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ABSTRACT

Prognostics and health management is a useful tool for more
flexible maintenance planning and increased system reliabil-
ity. The application in this study is lead-acid battery failure
prognosis for heavy-duty trucks which is important to avoid
unplanned stops by the road. There are large amounts of data
available, logged from trucks in operation. However, data
is not closely related to battery health which makes battery
prognostic challenging. When developing a data-driven prog-
nostics model and the number of available variables is large,
variable selection is an important task, since including non-
informative variables in the model have a negative impact
on prognosis performance. Two features of the dataset has
been identified, 1) few informative variables, and 2) highly
correlated variables in the dataset. The main contribution is a
novel method for identifying important variables, taking these
two properties into account, using Random Survival Forests
to estimate prognostics models. The result of the proposed
method is compared to existing variable selection methods,
and applied to a real-world automotive dataset. Prognostic
models with all and reduced set of variables are generated and
differences between the model predictions are discussed, and
favorable properties of the proposed approach are highlighted.

1. INTRODUCTION

Prognostics and health management are important parts to
prevent unexpected failures by more flexible maintenance
planning. The purpose is to replace a failing component before
it fails, but avoid changing it too often. Coarsely, there are
two main approaches in prognostics, data-driven and model-
based techniques, but also hybrid approaches that combine
the two are possible. Model-based prognostics uses a model
of the monitored system and the fault to monitor to predict
the degradation rate and Remaining Useful Life (RUL), see

Sergii Voronov et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

for example (Daigle & Goebel, 2011). Statistical data-driven
methods (Si, Wang, Hu, & Zhou, 2011) generate a prediction
model based on training data to predict RUL.

One relevant application is lead-acid starter battery prognosis
for heavy-duty trucks. Heavy-duty trucks are important for
transporting goods, working at mines, or construction sites,
and it is vital that vehicles have a high degree of availability.
Unplanned stops by the road can result in increased cost for
the company due to the delay in delivery, but can also lead
to damaged cargo. One cause of unplanned stops is a failure
in the electrical power system, and in particular the lead-acid
starter battery. The main purpose of the battery is to power
the starter motor to get the diesel engine running, but it is also
used to, for example, power auxiliary units such as heating
and kitchen equipment.

The main contribution in this work is a data-driven method for
variable selection when estimating a battery failure prognostics
model for automotive lead-acid batteries based on Random
Survival Forests (Ishwaran, Kogalur, Blackstone, & Lauer,
2008). In particular, two key properties of the application data
set are addressed 1) the number of informative variables is
assumed to be small, and 2) the data contains highly correlated
variables. Both aspects make building a prognostics model
more difficult and are the main motivating factors for the pro-
posed approach. Further, variable selection is also important
to better understand which factors that are correlated with
battery failure rate and also what is causing it. This work is
a continuation of (Voronov, Jung, & Frisk, 2016), where the
main focus was to analyze the automotive application case
study. Here, the main contribution is an extended analysis of
the variable selection problem that results in an augmentation
of the decision space with an extra dimension. Further, char-
acteristics of existing variable selection methods for Random
Survival Forests are analyzed and compared to the proposed
method, in particular for the case where there are many cor-
related variables in the data set. In addition, a basic variable
selection methodology is proposed.



2. PROBLEM FORMULATION

The main objective in this work is to use Random Survival
Forests (RSF) (Ishwaran et al., 2008) to identify, from data,
which variables are relevant for building RSF models for sur-
vival analysis. The problem of identifying important variables
is usually referred to as variable selection and is a relevant
topic in data-driven prognostics and machine learning in gen-
eral (Guyon & Elisseeff, 2003).

The prognostic problem studied here is to estimate the battery
lifetime prediction function based on recorded vehicle data.
The lifetime prediction function is defined as

BV(t; t0) = P (T > t+ t0 | T ≥ t0, V) (1)

where T is the random variable failure time of the battery and
V the vehicle data at time t = t0 when data is submitted into
the model, in our case when a vehicle comes to the workshop.
The function BV(t; t0) is a function of t and gives the proba-
bility that the battery will function at least t time units after t0.
The data V is recorded operational data for a specific vehicle.

2.1. Operational data

In this work a vehicle fleet database is provided by an indus-
trial partner, where one snapshot of data is available from each
vehicle including information regarding how the truck has
been used and the configuration of the specific truck. There is
also information if the battery has failed or not. The database
contains lots of information from the truck, not always related
to battery degradation, meaning that it is not known what avail-
able information is relevant for this specific task. Therefore, it
is relevant to identify which variables are relevant for battery
lifetime prediction. Previous works considering this vehicle
data set are presented in (Frisk & Krysander, 2015) and (Frisk,
Krysander, & Larsson, 2014).

The main characteristics of the database can be summarized
as follows:

• 33603 vehicles from 5 EU markets

• A single snapshot per vehicle

• 284 variables stored for each vehicle snapshot

• Heterogeneous data, i.e., it is a mixture of categorical and
numerical data

• Availability of histogram variables

• Censoring rate more than 90 percent

• Significant missing data rate

A main characteristic of the database is that there are no time
series available for a vehicle. It means that there is only one
snapshot V of the variables in the database from each vehicle.
Information describing how the vehicle has been used is stored
as histogram data representing how often specific sensor data
is measured within different intervals. As an example, there is

a histogram describing how much time the vehicle has been
subjected to different ambient temperatures.

Due to the non-specific purpose of the database, it is probable
that only a small number of variables from set V influence
prediction of the battery failure rate. Thus, identifying the
important variables in order to remove irrelevant variables,
should improve the performance of a battery prognosis model.

2.2. Motivation for variable selection

There are several reasons why variable selection is important
when working with data-driven models. First, it is possible
to improve prediction performance by reducing the number
of variables. The second motivation is better interpretability
of the results by clearly understanding which factors are im-
portant for battery failure. The third motivation is to reduce
model generation and prediction time by reducing the number
of variables used for generating the RSF.

An example why the quality of predictor may become bad if
the number of noisy (non-important) variables is significantly
large is given below. Synthetic data is created with the follow-
ing properties. Let h0 be a constant nominal hazard rate (Cox
& Oakes, 1984) for battery failures. The hazard rate

h(t) = lim
dt→0

P (t ≤ T < t+ dt | t ≤ T )
dt

(2)

represents the probability of a battery failure at a particular
time t. In this example, the hazard rate does not change with
time and the nominal hazard rate corresponds to an expected
10 years of battery life. It is assumed that there is one variable
v1 with an impact on battery hazard rate h as

h =


1 · h0, if v1 = 1

2 · h0, if v1 = 2

3 · h0, if v1 = 3

(3)

where h0 is the nominal hazard rate. Data for 3000 vehicles
is generated with a censoring rate about 80 percent. Different
numbers of noisy variables are included in the synthetic data
to observe how they change the RSF output.

First, only two noisy variables are added in addition to v1.
In the second case, 100 noisy variables are added. All noisy
variables are sampled from a normal distribution with zero
mean and unity variance. After generating two RSF models,
one for each set of variables, the reliability functions (Cox &
Oakes, 1984)

R(t) = P (T ≥ t) (4)

computed by the two RSF models are compared with the the-
oretical values of the reliability as shown in Figure 1. One
vehicle from each of the three classes was chosen and sub-
mitted to the forest to receive the predictions. It is shown
in Figure 1 (a) that predictions from RSF for the case of 2



noisy variables, dashed blue curves, are following the theo-
retical reliability functions, red solid curves, better than the
case with 100 noisy variables, see Figure 1 (b). However, the
error rate, which is a common performance measure for the
RSF, is similar for both cases. This means that the error rate is
not a good measure in prognostic terms. It is worth to notice
that in the simulation environment, information about the true
reliability curves is available. However, this is not the case for
the vehicle fleet database.
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Figure 1. Predictions from RSF with different number of noisy
variables.

The example motivates the relevance of finding the important
variables and at the same time removing noisy ones, especially
if number of important is small, in a set of data as expected
in the vehicle fleet database. The quality of the estimated
reliability function from the RSF is significantly improved
when the noisy variables are removed.

3. RANDOM SURVIVAL FORESTS

A brief description of Random Survival Forests and two stan-
dard methods for evaluating variable importance are presented.
For a more detailed description, the interested reader is re-
ferred to, for example, (Ishwaran et al., 2008) and (Ishwaran,
Kogalur, Chen, & Minn, 2011).

The difference between an ordinary decision tree classifier
and a random forest is that there is randomness of two kinds
injected into the process of estimating the model. The first
source is the usage of a bootstrap procedure. Each tree is
grown using its own bag of cases which are sampled from the
training set. Second, for each node in a tree, splitting variables
are selected from a randomly sampled subset. RSF extends
the RF approach to right-censored survival data, i.e., objects
in the study without experienced failure.

RSF is a data-driven method that can be used for computing
maximum-likelihood estimates of the reliability function (4).
It can be used to rewrite the lifetime prediction function (1) as

BV(t; t0) = P (T > t+ t0 | T ≥ t0, V) =
RV(t+ t0)

RV(t0)
(5)

The output from each tree T in the RSF is the Nelson-Aalen

estimate of the cumulative hazard rate, see (Cox & Oakes,
1984). Let tT1 < tT2 < . . . < tTN be N distinct event times
when failures of objects under study occur. Then, the Nelson-
Aalen estimate for tree T and vehicle (data) V is

ĤT (t|V) =
∑
tTj ≤t

fj,ni

sj,ni

(6)

where fj,ni
and sj,ni

are number of failures and survived
objects in terminal node ni of a tree T at event time tTj respec-
tively. Terminal node ni is determined by dropping vehicle
V down through the forest. The cumulative hazard estimate
Ĥ(t|V) for the whole forest is received by averaging over all
ĤT (t|V). Finally, the reliability function RV(t) from (5) is
obtained from the fact (Cox & Oakes, 1984)

RV(t) = e−Ĥ(t|V) (7)

and then BV(t; t0) can be computed from (5).

One measure of prediction error of RSF models proposed in
(Ishwaran et al., 2008) is based on pair-wise evaluation of
non-censored data, called concordance index (Harrell, Califf,
Pryor, Lee, & Rosati, 1982). In short, the measure takes into
consideration if the RSF model correctly predicts which of
the two samples that will fail first. However, note that it does
not take into consideration how accurate the prediction is with
respect to the actual failure time. Therefore, the error rates of
the two models in Figure 1 turn out to be more or less equal
even though the model with fewer variables is visibly more
accurate.

3.1. Variable selection using VIMP

One intuitive measure of variable importance is to measure
the increase in prediction error when ignoring a variable in the
RSF. This is done by randomizing the sample variable value
when used as a splitting variable in the forest (Ishwaran et
al., 2008). The idea is that a large increase in prediction error
indicates that a variable is important while a low increase (or
a decrease) indicates that the variable is not important. This
variable importance method is called VIMP and is a candidate
tool for variable selection by selecting a subset of the variables
with the highest VIMP values. However, previous works,
for example (Ishwaran et al., 2011), have shown that VIMP
can have problems when there are many correlated variables.
If several important variables are correlated they will share
importance and VIMP will be low even if the variables are
important. Thus, there is a risk that important variables will
be lost and result in degraded prediction performance.

3.2. Variable selection using Minimal depth

As an alternative to VIMP, a candidate measure called min-
imal depth for variable selection in RSF has been proposed,
see (Ishwaran et al., 2011) or (Ishwaran, Kogalur, Gorodeski,



Minn, & Lauer, 2010). The minimal depth for variable v is
defined as the average distance from the root to the closest
node where it appears in the RSF. Important variables should
have a higher probability to be selected as splitting variables,
compared to noisy variables, at low levels close to the root
when the trees are generated. Thus, the minimal depth for
important variables in the forest should be lower compared to
noisy variables. To identify important variables using minimal
depth, a threshold that distinguishes important variables from
noisy variables is derived in (Ishwaran et al., 2011) based on
the distribution for minimal depth Dv of noisy variables as

P (Dv = d | v is noisy variable) =

=

(
1− 1

p

)Ld
[
1−

(
1− 1

p

)ld
]
, 0 ≤ d ≤ D(T )− 1

(8)

whereD(T ) is the tree depth, ld is number of nodes at depth d,
Ld = l0+l1+. . .+ld−1 and p is number of candidate variables
chosen from when generating the splitting rule in a node. The
threshold can be selected as the mean value for the variable
distribution (8). If the minimal depth measure of a variable
mean value is less than the threshold, it is treated as important,
otherwise as noise. The minimal depth measure is evaluated
in (Ishwaran et al., 2011) and (Ishwaran et al., 2010) where
it is shown to be successful for finding important variables in
problems with few important variables and large number of
noisy ones, even when the data samples are relatively small.

4. VARIABLE DEPTH DISTRIBUTION METHOD

VIMP and minimal depth are the standard methods for vari-
able selection in RSF models. However, there are problems
connected with them. If many correlated variables are present
in the database, as expected in our case, variables share VIMP
between each other and it could happen that important vari-
ables will be lost if a VIMP based variable selection procedure
is applied. The second reason why VIMP can have problems is
that it is associated with error rate. As illustrated in Section 2,
low error rate does not always correspond to good prognostic
performance. Minimal depth does not depend on error rate and
the variable selection approach has shown good results when
applied to different databases in medical applications, see
(Ishwaran et al., 2011) and (Ishwaran et al., 2010). However,
it will be shown later that it did not work well when applied
to the vehicle database. Taking into account aforementioned
reasons, a new method for variable selection called Variable
Depth Distribution (VDD) is proposed.

The VIMP and minimal depth measures are applied to the vehi-
cle database and the results are shown in Figure 2 and Figure 3,
respectively. As a reference, three variables, only containing
Gaussian noise, are included in the data set. The computed
VIMP is positive for half of the variables, but the VIMP curve
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Figure 2. VIMP of variables in vehicle database sorted in
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Figure 3. Minimal depth analysis of vehicle data. Black
crosses correspond to 30 variables with highest VIMP and
red triangles to added noise variables. Red dashed line is a
threshold. Noisy variables should be located to the right of the
red dashed line.

starts to flatten out after the first 30 variables with highest
VIMP indicating that approximately 10% of the variables are
expected to be relevant for battery lifetime prediction. The
result of the minimal depth measure is presented in Figure 3
where the x axis is a mean value of the first appearance of
the variable in the forest, y axis is a mean value of the second
appearance of the variable in the forest, and the red dashed
line is the threshold computed based on (8). The figure shows
that most variables are identified as important, including the
added noisy variables. Since the noisy variables are identified
as important, it is an indication that minimal depth is not a
suitable method for the vehicle database.

Due to the limitations using the VIMP, as discussed above,
and the evaluation of the minimal depth measure in Figure 3,
a new measure of variable importance is proposed. The prin-
ciple of the proposed measure is similar to minimal depth,
but considers the probability of a splitting variable being used
at different levels of a tree. An important variable should be
used more often as a splitting variable at lower tree levels,
close to the root, and less at higher tree levels as illustrated in
Figure 4. If noisy variables are selected as splitting variables
the probability should not change as much between different
tree levels, maybe increase slightly for higher levels.
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Figure 4. Illustrative example of the probability that a given
splitting variable is used in a node at different tree levels.

Let d = 1, 2, . . . ,max(D(T )), where D(T ) is the tree depth,
be all possible tree levels in a RSF and v ∈ ν is a splitting
variable. Consider two random events, namely, choosing at
random level d in a tree and picking a variable v as splitting in
a tree. First event is similar to the problem of drawing a one
ball from the boxes of enumerated balls. First, define P (v, d)
which describes the joint probability that v is selected as a
splitting variable in a node at a tree level d. Then, according
to Bayes rule

P (d|v) = P (v|d)P (d)
P (v)

(9)

where, P (v|d) denotes the conditional probability that v is
selected as a splitting variable in a node given tree level d.
The probability P (d) is a prior probability to select a specific
level in a tree, independent of splitting variable, and P (v) is
the probability of selecting v as a splitting variable for the
whole tree. It is assumed that there is no prior knowledge of
P (d), therefore, the probability is set equal for all levels, i.e.,
P (d) = 1

max(D(T )) , ∀d. The conditional probability P (d|v)
can be interpreted as the a posterior probability of selecting
a tree level given that v is used as a splitting variable. The
posterior distribution (9) is here considered a relevant mea-
sure of the importance of the splitting variable v in the RSF.
The measure avoids the problem that, for example, VIMP has
where the importance will be shared between the correlated
variables. This is because (9) considers the probability of se-
lecting different tree levels conditioned that a splitting variable
is selected and does not depend on the probability of selecting
v which is reduced if variables are correlated.

The conditional probability (9) will be used as a variable im-
portance measure. However, the true probability is not known
because it depends on many different factors, for example,
the parameters when generating the RSF. It can be noticed
from (9) that P (d|v) ∝ P (v|d) and if P (v|d) is known the
value P (d|v) could be found as well. After growing the forest,
P (v|d) can be estimated by first computing

φv(d) =

∑
T

ld,v
ld

# of trees in RSF
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Figure 5. Examples of the estimated Pv(d) for five different
variables including one known noisy variable.

where ld,v is number of nodes at level d where v is splitting
variable. Equation (10) is then used to compute the estimate

Pv(d) =
φv(d)∑
k φv(k)

. (10)

which will be used when analyzing the RSF. An example
of different distributions Pv(d) are shown in Figure 5. Four
variables from the vehicle data and one added noise variable
are analyzed how they are used in a RSF generated from the
vehicle fleet database. The distribution Pv(d) of the noise
variable is almost evenly distributed between levels 3 to 30,
while variables related to battery usage, such as, if there is
kitchen equipment in the truck and information about the
battery voltage are significantly skewed to the left, indicating
that these variables are important for prognostics of the battery
health. The starter motor time variable has a higher probability
mass at lower tree levels compared to the noisy variable but
not as much as the kitchen equipment and battery voltage
variables. The real data in Figure 5 resembles Figure 4 and
the level of importance appears to increase with increased
probability mass at lower tree levels.

Instead of comparing the whole distribution Pv(d) for each
variable v, two representative features are considered, mean
and skewness,

µd = EPv
[d] (mean)

γd = EPv

[(
d− µd

σd

)3
]

(skewness)
(11)

According to Figure 4 and Figure 5, an important variable
should have high positive value of skewness and low value of
mean. These two features can be used alone to identify which
variables that are important. There is one drawback with this
approach, namely, it is possible that a noisy variable will be
selected by random at low level of a tree. It means it will have
values of skewness and mean as important variable. However,



for a noisy variable, this is likely to be a rare event. Therefore,
introducing information about how often a variable is used
as a third dimension can help to filter out noisy variables in
the area where important one should reside. Two possible
candidates to express this information are:

• The probability that v is used as a splitting variable in
each node P (v).

• The probability that v is used as a splitting variable in a
tree.

The first candidate can be estimated by counting the fraction
of nodes a variable is used in a tree and taking the average
over the whole forest. The second feature only considers if
a variable is used at all in a tree and can be estimated by
counting the number of trees in the forest where a variable is
used. As it is shown below, the third dimension, which take
into account how often variable is selected, can help identify
important variables more efficiently than if only mean and
skewness is used as in (Voronov et al., 2016).

4.1. Real data case study

The result of applying the first candidate to the vehicle data
as the third dimension together with mean and skewness (11)
is shown in Figure 6 where each dot represents one variable.
For comparison in the analysis, the 30 most important vari-
ables according to VIMP, are highlighted as black crosses and
variables rejected by minimal depth are highlighted as green
triangles pointing up. Also for the analysis the three added
noisy variables are highlighted as red triangles pointing right.

Note that the 30 variables with highest VIMP have similar
properties in Figure 6. They have low mean, high skewness,
and are used in a relatively large fraction of the nodes. This
can be interpreted as variables with high VIMP are used as
splitting variables in many nodes close to the root of each
tree. The noisy variables are also used in many of the nodes,
but are located further away from the root node, thus having
high mean and low skewness. There is also a number of
variables with low mean and high skewness but are used in
a smaller fraction of the nodes. Some of these variables are
binary, meaning that they cannot be used as splitting variables
more than once in a branch. Thus, they can be relevant for
the problem but will not be used in many nodes. Note that
the variables that are only used in a low fraction of nodes are
variables rejected by minimal depth in Figure 3.

Comparing with the results using minimal depth in Figure 3
the results in Figure 6 looks promising because it is possible
to find threshold to separate most of the important variables
given by VIMP from noisy ones. Here, it is assumed that there
are important variables among the 30 best given by VIMP,
but it does not mean that all are important. The minimal
depth method maps most of the variables below the threshold,
including the known noisy variables, which indicates that it
has difficulties with this data set. Note that Figure 6 clearly
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Figure 6. Skewness and mean of (10) of vehicle data com-
bined with fraction of nodes. Black crosses correspond to
30 variables with highest VIMP, green triangles are variables
rejected by minimal depth, and red triangles are added noise
variables.

illustrates what properties are important in this case study
according to VIMP and Minimal depth.

5. ANALYSIS

Before continuing the analysis of the vehicle fleet data using
the new variable selection method in the prognostic algorithm,
the properties of the proposed measure in Section 4 are further
analyzed. As mentioned in Section 4, there is no knowledge
which variables are important in the vehicle database. There
is an intuition that some of them could be informative, but it
is not clear how many they are and what their influence is on
the battery hazard rate.

In this section, two case studies are performed, namely, un-
derstanding the properties of the VDD method in a simulated
environment and how to select important variables using an
ad-hoc threshold based on simulations. First, a simple model
is considered where only one important variable influences the
life of the battery. Then, another example with a large number
of correlated variables is considered. A third example using
the simulated environment shows when the VDD method can
be more advantageous than VIMP. Finally, the VDD method
is applied to the vehicle fleet database where a set of important
variables is selected using on the proposed methodology.

5.1. Case study in simulated environment

To analyze the properties of the measure discussed in Section 4,
simulated battery failure data is generated which should re-
semble the general characteristics of the real vehicle database.
Similar to the example from Section 2, it is assumed that the
average battery lives for 10 years which is defined by a con-
stant hazard rate h0. One important variable v1 changes the



999

999.5

1000

1000.5

1001

-2

0

2

4

5
10

15
20N

um
be

ro
ft

re
es

us
ed

mean

skewness

Figure 7. Simulated data from 10000 generated vehicles with
censoring rate 80 percent. The important variable is marked
with a cross.

hazard rate h0 by a factor h1 defined as

h1 =



1, if v1 = 1

1.5, if v1 = 2

2.5, if v1 = 3

2.9, if v1 = 4

3.4, if v1 = 5

(12)

Thus, the hazard rate for a randomly generated vehicle would
be h1 · h0. After generating hazard rates for all vehicles,
simulated battery lifetimes are generated sampling from an
exponential distribution with mean µ = 1

h1·h0
. Censoring is

done by sampling censored times from a gamma distribution,
with shape parameter k = 1

7·h0
and scale parameter θ = 1,

and comparing achieved time values with failure ones. If
the battery lifetime is less than the censored time the battery
experienced failure, otherwise it is censored. The selected
gamma distribution gives a censoring rate of approximately
80 percent which is similar to the vehicle database.

In the first example, data from 10 000 vehicles is generated
and one hundred noisy variables are added to simulate non-
important variables. Half of them are normally distributed with
zero mean and unit variance and the other half are discrete
uniformly distributed numbers from 1 to 10. The result of
applying the proposed method is shown in Figure 7. The
known important feature is highlighted as a black cross and
noisy variables are shown as blue dots.

Figures 8 and 9 show the results for the same problem, but
using VIMP and minimal depth respectively. Using VIMP,
it is easy to identify the important variable, therefore, VIMP
and the method proposed in the paper gives similar results in
this case. In Figure 9, the red dashed line is the threshold that
separates important and non-important variables according to
(Ishwaran et al., 2011). Variables to the left of the threshold
should be important and variables to the right are not. Figure 9
shows that the specific threshold is not able to distinguish
important variables in this case. However, it is visible that it is
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Figure 9. Minimal depth of simulated data from 10 000 gener-
ated vehicles with censoring rate 80 percent. The important
variable is marked with a cross.

possible to manually select a threshold that could to that.

When using VIMP, correlated variables will share importance.
Therefore, there is a risk that they will be missed when choos-
ing a set of important variables since their individual impor-
tance will be low. In the proposed method, skewness and
mean of strongly correlated variables should be similar to each
other, because they should be chosen in a tree at the same
levels. To illustrate this, 20 correlated variables to the impor-
tant one from the previous example are added to the simulated
database. The number of vehicles in the simulated database
is kept unchanged as well as number of noisy variables and
censoring rate. Results are presented in Figures 10 - 12. Note
that the gap between important and non-important variables
using VIMP has almost vanished compared to the previous
example in Figure 8. At the same time, skewness and mean
of the 21 important variables are similar to the single variable
case in Figure 10 and Figure 7, respectively. The main differ-
ence is that the number of trees where each variable is chosen
has decreased. The minimal depth approach fails in this case
and is treating all important variables as non-important, see
Figure 12 which is consistent with the observation in Figure 6.
The proposed VDD method, as can be seen above, does not
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Figure 10. Simulated data from 10000 generated vehicles with
censoring rate 80 percent. The important strongly correlated
variables are marked as crosses.
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Figure 11. Computed VIMP for simulated data from 10000
generated vehicles with censoring rate 80 percent. The impor-
tant strongly correlated variables are marked as crosses.

suffer of problems with correlated variables like VIMP do.

An example showing why the VDD method could be more
advantageous in some situations with respect to VIMP is pre-
sented below. The case of one important variable and 20
correlated is considered. The number of vehicles was reduced
to 500 but keeping censoring rate unchanged. The number
of noisy variables is also increased to 400, equally splitting
between discrete and continuous noise. Results are shown in
Figure 13 - Figure 15. Note that the added third dimension
helps to separate important variables from noise in Figure 13.
VIMP performs worse than VDD, see Figure 14, where the
level of importance for some noisy variables is higher than
for important ones. The Minimal depth still have problems
identifying the important variables as shown in Figure 15.

5.2. Strategy for variable selection

As it was shown above, it is possible to set up a threshold that
separates important variables from noisy, however, it is not
straightforward. Further studies are required to understand
how information contained in the three dimensions could be
used to build a consistent and automatic algorithm for variable
selection. However, it is possible, using the results in the
paper and experience from simulated data, to suggest an ad-
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Figure 12. Minimal depth of simulated data from 10000 gen-
erated vehicles with censoring rate 80 percent. The important
strongly correlated variables are marked as crosses.
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Figure 13. Simulated data from 500 generated vehicles with
21 strongly correlated important variables, 400 noisy vari-
ables, and censoring rate 80 percent. Important variables are
highlighted with crosses.

hoc strategy.

Variables from the vehicle database are plotted in Figure 16
where the number of trees a variable is used in is used as the
third dimension. Important variables should be used in most
of the trees. Therefore, selecting a threshold that sorts out
variables that are not used in many trees, for example 800,
should give a first set of candidates of important variables.
It could be the case that important variables are used less if
there are many correlated variables, however, in that case it is
expected that skewness and mean would be similar for those
variables, Section 5.1. Then, there should be variables that are
grouped in the skewness-mean plane which is not observed
for the variables with values of number of trees less than 800.
Therefore, it is assumed that there are no important variables
in that area. It was shown in Section 5.1 that for some difficult
cases, noisy variables are used as splitting variables more
often than important variables, see Figure 13. Setting up a
threshold with aforementioned strategy will not work for that
case. This situation is not considered in this case study, but a
more general strategy for selecting the threshold is required
for a final version of the variable selection algorithm.
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Figure 14. Computed VIMP of simulated data from 500 gen-
erated vehicles with with 21 strongly correlated important
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Important variables are highlighted with crosses.
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Figure 15. Minimal depth of simulated data from 500 gen-
erated vehicles with with 21 strongly correlated important
variables, 400 noisy variables, and censoring rate 80 percent.
Important variables are highlighted with crosses.

The second step is to project candidate important variables
into the skewness-mean plane and to set up a new threshold
to remove noisy variables. This step is illustrated in Fig-
ure 17. Important variables should have high positive value
of skewness and low value of mean. The threshold is manu-
ally selected to reject the cloud of variables which are treated
as noisy. This step is similar to approach in (Voronov et al.,
2016). However, number of variables that are considered to
be important is less than in the previous paper due to the aug-
mentation of two dimensional space with the extra dimension.
The methodology for variable selection could be summarized
in the following steps:

1. Set up threshold in the number of trees dimension to filter
out noisy variables which are seldom used.

2. Project remaining variables in the skewness-mean plane
and set up a threshold that distinguishes important vari-
ables as the subset of variables with high positive value
of skewness and low value of mean.
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Figure 16. Setting up threshold for the vehicle database. x
and y axis are skewness and mean of (10) respectively, and z
axis is the number of trees in forest variable was chosen. Red
points are candidates for important variables, blue dots - noisy
variables, gray plane - threshold value.
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Figure 17. Setting up threshold for the vehicle database. x and
y axis are skewness and mean of (10) respectively. Red points
correspond to important variables, blue dots - to noisy.

6. CASE STUDY: BATTERY FAILURE PROGNOSTICS

Using the manually chosen thresholds as described in Section
5 and demonstrated with the means of Figures 16-17, 34 of
the variables, i.e. about 12 percent, are selected and treated
as important. The performance of the RSF using the reduced
set of variables is compared to using all variables. The perfor-
mances of the generated RSF models are evaluated using error
rate. However, as discussed earlier in Section 2, the error rate
is not an optimal measure since the two models in Figure 1
achieves similar error rates while their prediction quality is
significantly different.

An RSF is generated with 1000 trees and a minimal terminal
node size of 200 for both variable sets, the 34 selected vari-
ables and all variables. The error rate for the case with all
variables is 0.2011, and for the reduced set, 0.2177, which
are comparable in magnitude. It is worth to emphasize that
node size 200 is here used for growing the forest for predictive
purposes and node size 2 for variable selection.



For the analysis, 10 vehicles with battery failures and 10 with-
out are selected randomly as validation data. These vehicles
are then used as inputs in the RSF to compute the lifetime
prediction functions BV(t; t0) and the results are shown in
Figures 18 and 19, respectively, for vehicles with battery prob-
lems and healthy ones.
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(a) RSF using all variables
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(b) RSF using selected subset of variables

Figure 18. Lifetime prediction function BV(t; t0) for vehicles
with battery failures.

In Figure 18 (b), vehicles are clearly more grouped compared
to Figure 18 (a) where most vehicles have faster decaying
lifetime prediction. The result seems reasonable since life-
time of the batteries of grouped vehicles with fast decaying
lifetime prediction functions BV(t; t0) in Figure 18 (b) are
within 2 to 3 time units which is quite long life for batteries.
Therefore, fast decaying lifetime prediction functions for those
vehicles should be expected. Battery lifetime of the vehicle
corresponding to the purple curve in Figure 18 is about 0.14
time units. However, the vehicle failed early and value of
lifetime function would not allow to predict the failure, but
it is possible that the cause of the battery problem is not so
common in the vehicles from the database. In general, it could
be seen that vehicles that lived longer are well separated from
the ones that lived shorter. Of cause, it could not be used as
the evaluation of the method, but as a positive sign. Note that
the lifetime function of the vehicle which corresponds to the
green curve in Figure 18 has changed significantly between
the two figures. This vehicle operated for about 2.5 time units.
It has not yet failed, but should be likely to fail soon. That is
why the lifetime prediction function decays faster than for the
other vehicles. It should be noticed that we need a measure
for assessing predictive performance of RSF, and, when it is
available, more can be said about the influence of variable
selection on prognostic capabilities of the model.
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Figure 19. Lifetime prediction function BV(t; t0) for censored
vehicles.

7. CONCLUSIONS

A method for variable selection and variable importance anal-
ysis using random survival forests is proposed and analyzed.
Main motivating factors for the approach are 1) small number
of informative variables, and 2) highly correlated variables in
the data set. Analyzing the feature space in Figure 6 indicates
that it is possible to distinguish how VIMP and Minimal depth
determines which variables that are considered important and
this should be analyzed further. The proposed method is evalu-
ated in the industrially relevant problem of heavy-duty vehicle
battery failure prognostics and evaluated using real vehicle
fleet data and simulated data. Simulated data shows that im-
portant variables can be distinguished from noisy variables
even in difficult cases. The case study using real data shows
that a prognosis model with 12% of the available variables
achieves comparable error-rate with using all variables.
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