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Abstract: A common approach to design diagnostic systems is to use residual generators.
These generators are usually constructed considering all the model equations. However,
there are several advantages of instead consider small subsets of model equations, so
called minimal structurally singular (MSS) sets of equations. This paper presents a new
method for finding residual generators for MSS sets. A special property of the MSS set,
namely that it is minimally over determined, is utilized. Two approaches are considered,
one which is based on the use of a dynamic numerical equation solver, and another which
uses a static numerical equation solver. The approaches are demonstrated on a non-linear
point-mass satellite systef@opyright(©2002 IFAC
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1. INTRODUCTION

easier to handle than a large model. The second advan-

Ygggg;eségnné?ig?;?gl;)t;taesneﬂ;?élt'g'i?fg?gzﬁ;g:ttsemst’age is that decoupling of faults and disturbances has
9 ) glready been achieved, i.e., further decoupling is not

of residual generators are sensitive to different SUbsetnecessary
of faults, and thereby isolation can be achieved. Each ’
residual does not measure the validity of all model When extracting the set of MSS sets, different as-
equations in the model, but instead a smaller subsesumptions about the structural relationship between
of equations. Given a set of model equations, a firstthe unknown variables and about derivatives of sensor
step towards finding residual generators, is to find allvalues, will result in different sets of MSS sets. From
minimal structurally singulafMSS) setsof equations  these assumptions two main approachesgdgheamic
(also called e.g.minimal over-determined equation- and thestatic approach, are found. The dynamic ap-
sets. proach results in a set of equations that includgs
The reason for using MSS sets is that these sets argammstate var|ab[es, wh!le the static approach results
the smallest sets of equations that can be used o & set of equations with onlinstantaneousstate

) . variables (also called e.g., algebraic state variables).
form r.eS'dl.Jal generators. The MSS property is furtherlt is also possible to make a combination of the two
described in Section 2.

_ ~approaches, this will be called thpartially dynamic
This paper presents a new method for constructingapproach. These different approaches are discussed in
residual generators for MSS sets. A special propertydeeper detail in Section 4.

for an MSS set is that there is exactly one more equa- : . .
. . : o There are constraints on how the residual component is
tion than unknown variables, this property is utilized

by using the extra equation, to define thesidual defined. Due to structurally and analytically properties

componentThe MSS set with a residual component for the MSS set, only the equations that arealyt-

. ) .-ically redundantcan be used to define the residual
is a residual generator. A more general framework will o . .

. X component, this is discussed in Section 5. Further, the
be presented in Section 3.

residual component must be added in such a way, that
Compared to the general residual generation problemthe residual generator istable This will be briefly
where the whole model is usually considered, therediscussed in Section 6.

are two advantages to start with an MSS set. The firs
is that this set is typically small, which follows from
the fact that it is minimal. A small model is normally

%n example of a satellite system is analyzed in Sec-
tion 7, and finally, Section 8 gives the conclusions.



2. MSS SETS OF EQUATIONS The adding of this unknown variable to an MSS set
gives a system of equations with as many equations as
The main property of an MSS set is that therexactly ~ unknown variables. The resulting set of equations will
onemore equation than unknown variables included inpe called arMSS mode{slight misuse of the acronym
the equations, i.e., it is structurally singular. Another MSS). If this MSS model is solvable and stable it will
important property is that no proper subset of the MSSpe used as a residual generator.

setis an MSS set, i.e., itis minimal. How the residual component and its derivatives are

In (Krysander and Nyberg, 2002) a systematic and auadded is a freedom that can be used when design-
tomatic algorithm is derived, called the MSS-algorithm.ing the MSS model. With garameter matrixl' €

The algorithm finds the simplest set of MSS sets withRdim(&)xn+1 the MSS model is

the highest possible diagnosis capability. This algo- .

rithm will be used in this paper. 0=G(& 2,2,u) +TR ®)
The input to the algorithm is atructural modeland ~ where R = [r,7,...,r(™]T. There are some con-
information about whichderivatives of sensor val- straints on the values &f, and these will be discussed
uesthat can be approximated. The structural modellater in Section 5 and 6.

includes information about the connection betweenAn example: Assume that a model is described by
unknown variables and equations. By analyzing and

manipulating this structural model, the algorithm finds erip=urtfto e2:0+uz=0
all MSS sets and then selects the set of MSS sets with eiy1=pto ea:y2=p
highest possible diagnosis capability. An MSS set is{e1, ez, e4}, and an MSS model, i.e.,
The output of the algorithm is a set of MSS sets whereEq' (3), for this set withe = 1 is
each MSS set might includeifferentiatedand non- p—ui —o
differentiatedequations from the original model. 0= [ o+ ug ] +T m
Y2 —p

wherel’ € R3*2, Simulations of this MSS model will
give a residuat that is sensitive to faulf, if fault f is
sufficiently large.

3. PROBLEM FORMULATION

The problem studied in this work can be described a
follows. Given a set of MSS setfMSS!, ..., MSS'},
input datau = {u,,u,} € U, whereu,, is a vector of
control signals and,, is a vector of sensor values, find
aresidual generatofor each MSS set.

4. APPROACHES TO EXTRACT MSS SETS

_ When the MSS sets are extracted, different assump-
Assume that MSS seéfdenotedSS, is a differential  tions about the structure of the system, will result in
algebraic system of the form different sets of MSS sets. These different assump-
_vi(ad i i i pi tions give the dynamic, static and partially dynamic

, 0=G"@ a2 f1) @ approaches. These three approaches will be discussed
wherez* € X is a vector of dynamic state variables, in this section.
2' € Z is a vector of instantaneous state variables, and
f* is a vector of unknown faults which are assumed
to be zero in the fault free case. Thiém(G?) = 4.1 Dynamic Approach
dim(i%, 2%, 2*) + 1, wheredim(-) is the dimension,
andi?, x*, 2* are the unknown variables. It is further The dynamic approach arises from the assumption that
assumed that some initial values satisfying (1) havea dynamic solver is available. Further itis assumed that
been found. Superscript index will be used to denoteno derivatives of sensor values can be approximated,
the corresponding MSS set, while subscript will be e.g., sensor valug,, is known while its derivative,,
used for vector and matrix components. The indexeds unknown. When a dynamic solver is used, the state
will be dropped when there is no risk of confusion.  variable is known from the integration of its derivative.
Therefore: is assumed unknown whileis known.

The state variable and input data space is
_ The MSS-algorithm is given the structural model,
R=XxZxU. @ wheret and z are unknown. The output is a set of
The space includes knowledge of the system that MSS sets. The sets might include differentiated and
can be used when constructing the residual generatonon-differentiated equations. Further, the MSS model
For physical systemd) will often include physical might be a non-linear DAE, therefore, a non-linear
limitations for the state variables. DAE solver is preferred.

The main idea is to add scalar residual component The benefit with the dynamic approach is that deriva-
r € R!, to the MSS set and use a numeric solvertives of sensor values does not have to be approxi-
to find an approximation of the value of the residual mated. The disadvantage is solution stability and com-
component. Let denote the highest derivative of plexity due to models with index higher than zero.

If a dynamic solver is used, the highest derivative of To continue the example above. The MSS{ggt es, €4}
the residual component(™, is unknown, while the is found with the dynamic approach. In this set=
lower derivatives are known from integration . {p}, z = {0} andu = {u1, uz, y2 }.



4.2 Static Approach In this section methods to firall structurally and an-
alytically redundant equations will be presented. The
The static approach arises from the assumption that gtructurally redundant equations can be found with
dynamic solver isiot available. Because of this, many structural or analytical methods, while the analyti-
equations that includes derivatives of state variablesally redundant equations can only be guaranteed to
are unusable. This will for most physical problems be found with analytical methods.
tsr?g?jrigynrgssgt;(i:ltitth?rgTm?géstg mg%izet:ozggiﬁ?erggyrhe main idea when searching for redundant equations
g OllIty. 9 ¥ 8555 1o addr (™) to each equation
sume that derivatives of sensor values up to some given
order can be approximated. 0= G(&,x, 2 u) +Tr (4)

Since no dynamic solver is available in this approach,whereT is the last column iff. If (4) is exactly solv-

the structural relationship between a state variable andble then at least one of the equations is structurally or
its derivative does not exist. To reduce the risk of analytically redundant.

confusion letzp £ . Further, no derivatives of are

included, i.e.n = 0.

The MSS-algorithm is given the structural model, 5.1 Finding Structurally Redundant Equations

wherexp, x andz are unknown. The output from the ¢ find the structurally redundant equations, structural
algorithm is a static system of equations that can beynaiysis can be used. The structural analysis finds a bi-
solved with a general equation solver. The approachyartite matching between equations and unknown vari-

can successfully handle a larger class of MSS sets thagp|es (Krysander and Nyberg, 2002; Harary, 1969).

the consistency relation approach used in (Krysander . .
and Nyberg, 2002). If equation; is matched te(", itis structurally redun-

o ] S dant. To find another structurally redundant equation,
The benefit with the static approach is simplicity when |g¢ T'; = 0 and find a new bipartite matching. Suitable

constructing the residual generator. The disadvantaggepetition gives all structurally redundant equations.
is that, often, derivatives of sensor values have to be i ,
approximated. The example in Section 3 can be represented by the

) _ _ structural graph shown in the left part of Fig. 1. The
To continue the example above. With the static ap-first row includes the equations, and the second the
proach the MSS sdfies, €5, ¢4} is found, where equa-  ynknown variables. The structural relationships are
tion ¢4 is the time derivative of equation;, see Sec-  ghown with thin arrows. In the right part, a bipartite
tion 2. In this setyp = {pp}, . ={p},z={c}and  matching algorithm has been used to find a bipartite
u = {ur,u2,y3 }. matching. The matching show that is a structurally
redundant equation. Remove the relationship and find
i ) a new matching. In this example it is not possible to
4.3 Partially Dynamic Approach find any new bipartite matching, and the conclusion is
that only equatiory is structurally redundant.

The dynamic and static approach are two extremes.
el e €4
p o T

It is possible to make a combination of the two ap- er
Fig. 1. Structural model (left) and a bipartite matching.

proaches. If a subset of derivatives of sensor values T
can be approximated the MSS models will be dynamic ‘\\k\
models with some dynamic states removed. _ _

. _ X p 7
The main benefit is when the MSS models have a high 7
index. By careful selection of which sensor values to

approximate, the index can be reduced.

5. REDUNDANT EQUATIONS 5.2 Finding Analytically Redundant Equations

To find the analytically redundant equations ihe
tplicit function theoremwill be used. To investigate
'if a system of equations fulfills the theorem, a com-
mon approach is to test if thdacobianis non-
First,r(") must be added to at least one of the analyti-singular (Venkatasubramanian et al., 1995; Mattsson
cally redundant equations. An equatiorsteucturally  and Sderlind, 1992). Eq. (4) will only fulfill the theo-
redundantif, when the equation is removed, the re- remif r(®) has been added to a structurally redundant
maining set of equations is exactly solvable $ome  equation.
operating point ir). It is analytically redundantf, it
is structurally redundant fall operating points irf2. B
Note that an equation is structurally redundgnit is | = d(G(&,x,z,u) + Tr(™) | €7 (0,0, 2, u)T £ 0
analytically redundant. e, z,r(M]T S

It is not possible to add("™) to the MSS set arbitrary.
Due to structural and analytical properties for the se
there are constraints thEtmust fulfill.

For the dynamic approach this means that

Secondly, if it is added to several analytically redun- where¢(-) is a vector. The sung”T arises from the
dant equations]' must fulfill some additional con- definition of determinant, i.e., sum of vector compo-
straints, discussed later in Section 5.2. nent times co-factor.



For the static approach, Y1, ¥y2 andys are sensor signalg, unknown distur-

_ bance;f,.. bias fault inu, andys respectivel
A(G(ap, o,z u) + TrM) fuar fo » andy, respectivelys,

|J| = =T (xp,z,2z,u)T #0. andé, are known constants.

Olrp,z,z,r(M]T . .

The variable space is

Now, letl’ = [0,...,T;,...,0]7, wherel'; # 0. If X, Z={p>0,w>0,v,0}
|J| # 0 then equatiory is structurally redundant. U={lu1] <1,Juz| < 1,41 > 0,y3 > 0,92}
To see if equatior is analytically redundant the vari- F={fus| <1, fp > -0}
able spacef2 has to be considered. For the dynamic The variable space limits the values for the state vari-
case, if ables to positive radius and angular speed, etc.

3(E, 2, 2,u) : &(d, @, 2,u) =0A(z,2,u) € Q2 (5)

then equatiory, is guaranteed to be analytically re- 7 2 pynamic Approach

dundant. The meaning is that, if it is not theoretically

possible foig; to equal zero, then equatignis analyti-  The MSS-algorithm is given the structural model and
cally redundant. Suitable change of unknown variableshe information that no derivatives of sensor values
give the static case. can be approximated, see Section 4.1. The result is
This section have stated constraintsIbthat must be  tendifferent MSS sets and hefeur of the MSS sets
fulfilled. The conclusion is, if-™ is added tseveral  are chosen. These sets are chosen because they have
equations, thel must fulfill £(i, , z, u)T" # 0 for all the desired detec_tlon and isolation property and are
(z,z,u) € Q. A special case is when™ is added least complex (with respect to number of included

to only oneequation, then it is necessary that this €quations).

equation is analytically redundant, i.e., fulfills (5). The set of MSS sets is
MSS |Equationset | fu, f, d
6. STABILITY MSS' |{es, es, e} 0 X 0
MSS? |{e1,e0,e4,e5) | X 0 X
From Section 5 some constraints @hhave been MSS’*|{e1, e4, €5, €7} X 00
stated. The problem now is to find the additional MSS!|{e1, e3,e4, 5,66} X X 0
constraints orl" that guarantees stability and give a .
good fault sensitivity for the residual, while fulfiling FOr €xample, the MSSsetis{¢ = w,0 = —y2 +

the constraints from Section 5. Depending on if the ¥:0 = —¥3 +w}

MSS model s linear, bilinear, non-linear, etc., different An X in position4,j in the incidence matrix, the
methods can be used to find the constraints. The probrightmost part of the table, means that MS8ight
lem is similar to the problems faced FDI observer  be sensitive to faulij. From the incidence matrix it
theory, see for example (Chen and Patton, 1999). can be concluded that it is theoretically possible to

Note, the highest derivative of can be chosen to detect and isolate both faults. M5% sensitive for
simplify the stability analysis. The stability problem the disturbanceqd, but has an interesting property,
will not be further studied in this paper. discussed later in Section 7.2.1.

7.2.1. Analytically Redundant EquationsThe dy-
7. SATELLITE EXAMPLE namic state variablesare for MSS and MSS model:

. . - . _ ' = {p}; #3 = {p,&}. Instantaneous state variables
This example is a non-trivial non-linear point-mass , gre:,1 — {w}; 25 = {v}.

satellite system. It is taken from (Rugh, 1996; Persis )
and Isidori, 2001). First the model is presented, Sec-The Jacobians for MSsand MSS model are

tion 7.1. After this, the dynamic, static and partially 1 -10 1
dynamic approaches are considered, Section 7.2, 7.3, o ol B |0 1 -Aps
and 7.4 respectively. Last, some simulation results are 01 8 8 8

presented, Section 7.5.
where A\ = 2w/p. The determinant of the Jacobians
are|J'| =T} and|J3| = 0.

7.1 Physical Model
ysical Mode From this it is concluded that, in MSSnodel, equa-

The equations describing the model are tion 2 (e¢) is analytically redundant, and that M5S
1 model includes no redundant equations. A similar
e1:p=v e2 b= pw? — 61— + Oour +d analysis give that in MSSmodel, equation 4 is ana-
; . 2w U2 fug lytically redundant, and that MSSnodel includes no
Garesw Garw=——m b (7 + 7) redundant equations.

o
es:0=-y1+p e:0=-y2+p+fo

B Note, the MS$8 and MSS models have index higher
e7:0=—-y3 +w,

than zero. The reason is that it is not possible to
where:p, v are radius and radius speed;w are angle calculatev from equationse; or e; (equationes,
and angular speed; is radial and., tangential thrust; es5, eg and e; does not includev). One solution to



reduce the index is to use an MSS model that includesare analytically redundant, Eq. (5) have to be consid-
equatiore,, thenv can be integrated from. One such ~ ered. This corresponds to
MSS model is MS% model. It includes a redundant 5 s 2w
equation but is sensitive to the disturbance {lo,w,v,9)l61 =& = o 0A (pw,v, ) €Q} =0
5 .5 2

_ ,  Ahw ol =g == =0A(pwv,9) €Q} D
7.2.2. Des(,]igr;1 ofthor MSSd In section 7.2.I1 it i ) /’6
was stated that the second equation is analytically 3_ 2vw—fhus Q '
redundant. With a firstlesign cho(?ceaf [y =105 = {lp,w, v, 9)IEs 2 A(pyw,v,0) €Q}) £ 0

T3y = dn =1,th del i L .
32 = 0andn © modetis From this it can be concluded that equation 2, 4, and

o [sbﬂv} . [Fu 0 ] H 6 are not analytically redundant. It can be noted that,

—y2+ ¢ 21 T2 (6)
st w o they are structurally redundant.

In Section 7.3, three different MSS models have been
In this case the model is linear and therefore, linearfound. For the third MSS model, the analytically re-

analysis will be used to find the constraints 10y, ndan ions hav n
I'5; andI'y,. Transform (6) to the frequency domain dundant equations have been stated.

_ Y25 — y3
s2I'22 4+ sT21 + 1

7.4 Partially Dynamic Approach
which is stable ifl'1; > 0,91 > 0andI'y > 0
(Routh’s theorem). Note thdt,, # 0 and equation 2 In Section 7.2 it is concluded that the MSg&odel
is analytically redundant. With this design choice, the and the MS$ model does not include any redundant
model is stable. equations. The problem is that it is not possible to

Note, even though linear theory was used to find thedlrectly calculatev from the equation set. A solution

constraints o, the methods presented in this paper IS to part'a”y assume that it is possible to approximate

. o : derivatives.

is not limited to the linear case. In the general non- . S

linear case, other methods for stability analysis, suchin this section it is assumed that can be approx-

as Lyaponov theory, have to be used. imated. The MSS-algorithm finds ten different MSS
sets and here the two MSS sets that corresponds to
MSS? and MSS in Section 7.2 are chosen. The dif-
ference is that differentiated equatiénis included.

In Section 7.2, four MSS models have been analyzed
Only two of the MSS models includes analytically re-
dundant equations. Constraints Brior MSS' model
have been stated. The set of MSS sets is

MSS |Equation set | fus fo d
MSS§ {61,64,65,(%5767} X 00
'\/'SSZl {61,63,64,65,é5,66} X X0

7.3 Static Approach

In the static approach the derivatives, up to some order,

of al sensor values have to be approximated. Here only 4.1, Analytically Redundant Equations For the

the first derivative will be used. The MSs-algorithm s 4 \1ss models the dynamic state variablis: 7% =

given this information and findthree different MSS . ed Rl . .

sets. The set of MSS sets found is {w}; 2% = {¢,w}. Instantaneous state variablds:
2> ={p,pp,v}; 2* = {p,pp,v}.

MSS |Equation set | fus d
0 The determinant of the Jacobians afg?| = T3;
0
0

_"G\H

|\/|SS~l {63, é67 67} 0 X
MSS|{e1,e4,€5,¢5,e7,67} | X 0 |J4| = T4, This means that for MSSnodel and MS$
MSS}|{e1, e3, €4, €5, 5,66, 67} X X model equations 5 and 6 are analytically redundant,
] ) o ) ) respectively.

Time differentiation of an equation, e.g%, is per-

formed analytically. For example, M$Set is{¢p = .

w,0=—y2p + ¢p,0 = —ys + w}. 7.4.2. Design of for MSS  In Section 7.4.1 it was

stated that equation %) is analytically redundant.

) . The model will be designed with = 0,11, =T'3; =
7.3.1. Analytically Redundant Equations In the 1,, =0andl5; =1,

MSS! set, the unknown variables agg, andw, simi-

lar for the other MSS models. The determinants of the P 0
Jacobians are for the three MSS models determined —& — 200/ p + O2uz/p a1
by &, 0= —y1+p +]0|n
D D
: —-yr +p 0
§1 = [171’_1]T 7;34»@ 1

€2 =[-\-1,1,a,-X-8-1T
€ =\61,0a,x817,

wherea = (2uw — faus)) /p?, B = 2v/p and X = r=y3 — w.
2w/p. s+2y7 /y1 + T

Transformr to the frequency domain

For example, for MS§ equations 3 and 7 are analyt- The model is locally stable &y /y; + 'y > 0. A
ically redundant. To check if the remaining equationsdesign choice i€y, = —2y” /y; + K, whereK; > 0.



n The simulation results show that the two MSS models
g sl * 31 that have been implemented, react correctly to the
@ T introduced faults.
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0 50 — 100 150 8. CONCLUSIONS

) Dynamic evaluation of MSS models have been used
for fault-diagnosis. These MSS models are residual
generators for the original system. An MSS model is
formed from a minimal structurally singular (MSS) set
of equations with an extra residual component and its
derivatives.

0
150

Since it is not possible to add the residual component
arbitrary, constraints on how the residual component
can be added have been stated. The constraints can
be divided into two parts, first the component must be
0 = 100 T added to an analytically redundant equation. Secondly,

0.08- it must be added in such a way that the MSS model is

0.06 [ _ MSSy ) ) ) ) )
0,04k /\/\ AR The relationship between approximations of deriva-

Filtered

0.02

__ MSs, stable.

; T tives of sensor values and evaluation complexity is

R V studied. It has been shown that it is possible to gain

0 50 100 150 MSS model simplifications at the expense of approx-

time [-] imations of derivatives of sensor values. High index

MSS models can be relaxed to lower index MSS mod-
els if approximations of derivatives are allowed.

Fig. 2. Residual values.

In Section 7.4 it has been shown tlifat is possible ~ The approach has been used on a non-trivial non-
to approximatejy, it is possible to gain simpler MSs  linear point-mass satellite system. MSS models from
models. Two MSS models with analytically redundant the dynamic and partially dynamic approach are used

been stated. MSS models shows good results.
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