-
rameter deviations better than methods 1 and 2. Of the
two latter, method 2 has the best performance for all
parameter deviations except for an additive pressure
bias.

5. EXPERIMENTAL RESULTS

The attention is now turned to the issue of evalu-
ating the methods on experimental engine data. As
mentioned before, the true value of the compression
ratio is unknown. Therefore it is important to see if
the effects and trends from the simulation evaluation
are also present when the methods are applied to ex-
perimental data. The performance of the methods is
discussed using one specific operating point, and is
then followed by an evaluation including all operating
points.

5.1 Experimental engine data

Data is collected during stationary operation at en-
gine speedsN ∈ {1500, 3000} rpm, intake manifold
pressurespim ∈ {0.5, 1.0} bar altogether forming
four different operating points, defined in table 4. The
measurements are performed for actuated compres-
sion ratio values from the lower limit 8.13 to the upper
limit 14.66, through integer values 9 to 14 in between.
With actuated compression ratio it is meant the value
commanded from the electronic control unit (ECU).
These values were determined from engine production
drawings and implemented in the ECU, but can be
affected by production tolerances or non-ideal sen-
sors (Amann, 1985), as well as mechanical and ther-
mal deformation during engine operation (Lancaster
et al., 1975).

For each operating point and compression ratio, 250
consecutive motored cycles with the fuel injection
shut-off were sampled with a crank-angle resolution
of 1 degree, using a Kiestler 6052 cylinder pressure
sensor. Figure 2 displays one measured cycle for each
rc at operating point 2 (OP2). For a givenrc the
monohead of the engine is tilted, which advances the
position of TDC from 0 CAD for lowered compres-
sion ratios (Klein et al., 2003).

5.2 Results and evaluation for OP2

The performance of the estimation methods is first
evaluated for OP2, defined in table 4. This operating



−100 −50 0 50 100
0

10

20

30

Crank angle [deg ATDC]

P
re

ss
ur

e 
[b

ar
]

OP2: N=1500 rpm, p
im

=1.0 bar

r
c
=8.13 

r
c
=14.66 

Fig. 2. Experimentally measured cylinder pressures at
OP2. The actuated compression ratios are 8.13,
integer values 9 to 14, and 14.66.

point has an intake manifold pressure in the midrange
of the engine, and a relatively low engine speed for
which the effects of heat transfer and crevices are
significant. OP2 is therefore chosen as a representable
operating point.

Estimation results The estimation results are pre-
sented in the same manner as for the simulated data.
Figure 3 displays the mean estimate and the mean
95 % confidence interval for 250 consecutive cycles at
OP2, where the estimate has been computed for each
individual cycle. Table 3 shows mean computational
time and mean number of iterations, as well as the rel-
ative mean error and 95 % relative confidence interval.

Table 3. Relative mean error, mean compu-
tational time and iterations, and mean 95 %
relative confidence interval (RCI) at OP2.

M REmeanRCI REmaxstd Time #Iter
[%] [%] [%] [-] [ms] [-]

1 6.4 5.3 8.1 0.11 89 6.8
2 3.6 3.8 5.1 0.083 19 2.7
3 -4.2 6.5 -6.1 0.066 114 4.1
4 2.1 1.3 3.5 0.048 2 · 105 14.0
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Fig. 3. Mean value and 95 % confidence interval of the
estimated compression ratio for motored cycles
using the four methods, compared to the actuated
compression ratio. The estimate should be as
close as possible to the dotted horizontal line.

Analysis of estimation resultsFigure 3 shows that
method 3 underestimates and methods 1, 2 and 4 over-
estimate the compression ratio. The spread of the esti-
mates between the methods is more pronounced than
for the simulated data, compare figures 3 and 1. This
spread increases as the compression ratio becomes
higher, a trend also found for the confidence intervals
of the estimates. The interrelation among methods 1-
3 are however the same, where method 1 in average
yields the largest estimates, and method 3 the smallest.
The trends and effects in the simulation evaluation are
also present in the experimental investigation, which
gives a first indication that the conclusions drawn from
the simulation study are valid.

All methods have larger confidence intervals for the
experimental data, than for the simulated. This is
due to the higher measurement noise level. Again
method 4 yields the smallest confidence intervals fol-
lowed by method 2. The difference is most significant
for method 4, which had the correct model structure in
the simulation case while here it is an approximation
of the real engine. This is also seen in the residual,
figure 4, as a systematic deviation around TDC. This
model error thus adds to the variance of the estimate.
It also changes the interrelation between methods 1-3
and method 4, e.g. method 4 gives in average a smaller
estimate on experimental data than method 2, while
the converse is valid for the simulated data.

The mean computational time and number of itera-
tions are higher for the experimental data, as shown
in table 3, which is probably due to a higher measure-
ment noise level. As for the simulations, method 2 is
the most computationally efficient method of them all.

Residual analysis The residuals corresponding to
the cylinder pressures in figure 2 are displayed for all
four methods in figure 4 forrc = 14.66, together with
their respective root mean square error (RMSE).
As for the simulations, see (Klein et al., 2004), there is
a systematic deviation for methods 1, 2 and 3, which
increases withrc. The residual for method 4 have a
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Fig. 4. Difference between estimated and experimen-
tal cylinder pressure for all methods, given the
motored cycle in figure 2 atrc = 14.66.



comparatively small deviation near TDC. This small
deviation illustrates that the model structure is accept-
able but not perfect, since it is not able to fully de-
scribe the measurement data. The relative mean error
for rc = 14.66 is however small, less than 0.8 %, and
method 4 can therefore be considered to capture the
data well. The residuals from the experimental data
have a higher RMSE compared to the simulations,
but they are still of the same order. The differences
between the methods are due to different formula-
tions of the residuals and model simplifications. These
properties give rise to the systematic deviations that
are visible in both simulated and experimental data.

5.3 Results and evaluation for all OP

The trends shown for OP2 are also present in the full
data set, displayed in table 4. This table shows that
the influence of engine speed has no clear trend as
two of the methods yield higher variance and the other
two lower variance, as the engine speed is increased.
However as the load increases, the variance for all
methods decreases since the signal-to-noise ratio is
improved while the effects of model errors in heat
transfer and crevice flows remain the same. A high
initial pressure is therefore desirable. For all operating
points, method 4 yields the smallest confidence inter-
vals followed by method 2.

Table 4. Relative mean error (RE) and
mean 95 % relative confidence inter-
val (RCI) in estimatedrc, for four operat-
ing points defined by engine speedN and

intake manifold pressurepim.

OP1 OP2 OP3 OP4
N 1500 rpm 1500 rpm 3000 rpm 3000 rpm

pim 0.5 bar 1.0 bar 0.5 bar 1.0 bar
M RE RCI RE RCI RE RCI RE RCI

[%] [%] [%] [%] [%] [%] [%] [%]
1 10 6.2 6.4 5.3 8.0 7.5 3.6 5.9
2 6.0 4.6 3.6 3.8 1.3 5.2 -0.1 4.0
3 -2.3 8.2 -4.2 6.5 -3.9 7.3 -6.2 5.9
4 2.5 1.9 2.1 1.3 2.6 1.5 2.4 1.2

6. CONCLUSIONS

Two methods are recommended; If estimation accu-
racy has the highest priority, and time is available,
method 4 should be used. Method 4 yields the smallest
confidence intervals of all investigated methods for
both simulated and experimental data. In the simula-
tion case where the true value of the compression ratio
is known, method 4 gave estimates with smallest bias.
If computational time is the most important property,
method 2 is recommended. It is the most computation-
ally efficient of all investigated methods, and yields
the smallest confidence intervals out of methods 1-3.

In order to estimate the compression ratio as accu-
rately as possible, motored cycles with as high initial
pressure as possible should be used.
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Appendix A. VARIABLE PROJECTION

A computationally efficient algorithm for variable pro-
jection (Björck, 1996, p.352) is summarized here. Par-
tition the parameter vectorx such thatx = (y z)T ,
whereε(y, z) is linear iny. Rewriteε(y, z) as

ε(y, z) = F (z)y − g(z) (A.1)

Let xk = (yk, zk) be the current approximation.

(1) Solve the linear subproblem

min
δyk

‖F (zk)δyk − (g(zk) − F (zk)yk)‖2
2 (A.2)

and setxk+1/2 = (yk + δyk, zk).
(2) Compute the Gauss-Newton directionpk atxk+1/2,

i.e. solve

min
pk

‖C(xk+1/2)pk + ε(yk+1/2, zk)‖2
2 (A.3)

whereC(xk+1/2) = (F (zk), ∂
∂z ε(yk+1/2, zk))

is the Jacobian matrix.
(3) Setxk+1 = xk+1/2 + αkpk, check the termina-

tion criterion and return to step 1 if the estimate
has not converged. Otherwise returnxk+1.


