Using Prior Information in Bayesian Inference
— with Application to Fault Diagnosis

Anna Pernestal and Mattias Nyberg

Dept. of Electrical Engineering, Link&ping Universitynkidping, Sweden
{annap, matny}@isy.liu.se

Abstract. In this paper we consider Bayesian inference using traidaitg combined with prior
information. The prior information considered is respoard causality information which gives
constraints on the posterior distribution. It is shown hbese constraints can be expressed in terms
of the prior probability distribution, and how to performetcomputations. Further, it is discussed
how this prior information improves the inference.

Keywords: Bayesian Classification, Prior Information, Bayesian taefee, Fault Classification

INTRODUCTION

In this paper we study the problem of making inference abatate, given an observed
featrue vector. Traditionally, inference methods rehheiton prior information only
or on training data consisting of simultaneous observatadrthe class and the feature
vector [1], [2], [3]. However, in many inference problem®ité are both training data
and prior information available. Inspired by the problenfailt diagnosis, where the
feature vector typically is a set of diagnostic tests, amdstiates are the possible faults,
we recognize two types of prior information. First, thereyrba information that some
values of the features are impossible under certain sthtethe present paper this
information is referred to aesponse informatigrwhich for example can be that it is
known that a test never alarms when there is no fault preSexbnd, it may be known
that certain elements of the feature vector are equallyildiged under several states,
here referred to asausality informationin the fault diagnosis context this means that a
diagnostic test is not affected by a certain fault.

The type of prior information studied in the present workitgtly appears in previous
works on fault diagnosis. The response information is use@xample in [4], [5], and
[6]. The causality information is an interpretation of theulk Signature Matrix (FSM)
used for example in [7] and [8]. The main difference betwdwsé previous works and
the present is that here we combine the prior informatiomh waining data instead of
relying on prior information only.

To compute this posterior probability for the states in theecof training data only
is, although previously well studied, a nontrivial problesee e.g. [9], [10], and [11].
In these previous works the computations are based onrigatfata only. In the present
work we go one step further, and discuss how the prior infétionan terms of response
and causality information can be integrated into the Bayekiamework.



INFERENCE USING TRAINING DATA

We begin by introducing the notation used, and summarizregipus results on infer-
ence using training data alone. L&t= (X,C) be a discrete variable, where the feature
vectorX = (Xg,...XR) is R-dimensional and the state variakilés scalar. The variables
X andC can takeK andL different values respectively, and herean takeM = KL
values. Usez = (x,¢) = ((Xg,...,Xr),C) to denote a sample &. Let X, X, C, and
7, = C x X be the domains oX, X;, C andZ respectively. Enumerate the element&in
and usefj,i = 1,...,M, to denote théth element. We usp(X = x|l ), or simplyp(x|1),
to denote the discrete probability distribution %given the current state of knowledge
|. For continuous probability density functions we ug|l ).

Let 2 be the training data, i.e. a set of simultaneous sampleseofeidture vector
and the state variable. In the inference problem, the pibtyadistribution p(c|X =
X, 2,1) is to be determined. Note that for a given feature vegtdhe posterior prob-
ability for a state is proportional to the joint distributioof ¢ and x, p(c|x,Z,l) =
p(c,x|2,1)/p(x|2,1) O p(c,x|2,1) = p(z|Z,1). Therefore we can study the probabil-
ity distributionp(z|Z,1). The computations gf(z|Z,1) are, under certain assumptions,
given in detail for example in [9], [10], and [11]. In thesdarnces the arguments for
the underlying assumptions are also discussed. Here we atimenthem in the follow-
ing theorem.

Theorem 1 Let p(z|Z,l) be discrete, and assume that there are paramee@rs
(61,...,06w)" such that

p(Z=4¢le,0)=6, i=1...,M, (1a)
6 >0, Z 6 =1. (1b)
=/

Assume that (©|1) is Dirichlet distributed,

_r(Zil\ilai> M ai—1 :
f((9||)_7|_|i,\ilr(ai>i|19i , ai >0, 2)

whererl () is the gamma function, i.e. fulfillS(n+1) = nl(n) and (1) = 1 and the
parametersy = (da1,...,aym) are given. Assume that the samples in the training data are

independent, and let; the the count of samples i whereZ = ¢, and let N= zi'\il N
and A= M, a;. Then it holds that

N + a;
— . 3
N-+A (3)

In the following sections we will now discuss how the resiriten Theorem 1 can be
extended to take the response and causality informatioraicttount.

p(Z:Zi|@,|)

INFERENCE USING RESPONSE INFORMATION

Consider the case where some values of the feature vectimang to be impossible in
certain states of the system. We refer to this kind of infdrameasresponse informatian



TABLE 1. Example of response information, where”*
means that the value of the feature is possible.

| C=c C=0 C=c3
x1=0 ° ° °
x1=1 . °
X1 =2 o

Formally, it means that there are sgtg C X representing “forbidden values” under
statec, i.e.

p(xi|c,Z2,1%) =0, for x € yic,

where we have usdd, to denote thak includes response information.

To exemplify how the setg . can be determined, consider the following example
with a three-valued featuté, with domainX; = {0,1,2}. Assume that the information
is given that in state;, the featureX; can only take the value 0. In statg all values
are possible, while in states all values except 2 are possible. This information is
summarized in Table 1, wher@™means that the value of the feature is possible. This
information gives the setg ¢, = {1,2}, y1c, = {0}, y1.c; = {2}.

Let y C Z be the set of values such thakifc y ¢, thenz € y. In our example we have
y=1{(1,¢c1),(2,¢1),(2,¢c3)}. Assume thap(z|O,l ) is parameterized b@ as in (1a).
By 1, we have the following requirements on the parameters

6=0 Vey, 6>0 VGeZ\y, > =1 (4)
GeZ\y

We can now state the following theorem for the joint probgbidlistribution when
response information is available.

Theorem 2 Assume that [Z|©,14) is discrete and given byla) and (4). Further,
assume that (f©|1 ») is Dirichlet distributed over the sét \ y,

M ai—1 .
f(Ollg) = {gqez\yrm) Naeny 8 7 ai>0 fOeQy ©

otherwise

Assume that the samples in the training d&taare idependent. Let;rbe the count of
samples inZ whereZ = ¢, and let N= M nj and A= M, ;. Then it holds that

0 ifzey
p(Z:Z-|@7I%):{ i, | _
! H otherwise

(6)

Proof: Apply Theorem 1 whemz € Z y, and use that (5) gives probability O for all
z € Y. A complete proof is given in [12].]

INFERENCE USING CAUSALITY INFORMATION

Let us now turn to the case when there is information aval#idit a certain feature is
equally distributed in two states. We call this kind of infationcausality information



In this section we show how this information can be integtatethe problem formula-
tion, and we also discuss a method for solving the problem.

Computing the Posterior Using Causality Information
The causality information is formally represented by

p(xi[cj,0,l%) = p(Xi|c, O, l%), (7)

wherel 4 is used to denote that causality information is given by egtate of knowl-
edge. Applying the product rule of probabilities on (7) weda

P(Xi,Cj|O, 1) P(Xi,C|O,l%)
- XiC.7O7Ia = XjCk,e,Ia TR

where p(cj|l¢) and p(cg|l¢) are the prior probabilities for the states and ¢, and
are assumed to be given by the background informdtiorThe prior probabilities are
known proportionality constants, and we can wptej|l4) = pjkp(ck|l#) for a known
constanpjx. Thus, (7) means thai(cj, |0, l¢) = pjkp(Ck, Xi|©,l«). We have that

pc &l0lx) = T pélely)= Y &, ®)

4 GZEi:Cj 4 GZEiﬁCj

whereZg o, = {{ € Z:§ = ((X1,---,&i,---,Xr),Cj) }, i.e. the set of all possible values
¢, of Z in whichx = ¢j andc = c;. Equations (7) and (8) give requirements in the form

6=px > 6. (9)

Z|EZEi ’Cj Z| GZéi.ck

To exemplify, consider the following case with two states; {ci,c,}, and one feature
X €{0,1}. Define® = (61, 62, 63, 64) by

P(X =0,C=cy1|®,1) = 6y, p(X =0,C=0c,|0,1) = 6, (10a)
P(X =1,C=c1|0,1) = 65, p(X =1,C=,|0,1) = b4. (10b)

Assume that the causality informatig{X,C = c1|l¢) = p(X,C = c;|l¢) is given.
Expressed in terms of the parameters this meangihatp126, and 63 = p126,.

Let L > O be the number of constraints in the form (7) given by the aliiysnfor-
mation. Each constraint gives one equatiom®ifior each possible value of the feature
considered in the constraint. L&t be the number of possible values of the feature con-
sidered in the:th constraint. Furthermor® should fulfill the requirement (1b). All in

all, there are I 5L ; Ki = | equations tha® should fuffill. In matrix form we write
E@=F, (11)

whereE € R"*M andF € R'. Note that (1b) requires that one rowlnconsists of ones
only, and that the corresponding rowknis also a one. In the example with parameters
as in (10), and witlp2 = 1, the matrices becomes

0 0 -1 1 0
E=|{1 -1 0 o, F=10|. (12)
1 1 1 1 1



To computep(Z|2,14) marginalize over the set of paramet&rshat fulfill (1)

PZIZ.16) = [ PZIO.Z.14)1(017.1¢)dO, (13)

The first factor in the integral (13) is independentotince® is known. Thus, we have
pP(Z|©,2,l¢) = p(Z|O,l¢), which is given by (1). To determine the second factor in
the integral (13), apply Bayes’ theorem

_ p(216,14)f(0]l¥)
HO1Z.1e) = p(Z1e.1) f(@liy)de

Since theN samples in training data are assumed to be independentyarsing (1) we
have thatp(2|0,1¢) = [N, p(di|©,1¢) = 6;*... 6™, wheres M, ni = N.

To determine the probability (©|l4), we investigate the prior informatioky. It
consists of two partsl,y = {I,Ig}. The first part,l, is the basic prior information,
stating that the probability is parameterized ®ythat® is Dirichlet distributed, and
knowledge about the prior probabilities for the classese $écond part,g, includes
the information tha® satisfies (11), as well as the valuesoéndF. By using Bayes’
theorem we have thdt(©|l,) = f(O|l,1g) O f(O[l)f(Ig|©,1), wheref(O|l) is given
by (2), andf(1g|O,l) = fee—r(©) is the distribution where all probability mass is
uniformly distributed over the s€g = {©: 0 € Q,EO® = F}. Thus, we have

Jog BTN ot M g £ (0)dO

Z=1|Y,\lg)= 0
P(Z =2|7.1¢) Jo, OOt gnrat  gmtam—lfo (@)do.

(14)

We will now give one example of how this integral can be solusthg variable substi-
tution.

A Solution Method Based on Variable Substitution

To solve the integrals in (14) substitute variab@s= B + Q®, where® are new
variables parameterizing the set®ffulfilling E® —F = 0. The matrixE € R"*M has
full row rank (otherwise there would be redundant inforraatabout the parameters
©, and rows could be removed frof). Thus, we can find a permutation matifx

suchthaEP=E =[E;, Ey_] whereE, € R'*! has full rank. The requirement (11) is
transformed to

EO=F, (15)

where PTO® = @ = (8y,...,6u)T. Similarly for the counts of training data
n = (ny,...,ny) and the hypothetical samples we haRén = fi = (fiy,...,fy)
andPTa = & = (&4,...,Gw). Multiply (15) by E;* to obtain

i E'Ema]®=E'F & Ou+EEv.6,1m=E'F, (16)



where®1| are the firstl rows of® and ®|+1M are the lasM — | rows. In in (16),
augmenl@1| with ®|+1 v and letd = ®|+1 M- Then, rearranging the terms gives

. — 1
e:{_EI EM']¢+[EI b} (17)
Im— Om—1x1
Q B

Let Q; andB; be thei:th rows inQ andB respectively. The® = Q;® + B;, and we can
write the integrals in (14) as

~T ~T l ~ ~ ~ ~ ~
/Qefl...eh‘;M _|15(9.—eio(q:))d@:/§2¢(Ql¢+51)k1...(QMq>+BM)kqua, (18)

whered(-) is the dirac delta functloreo( ) is the solution to the equatid P+ B; =0,
Qo = {®: QP+ B> 0}, andk; = k; (i}, &;).
The area of integration for the Ieft hand side of (18) is dateed by, for eachy in
=(@,...,ou-1), finding the lower boundary by solving the optimization geshs

min G (19)
Z=(01,.--,0M-1)
subjectto Q= >0
Ok=@, k=1,...,i—1

For the upper boundary, min is replaced by max in (19).
To investigate the computations in detail, return to thengia withE andb given by
(12). Here we use the identity matrix fBr Then the integral (18) becomes

1 [(ki+ko+ D) (ke+ke+1)
oltstik r+yi k) '

Although an analytical solution was easily found in the epltonsidered here, this is
generally not the case. To the authors knowledge, thereasosed formula for solving
the integral on the right hand side in (18) in general. Onesibdgy is to use Laplace
approximation [13], where the integrand is approximateaiyinnormalized Gaussian
density function. See [12] for more details on the Laplageraximation applied to the
current problem.

0. - . o~ o
[ (05— @05 yfegkafan -

FAULT DIAGNOSIS EXAMPLE

To illustrate the methods, consider the following faultssidication example with two-
dimensional feature vectot = (Xy, X2), wherex; € {0,1}, and the two faults (states)
C € {c1,¢,}. To simplify notation, assume that the classes have eqial gobability.
Enumerate the parameters as

C 1 2 1 2 1 2 1 2
X1 o o 1 1 0 0 1 1
Xo O 0o 0 O 1 1 1 1
P(zlOly) | 61 6, 63 64 65 65 6; 6g



(5,46 (7,48

X2

0,42 (3,4a

X1

FIGURE 1. Example of training data from state.

and assume that we are given the causality information

P(X1]0,C1,lg) = P(X1|O,C2,1%).

For this particular example, the integrals in (14) have tvenf
/QE(O-S— - - @) (Ot @ — )05 o — @ — @) g @ g g eledo,

where we have used the permutatidn= [Usg Us U7 Uz Ug Us Ug Ug], whereU =
na,E,O. Letaj=1,i =1,...8 and consider for example the case when there is no
data available from clasg, i.e.n; =0,i =1,3,5,7, while there is training data = 5,

ng = 10,n4 = ng = 0 available. This example is plotted in Figure 1 and meartthder
classc, the observatiorX; = 0 is more likely thanX; = 1. Since we have the causality
information thatX; is equally distributed under both classes we expect theredisen

X1 = 0 to be more likely under clags as well. This is verified by the computations

p(X1=0,Xo=1c=c1|Z,l¢) =p(Z ={5|Z,l¢) =
R AC
 Joe @O
pXi1=1Xo=1c=c1|Z,l¢)=p(Z={7|Z,l¢) =
 Joe 2(05— @1 — o — @) ¢,°d®
B Joe P @yede
and similar for the case wheke = 0. If causality information is not used, the probabil-

ities becomep(X1 =0,Xo =1,c=¢c1|Z,l) =p(X1 =1, X =1,c=¢c1|Z,l) =1/23~
0.043 by Theorem 1.

~0.41,

~ 0.035,



CONCLUSION

In the present work, it has been shown how the probabiligfierence problem can
be formulated using training data combined with prior infation given in terms of
response and causality information. This type of prioriinfation appears for example
in traditional fault diagnosis problems. It has been shoam this prior information can
be expressed as requirements on the parameters in théutisinis.

A theorem for using response information in the inferenabl@m has been given.
Furthermore, it has been shown how the causality informatan be introduced in the
computations, and it is discussed how to solve the compumstonceptually.

In the present work response and causality informationeah@s been considered one
a a time, but they can also be used together to improve theeimge further.

Introducing the prior information to the fault inferenceoptem can, as shown in
an example, improve the results significantly. It has beeswshthat the causality
information makes it possible to reuse training data frora state when considering
other states. This is particularly helpful when there isyanlimited amount of training
data available as is often the case in fault diagnosis.
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