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Email:{marsi,larer}@isy.liu.se

Abstract— A non-linear four state-three input mean value en-
gine model, incorporating the important turbocharger dynamics,
is used to study optimal control of a diesel-electric powertrain
during transients. The optimization is conducted for two different
criteria, both time and fuel optimal control, and both engine
speed and output power are considered free variables in the
optimization. The transients considered are steps from idle to
a target power and the results of the optimization show that
the solutions can be divided into two categories, depending on
requested power. The resulting control strategies are also seen
to be valid for other initial conditions than idle. For steps
to high power the controls for both criteria follow a similar
structure, a structure given by the maximum torque line and
the smoke-limiter. The main difference between fuel and time
optimal control is the end operating point, and how this is
approached. The fuel optimal control builds more kinetic energy
in the turbocharger, reducing the necessary amount of kinetic
energy in the system to produce the requested power. It is found
that the fact that it does not approach the fuel optimal operating
point relates to the amount of produced energy required to get
there. For steps to low output powers the optimal controls deal
with the turbocharger dynamics in a fundamentally different
way.

I. INTRODUCTION

In a diesel-electric powertrain, such as the BAE Systems
TorqETM, see Fig. 1, there is only an electric link between
the diesel engine and the electric load. This extra degree
of freedom, the engine speed can be chosen freely, offers
potential for increasing the performance of the powertrain, due
to the torque characteristic of the electric machine, as well
as potential reduction in consumption, due to the freedom of
choosing the operating point of the diesel engine.

This paper studies optimal control of a diesel-electric pow-
ertrain during transients, using the extra freedom of selecting
engine speed. In related articles concerning optimal transient
control of diesel-engines different optimization methods are
used to minimize pollutants during transient operation for
known engine speeds, see [1], [2] or, as in [3], [4] the optimal
engine operating point trajectory for a known engine power
output trajectory is derived. The diesel engine is modeled as
an inertia with a Willans-line efficiency model. The optimal
solution is found using dynamic programming and Pontryagins
maximum principle. Due to the more detailed and complex
non-linear model used in this paper such methods aren’t
feasible. The problem is solved using the ACADO Toolkit,
an open-source framework for automatic control and dynamic
optimization, that uses multiple shooting together with sequen-
tial quadratic programming, see [5].

This paper is an extension of [6] where the optimal control
from idle to a target power for two different criteria with

Fig. 1. BAE Systems TorqETM diesel-electric powertrain

the engine output power and engine speed considered free
variables during the transient are studied. The contribution of
this paper is the study of why the fuel optimal control does
not approach the fuel optimal operating point, and also how
to go from idle to this operating point in a fuel optimal way.
The paper also studies optimal control from one output power
to a higher output power for both criteria. A nonlinear, four
state, three input mean value engine model (MVEM) is used in
the study with parameters as in [6]. This MVEM incorporates
the important turbocharger dynamics as well as the nonlinear
multiple input-multiple output nature of the diesel engine. The
model is also continuous in the studied interval in compliance
with the non-linear program solver of the ACADO Toolkit.

II. MODEL

The focus in the paper lies on optimal control of diesel
engine transients. Therefore the generator model is simplified,
i.e. the generator efficiency is constant and the maximum
power of the generator is constant over the speed range of
the engine. The generator time constant is also assumed to be
much faster than the time constant of the engine.

The modeled engine is a 6-cylinder 12.7-liter SCANIA
diesel engine with a fixed-geometry turbine and a wastegate for
boost control. The model used is a simplified implementation
of the well validated model found in [7]. The states of the
MVEM are engine speed, ωice, inlet manifold pressure, pim,
exhaust manifold pressure, pem, and turbocharger speed, ωtc
and the controls are fuel flow, uf , wastegate position, uwg , and
generator power, Pgen. The MVEM consists of two control
volumes, intake and exhaust manifold, and four restrictions,
compressor, engine, turbine, and wastegate. The control vol-
umes are modeled with the standard isothermal model, using
the ideal gas law and mass conservation. The engine and



turbocharger speeds are modeled using Newton’s second law.
The governing differential equations of the MVEM are:

dωice
dt

=
1

Jgenset
(Tice −

Pgen
ωice

) (1)

dpim
dt

=
RaTim
Vis

(ṁc − ṁac) (2)

dpem
dt

=
ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

=
Pt − Pc
ωtcJtc

− wfricω2
tc (4)

For more in-depth information on the structure and details of
the diesel engine model see [7], [8], from where the equations
in the following section are collected. The parameters and
constants used in the engine model can be found in the
appendix. The model has been adapted to ensure that there
are continuous derivatives.

III. COMPONENT MODELS

A. Compressor

The compressor model consists of two sub-models, one for
the massflow and one for the power consumption. In order to
avoid problems for low turbocharger speeds and transients with
pressure ratios Πc < 1 a variation of the physically motivated
Ψ Φ model in [8] is used.

Πc,max =
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ω2
tcR

2
cΨmax

2cpTamb
+ 1

) γa
γa−1

(5)
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(8)

The full compressor model has three tuning parameters
Ψmax,ṁc,corr,max, and ηc.

B. Engine Gas Flow

The engine gas flow model consist of two sub-models, one
for air flow and one for fuel flow.

ṁac =
ηvolpimωiceVD

4πRaTim
(9)

ṁf =
10−6

4π
ufωicencyl (10)

λ =
ṁac

ṁf

1

(A/F )s
(11)

To avoid problems for ṁf = 0 a new variable is defined

φλ = ṁac − λminṁf (A/F )s (12)

where λmin is the lower limit set by the smoke-limiter. The
gas flow model has one tuning parameter, ηvol.

C. Engine Torque

The net torque of the engine, Tice, is modeled using three
torque components, and one efficiency model.

Tice =Tig − Tfric − Tpump (13)

ηig =ηig,ch

(
1− 1

r
γcyl−1
c

)
(14)

Tig =
uf10−6ncylqHV ηig

4π
(15)
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105
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2
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)
(16)

Tpump =
VD
4π

(pem − pim) (17)

The net torque, Tice is limited by the maximum torque of the
engine, Tice,max(ωice), shown in Fig. 3. The torque model has
five tuning parameters, ηvol, cfr,i, i ∈ [1, 2, 3], and ηig,ch.

D. Exhaust Temperature

The engine out temperature model is based on ideal gas
Seliger cycle. The temperature drop in the exhaust manifold
is not modeled so the engine out temperature and exhaust
manifold temperature are assumed to be equal.
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ṁfqHV
ṁf + ṁac

(18)
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c
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(20)

The engine out temperature model has two tuning parameters
ηsc, and xcv .

E. Turbine

The turbine model consists of submodels for the turbine
massflow and turbine power production. The turbine massflow
model is modeled with the standard restriction model and
using that half the expansion occurs in the rotor and the other
half in the stator, see [8]:

Π∗
t = max

(√
Πt,

(
2

γe + 1

) γe
γe−1

)
(21)

The ACADO Toolkit requires that the functions are continuous
and Π∗

t =
√

Πt is used which is valid down to Πt = 0.30
corresponding to an exhaust manifold pressure of pem ≈
3.3pamb, which is sufficient for the transients studied. The
massflow model is then given by:
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Fig. 2. Structure of the MVEM. The modeled components as well as the
connection between them.

The tuning parameters of the complete turbine model are
At,eff , and ηt.

F. Wastegate

If the standard restriction model is applied to the wastegate,
choking would occur for exhaust manifold pressures of pem ≈
1.8pamb which is well within the normal operating region.
This requires a discontinuity in the model, but since ACADO
Toolkit requires the functions to be continuous the following
non-physical model is used instead:

Ψwg =cwg,1

√
1−Π

cwg,2
wg (26)

ṁwg =
pem√
ReTem

ΨwguwgAwg,eff (27)

The tuning parameters of the wastegate model are cwg,1−2 and
Awg,eff .

IV. PROBLEM FORMULATION

Two non-linear optimal control problems, minimum time
and minimum energy are studied. They are formulated as
follows:

min

∫ T

0

ṁf dt or min T

s.t. ẋ = f(x, u),

(28)

where x is the state vector of the MVEM and ẋ is defined by
(1)-(4). The studied transients are steps from idle to a target
power subject to constraints imposed by the components,
such as maximum torque and minimum speed, as well as
environmental constraints, i.e. a limit on φλ set by the smoke-
limiter. The constraints are:

x(0) = idle, ẋ(T ) = 0

Tice ≤ Tice,max(ωice), Pgen(T ) = Preq

ωice ≥ ωice,min, φλ ≥ 0

(29)

In most vehicles the accelerator position can be interpreted
as a power request. The problem in (28)-(29) is thus how to
control the engine in order to be able to satisfy the operators
power request, either as fast as possible, or as fuel efficient
as possible. The end constraint on the state derivatives is to
avoid solutions where the optimal control ends in an operating
point that cannot be maintained. This is to avoid under-
or overshoots in the control strategies. Not specifying that
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Fig. 3. Time and fuel optimal solutions to different load transients. The time
and fuel optimal transients have similar structures but differ in how they meet
the end constraints.

TABLE I
OPTIMAL RESULTS FOR DIFFERENT LOAD TRANSIENTS.

Preq(T ) min T [s] mf [g] ωice(T ) pim(T ) pem(T ) ωtc(T )

25kW T 0.053 0.108 54.31 101505 102270 799.2
mf 0.192 0.018 54.00 101502 102259 795.4

50kW T 0.083 0.246 59.53 101996 103035 1022.6
mf 0.348 0.112 59.53 101996 103035 1022.6

75kW T 0.115 0.417 69.68 102763 104229 1316.6
mf 0.395 0.267 69.68 102763 104229 1316.6

100kW T 0.165 0.706 93.32 104207 106927 1798.8
mf 0.174 0.601 93.32 104207 106927 1798.8

125kW T 0.219 1.114 117.06 106682 111284 2377.3
mf 0.265 1.077 113.68 109167 114059 2686.1

150kW T 0.286 1.689 137.67 111918 119322 3177.8
mf 0.333 1.592 131.73 115468 122916 3494.4

170kW T 0.334 2.176 152.54 117012 127112 3797.0
mf 0.380 2.018 144.43 121248 131128 4097.4

200kW T 0.397 2.936 172.63 125505 140527 4672.0
mf 0.440 2.665 161.22 130550 144850 4930.1

225kW T 0.443 3.595 187.85 133008 153052 5365.8
mf 0.485 3.212 173.50 138638 157391 5578.3

254kW T 0.491 4.397 204.36 141931 169007 6160.3
mf 0.534 3.864 186.30 148172 173036 6301.3

ω̇ice(T ) ≥ 0 will lead to the engine transient not taking place
at all, the optimal solution is just to apply Pgen = Preq at
t = 0.

However, one could argue that the strict equality in the
derivative end constraint should be replaced by an inequality,
ẋ(T ) ≥ 0 since this would ensure that the engine can deliver at
least the power requested. Therefore effects of relaxing these
constraints are also studied.

V. RESULTS

The optimal torque and speed trajectories to problem (28)-
(29) are shown in Fig. 3 and the corresponding end time T as
well as the fuel consumption and end state values are shown
in Table I. It can be seen that the optimal solutions can be
divided into two cases. One case where the time optimal and
fuel optimal paths end in the same operating point (Preq ≤
100 kW), discussed in Section VII, and one case where they
don’t (Preq ≥ 125 kW), discussed in Section VI.
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Fig. 4. Time and fuel optimal solutions to a load transient from idle to
170 kW.

VI. TRANSIENTS TO HIGH POWER

The time and fuel optimal control trajectories for Preq ≥
125 kW all follow the same pattern as the transients shown
in Fig. 4 where Preq = 170 kW. The time optimal and fuel
optimal control strategies are rather similar for the first phase
of the transient, the difference lies in how they approach the
stationary point. The optimal solution for both criteria is to put
as much energy as possible into the system in order to build
intake manifold pressure and turbo speed, the difference lies in
the fine tuning to meet the end constraints. This becomes even
more apparent when looking at Fig. 3, where both fuel and
time optimal torque-engine speed paths for different required
powers are shown.

A. Time optimal high power transients

The time optimal solution approaches the stationary point
from a higher torque, whereas the fuel optimal solution
approaches the stationary point from a lower torque. In the
first phase the optimal solution follows the maximum torque
and the λmin-value set by the smoke-limiter of the engine.
The time optimal solution follows λmin until the end and
actuates the wastegate to get stationarity. When the wastegate
is actuated to control the turbocharger speed to its target speed
the pumping work decreases and the net torque of the engine
increases and the path thus approaches the end point from a
higher torque.
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Fig. 5. Top: Kinetic energy in the engine as well as the total kinetic energy
in the system at time T . Bottom: Kinetic energy in the turbocharger at time
T .

B. Fuel optimal high power transients

The fuel optimal solution approaches a different stationary
point, one that has a higher pim, pem, and ωtc but lower ωice,
and consequently higher efficiency. This stationary point is
near the operating point with maximum efficiency obtainable
without using the generator to restrain the engine speed from
increasing as it builds turbocharger speed. In Fig. 5 it is
shown how much energy is stored as kinetic energy in the
turbocharger and engine at the end of the transient. The fuel
optimal control builds less kinetic energy in the engine, but
more kinetic energy in the turbocharger than the time optimal
control. This reduces the total amount of kinetic energy
necessary to be able to meet Preq. This energy difference
scaled with the average efficiency of the engine is roughly
of the same size as the difference in consumption between the
criteria shown in Table I. Seeing that the kinetic energy in the
engine is roughly 20 times larger than that in the turbocharger
a lot can be gained by instead increasing the kinetic energy in
the turbocharger and thus decrease the kinetic energy in the
engine. The time constant of the turbocharger is however larger
than that of the engine. When limited by the smoke-limiter,
the kinetic energy in the turbocharger increases with roughly
10kJ/s, whereas the kinetic energy of the engine increases
with 100kJ/s, causing the two criteria to approach different
stationary points. The difference in control of the turbocharger
dynamics can be seen in Fig.4 , t ∈ [0.28, 0.4]. Where the time
optimal control follows the smoke-limiter until the end and
fully opens the wastegate to release the excess exhaust pressure
as it approaches its stationary point, the fuel optimal control
decreases and stops the fuel injection while the wastegate
remains closed in order to build/maintain backpressure to con-
vert to turbocharger speed and consequently intake manifold
pressure. The transient ends with the wastegate being actuated
to control the exhaust manifold pressure to ensure stationarity
in pem, ωtc and pim together with the final value of uf .

In Fig. 6 the change in end time and fuel consumption as a
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function of Preq for the fuel optimal versus the time optimal
transients is shown. In the studied interval the consumption
decrease of the fuel optimal solution, compared to the time
optimal solution, increases with Preq and is between 3 %
and 12 %. The corresponding time increase however decreases
with Preq and is between 21% and 9%.

C. End constraint effects on the optimal solution

In order to understand why the optimal control takes on the
form seen in Fig. 4 the optimization procedure is repeated for
different end constraints. Looking at Fig. 7 where the time
and fuel optimal solutions with the end constraint ẋ(T ) = 0
are compared with the solutions for ω̇ice(T ) = 0 it’s apparent
that the control strategies for uf and Pgen are governed by
the end constraint on the engine speed derivative. Imposing
hard end constraints on the other state derivatives only shifts
the control in time. The wastegate actuation however cannot
be explained by just that constraint. In Fig. 8 it is shown how
the wastegate actuation changes for different end constraints.
The end constraints are removed one by one to study how the
solution changes. The different end constraints are:

Case A: ω̇ice(T ) = 0, ṗim(T ) = 0, ṗem(T ) = 0

Case B: ω̇ice(T ) = 0, ṗim(T ) = 0, ω̇tc(T ) = 0

Case C: ω̇ice(T ) = 0, ṗem(T ) = 0, ω̇tc(T ) = 0

From there the conclusion can be drawn that the opening and
closing of the wastegate is to bring the turbocharger speed,
and thus also the intake pressure, to its target stationary value.
Then the wastegate opens again in the final time-step to get
stationarity in the exhaust manifold pressure as well.

D. Effects of relaxing the end constraints

In Fig. 9 the optimal solutions for ẋ(T ) ≥ 0 are compared
to the optimal solutions for ẋ(T ) = 0. The optimal solution
stays relatively unaffected, as can be expected the solutions
are a bit shorter in time if the end constraints are relaxed.
Worth noting is that the fully open-fully closed actuation of the
wastegate disappears. There is also a small difference between
the two criterias as to which constraints are active. In the time
optimal case only the constraints on ω̇ice and ṗem are active,
but in the fuel optimal case all constraints are active except the
constraint on ṗim. That is, in the fuel optimal case relaxing
the constraints produces the same solution as in Case A.
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Fig. 7. Time and fuel optimal solutions to a load transient for ẋ(T ) = 0 as
well as ω̇ice(T ) = 0.

E. Transients to the fuel optimal operating point

As seen in Fig. 3 none of the fuel optimal transients end in
the fuel optimal operating point for that power. To reach the
more efficient region of the engine map, more kinetic energy
has to be stored in the turbocharger without increasing the
kinetic energy in the engine. To accomplish this the engine
needs to be braked by generator, that is, energy has to be
removed from the system. This is clearly not optimal if the
aim is just to go from idle to a target power. However it does
raise the question of how to, in a fuel optimal way, go to the
fuel optimal operating point, and also how much it costs. In
Fig. 10 fuel optimal transients are compared to fuel optimal
transients to the fuel optimal operating point. These transient
take roughly twice as long as the fuel optimal transients,
and consume roughly three times the fuel. This comparison
is however not entirely valid since the generated energy is
also roughly 200 times larger. Whether this is optimal or not
depends on what happens after the transient. To assess the
optimality of such transients the criterion should be a target
energy and not target power, a topic for future research.

VII. TRANSIENTS TO LOW POWER

For low requested powers the optimal control looks a bit
different compared to the transients with higher requested
powers discussed in Section VI. For the time optimal case this
change in strategy occurs for roughly Preq ≤ 100 kW and in
the fuel optimal case around Preq ≤ 75 kW. Even though, for
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Top: Time optimal transients. Bottom: Fuel optimal transients.

Preq ≤ 100 kW, the time and fuel optimal controls end in
nearly the same operating point they differ substantially, see
Fig. 11.

A. Time optimal transients for low requested powers

The time optimal control for low powers is to use the
generator to decrease the engine speed mid-transient, see
Fig. 11. It also ends with departing from the λmin-line as
it approaches the same operating point as the fuel optimal
solution. The fuel consumption punishment for this is large,
up to almost 100 % compared to the fuel optimal solution, see
Fig. 12, but the gain in time is also substantial, up to 300%.

B. End constraint impact on the time optimal control

In order to investigate the nature of the solution the end
constraints are removed and relaxed in the same manner as in
Section VI. In this case, as with the fuel optimal solution for
higher powers, the optimal solution for Case A is the same as
with ẋ(T ) ≥ 0. It can be seen in Fig. 13 that the generator
control is an artifact of requiring the state derivatives to be
zero at the end. If the end constraints are relaxed the solution
is of the same structure as for Preq ≥ 125 kW. Getting the
turbocharger speed to a stationary point makes the transient
almost 3 times longer, compared to if ω̇tc is allowed to be
positive, the corresponding fuel conusmption also doubles. But
since the objective is to minimize the time until the engine
can deliver a specified power an eventual over- or undershoot
might not be that big of an issue.

C. Fuel optimal transients for low requested powers

The fuel optimal control for low power transients, as seen
in see Fig. 11, is first to let the engine decelerate slightly with
the wastegate fully closed, building a small amount of exhaust
manifold pressure. Then a burst of fuel is injected, adding
energy in to the system, before the engine is allowed to decel-
erate towards its stationary point. During this deceleration the
turbocharger speed and inlet manifold pressure continues to
build. Interesting to note is that the close-open-close wastegate

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
60
80

100
120
140

ω
ic

e [
ra

d
/s

]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.1

1.2

x 10
5

p
im

 [
P

a]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.5

x 10
5

p
em

 [
P

a]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

2000

4000

ω
tc

 [
ra

d
/s

]

time [s]

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

u
f [m

g/
cy

cl
e]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

u
w

g
 [−

]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

x 10
4

P
ge

n
 [W

]

time [s]
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Fig. 9. Effects on the time and fuel optimal solution of relaxing the end
constraints.

actuation also appears for low power transients, see Fig. 11
t ∈ [0.33, 0.4].

D. End constraint impact on the fuel optimal control

As was the case for fuel optimal high power transients,
as well as time optimal low power transients, Case A and
ẋ(T ) ≥ 0 produce the same solution. In Fig. 14 the effects of
varying the end constraints are shown. The solution for case
C is very close to ẋ(T ) = 0, the only difference is at the end,
since case C doesn’t require ṗim = 0. The end constraints that
define the solution the most are thus ω̇tc and ṗem. Requiring
that these constraints should be zero at the end increases the
duration of the transient 16 times and the fuel consumption
2 times. However not specifying them might lead to over- or
undershooting the optimal point and the solution might thus
not be fuel optimal if the goal is to produce a specific output
power.

VIII. TRANSIENTS BETWEEN TWO OUTPUT POWERS

So far all discussed transients have been from idle to target
power. How to control powertrain from one power output to
another? In Fig. 15 the optimal controls for transients from
125kW to 200kW are compared to transients from idle to
200kW. For the transients from 125kW to 200kW the end
operating points from the solution for transients from idle to
125kW are used as the starting point. As seen in Fig. 15 the
characteristic of the solution is the same as for transients from
idle to 200kW. Since there is a difference in initial conditions
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Fig. 10. Comparison between fuel optimal transients and transients to the
fuel optimal operating point. ∗ denotes the fuel optimal operating point.

the solution approaches slightly different end operating points,
the manner in which they do it is however the same.

IX. CONCLUSION

In this paper the characteristics of the fuel and time optimal
control of a diesel-electric engine from idle to target power
has been presented. The dominant effects have been studied
through changing the end constraints of the optimization
problem. It is shown that the optimal solutions are different
for high and low requested powers. For high power transients
the time and fuel optimal controls are very similar despite
the criteria being different. The optimal control is to put as
much energy as possible into the system, following the smoke-
limiter and maximum torque line. The difference between the
two criteria is which operating point they approach and also
the fine tuning to get there. Whereas the time optimal control
follows the smoke-limiter until the end, the fuel optimal
control cuts off the fuel injection and ends near the operating
point with highest efficiency obtainable without using the
generator. This operating point requires more kinetic energy
in the turbocharger which takes longer to build, but reduces
the total amount of kinetic energy necessary to produce the
requested power. It is also shown that without requiring a
certain produced energy, it is not optimal to go to the fuel
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minT ẋ(T ) = 0, Preq = 75 kW
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Fig. 11. Time and fuel optimal solutions to a load transient from idle to
50 kW and 70 kW.
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Fig. 12. Change in time and consumption as a function of Preq .

optimal operating point, due to the energy required to build
enough kinetic energy in the turbocharger.

For low power transients the fuel and time optimal controls
differ substantially. This is found to be related to the require-
ments that they have to end in a stationary operating point.
How the turbocharger is controlled to a stationary point is the
main difference. The fuel optimal control is to slowly build
turbocharger speed and let the engine decelerate towards the
stationary point, whereas the time optimal solution utilizes the
generator to decrease the engine speed, mid-transient.

Transients from one output power to a higher output power
are seen to follow the same structure as the steps from idle.
The different initial conditions do however affect the end
operating point.
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Fig. 13. Time optimal transient and how the solution changes with the end
constraints, Preq = 50 kW.
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Fig. 14. Fuel optimal transient and how the solution changes with the end
constraints, Preq = 50 kW.
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