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Abstract: A new framework for fault diagnosis, called structured hypothesis tests, is
proposed. The basic idea is to construct the diagnosis system by combining a set
of hypothesis tests. In this way, the task of diagnosis is transferred to the task of
validating a set of different models with respect to the measured data. Arbitrary
types of faults, including multiple faults, can be handled. That means that one single
diagnosis system can diagnose faults of many different types. When using structured
hypothesis tests, existing diagnosis methods such as residual generation, parameter
estimation, and statistical methods, become parts of one common framework.
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1. INTRODUCTION

In this paper, a new framework for fault diagnosis is
proposed: structured hypothesis tests. The basic idea
is to construct the diagnosis system by combining a
set of hypothesis tests. The isolation strategy becomes
simple and a great advantage is that the concept of us-
ing hypothesis tests allows the user naturally to model
faults in arbitrary ways. This means that throughout
this paper, there will be no restriction to any special
types of faults and also, no restriction will be made
regarding the multiplicity of faults. An additional
advantage is that structured hypothesis tests has a
strong mathematical foundation since it is theoreti-
cally grounded in hypothesis testing (seen from either
a statistical or decision theoretic standpoint), and also
in mathematical logic. Further, previous methods for
fault diagnosis, e.g. structured residuals, statistical
methods, parameter estimation, and different resid-
ual generation methods, becomes naturally parts or
special cases of this common framework.

The motivation for this work comes from an indus-
trial application, diagnosis of an automotive engine
(Nyberg, 1999b). This application inspired much of the
development of the framework of structured hypothe-
sis tests, since previous frameworks could not provide
an elegant solution to the requirement of diagnosing
several different kinds of faults in the same diagnosis
system.

This paper deals primarily with design of diagnosis
systems. Analysis, or evaluation, of diagnosis system
is also an important topic. Methods for this, using the
same general framework as in this paper, are given in
(Nyberg, 1999a).

The first part of the paper, i.e. Sections 2 and 3,
presents a general and formalized description of the
diagnosis problem. The basics of structured hypoth-
esis tests is given in Sections 4 to 5. Some general
principles for design of the hypothesis tests are then
discussed in Section 6.

2. FAULT MODELING

The system to be diagnosed is modeled as a plant
G(θG, φG) and the vector valued signal z(t, θz, φz).
The parameters θG and θz describe faults and the pa-
rameters φG and φz describe other unknown variables,
e.g. disturbances or unknown constant parameters.
The plant G(θG, φG) is modeled by differential equa-
tions. It has known inputs u(t), e.g. control signals,
and measurable outputs y(t). In addition, the plant
can be affected by other signals, which are collected
in z(t, θz, φz). These additional signals are assumed
to be unknown or at least partially unknown. Some of
the signals z(t, θz, φz) may be modeled as stochastic
processes.

2.1 Fault State

The parameter vector θ = [θG θz] is called the fault
state and represents the true but unknown fault situa-
tion of the plant G(θG, φG) and the signal z(t, θz, φz).
One or possibly several fault states always corresponds
to the fault-free case. The fault-state space, i.e. the
parameter space of θ, will be denoted Θ. Note that we
have chosen the convention that θ is not dependent
on time which corresponds to an assumption that the
fault state of the system never changes. Even though
this may seem to be a limitation, this is not the case
as we will see later. We will be quite liberal regarding
the definition of the parameter vector θ, e.g. we will
allow elements that are functions.

Corresponding to θ there is the constant parameter
vector φ = [φG φz ], which represents other unknown
variables affecting the system. This paper will mostly
not be focused on handling of unknown variables.
Therefore, the parameter φ will often be neglected.
However, it will be realized that the techniques to deal
with unknown variables φ are the same as the ones
needed for fault isolation (i.e. to decouple faults).

The whole system model (with φG and φz neglected)
will be denoted M(θ) and thus



M(θ) = 〈G(θG), z(t, θz)〉
The model M(θ) with a fixed value of θ then exactly
specifies the system when a specific fault state is
present.

2.2 Fault Modeling Principles

Many different principles for fault modeling have been
used in the literature. One of the most common is to
model faults by unrestricted arbitrary fault signals.
When fault signals are used, a specific fault is usually
modeled as a scalar fault signal. Fault modeling by
signals is very general and can describe all types of
faults, but as has been noted in e.g. (Blanke, 1999;
Ding et al., 1999), this can cause problems with the
isolation. In the formalism described above, a fault
signal f(t) can be an element in the θ-vector, i.e.
θi = f(t). Note that θi is still constant but its
value is the whole signal f(t). If discrete time and
finite data is considered, then θi becomes a vector
θi = [f(t1) . . . f(tn)].

Another common fault modeling principle is to model
faults by deviations in constant parameters. One fur-
ther, also common, fault model is to consider abrupt
changes of variables, e.g. see (Basseville and Niki-
forov, 1993). For an example of how this can be
described with the parameter θ, see Example 3. More
discussions on how the here mentioned fault modeling
principles, and also other, can be formulated using
the parameter θ is found in (Nyberg, 1999c; Ny-
berg, 1999b).

No matter which fault modeling principle that is used,
it is generally advantageous to include restrictions on
θ into the fault models. For example, the size of a bias
or a gain-error is usually limited by the system, and
this restriction is easy to model by using inequalities
including θ. Another example is that the bandwidth
of a fault signal f(t) is limited to some value. The
reason to include restrictions is that the isolation task
becomes easier the more restrictive fault models we
have.

3. FAULT MODES

Different faults will be classified into different fault
modes. For example, consider a system containing a
water tank and leakages in the bottom of this tank.
All such leakages, regardless of their area, belong to
the same fault mode “water-tank bottom-leakage”.

The classification of different faults into fault modes
corresponds to a partition of the fault-state space Θ.
This means that each fault mode γ is associated with a
subset Θγ of Θ. One of the fault modes corresponds to
the fault-free case and this fault mode will be denoted
“no fault” or NF. Further, all sets Θγ are pairwise
disjoint and Θ = ∪γ∈ΩΘγ where Ω is used to denote
the set of all fault modes.

If fault mode γ is present in the system, then we know
that θ ∈ Θγ . The fact that all sets Θγ are pairwise
disjoint means that only one fault mode can be present
at the same time. For notational convenience we will
to each fault mode associate an abbreviation, e.g. “no
fault” was abbreviated NF.

Example 1. Consider a system described by the fol-
lowing equations:

ẋ =f(x, u) (1a)
y1 =h1(x) + b1 (1b)
y2 =h2(x) + b2 (1c)

The constants b1 and b2 represents sensor bias faults
and it is assumed that only positive biases can occur.
It is natural to let θ1 = b1 and θ2 = b2, and thus θ =
[θ1 θ2] = [b1 b2]. Four fault modes are considered: “no
fault” NF, “bias in sensor 1” B1, “bias in sensor 2”
B2, “bias both sensor 1 and sensor 2” B1&B2. The
sets Θ, ΘNF, ΘB1, ΘB2, and ΘB1&B2 become

Θ ={[b1 b2]; b1 ≥ 0, b2 ≥ 0} (2a)
ΘNF ={[0 0]} (2b)
ΘB1 ={[b1 0]; b1 > 0} (2c)
ΘB2 ={[0 b2]; b2 > 0} (2d)

ΘB1&B2 ={[b1 b2]; b1 > 0, b2 > 0} (2e)

Note that with the formalism described here, multiple
fault-modes, e.g. B1&B2, comes in naturally and
requires no special treatment.

4. STRUCTURED HYPOTHESIS TESTS
In this section, we will see how classical hypothesis
testing can be utilized for model based diagnosis and
especially fault isolation. The literature is quite sparse
on this subject but some related contributions can be
found in (Riggins and Rizzoni, 1990; Grainger et al.,
1995; Bøgh, 1995; Basseville, 1997). It can be noted
that the idea of structured hypothesis tests has a close
connection to the general hypothesis testing method
intersection-union test (Casella and Berger, 1990).

Inputs to the diagnosis system are the signals u(t) and
y(t). The task of the diagnosis system is to generate a
diagnosis S, which contains information about which
fault modes that can explain the behavior of the
process. Note that it is assumed that the diagnosis
system is passive, i.e. it can by no means affect the
plant. That is, the diagnosis system is a function from
u and y to S and we write S = δ(x) = δ([u y]).
Here, x is used to denote the whole measured data-
set, which can also contain several samples of u and y
from different times.

Model based diagnosis is a complex task and it is
therefore advantageous to divide the task in smaller
tasks. Therefore the whole diagnosis system δ(x) is
divided into smaller parts δk(x), which we will assume
to be hypothesis tests. Each hypothesis test δk(x)
generates a sub-diagnosis Sk, i.e. Sk = δk(x). The
purpose of the decision logic is then to combine
the information of the sub-diagnoses to form the
diagnosis S. The procedure for this will be described
in Section 4.1 below.

The diagnosis S and the individual sub-diagnoses Sk

do all contain information about which fault-modes
that can explain the behavior of the system. In this
paper, the representation and reasoning about this
information are based on sets of fault modes. Another
possibility, discussed in (Nyberg, 1999c), is to let the
diagnoses be expressed by logic formulas. Actually,
there is a quite close connection to diagnosis methods
based on logic (Reiter, 1987).

A diagnosis S can in general contain more than one
fault mode. This is in contrast to most fault diagnosis
literature, in which the diagnosis can only contain
one fault mode. For example S = {F1, F2} means
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that both fault modes F1 and F2 can explain the
behavior of the system. This feature corresponds well
to a desired functionality since in cases where it is
difficult or even impossible to decide which fault mode
that is present, it is very useful for a service technician
to get to know that there are more than one fault
mode that can explain the behavior of the process. If
the diagnosis system was forced to pick out one fault
mode in cases like this, it is highly probable that a
mistake is made and wrong fault mode is picked out.

4.1 Basic Principle
The classical, statistical or decision theoretic, defini-
tion of hypothesis test is adopted, e.g. see (Berger,
1985; Lehmann, 1986; Casella and Berger, 1990),
which is to be distinguished from “multiple hypoth-
esis testing” that is often found in literature, e.g.
(Basseville and Nikiforov, 1993). Note that when us-
ing hypothesis testing, we can have a probabilistic
(statistical) or a deterministic view. Therefore, the
method structured hypothesis tests is valid either we
have probabilistic knowledge, in terms of probability
density functions of e.g. the signal z (described in
Section 2.1), or not.

Let Fp denote the present fault mode. Then for the
k:th hypothesis test, the null hypothesis and the
alternative hypothesis can be written

H0
k :Fp∈Mk ”some fault mode in Mk can explain meas. data”

H1
k :Fp∈MC

k ”no fault mode in Mk can explain meas. data”

Note that an alternative representation of the hypoth-
esis tests is H0

k : θ ∈ Θ0
k and H1

k : θ /∈ Θ0
k, where

Θ0
k = ∪γ∈Mk

Θγ .

The convention used here and also commonly used
in hypothesis testing literature, is that when H0

k is
rejected, we assume that H1

k is true. This implies
that the present fault mode can not belong to Mk,
i.e. it must belong to MC

k . Further, when H0
k is not

rejected, we will for the present not assume anything.
This latter fact will be slightly modified in Section 4.2,
where we discuss how we also can assume something
when H0

k is not rejected. How the hypothesis tests are
used to diagnose and isolate faults is illustrated by the
following example.

Example 2. Assume that the diagnosis system con-
tains the following set of three hypothesis tests:

H0
1 : Fp ∈M1 = {NF, F1} H1

1 : Fp ∈MC
1 = {F2, F3}

H0
2 : Fp ∈M2 = {NF, F2} H1

2 : Fp ∈MC
2 = {F1, F3}

H0
3 : Fp ∈M3 = {NF, F3} H1

3 : Fp ∈MC
3 = {F1, F2}

Then if only H0
1 is rejected, we can draw the con-

clusion that Fp ∈ MC
1 = {F2, F3}, i.e. the present

fault mode is either F2 or F3. If both H0
1 and H0

2 are
rejected, we can draw the conclusion that Fp ∈MC

1 ∩
MC

2 = {F2, F3} ∩ {F1, F3} = {F3}, i.e. the present
fault mode is F3.

From the example above, it is clear that the deci-
sion logic is a simple intersection operation. In the
example, there is one hypothesis test for each of the
possible fault modes (except for NF ). This should be
the natural choice in most situations.

For the two possible decisions of a hypothesis test δk,
we use the notation S0

k and S1
k. This means that

Sk =
{

S1
k = MC

k if H0
k is rejected (H1

k accepted)
S0

k = Ω if H0
k is not rejected

where Ω denotes the set of all fault modes. The
diagnosis S can now be expressed as S =

⋂
k Sk. We

will in Section 4.2 below, relax the definition of S0
k

such that it may be a subset of Ω, i.e. S0
k ⊆ Ω.

4.2 Hypothesis Tests

For each hypothesis test δk, we need to find a test
quantity and a rejection region. The test quantity is
a function Tk(x) from the sample data x, to a scalar
value which is to be thresholded by a threshold Jk.
If Tk(x) ≥ Jk, then H0

k is rejected and otherwise not
rejected. The rejection region of each test is thereby
implicitly defined.

The test quantity Tk(x) is in many texts instead
called a test statistic. However, the name test statistic
indicates that Tk(x) is a random variable which in
general may not be a desired view. The test quantity
Tk(x) may for example be a residual generator or
a sum of squared prediction errors of a parameter
estimator. In many applications, a deterministic view
is taken and Tk(x) is seen just as a function of the
data and not as a random variable.

The sample data x can be all measured data up to
present time or a subset of this data. One choice is to
use a fixed size time window.

According to what has been said above, we need to
design a test quantity Tk(x) such that it is low or
at least below the threshold if the data x matches the
hypothesis H0

k , i.e. a fault mode in Mk can explain the
data. Using traditional fault-diagnosis terminology,
the fault modes in Mk are said to be decoupled. Also
if the data come from a fault mode not in Mk, Tk(x)
should be large or at least above the threshold.

To be able to make the assumption that H1
k is true

when H0
k is rejected, we need to design the hypothesis

test such that the significance level is small. This
implies that the threshold Jk must be set relatively
high. This in turn means that the value of the power
function P (reject H0

k | θ) does not necessarily become
large for all values θ /∈ Θ0

k. For instance, if the present
fault mode is Fi and Fi ∈MC

k , then for some θ ∈ ΘFi ,
the probability to reject H0

k may be very small. This
is the reason why we up to now, have assumed that
S0

k = Ω, i.e. we can not assume anything when H0
k is

not rejected.

Now if it actually holds that P (reject H0
k | θ) is large

for all θ ∈ ΘFi , then we do not take any large risk
if we assume that Fi has not occurred when H0

k is
not rejected. If this is the case, Fi should be excluded
from S0

k. The relation between the power function
and the decisions S0

k and S1
k is further investigated

in (Nyberg, 1999c).

It turns out that some fault modes are related to
other system fault modes such that for some values
of θ they are impossible to separate. This relation,
called the submode relation, is formally defined in
(Nyberg, 1999c). Submode relations between fault
modes have implications on how the sets Mγ (i.e. the
null hypotheses) can be chosen. For example for most
fault modes, the limit when the fault size goes to zero
is equal to the fault mode “no fault”. This means that
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when fault mode NF, i.e. no fault, is present, most null
hypothesis can not be rejected. The implication is that
almost all sets Mγ must include NF. In other words,
the choice of null hypotheses is not a completely free
choice. For more information on how the submode
relation restricts the choice of null hypotheses, see
(Nyberg, 1999c).

5. INCIDENCE AND DECISION STRUCTURE

Common in the fault diagnosis literature, e.g. (Gertler,
1998), is to use the principle of structured residuals to
achieve fault isolation. In this section, we will see that
structured hypothesis tests can actually be seen as a
generalization or formalization of structured residuals.
When using structured residuals, the residual struc-
ture is usually an important concept. A consequence
of formalizing the diagnosis procedure, as is done in
structured hypothesis tests, is that the concept of
residual structure must be modified. The solution here
is to introduce a distinction between an incidence
structure, describing how the faults affect the test
quantities, and a decision structure, describing how
the diagnosis S is formed from the thresholded test
quantities. We will see that representing a diagnosis
system with a decision structure, is equivalent to a
representation using the sets Mk, S0

k, and S1
k.

5.1 Incidence Structure

To get an overview of how faults in different fault
modes ideally affect the test quantities, it is useful
to set up an incidence structure. With ideally, we
mean that the system behaves exactly in accordance
with the model and all stochastic parts have been
neglected, e.g. no unmodeled disturbances exists and
there is no measurement noise. The incidence struc-
ture is derived by studying the equations describing
the process model and how the test quantities Tk(x)
are calculated.

An incidence structure is a table or matrix containing
0:s, 1:s, and X:s. The X:s will be called don’t care. An
example of an incidence structure is

NF F1 F2 F3

T1(x) 0 0 1 0
T2(x) 0 0 1 1
T3(x) 0 X 0 1

(3)

A 0 in the k:th row and the j:th column means that
if the system fault-mode present in the system, is
equal to the fault mode of the j:th column, then the
test quantity Tk(x) will not be affected, i.e. it will be
exactly zero. A 1 in the k:th row and the j:th column
means that for all faults belonging to the fault mode
of the j:th column, Tk(x) will always be affected, i.e.
it will be non-zero. An X in the k:th row and the j:th
column means that for some faults belonging to the
fault mode of the j:th column, Tk(x) will under some
operating conditions be affected, i.e. it will be non-
zero. The dependence on operating condition typically
arise in non-linear systems.

Although a distinction has not been made between in-
cidence structures and decision structures in previous
literature, the basic idea of using incidence structures
(or residual structures) is not new. However, compared
to previous works involving incidence structures, a
major difference is that we have here added the use of
don’t care.

Let skj denote the entry in the k:th row and the j:th
column of an incidence structure. Then the interpre-
tation or semantics of 0:s, 1:s, and X:s can be formally
written as

Fp = Fj → Tk(x) = 0 if skj = 0 (4a)
Fp = Fj → Tk(x) 6= 0 if skj = 1 (4b)

where Fp, as before, denotes the present fault mode.
Note that the implication, denoted by the arrow, is
not symmetric. Note also that the interpretation of X
is implicitly contained in these two formulas.

In the next section, we will also define interpretations
of 1:s, 0:s, and X:s for the decision structure. To the
author’s knowledge, no such strict interpretation has
been defined in previous literature. The motivation
for these strict definitions, is that we can discuss
relations to for example diagnosis methods based on
logic and hypothesis testing. In addition, these ”local”
interpretations of 1:s, 0:s, and X:s, together with a
decision structure, is enough to define the isolation
functionality of the whole diagnosis system.

5.2 Decision Structure

The incidence structure corresponds to the case where
ideal conditions holds. If this was the case, we could
derive the diagnosis S by using the incidence struc-
ture, the formulas (4), and the values of the test
quantities Tk(x). In practice, the model is not per-
fect; unmodeled disturbances affects the process, and
there is measurement noise. All this means that the
formulas (4) are not valid and can therefore not be
used to form the diagnosis S.

In practice, we have to relax the assumptions of ideal
conditions and the formulas (4) can be replaced by
a formulation based on the use of thresholds, i.e.
hypothesis testing. Doing this, we obtain a decision
structure. The new interpretation or of 0:s, 1:s, and
X:s becomes

Fp = Fj → Tk(x) < Jk if skj = 0 (5a)
Fp = Fj → Tk(x) ≥ Jk if skj = 1 (5b)

The implications are not completely true, but we
assume that they holds. This corresponds to the basic
assumptions, discussed in Section 4.2, that when H0

k

is rejected, we assume that H1
k holds. However, there

is a conflict between the two rules (5a) and (5b). To
make the assumption that (5a) holds reasonable, the
significance level αk of all tests must be low. This
means that the thresholds must be chosen relatively
high. Further, this violates the assumption that (5b)
holds. To achieve reasonable assumptions, some or
probably most 1:s from the incidence structure must
therefore be replaced by X:s. It might seem that
another choice is to replace 0:s by X:s, but the problem
with this is that for all small faults, the assumption
of (5b) still not becomes reasonable.

An example of a decision structure is obtained by
considering the incidence structure (3) which can be
transformed to (by replacing most 1:s with X:s), for
instance the following decision structure:

NF F1 F2 F3

δ1(x) 0 0 X 0
δ2(x) 0 0 X 1
δ3(x) 0 X 0 X

(6)
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Because the decision structure is related to the whole
hypothesis tests and not only the test quantities, we
use δk to label the rows instead of Tk.

By using the formulas (5), it is possible to formally
define the interpretation of a whole decision structure.
We will exemplify this below, by giving the interpre-
tation of the decision structure (6), but note first that
Fp /∈ {F2} is the same as Fp ∈ Ω− {F2}. The symbol
⇔ will be used to denote tautological equivalence.
Now, the interpretation of the decision structure (6)
becomes
T1 < J1←Fp ∈{NF, F1, F3} ⇔ T1≥ J1→Fp = F2

T2<J2←Fp ∈{NF, F1} ⇔ T2≥J2→Fp ∈{F2, F3}
T2≥ J2←Fp = F3 ⇔ T2 < J2→Fp ∈{NF, F1, F2}
T3<J3←Fp ∈{NF, F2} ⇔ T3≥J3→Fp ∈{F1, F3}
This interpretation of the decision structure (6) can
now be used to derive the diagnosis S. For example
if T1 < J1, T2 ≥ J2, and T3 ≥ J3, we know by using
the rules, that Fp ∈ {F2, F3} and Fp ∈ {F1, F3}. This
means that F3 must be the present fault mode.

It is clear that there must be a strong relationship
between this procedure, i.e. forming the diagnosis S
by using the decision structure, and how the diagnosis
S is formed by using the individual diagnoses Sk.
For example, the sets S0

k and S1
k for the decision

structure (6), are

S0
1 ={NF, F1, F2, F3} S1

1 ={F2}
S0

2 ={NF, F1, F2} S1
2 ={F2, F3}

S0
3 ={NF, F1, F2, F3} S1

3 ={F1, F3}
That is, the set S0

k contains all fault modes which have
0 or X in row δk of the decision structure. Also S1

k
contains all fault modes which have 1 or X in the same
row. In this way, the decision structure can be seen as
an overview of a diagnosis system based on structured
hypothesis tests.

6. DESIGN OF TEST QUANTITIES

In the previous sections, the diagnosis-system archi-
tecture structured hypothesis tests was proposed. To
get a complete diagnosis system, also the individual
hypothesis tests need to be constructed. Design of test
quantities, primarily from a statistical point of view,
has been extensively discussed in general hypothesis
testing literature, e.g. see (Lehmann, 1986). In addi-
tion, many methods in the diagnosis literature have
been developed.

From Section 4.2 it is realized that the test quanti-
ties should be constructed according to the following
general principle:

The test quantity Tk(x) should be small
if the data x matches any of the models
M(θ), θ ∈ Θ0

k, and large otherwise.

Thus the test quantity can be seen as a measure of the
validity of some models M(θ). Below, we will exem-
plify such a model validity measure based on compar-
ison of signals. Another example of a commonly used
model validity measure is the likelihood function. For
further discussions about different model validity mea-
sures useful for fault diagnosis, see (Nyberg, 1999c).

6.1 Test Quantities based on Comparison of Signals

Using this principle, the calculation of the test quan-
tity is based on a model validity measure Vk(θ,x),

which in turn is based on a comparison between sig-
nals and/or predictions (or estimates) of signals. The
function Vk(θ,x), where θ is fixed, is a measure of the
validity of the modelM(θ), for a fixed θ, in respect to
the measurement data x. To construct Vk(θ,x), we can
compare an output signal y with an estimate ŷ, but it
is also possible to for example compare two different
estimates of the same signal. An example is

Vk(θ,x) =
1
N

N∑
t=1

‖y(t)− ŷ(t|θ,x)‖ (7)

where y(t|θ,x) is the prediction of the output y(t),
derived from an assumption of a specific θ and the
measured data x. The test quantity can then be
calculated as

Tk(x) = min
θ∈Θ0

k

Vk(θ,x) (8)

To calculate (8), we need in principle to perform a pa-
rameter (or signal) estimation. The prime interest here
is fault isolation but it is obvious that this parameter
estimation means that fault identification implicitly
becomes a part of fault isolation. Note that the term
decoupling in principle corresponds to estimation. The
faults (or fault modes) that are decoupled are the fault
modes described by the parameters we estimate.

Note that although the model validity measure Vk(θ,x)
in (8) is indexed by k, meaning that it is specific for
the hypothesis test δk, it is often possible (and also
quite elegant) to use the same V (θ,x) for all hypoth-
esis tests. In that case, the only thing that differs
test quantities in different tests, is the set Θ0

k over
which the minimization is performed. This approach
is demonstrated in (Nyberg, 1999b).

Often, the effect of disturbances, and also unknown
or uncertain parameters, must be handled. These can,
in accordance with Section 2.1, be modeled by using
the parameter φ. The solution is to expand the set of
parameters that are estimated, to also include φ. In
this way, decoupling of disturbances and adaptation
to unknown parameters is achieved.

6.1.1. The Minimization of Vk(θ,x) In many cases
the minimization procedure required in (8) is quite
straightforward and can be performed by standard
procedures. However, in some cases, more specific
solutions are required. Often it is advantageous to first
find an estimate θ̂, by using some other algorithm.
For example, we can use a state-observer or try to
minimize another simpler function V̄ (θ,x). Then the
test quantity can be calculated as T (x) = V (θ̂,x).
Sometimes it is not necessary to explicitly calculate an
estimate θ̂, i.e. to carry out the minimization. Instead
a closed form expression is found for (8) directly. This
is a typical solution in residual generation, which can
be seen as a special case of (8).

Example 3. This example illustrates how the principle
from Section 6.1 can be applied to a change detection
problem. Consider a signal y(t) which can be modeled
as

y(t) = v(t) + a(t) v(t) is iid N(0, σ(t))

The functions a(t) and σ(t) are equal to known con-
stant values a0 and σ0 in the fault free case, but can
contain an abrupt change to unknown values a1 and
σ1 if a fault occurs. We assume σ1 ≥ σ0.

Further assume that we want to consider three fault
modes:
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NF “no fault”
Fa “an abrupt change in a(t) at the time tch”
Fσ “an abrupt change in σ(t) at the time tch”

This means that the fault-state vector can be de-
scribed as θ = [tch, a1, σ1].

Further we want to design a test quantity for the
hypotheses H0 : Fp ∈ {NF, Fa} and H1 : Fp ∈ {Fσ}.
By using the general expression (8), the test quantity
becomes
T (x) = min

θ∈Θ0
V (θ,x) = min

[tch,a1]

N∑
t=1

(y(t)− ŷ(t|tch, a1))2

where ŷ(t|tch, a1) =
{

a0 if t < tch

a1 if t ≥ tch

This test quantity will be small under H0 and larger
under H1. Thus all faults belonging to Fa are decou-
pled in T (x).

7. CONCLUSIONS
This paper has introduced a general formalism for
describing and analyzing diagnosis problems. This
formalism can be used with any type of fault modeling
technique, including for example faults modeled as
signals, deviations in constants, and abrupt changes of
variables. Also multiple faults are naturally integrated
so that no special treatment is needed. Further, the
formalism is equally useful for both statistical and
deterministical models.
Using this formalism, the diagnosis-system architec-
ture structured hypothesis tests has been presented.
Such a diagnosis system consists of a set of hypothesis
tests. The procedure for how the diagnosis, i.e. the
output from a diagnosis system, is formed from the
real-valued test quantities (or residuals), is formalized
by using a standard interpretation of the functionality
of each hypothesis test. In this way, the task of diag-
nosis is transferred to the task of validating a set of
different models with respect to the measured data.
One feature becomes that the diagnosis can contain
several possible faults that can explain the observed
behavior of the system.
Structured hypothesis test is in most cases not a
replacement to existing principles for fault diagnosis,
e.g. parameter estimation, observer schemes, struc-
tured residuals, and statistical methods. Instead it
is a framework in which these other principles for
diagnosis becomes naturally parts, and can be fully
exploited. Also, there is a close connection to diagnosis
methods based on logic.

Since structured hypothesis tests is defined using a
general formalism, we can within the same diagnosis
system, and using a general systematic approach, di-
agnose several different types of faults, e.g. at the same
time diagnose faults modeled as additive signals and
faults modeled as parameter deviations. Many papers
in the field of fault diagnosis discuss decoupling of
faults modeled as additive arbitrary signals. The prin-
ciple of decoupling has in this paper been generalized
to include decoupling of faults modeled in arbitrary
ways.
Structured hypothesis tests is in a sense a general-
ization and formalization of the well-known method
structured residuals. In contrast to structured residu-
als, a distinction is introduced, between the incidence
structure, describing how faults ideally affect the test
quantities, and the decision structure, describing how

the faults affect the formation of the diagnosis. By
doing so, it has been possible to define meanings of
the 0:s, 1:s, and X:s, present in the incidence/decision
structure. An introduction of X:s (don’t care) in the
incidence/decision structure is necessary since only
using 0:s and 1:s often places unrealistic requirements
on the test quantities (or residuals).

Except for the small examples included in this paper,
the theory developed has also been successfully ap-
plied to a real application: diagnosis of the air intake
system of an automotive engine (Nyberg, 1999b; Ny-
berg, 2000). In the first work, it is seen how structured
hypothesis tests is used to systematically design a
diagnosis system capable of diagnosing a large variety
of different kinds of faults. In the second, the same
framework is used to evaluate different methods for
leakage detection. These works have shown that the
theory has practical relevance for both design and
analysis of diagnosis systems.
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