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ABSTRACT

Many model based solutions to diagnosis problems in SI-
engines have been discussed in literature. However most
presented methods are useful only for a specific class of
faults. Here a systematic and more general method is pre-
sented. With this method, which is based on a structure
of hypothesis tests, it is possible to diagnose a large vari-
ety of different types of faults. The method is applied to
the diagnosis of sensor-faults and leakage in the air-intake
system of an SI-engine. The features of the method are
demonstrated by using experiments on a real SI-engine.
The experiments show that the method is capable to di-
agnose both leakage and different types of sensor faults.
Both detection and isolation are considered. It is for ex-
ample possible to distinguish between a manifold leak and
a manifold pressure sensor fault.

1 INTRODUCTION

On-board diagnosis of car engines has become increas-
ingly important because of environmentally based legisla-
tive regulations such as OBDII (On-Board Diagnostics)
[1]. Other reasons for incorporating diagnosis in vehicles
are repairability, availability and vehicle protection. To-
day, up to 50% of the engine management systems are
dedicated to diagnosis.

One important area of SI (Spark Ignition) engine diag-
nosis is the diagnosis of all sensors connected to the air-
intake system. Another important problem is the diagno-
sis of leakage in the air intake system. These two diagnosis
problems were investigated separately in two previous pa-
pers [2] and [3] respectively. In both papers, the principle
of model based diagnosis was used and although the tech-
nique is not fully developed, it is obvious from these results
and also other works, that there is much to gain by using
a model based approach to diagnosis of SI-engines.

In the first paper [2], sensor faults were modeled as addi-
tive signals and the diagnosis method used the principle of
structured residuals [4] in combination with diagnostic ob-
servers. In the second paper [3], leakages were physically

modeled as air-flows through restrictions and the diagno-
sis problem became a parameter estimation problem. The
two papers show that each solution works well and good
performance is obtained. However, the two solutions are
so different in nature that they can not easily be combined
into a single diagnosis system that can diagnose both types
of faults simultaneously.

Thus the challenge, and the objective of this paper, is
to find a systematic diagnosis method that is able to solve
both the sensor and the leakage diagnosis problem. One
of the issues that needs to be addressed is the isolation
problem, i.e. to distinguish between different faults. For
instance, a leakage can easily be mis-interpreted as a air-
mass flow sensor fault if not extra care is taken.

The diagnosis method presented here is general and in-
cludes the previous solutions as special cases. The basic
framework is a structure of hypothesis tests and the gen-
eral ideas are described in Section 2. The goal then, is to
demonstrate these ideas on the air-intake system of a real
production engine. The engine is described and modeled in
Sections 3 and 4. This particular engine is turbo-charged
but all results are also valid for a naturally aspirated SI-
engine. In Section 5, the general diagnosis ideas are further
developed and a working diagnosis system is presented.
Section 6 contains a validation on the real engine and it
is shown that the diagnosis system is able to distinguish
between different faults, e.g. leakage and sensor faults.
Finally Section 7 deals with on-line implementation issues
and Section 8 contains the conclusion.

2 MODEL BASED DIAGNOSIS USING STRUC-
TURED HYPOTHESIS TESTS

This section presents a new general method for model
based diagnosis. The approach is to use a structure of
hypothesis tests. As a result of these general ideas, the
model of the system can be fully utilized in a systematic
way. This implies that it is possible to diagnose a large
variety of different types of faults.
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2.1 Fault Modes

For constructing a model based diagnosis system, a model
of the process is needed. This model must contain the
process behavior in the fault free case and also include
a definition of different faults and how faults affect the
process. We classify the different faults into fault modes.
For example all manifold leaks, regardless of their area,
belong to the fault mode “manifold leak” which we will
denote ML. Another fault mode is the case “no fault”
which we will denote NF .

The exact fault of the process is described by the fault
state θ, which mostly is vector valued. The set of all possi-
ble fault states is denoted Θ and the different fault modes
divides Θ into disjunct subsets Θγ . Thus, each fault mode
γ is associated with a subset Θγ . In addition, each fault
mode γ is associated with a model of the process Mγ(θγ),
where θγ is a part of the vector θ. For each fault mode,
the other parts of the vector θ, are assumed to be fixed to
some constant. That is, if we know that the fault mode of
the process is γ and also that θγ has a fixed value, then the
fault state θ is uniquely specified. The parameter space of
θγ for the case fault mode γ is present, will be denoted Ξγ .
The set of all models, i.e. M(θ) = {Mγ(θγ)} is the total
model needed to construct the diagnosis system.

For an example, consider a system described by the fol-
lowing equations:

ẋ =f(x, u) (1a)
y1 =h1(x) + b1 (1b)
y2 =h2(x) + b2 (1c)
b1 ≥0 (1d)
b2 ≥0 (1e)

The constants b1 and b2 represents sensor bias faults and it
is assumed that only positive biases can occur. Three fault
modes are considered: no fault NF , a bias in sensor 1 B1,
and a bias in sensor 2 B2. The fault state of the system is
described by the vector θ = [b1 b2]. The model associated
with fault mode B1 is MB1(b1) and obtained from (1)
by fixing b2 = 0. That is, we have that θB1 ≡ b1. The
parameter space ΞB1 becomes ]0,∞]. Similarly the model
associated with fault mode B2, obtained from (1) by fixing
b1 = 0, is MB2(b2) and the parameter space ΞB2 becomes
]0,∞]. The model associated with fault mode NF isMNF

and obtained from (1) by fixing b1 = b2 = 0. Thus in this
case, there is no parameter θNF .

2.2 Structured Hypothesis Tests

This section describes a principle of structured hypothe-
sis tests which can be seen as a generalization of the well
known principle of structured residuals [4]. Using the prin-
ciple of structured hypothesis tests, the diagnosis system
has a structure according to Figure 1. The inputs to the
diagnosis system is the process input u and the process
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Figure 1 The diagnosis system using the principle of
structured hypothesis tests.

output y. The signal d represents inputs that are un-
known to the diagnosis system, e.g. disturbances. The
output of the diagnosis system is the diagnosis statement,
which contains information of which fault modes that can
explain the behavior of the process. Then the diagnosis
system consists of a set of hypothesis tests, HT 1 to HT
n, and the decision logic.

The null hypothesis for the i:th hypothesis test, i.e. H0
i ,

is that the fault mode, present in the process, belongs to a
specific set Mi of fault modes. The alternative hypothesis
H1

i is that the present fault mode does not belong to Mi.
This means that if hypothesis H0

i is rejected, and thus H1
i

is accepted, the present fault mode can not belong to Mi.
In this way, each separate hypothesis test contributes with
a piece of informations about which fault modes that can
be present. The purpose of the decision logic is then to
combine this information to form the diagnosis statement.

For example, let Fp denote the present fault mode and
assume that the diagnosis system contains the following
set of three hypothesis tests:

H0
1 : Fp ∈ M1 = {NF, F1} H1

1 : Fp ∈ MC
1 = {F2, F3}

H0
2 : Fp ∈ M2 = {NF, F2} H1

2 : Fp ∈ MC
2 = {F1, F3}

H0
3 : Fp ∈ M3 = {NF, F3} H1

3 : Fp ∈ MC
3 = {F1, F2}

Then if only H0
1 is rejected, we can draw the conclusion

that Fp ∈ MC
1 = {F2, F3}, i.e. the present fault mode is

either F2 or F3. If both H0
1 and H0

2 are rejected, we can
draw the conclusion that Fp ∈ MC

1 ∩ MC
2 = {F2, F3} ∩

{F1, F3} = {F3}, i.e. the present fault mode is F3.
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From the above example, it is clear that the decision
logic is a simple intersection operation. The diagnosis
statement S then becomes a set of fault modes that can
be expressed as

S =
⋂
i

H1
i accepted

MC
i (2)

From this definition of S, it is obvious that the diagnosis
statement can contain more than one fault mode. This
feature corresponds well to a desired functionality since
in cases where it is difficult or even impossible to decide
which fault mode has occured, it is very useful for a service
technician to get to know that there are more than one
fault mode that can explain the behavior of the process.
If the diagnosis system was forced to pick out one fault
mode in cases like this, it is highly probable that a mistake
is made and wrong fault mode is picked out.

Much of the engineering work involved in constructing a
diagnosis system is to use the modelM(θ) to construct the
individual hypothesis tests. How the hypothesis tests are
constructed depends on the actual case and only for some
specific classes of systems, general design procedures have
been proposed, e.g. linear systems. The actual design of
hypothesis tests for the air-intake system will be covered
in Section 5.1.

3 EXPERIMENTAL SETUP

All experiments were performed on a 4 cylinder, 2.3 liter,
turbo-charged, spark-ignited SAAB production engine. It
is constructed for the SAAB 9-5 model. The engine is
mounted in a test bench together with a Schenck “DY-
NAS NT 85” AC dynamometer. Both during the model
building and the validation, the engine were run according
to Phase I+II of the FTP-75 test-cycle. The data for the
test cycle had first been collected on a car with automatic
transmission.

Leaks were applied by using exchangeable bolts. One
bolt were mounted in the wall of the manifold and the
other in the wall of the air tube in front of the throttle. The
exchangeable bolts had drilled holes of different diameters
ranging from 1 mm to 8 mm.

Data were collected by a DAQ-card mounted in a stan-
dard PC. All data were filtered with a LP-filter with a
cutoff frequency of 2 Hz.

4 AIR-INTAKE SYSTEM MODEL

A schematic picture of the air-intake system is shown in
Figure 2. Ambient air enters the system and an air-mass
flow sensor measures the air-mass flow rate ṁ. Next, the
air passes the compressor side of the turbo-charger and
then the intercooler. This results in a boost pressure pb and
temperature T that is higher than ambient pressure and
temperature respectively. Next, the air passes the throttle

and the flow ṁth is dependant on pb, T , the throttle angle
α, and the manifold pressure pm. Finally the air leaves
the manifold and enters the cylinder. This flow ṁcyl is de-
pendant on pm and the engine speed n. Also shown in the
figure are the two possible leaks: the boost leak somewhere
between the air-mass flow sensor and the throttle, and the
manifold leak somewhere in the manifold.

In this work, the air-intake system is modeled by a mean
value model [5]. This means that no within cycle variations
are covered by the model. Because there is no need for
extremely fast detection of leakage, it is for the model,
sufficient to consider only static relations. The modeling
work, including identification of parameters, was presented
in [3]. Below we give a short description of the model for
the fault-free system and also the models of the leakages.

4.1 Fault-Free Model

The model for the fault-free system is described by the
following equations

ṁ = ṁth (3a)
ṁth = ṁcyl (3b)

ṁth = f(pb, α, pm) =
CdAthpb√

RT
Ψ(

pm

pb
) (3c)

Ath = A1(1− cos(a0α + a1)) + A0 (3d)

Ψ(
pm

pb
) =




√
2κ

κ−1

{(
pm

pb

) 2
κ −

(
pm

pb

)κ+1
κ

}

if
(

pm

pb

)
≥

(
2

κ+1

) κ
κ−1

√
κ

(
2

κ+1

) κ+1
κ−1

otherwise

(3e)

ṁcyl = g(pm, n) (3f)

The equations describing the throttle air-flow ṁth are the
commonly used equations describing flow through a re-
striction [6] [7]. From now on, it is assumed that the tem-
perature T is constant, which explains why the function
f(pb, α, pm) is not dependent on T . The function g(pm, n)
is non-linear and static and here represented by interpo-
lation in a map. For more details on the model and espe-
cially identification and validation, see [3].

4.2 Boost Leakage Model

When a leak occurs, air will flow out of or into the air-
intake system depending on the air pressure compared to
ambient pressure. In the engine used in this work, the
boost pressure is during normal operation always higher
than ambient pressure. This means that the air flow
through a boost leak will always be in the direction out
from the air tube. This air flow is modeled as an air
flow through a restriction, like the model for flow past
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Figure 2 The turbo-charged engine. Air-mass flows that
are discussed in the text are marked with gray arrows.

the throttle. The equation describing this air flow is

ṁboostLeak = kbhb(pb) = kb
pb√
T

Ψ(
pamb

pb
) (4)

where it is assumed that the ambient pressure pamb is con-
stant. The parameter kb is proportional to the leakage area
and therefore denoted equivalent area.

The model for the whole air-intake system with a boost
leak present is obtained by replacing Equation (3a) with

ṁ = ṁth + ṁboostLeak

4.3 Manifold Leakage Model

During most part of the operation of the engine, the mani-
fold pressure is below ambient pressure. Therefore a man-
ifold leak will mostly result in an air flow in the direction
into the manifold. This flow is modeled in the same way
as the model of flow through boost leaks, i.e.

ṁmanLeak = kmhm(pm) = km
pamb√
Tamb

Ψ(
pm

pamb
) (5)

The model for the whole air-intake system with manifold
leak present is obtained by replacing Equation (3a) with

ṁth + ṁmanLeak = ṁcyl (6)

In the case the manifold pressure is higher than ambient
pressure, which can occur because of the turbo-charger,
the leak air-flow will be in the opposite direction. This

means that the term ṁmanLeak in (6) will change sign and
pamb and pm in (5) are interchanged.

Both leakage models were validated in [3] and good
agreement with real data was obtained.

5 DIAGNOSIS SYSTEM

This section presents the design of a diagnosis system in
accordance with the principles discussed in Section 2. The
objective is not to present a complete design but rather to
give some examples that illustrates solutions for some typi-
cal cases. The different fault modes that will be considered
are listed in Table 1. As seen, only fault modes consisting
of single faults are considered. This corresponds to an as-
sumption that only one fault can be present at the same
time. The definitions of each fault mode, i.e. Mγ(θγ), are
given in Section 5.2, where the construction of the hypoth-
esis tests are described.

No Fault NF
Boost Leak BL
Manifold Leak ML
Boost Pressure Sensor Bias BB
Manifold Pressure Sensor Gain-Fault MG
Manifold Pressure Sensor Cut-Off MC
Throttle Sensor Linear Fault TLF
Air Mass-Flow Sensor Loose Contact ALC
Boost Pressure Sensor Arbitrary Fault BAF

Table 1 The fault modes considered.

5.1 Hypothesis Tests

To develop the actual hypothesis tests, we first need to
decide the set of hypotheses to test. Because of the single
fault assumption, it is natural to use one hypothesis test
for each fault mode. Thus the set of hypothesis tests can
be indexed by γ, i.e. HTγ , and becomes

H0
γ : Fp ∈ Mγ (7a)

H1
γ : Fp ∈ MC

γ (7b)

γ ∈ {NF, BL, ML, BB, MG, MC, TLF, ALC, BAF}

By using the definition of the sets Θγ , these hypothesis
tests can also be written

H0
γ : θ ∈ Θγ

H1
γ : θ ∈ ΘC

γ

It turns out that for most fault modes, the limit when
the fault size goes to zero is equal to the fault mode “no
fault”. For example, a very small leakage is in practice
the same as “no fault”. This means that when fault mode
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NF , i.e. no fault, is present, most null hypothesis can not
be rejected. The implication is that almost all sets Mγ

must include NF .
For each hypothesis test HTγ , we need to find a test

quantity (often also called test statistic) and a rejection
region. The sample data x for each hypothesis is

x =
[
u(t0) u(t0 + 1) . . . u(t0 + N)
y(t0) y(t0 + 1) . . . y(t0 + N)

]

To simplify the notation, we have assumed that unit
sample-time is used. The test quantity is a function Tγ(x)
from the sample data x, to a scalar value which is to be
thresholded by a threshold Jγ . Thus the rejection region
is defined implicitly by the threshold Jγ together with the
test quantity Tγ(x). The hypothesis test HTγ is then de-
fined as

Tγ(x) > Jγ reject H0
γ , i.e. accept H1

i (9a)

Tγ(x) < Jγ do not reject H0
γ (9b)

This means that we need to design a test quantity Tγ(x)
such that it is low if the data x match the hypothesis H0

γ ,
i.e. a fault mode in Mγ can explain the data. Also if the
data come from a fault mode not in Mγ , Tγ(x) should be
high.

As test quantity, we will use the following function:

Tγ(x) = min
θγ∈Ξγ

Vγ(θγ ,x) (10)

where Vγ(θγ ,x) is a norm measuring the validity of the
model Mγ(θγ) with respect to the data x. To construct
this norm, several principles are possible. One possibility
is to use a sum of prediction errors and if there is statis-
tical knowledge, also the likelihood function can be used.
Since the modeling work, presented in Section 4, does not
include statistical assumptions, it is in this work natural
to use test quantities based on a sum of prediction errors.

In the special case when the fault mode γ contains only
one specific fault, i.e. the fault mode corresponds to one
specific value of θ, then the model is written Mγ and the
test quantities becomes

Tγ(x) = Vγ(x) (11)

5.2 Description of the Hypothesis Tests

In conclusion, the problem of designing hypothesis test
HTγ consists of determining Vγ(θγ ,x), Ξγ , and Jγ . Below
we present the design of Vγ(θγ ,x) and Ξγ for all hypothesis
tests corresponding to the fault modes in Table 1. The
fault state vector considered is

θ = [kb km bpb
gpm gα bα ν c1(t) c2(t)]

No Fault NF

The model MNF corresponding to this fault mode is ob-
tained by using the fault-free model (3) in combination
with

ṁs =ṁ (12a)
pb,s =pb (12b)

pm,s =pm (12c)
αs =α (12d)
ns =n (12e)

where the index s denotes that for example ṁs is the sen-
sor signal in contrast to ṁ which is the physical quan-
tity. The fault mode NF corresponds to one specific
value of θ which, in accordance with (11), means that
TNF (x) = VNF (x). The norm VNF (x) is defined as

VNF (x) =
1
N

N∑
t=1

(
ṁs − f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)

)2

Note that, to simplify notation, we have dropped the time-
argument of signals. Using this norm implies that if the
present fault mode is NF , the test quantity becomes small
and for all other fault modes, the test quantity becomes
large. In a hypothesis test defined by (7) and (9) this
means that MNF = {NF}.

Boost Leak BL

The model MBL(kb) corresponding to this fault mode
is obtained by using the model described in Section 4.2
together with the identities (12). The scalar parameter
kb defines the equivalent area of the leakage and is con-
strained by kb ∈ ΞBL = ]0, 0.5]. The norm VBL(kb,x)
is

VBL(kb,x)=
1
N

N∑
t=1

(
ṁs−f(pb,s, αs, pm,s)−kbhb(pb,s)

)2+

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)

)2

Using this norm means that MBL = {NF, BL}. The ex-
pression of VBL(kb,x) contains two terms even though only
one of them is affected by the fault. The reason to include
the second term is, as was said in the end of Section 5.1,
that we want the test quantity to become large for other
faults, not belonging to fault mode BL.

Manifold Leak ML

The model MML(km) is obtained in analogy with
MBL(kb). The scalar parameter km is constrained by
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km ∈ ΞML = ]0, 0.5] and the norm VML(km,x) is

VML(km,x) =
1
N

N∑
t=1

(
ṁs − f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)+ kmhm(pm,s)

)2

Using this norm means that MML = {NF, ML}.

Boost Pressure Sensor Bias BB

The model MBB(bpb
) corresponding to this fault mode is

obtained by using the fault free model (3) together with
identities (12) but replacing (12b) with pb,s = pb + bpb

.
The scalar parameter bpb

is constrained by bpb
∈ ΞBB =

[−30, 0[ ∪ ]0, 30] and the norm VBB(bpb
,x) is

VBB(bpb
,x) =

1
N

N∑
t=1

(
ṁs − f(pb,s − bpb

, αs, pm,s)
)2 +

+
1
N

N∑
t=1

(
f(pb,s − bpb

, αs, pm,s)− g(pm,s, ns))
)2

Using this norm means that MBB = {NF, BB}.

Manifold Pressure Sensor Gain-Fault MG

The model MMG(gpm) corresponding to this fault mode
is obtained by using the fault free model (3) together with
identities (12) but replacing (12c) with pm,s = gpmpm.
The scalar parameter gpm is constrained by gpm ∈ ΞMG =
[0.5, 1[ ∪ ]1, 2] and the norm VMG(gpm ,x) is

VMG(gpm ,x) =
1
N

N∑
t=1

(
ṁs − f(pb,s, αs, pm,s/gpm)

)2
+

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s/gpm)− g(pm,s/gpm , ns))

)2

Using this norm means that MMG = {NF, MG}.

Manifold Pressure Sensor Cut-Off MC

This fault mode represents a cut-off in the electrical con-
nection to the manifold pressure sensor. The model
MMC(ν) corresponding to this fault mode is obtained by
using the fault free model (3) together with identities (12)
but replacing (12c) with pm,s = νgpm . The scalar parame-
ter ν takes value 1 in the fault-free case and value 0 when
there is a cut-off present. This means that ΞMC = {0}.
This fault mode corresponds to exactly one value of θ
which implies that TMC(x) = VMC(x). The norm VMC(x)

is defined as

VMC(x) =
1
N

N∑
t=1

p2
b,s

Using this norm means that MMC = {MC}. Note that,
in spite of its simpleness, this test quantity is very large
for all θ /∈ ΘMC . i.e. faults not belonging to MC. This
is the reason why the fault mode NF is not included in
MMC .

Throttle Sensor Linear Fault TLF

The model MTLF ([gα bα]) corresponding to this fault
mode is obtained by using the fault free model (3) to-
gether with identities (12) but replacing (12d) with αs =
gαα + bα. The vector valued parameter [gα bα] is con-
strained by [gα bα] ∈ ΞTLF = R

2 − {1, 0} and the norm
VTLF ([gα bα],x) is

VTLF ([gα bα],x) =

=
1
N

N∑
t=1

(
ṁs − f(pb,s, (αs − bα)/gα, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, (αs − bα)/gα, pm,s)− g(pm,s, ns))

)2

Using this norm means that MTLF = {NF, TLF}.

Air Mass-Flow Sensor Loose Contact ALC

The model MALC(c1(t)) corresponding to this fault mode
is obtained by using the fault free model (3) together with
identities (12) but replacing (12a) with ṁs(t) = ṁ(t)c1(t).
The parameter c1(t) is a stochastic process taking values
such that c1(t) ∈ {0, 1}. This means that the parameter
space ΞALC becomes ΞMG = {0, 1}N−{1}N and the norm
VALC(c1(t),x) is

VALC(c1(t),x) =
1
N

N∑
t=1

(
ṁs − c1f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns))

)2

Using this norm means that MALC = {NF, ALC}

Boost Pressure Sensor Arbitrary Fault (HTBAF )

The model MMG(c2(t)) corresponding to this fault mode
is obtained by using the fault free model (3) together with
identities (12) but replacing (12b) with pb,s = pb + c2(t).
The parameter c2(t) is a stochastic process taking arbi-
trary values. This means that the parameter space ΞBAF
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becomes ΞBAF = R
N−{0}N and the norm VBAF (c2(t),x)

is

VBAF (c2(t),x) =
1
N

N∑
t=1

(
ṁs− f(pb,s− c2, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s − c2, αs, pm,s)− g(pm,s, ns))

)2

Using this norm means that MBAF = {NF, BAF}.

5.3 Practical Considerations

The procedure to compute (10), i.e. to minimize Vγ(x),
has not been addressed so far. In many cases the mini-
mization procedure required is quite straightforward. The
technical details are not going to be discussed here, but
the interested reader is referred to general optimization
literature, e.g. [8], (see also the discussion in Section 7).
However, for some of the hypothesis tests defined above,
the computational load of doing the actual minimization in
(10) can be quite heavy. One solution is to use a two-step
procedure presented below.

First find a θ̂γ that minimizes another function
V̄γ(θγ ,x), i.e.

θ̂γ = arg min
θγ∈Ξγ

V̄γ(θγ ,x)

Then use as test quantity Tγ(x) = Vγ(θ̂γ ,x).
If V̄γ(θγ ,x) is chosen such that the minimizing value θ̂γ ,

under H0
γ , is close to the value that minimizes Vγ(θγ ,x),

then it is reasonable to assume that

min
θγ∈Ξγ

Vγ(θγ ,x) ≈ Vγ(θ̂γ ,x)

This means that if we use the test quantity Tγ(x) =
Vγ(θ̂γ ,x), we can expect approximately the same result
compared to if (10) was used.

In the implementation of the the hypothesis tests de-
fined above, this two-step procedure is used in the tests
HTBL, HTML, HTALC , and HTBAF . In all these four
cases, V̄γ(θγ ,x) is chosen as one of the two terms in
Vγ(θγ ,x).

For HTBL and HTML, V̄γ(θγ ,x) is

V̄BL(kb,x) =
1
N

N∑
t=1

(
ṁs−f(pb,s, αs, pm,s)−kbh(pb,s)

)2

and

V̄ML(km,x) =
1
N

N∑
t=1

(
ṁs − f(pb,s, αs, pm,s)

)2

respectively. For the test HTALC , V̄ALC(c1(t),x) is

VALC(c1(t),x) =
1
N

N∑
t=1

(
ṁs − c1f(pb,s, αs, pm,s)

)2

This function can be conveniently minimized by choosing

c1(t) =

{
0 ṁs(t) < ε

1 ṁs(t) ≥ ε

For the test HTBAF , V̄BAF (c2(t),x) is

V̄BAF (c2(t),x) =
1
N

N∑
t=1

(
ṁs − f(pb,s− c2, αs, pm,s)

)2

This function is conveniently minimized by choosing

c2(t) = f−1(ṁs(t), αs(t), pm,s(t)) − pb,s

where f−1(ṁs(t), αs(t), pm,s(t)) is the “inverse” of
f(pb,s, αs, pm,s) and gives an estimate of pb,s.

5.4 Discussion

As seen in Section 5.2 above, faults can be modeled in a
number of different ways. For some fault modes, i.e. BL,
ML, BB, MG, the fault is modeled as a change in a con-
tinuous scalar parameter. The fault modes MC and TLF
are examples in which the fault is modeled as a change in
a discrete and multidimensional parameter respectively.
In contrast to this, a fault belonging to the fault mode
BAF is modeled as an additive arbitrary signal. Then we
have ALC, in which the fault is a signal, or a parameter,
that jumps between two distinct values. Although not ex-
emplified here, the well studied case of abrupt changing
parameters [9] can also be naturally handled.

All these examples clearly show the large variety of fault
models that can be used in conjunction with structured hy-
pothesis tests. In fact, while in many other papers, only
continuous scalar parameter or only additive arbitrary sig-
nals are considered, it is shown here that almost any kind
of fault models can be handled and also within the same
framework and same diagnosis system.

Many other approaches are based on decoupling of sub-
sets of faults modeled as additive signals. Decoupling
means that we make a test quantity (or residual) insen-
sitive to some faults. It is realized that the principle of de-
coupling has here been generalized to include decoupling
of faults modeled in arbitrary ways. For example, the test
quantity TBL(x) will not respond to a boost leakage fault
which is modeled as a parameter change.

6 EXPERIMENTAL VALIDATION

The diagnosis system described in the previous section was
implemented in Matlab and tested extensively with the
experimental setup described in Section 3. The leakage
faults were implemented in hardware, according to Sec-
tion 3, and all other faults were emulated in software by
applying appropriate changes to the sensor signals. For
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each fault mode, a number of different fault sizes were
tested.

Good functionality was obtained for all kinds of faults
but because of space limitation, we have selected only four
cases which are shown in Table 2 to 5. These four cases
are not selected because they are representative but rather
because they illustrates some interesting features of the
diagnosis system. In all these cases, the data length was
N = 1000 which corresponds to 100 s. No special effort
was made to find optimal threshold values Jγ ; they were
all chosen to be Jγ = 0.4.

6.1 Fault Mode NF

In Table 2, the present fault mode of the process was NF.
Each row show the result of one individual hypothesis test
HTγ . The value of the test quantity Tγ(x) for each hy-
pothesis HTγ is shown in the second column. The thresh-
old Jγ is shown in the third column (in this example, all
were chosen to the same value). If Tγ(x) > Jγ , i.e. H0

γ is
rejected, then the fourth column shows the the set MC

γ .
For the case shown in the table, only the null hypothesis

H0
MC is rejected. This result is the one expected because

the set MMC do not contain the fault mode NF while all
other sets Mγ do contain NF . Applying the intersection
of the decision logic, i.e. (2), implies that the diagnosis
statement contains 8 possible fault modes that can explain
the behavior of the process. One of the fault modes is NF
which means that we should not generate an alarm.

γ Tγ(x) Jγ MC
γ

NF 0.2074 0.4

BL 0.2063 0.4

ML 0.2075 0.4

BB 0.2043 0.4

MG 0.2027 0.4

MC 3608 0.4 ALC BAF BB BL MG ML NF TLF

TLF 0.2061 0.4

ALC 0.2074 0.4

BAF 0.1491 0.4

Diagn. Statement: ALC BAF BB BL MG ML NF TLF

no alarm

Table 2 The hypothesis tests and the diagnosis statement
for fault mode NF .

6.2 Fault Mode TLF

In Table 3 the present fault mode of the process was TLF .
Now all individual null hypothesis are rejected except for
H0

TLF . The diagnosis statement is the single fault mode
TLF . Because the diagnosis statement does not contain
NF , an alarm is generated.

γ Tγ(x) Jγ MC
γ

NF 250.8 0.4 ALC BAF BB BL MC MG ML TLF

BL 170.7 0.4 ALC BAF BB MC MG ML TLF

ML 230.2 0.4 ALC BAF BB BL MC MG TLF

BB 247 0.4 ALC BAF BL MC MG ML TLF

MG 175.6 0.4 ALC BAF BB BL MC ML TLF

MC 3608 0.4 ALC BAF BB BL MG ML NF TLF

TLF 0.2025 0.4

ALC 250.8 0.4 BAF BB BL MC MG ML TLF

BAF 273.7 0.4 ALC BB BL MC MG ML TLF

Diagnosis Statement: TLF
ALARM

Table 3 The hypothesis tests and the diagnosis statement
for fault mode TLF .

6.3 Fault Mode ML

In Table 4 the fault mode of the process was ML. The ac-
tual fault was fairly small, which is reflected in the result
that it could not be uniquely isolated. The diagnosis state-
ment contains the fault modes MG, ML, and TLF . This
should be interpreted as that in addition to the present
fault mode ML, the fault modes MG and TLF can also
explain the behavior of the process. Because the fault
statement does not contain NF , an alarm is generated.

γ Tγ(x) Jγ MC
γ

NF 0.4921 0.4 ALC BAF BB BL MC MG ML TLF

BL 0.4985 0.4 ALC BAF BB MC MG ML TLF

ML 0.1881 0.4

BB 0.423 0.4 ALC BAF BL MC MG ML TLF

MG 0.328 0.4

MC 3742 0.4 ALC BAF BB BL MG ML NF TLF

TLF 0.3623 0.4

ALC 0.4921 0.4 BAF BB BL MC MG ML TLF

BAF 0.4642 0.4 ALC BB BL MC MG ML TLF

Diagnosis Statement: MG ML TLF
ALARM

Table 4 The hypothesis tests and the diagnosis statement
for fault mode ML.

6.4 Fault Mode BB

In Table 5 the present fault mode of the process was BB.
The actual fault was not very small but in spite of this, it
is obvious from the diagnosis statement that the present
fault mode BB can not be uniquely isolated. The reason
is that the fault mode BAF , which represent an arbitrary
boost-pressure sensor fault, is so general that it can also
explain data generated from the process when fault mode
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BB is present. In this sense, the fault mode BB is a
subclass of the fault mode BAF . The space of BB is very
small compared to the space of BAF . Therefore, when
both BB and BAF can explain the data, it is much more
likely that the data has been generated by a process with
fault mode BB. It is possible to extend the diagnosis
system with this kind of reasoning, and in that case the
fault statement would become the single fault mode BB.

γ Tγ(x) Jγ MC
γ

NF 1.958 0.4 ALC BAF BB BL MC MG ML TLF

BL 1.96 0.4 ALC BAF BB MC MG ML TLF

ML 1.96 0.4 ALC BAF BB BL MC MG TLF

BB 0.2043 0.4

MG 0.6725 0.4 ALC BAF BB BL MC ML TLF

MC 3608 0.4 ALC BAF BB BL MG ML NF TLF

TLF 0.419 0.4 ALC BAF BB BL MC MG ML

ALC 1.958 0.4 BAF BB BL MC MG ML TLF

BAF 0.1491 0.4

Diagnosis Statement: BAF BB
ALARM

Table 5 The hypothesis tests and the diagnosis statement
for fault mode BB.

7 ON-LINE IMPLEMENTATION

For implementation in on-board diagnosis systems, on-line
performance is crucial. The presentation of the diagnosis
system so far has been made by assuming that, given data
x, the objective is to generate a diagnosis statement based
on this data. This is sometimes referred to as an off-line
approach but can equally well be implemented in an on-
line fashion.

One on-line solution is to use a sliding time window such
that the data x is defined as

x(t) =
[
u(t−N) u(t−N + 1) . . . u(t)
y(t−N) y(t−N + 1) . . . y(t)

]

and thereby becomes a function of time t. Here N is the
length of the time window. It is possible to have a sliding
time window and let to consecutive data sets be overlap-
ping. Another choice is to let consecutive data sets be
non-overlapping.

Although not discussed here, it is also possible to use a
recursive approach. For example, the recursive procedure
presented in [3] and based on the RLS (Recursive Least
Square) algorithm [10], can be used to minimize VBL(kb,x)
and VML(km,x) recursively. This problem is particularly
simple because kb and km enters linearly in the equations.
For parameters entering non-linearly, other standard re-
cursive techniques for parameter estimation can often be
used, see [10].

In cases when the fault modes represents arbitrary
faults, e.g. BAF , techniques based on observers can be
used, e.g. see [11][12]. Especially for linear systems, these
techniques have been extensively studied, e.g. see [13].

7.1 On-Line Experiment

To illustrate the performance in an on-line implementa-
tion, an experiment was setup. The fault mode of the
process was MG and the size of the fault was gpm = 1.2.
The whole data set (from the FTP75 test-cycle) spans over
a time of 21 minutes. A non-overlapping window of length
N = 100 was used which corresponds to a time-length of
10s. This means that the original data set was divided in
totally 125 smaller data sets.

It is common that the absolute accuracy of a model is
dependent on how the system is excited and/or the input
size. In these situations, an adaptive threshold can sub-
stantially improve the performance of the diagnosis system
[14][15]. This is the case here and an adaptive threshold
Jadp(t) was chosen as

Jadp(t) = min
γ

Tγ(x(t)) + 0.05

The first term serves as a measure of the overall accuracy
of the model at time t and the second term is a tuning
parameter. This adaptive threshold was used in all hy-
pothesis tests.

NF 0
BL 0
ML 57
BB 2
MG 120
MC 0
TLF 1
ALC 0
BAF 0
unknown fault 1

Table 6 The number of occurrences of different fault
modes in the diagnosis statement during the on-
line experiment.

For all 125 data sets, the diagnosis system managed to
detect a fault. The number of times each fault mode was
contained in the diagnosis statement is shown in Table 6.
It is seen that except for that ML was in the diagnosis
statement 57 number of times, the performance was very
good.

To understand why ML occurs so many times in the
diagnosis statement, Figure 3 has been included. The test
quantities TML(x(t)) and TMG(x(t)) are plotted together
with the adaptive threshold Jadp. Only data from time
window #50 to #125 is shown. Ideally the test quantities

9



50 60 70 80 90 100 110 120
0

0.5

1

1.5

window #

T
es

t
Q

u
a
n
ti
ty

V
a
lu

e

Figure 3 The test quantities TML(x(t)) (dashed) and
TMG(x(t)) (solid) together with the adaptive threshold
Jadp(t) (dotted).

TMG(x(t)) should be below the threshold and TML(x(t))
should be above the threshold. This is the case most of the
time but in some cases, both test quantities are below the
threshold. These are the cases in which ML is contained
in the diagnosis statement.

From the figure it is obvious that for some states of the
process, the test quantity TML(x(t)) gets approximately
the same value TMG(x(t)). This is probably due to a prop-
erty of the air-intake system and not the diagnosis system.
We can in that case not expect that ML is, at all times,
excluded from the diagnosis statement, no matter how the
diagnosis system is designed.

8 CONCLUSIONS

Model based solutions to diagnosis problems in SI-engines
have been discussed in many papers. However most meth-
ods are useful only for a specific class of faults. Here a
more general method is presented. The method is based
on hypothesis testing and has a potential to fully utilize
the model of the system in a systematic way. With this
method, it is possible to diagnose a large variety of differ-
ent types of faults.

The method is applied to the diagnosis of sensor faults
and leakage in the air-intake system of an SI-engine. Two
previous methods, presented in [2] and [3], solved these two
diagnosis problems by using two different methods. How-
ever, each of these methods is dedicated to a certain type
of faults and the two methods can not easily be combined
into one single diagnosis system capable of diagnosing both
leaks and sensor faults.

In contrast, the new method, utilizing a structure of
hypothesis tests, is capable of handling both leakage and

different types of sensor faults. The features of the method
are demonstrated by using experiments on a real SI-engine.
The experiments show that the method is capable to di-
agnose both leakage and different types of sensor faults.
This includes both detection and isolation. It is for exam-
ple possible to distinguish between a manifold leak and a
manifold pressure sensor fault.
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