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Abstract - One approach for design of diagnosis systems is )
to use residuals based on analytical redundancy. Overdeter- eql?tlon unknown)§
mined systems of equations provide analytical redundancy Y

x
and by using minimal overdetermined subsystems, sensitiv- Z; R X §
ity to few faults is obtained. In this paper, overdetermined es X X
differential algebraic systems are considered and their struc- e4 X X

ture is represented by bipartite graphs with equations and un-
knowns as node sets. By differentiating equations, a new set
is formed, that is an overdetermined static algebraic system Fig. 1. The structural model for the pendulum.

if derivatives of unknown signals are considered as separate

independent variables. The task to derive analytical redun- ) . .

dancy relations is thereby reduced to an algebraic problem. 1d€as of the approach presented in this paper. The differen-
It is desirable to differentiate the equations as few times as tial algebraic system

possible and it is shown that there exists a unique minimally
differentiated overdetermined system.

er: L=\t z(t) +ma@(t) = 0
Keywords— Structural analysis, consistency based diagnosis, ¢ : L=I\#) y(t) + my(2)(t) +gm = 0
differential algebraic equations, bipartite graphs. es: x(t)2 + y(t)Q L2 = 0
I. INTRODUCTION es: L72(z(t)yM () —yt) M (t)) — 2(¢) 0

In model based diagnosis, a model of the fault free sys- )

tem is compared to observations [BLA 03], [GER 98]. Ifmodels the motion of a pendulum and a angular veloc-
the observations and the model are inconsistent, then itity measurement. Herex(t), y(¢), andA(¢) are the un-
concluded that a fault is present. To get inconsistency, r&nown state variablesl. is the length,m is the mass,
dundancy is needed. Consider for example the algebraand g is the gravitational constant. The set of equations

system {e1, €2, e3,e4} Will be denotedFE and the set of unknown
states{xz(t), y(t), A(t)} by X.
T = z3+4u To present the structure of the model, a bipartite graph is
T = e™t (1) used with equations and unknowns as node sets [CAS 97],
Yy = x [KRY 03]. There is an edge between an equation and an

unknown if the unknown is contained in the equation. Fig-

whereu andy are known, and;; andzs are unknown vari- ure 1 shows the_: graph, for the system (3), represented as an
8ldence matrix wher& marks an edge.

ables. This set contains more equations than unknowns ' . i . .
is overdetermined. The redundancy in the equations can Qv some |mportanF structur:_il properties \.N'" be defined.
used to check it andy are consistent with the model. If Eis a set of equations anll is a set of variables then
the unknowns;z; andx,, are eliminated in the equation vary (E) := {z € X|zisincludedinare ¢ E}  (4)

system (1), then the equation
In consistency based diagnosis, redundancy in the model is

y—e*¥—u=0 (2) used and this motivates the following definition.

Definition 1(Structurally Overdetermined) A finite set of
is obtained. If (2) is not fulfilled, then andy are not con- equationsFE is structurally overdeterminedSO) with re-
sistent with the model (1). The equation (2) is an examplspect to the set of variable€$ if |E| > |varx (E)|.
of an analytical redundancy relation, also called parity reBy considering small SO sets, consistency tests will be
lation or consistency relation in literature. sensitive to few faults. This is desirable when identifying
We have seen how consistency can be checked in an algehich fault that has occurred.
braic system. Now we will show how to treat differentialDefinition 2(Minimal Structurally Overdetermined) A set
algebraic systems and the next example illustrates the basicequationsE is a minimal structurally overdetermined



(MSO) set with respect tX if E is structurally overde- is
termined with respect t& and no proper subset @ is
structurally overdetermined with respectto mz(t)*(g> — L* (2D (1))*) = L m (z¥)(1))> = 0
Equation system (3), with the structure as shown in Fig- ) )
ure 1, is an example of an MSO set with respect t#f is should be pointed out that the structural analysis out-
{z(t),y(t), \(t)} and there is redundancy in the model."ﬂed above is not res.tricted to polynomials and can be ap-
However, the algebraic elimination procedure, used in th@lied to general non-linear problems.
first example, can not be used immediately because of thé0m now on, the original se’ of equations is assumed
presence of differentiated states. to be an MSO set with respect 6, as shown in Figure 1.
By considering states and their derivatives as separate Y& assume that the equatiofishave been differentiated
dependent variables, analytical redundancy relations c&Rd an MSO seE; with respect taX; has been found as
be derived by using algebraic elimination if the set idn Figure 3. The sef, is partitioned into two setd?)
SO [KRY 02]. The incidence matrix of the bipartite graph@ndEg', whereEg* contains the highest derivative of each
for system (3), using this approach, is shown in Figure 2. €quation inE. The setX, is partitioned intaX; and X'

in a similar way.

II. UNIQUENESS OFDIFFERENTIATEDMSO &ETS

equation R x@t‘“"r;"w’;(l) NOREY In the previous section, it was shown how to obtain an MSO
N X set £y w.r.t X4, where different derivatives of equations
€2 X X X and states are distinguished. In the following section some
€3 X X . . .
o Y x Y x aspects of uniqueness are investigated.

In general, the bipartite graph can be partitioned as in Fig-
ure 4, using the notation introduced at the end of the previ-

Fig. 2. The structural model where the states and their derivatives'S section.
are distinguished.

This algebraic system is not SO, but by differentiating .
equations with respect to new equations are obtained, for Xg Xq
example

egl) 222 + ny(l) =0 Eé

By starting with an MSO sef w.r.t. X and differentiating 15 (®) @)
all equations with respect tb multiple times, the set of d
differentiated equations will eventually grow faster than the

set of differentiated states. Therefore, it is always possible E? (©)
to obtain an SO set in this way and this set contains an MSO
subset.

An elementary algorithm to find an MSO set is to differ- Fig. 4. Partition of the graph.

entiate all equations until there exists a subset that is SO.

The Dulmage-Mendelsohn decomposition can be used The structure of the sub-graphs (a), (b), and (c) are revealed
determine if there exists a subset that is SO [DUL 58]. lin a sequence of lemmas, which leads to the main result
follows from the results in this paper that this set is also aformulated in Theorem 1. There, it is shown that there ex-
MSO set and that it is minimally differentiated as describegsts a unique minimally differentiated MSO set. The set is
in the next section. minimally differentiated in the following sense. For any

It is easy to obtain an upper limit of the number of dif-other MSO set, derived from the same original set of equa-
ferentiations that are needed to obtain an MSO set. Ftons, the order of the highest derivative of each equation is
the example, it can be noticed that after differentiating abtrictly greater than the order of the derivatives of the same
four equations four time<0 equations are obtained with equation in the minimally differentiated set. The MSO set
19 unknowns. Hence, this set contains an MSO set. Hovshown in Figure 3 is a minimally differentiated MSO set.
ever, Figure 3 shows an MSO set where the order of all thEehe reason for studying minimally differentiated sets is that
derivatives are at most three. some of the equations contain measured signals, for which
In this particular case, the equations in the MSO set atbe derivatives are difficult to estimate in a noisy environ-
all polynomials in the unknowns and the unknowns cament. Itis therefore natural to consider the problem of min-
therefore be eliminated using for exampled@mner ba- imizing the derivatives of a subset of equations that con-
sis [COX 97]. A consistency relation derived in this waytains measured signals. However, it follows from what was
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Fig. 3. An MSO set in a differentiated structural model.

said above, that the solution to this problem is the same aaplies thatx§l+”) € varx,(Eq). But this contradicts the
for the original problem.

Now, the sequence of lemmas, mentioned above, will bgssumption thatl(.” € X', which completes the proolll
presented. The first resultis that there is only one redundanbw we show that the two node sets in the sub-graph (c)

equation in an MSO set. are of the same size as in the original graph. Itis also shown

Lemma 1L:If E is an MSO set w.rt. X, then |[E| = that the degree of the variable nodes are nonzero.

|vary (E)| + 1. Lemma 3:|E]'| = |varx- (E7")| + 1 and vakmn (E]') =
Proof: SinceF is SO w.r.t. X, it follows that X

Proof: From the definition ofX;" it follows that
|E| > |vary (E)| + 1
| X] = 1X7"| Q)
If equality holds, then there is nothing to prove. Assume
that £ is MSO w.r.t. X and that and X" = varxm (Eq). This,

|E| > |varx (E)| + 1
varym (Eq) = varxm (Ejy) Uvargm (Ej")
Take anyE’ C E such that
and Lemma 2 imply
E'| = |varx (E)| + 1
|E'| = |varx (E) X7 — varp (E7) )
SinceE’ C E, it follows that|varx (E’)| < |varx(E)]

which implies that which is the second conclusion of this lemma.

From the definition of’", it follows that
|E'| = |varx (E)| + 1 > |varx (E')| + 1

|Eq'| = |E| U]
This means thak” is SO which contradicts the assumptio - .
and the lemma follows. . "The definition ofX, (5), and (6) imply
The next Lemma shows that the sub-graph (a) in Figure 4 \vary (E)| = |vargm (ET)| ®)
has no edges. ¢
Lemma 2:varxm (E)y=92 SinceF is MSO w.r.t. X, Lemma 1 implies
Proof: Assume that
|E| = |varx (E)[ + 1 ©)
l’z(*l) € vargs, (EY) ¢ X7 Now, eliminating| F'| and|varx (E)| by using (7) and (8),
[Eq'| = Ivarx, (Eg")| +1
l k k . k
Thenz!" VarX;;"(€§- ) forsomeeE. ) e EL. Smcee§- '€ is obtained and the Lemma follows. ]

The next lemma states that the cardinality of the two node
E%, it follows thate§k+p) € L for somep € Z,. This sets in the sub-graph (b) are the same and that the degree



of the variable nodes are nonzero. That the degrees of tfe any E;, it follows that
equation nodes are nonzero follows trivially from Lemma 2

m ly m 1
and the fact that each equation has to contain at least one varyy (Egi) Uvarg: (Ey) = vary, (Eqi U Eq)

unknown. If the left-hand side of this expression is substituted
Lemma 4:|Ej| = |varx, (Ey)| and vag, (E£)) = X} into (13), then it follows thatE™ U E! is SO w.rt. Xy
Proof: Lemma 1 applied to the MSO sé}; implies  which contradicts thaE, is an MSO set w.r.tX,. Hence
that the lemma follows.
|BZ| + | Bal = X' + | Xa] +1 n
and Lemma 3 implies that Consider two different MSO sets derived from the same
equations. It follows from the next result that the two sub-
|ET = | X7+ 1 graphs (c) in Figure 4 corresponding to the two MSO sets
are isomorphic.
From these two equalities, it follows that Lemma 6: There exist integersvy, ..., «, such that for
, ; any MSO setl; derived fromFE, the setE]* admits the
[Eal = |Xal (10) representation
SinceE, is an MSO set with respect t&,, it follows that
EY C E, is not SO with respect t& 4, i.e. E7 = {e{MHh) | elanth)y
|EY| < |varx,(E})| (11) for some integet:.
Proof: Let E;; and E4o be two arbitrary MSO sets
Lemma 2 implies that with the corresponding subsets
vary, (Ey) = varg: (Ej) C X}
R B = {ef™), ... elt)}
By using this in (11), it follows that
and
|4l < |varx, (E})| < X4 (12) By ={ef™,... e}
This and (10) imply that To prove the lemma, it is sufficient to show thiat-a; = k
for somek. Letk = max;(8; — a;). Eithera; = ; for
|EY| = |vary, (ES)| = | X} all i and there is nothing to prove, or the MSO sets can be

enumerated so thdt > 0. We can therefore assume that
Finally, since vak,(E}) c X} and|vary,(E})| = |X!| k> o0. Let

the lemma follows. (i)

. E():{ei :Bi—ozizk‘}
In the example, the sub-graph (c) is isomorphic to the origyq
inal graph in Figure 1. In general, the edges of (c) is a sub- Xo = varys (E)

set of the set of edges corresponding to the original graph
However, the following result shows that (c) still representgt
an MSO set. . Eék) = {ez(-aﬁk) (B —a; =k} = {ez(ﬂi) 0 — oy =k}
Lemma 5:The setE}" is an MSO set w.r.tX . _

Proof: Assume thaf! is SO w.rt. X7 andEr ¢ and consequently it follows that
E7'. The idea is to show that these assumptions imply that
E™ U El is SO w.r.t.X, which contradicts thak, is MSO
w.r.t. X4. The assumption that’; is SO w.r.t. X* and
Lemma 4 imply that

‘holds that

E c ET (14)
z z Recall that3; = «; + k for e(Bi) ¢ E(()’“) and that
[Eqi UEy| < |varxy (Egp)| + [varg: (Eg)|

Bi < i + k for e(Pi) ¢ EQ"Q\Eék). Assume that
= |varx, (Eg) U varXé(Efi)| (13)

From Lemma 4, it follows that 2" € Xo = varxy: (Eo)

varg: (Ejfi) C varg: (Ey) = X _
It follows thatz;” ™™ € X and hence
From this, Lemma 2, and that

vary: (Eq;) Uvarxy (Eq;) = varx, (Eai) Xék) C X (15)



It follows also thatxgwk) ¢ varym (E]ig\Eék)) and con- E', UE!, is not SO, since this would imply that there exists
sequently it holds that asubset o}, UE!, thatis an MSO set, which contradicts
that £;, and E4o are both minimally differentiated. Hence

vary o (B3 \ By”) = 0 (16) |Ein U Bp| < varx, (Eiy U Eip)|
Using this inequality, Lemma 4, and that

Assume now thaty, — 6; = k does not hold for alk or . . . .
varx: (Eg U Eyy) = varx: (Eg) Uvary, (Eg,)

equivalently
We will show that this contradicts (16). The s&f; is an . . . . . .
MSO set w.r.t.X’? according to Lemma 5. Togetherwith  |Ea1 N Eaal = [Ea| + [Ego| — [Eq U Egy|
assumption (17) this implies thif,| < | X,| and > |vary, (Eb)| + |varg, (Ej)|
- ’ l ! l
‘E(()k)‘ < ‘X(()k)| |Vaer (Bg1) U vary (Ego)l
Moreover E7 is an MSO set w.rt. X7 according to = |vary, (E}y) Nvarg, (Ej,)|  (18)

Lemma 5 and hence
The set relation
|Eda| > 1 X 5]
varXé (Edl n Edg) - varXL/i (Edl) n varXé (Edg)
It follows from the two inequalities above and the set rela-
tions (14) and (15) that holds and it follows from Lemma 4 that

vary: (Eq1) Nvarx: (Eqz)
m k m k m k m k d d
IEB\EM| = | BB~ B > X3 -|1X5P | = | xm\x ]

This implies that = (varx, (Elj;) Nnvary, (El,)) Uvarxn (E]")

(En\ EM)) where vax (E},) Nvarx: (E},) and vak» (Ej") are dis-

|Ei\ B¢ > |var Wl . and
joint according to Lemma 2. This gives that

m k
dZ\X(() )

and sinceE”, \ E*) is not SO we have vary; (Ea 0 Ea)| < varx, (Eay) Nvary, (Eaz)

w " = |vary, (EBj;) Nvarg, (Eg,)| + varx (B
|Edy \ Eg | < [varxy (Egy \ Eg)|

0 “ 0 where

It follows from these two inequalities that l l l .

Vary, (Egy) Nvary, (Eg)| < [Eg N Egyl

lvar o (Egs \ Eé’“))| =|varxm (Egs \ E(()’“))\ according to (18) and
0

varx=— (Eg")| < |Eg"

m (k)
— |var,,. «m (E E, .
VAl g (B \ Eo ) according to Lemma 3. It follows that

S|ER\EW| — |ER\EF| =0 vary: (Eqi N Ea)| < |Ejy N Ely| + |E7|

This contradicts (16) and the proof is complete. | — |(EY N ELY) U ED

Now we can prove the main result of this paper, outlined in it md2 d

the introduction of this section. = [Ba1 0 Eae|

Theorem 1:Given an MSO sefy w.r.t. X, there exists a

unique minimally differentiated MSO sét; w.r.t. X,.
Proof: Assume thatv;; and E 4 are two minimally

differentiated MSO sets. According to Lemma 6 the corre- Eg = By = Eg1 N Eygy

sponding setgr’]; and £73 coincide and the notatiof’)*

is used for both. LeX’, be defined as{;; U X 4. The set and the proof is complete. [ |

Hence,E;; N E4 is an SO set and can not be a proper
subset of the MSO sefs,;; andE,. It follows that



I11. CONCLUSION

One approach for design of diagnosis systems is to use
residuals based on analytical redundancy. Overdetermined
systems of equations provide analytical redundancy and by
using minimal overdetermined subsystems, sensitivity to
few faults is obtained.
A method has been presented that reduces the problem of
checking consistency of an overdetermined differential al-
gebraic system into an algebraic problem. This is done by
considering the unknowns and their derivatives as separate
independent variables and differentiating equations in or-
der to obtain an overdetermined system.
To present the structure of the algebraic system, a bipar-
tite graph is used and properties of the graph have been
investigated in the sequence of six lemmas. It is desirable
to differentiate the equations as few times as possible, to
avoid higher derivatives of measured signals. The main re-
sult is stated in Theorem 1, where it is shown that there
exists a unigue minimally differentiated MSO set. These
MSO sets can be used to derive consistency relations, by
using algebraic elimination methods.
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