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Abstract: Given a number of thresholded residuals, an algorithm for finding the diagnoses,
i.e. possible faults, is presented. The algorithm is based on ideas used in diagnosis algorithms
from the field of Al. It is capable of handling the case of multiple faults and multiple
fault-types per component. The number of multiple faults is exponential in the number of
components. To handle this complexity problem, logical formulas are used to efficiently
represent diagnoses. The formulas obtained can easily be used to derive the set of all
diagnoses or the set of most probable diagndSepyright(©) 2006 IFAC
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1. INTRODUCTION by bias-fault, gain-fault, short-cut, or open circuit. For

The purpose of fault isolation is to identify the faulty €Pairing the system or to take appropriate fault ac-
component or components. Fault isolation has, in th§ommodation actions, it may be critical that the fault
field of FDI, commonly been performed using so calledSelation not only localizes the faulty component but
structured residualgGertler and Singer, 1990). This also concludes which the fault type is. Further on, some

means that the fault isolation is based on a table sudigsiduals may respond to a certain fault type but not
to another, and it would be a waste not to utilize this

as - | f11 % f03 fi additional information when doing fault isolation.
1
|1 1 0 O (1) To solve the first problem, handling of multiple faults,
31 0 1 1 O one column for each possible multiple fault can be
ra | 0 1 0 O added to the isolation table. This approach was sug-

. . . . ested in (Gertler, 1998). However,/f is the number
Each row is associated with a thresholded reS|dua9f components, the number of columns neededs 1,

Further, each column is typically associated with on i ; ; .
component, i.ef; represents a fault in component i?lgﬂymfg%ﬂ?i n?glrl)rszzttzgn:gmputatlonally intractable

f2 afaultin component; etc. The fault isolation is then
performed by matching columns to the actual residuathe second problem, multiple fault types per compo-
response. For example, if residualsandr, are above nent, can be addressed by adding separate columns for
their thresholds, angs andr, below, the conclusion is each fault type, see (Nyberg, 2002). When combining
that a fault in componen is present. this with a consideration of multiple faults, and letting

o . denote the number of fault types per component, the
This simple approach has two problems. First, onI)M N
single faults are considered. Second, only one fault typgUmboer of columns needed becori#s+1)™ —1. Thus

per component is considered. In real larger system ,ecomputational burden is increased even further.

it is often not sufficient to consider only single faults To perform fault isolation fast is critical in real-time

and only one type of fault per component. Thus it issystems. The reason is that fault isolation often is the
important to handle also the case of multiple faults angasis for taking decision about fault accommodation.
multiple fault types per component. Knowing exactly the faulty component and type of the

It could be argued that multiple faults are less probabliult can make the difference between shutting down
and therefore of less importance. However, a commoffi€ Process or continuing operation with only slightly
case is that systems are not immediately repaired ev graded performance. If the fault isolation is too slow,

though a fault has been detected and isolated. The re le absence of fault isolation information in combina-

son is that many faults are not critical for continuedHon With for example safety requirements, may force
operation. The consequence of this is that the numb&f€ Process to be shut down soon after that the fault is
of faulty components increases over time, and when th etected.
system is finally repaired, the number of faulty compo-The requirements of handling multiple faults and mul-
nents may be substantially larger than one. tiple fault types per component, in combination with a

: ; i form fault isolation quickly, role out
The reason why multiple fault types should be considf€duirement to perforn _ ’
ered is the following. Usually components can fail inth€ @Pproaches used in (Gertler, 1998; Nyberg, 2002).
several ways. For example, a sensor can be affectdd'® contribution in the present paper is a new approach



that we will show to be significantly faster than theresult would be that eithef; or f5 is present. Note that
approaches in (Gertler, 1998; Nyberg, 2002). This newhis is a correct conclusion. This issue has earlier been
approach is based on a previous algorithm used in thdiscussed in (Nyberg, 1999; Cordigtral., 2000).

field O.f Al (deKleer and Williams, 198.7)' The differ- e will assume that the residual response to multiple
ence is that although the algorithm in (deKleer anc%g/ults can be derived from the singlg fault responge.
Williams, 1987) can handle multiple faults in an effi- That js the X:s in a multiple-fault column is chosen
cient way, it can not handle the case of multiple faultas the “union” of the X:s in the corresponding single

types. fault columns. This assumption should hold in most real

Before continuing the discussion, we need to formulat%pu%g?é'_?gj't ?/grgiscl)zgo?r(ﬂl% ﬁéscgrrléje?ls assumption, the

the “fault isolation problem” more precisely. Out of
several possibilities, we aim at solving the following | i fo f3 fa | fifo hfs fifs . fifofsfa
two problems. The first is to, given a set of thresholded "1 | X - X
residuals that have responded to some unknown fault’?
or faults, compute the set of aliagnosesi.e. all fault s
combinations that are consistent with the residual re- '* o)
sponse. For large systems the number of such diagnoses
can be quite large. Therefore the second problem conNow instead of only a column matching, we will in
sidered is to compute the set of only so calpeeferred  this paper use a more sophisticated approach to search
diagnoseg(Dressler and Struss, 1992). The preferredor diagnoses. To illustrate the principle, assume that
diagnoses are, in one sense, all most probable diagnosealy r, has responded. We see in the table (2) that the
and they have the advantage that they are consideraldingle faultsf; and f, are diagnoses. By construction
fewer than the set of all diagnoses. of the table, we also know directly that all multiple
adaults including f, or f>, e.g. fif> and f2fs, are the
Zemaining diagnoses. Then if alsg responds, the di-

gnoses are updated. The single fgiyltan no longer

e a diagnosis, but instead all multiple faults including

o o X

X X X O
o X oo
o O o X
X X X X
o X X X
o o X X
X X X

Fault isolation in the case of several fault types h
indeed been discussed earlier in the field of Al, se
e.g. (Struss and Dressler, 1989; deKleer and William

1989). However, these works aim at solving the whol ) ! .
diagnosis problem, and not only the fault isolation probf1f3 become diagnoses. The old diagnogisand all

lem. That is, these works also include so called conflicrtnultlple diagnoses including, are still diagnoses.

recognition, which here corresponds to residual geneft will be shown that this principle of doing fault
ation. Also, the model class they consider is modelgsolation is much more efficient than the use of col-
that can be handled by a so called ATMS (deKleer andmn matching. It follows the approach used by diag-
Williams, 1987). Nevertheless, their basic ideas of howiosis algorithms such as (Reiter, 1987; deKleer and
to solve the fault isolation problem could be comparedwilliams, 1987), developed within the field of Al. Note

to the algorithm discussed in the present paper. Howhowever that the algorithms in (Reiter, 1987; deKleer
ever, even though only the fault isolation part is con-and Williams, 1987) cannot, in contrast to the new ap-
sidered, both these works admit complexity problemsproach presented in the present paper, handle multiple
To handle the complexity, (deKleer and Williams, 1989)ault types.

searches only some of the most probable diagnoses, 3. LOGICAL FRAMEWORK

but this may also cause complexity problems in som '
cases. In (Struss and Dressler, 1989), only single-fau
diagnoses are computed.

his section presents a logical framework in which
iagnosis conclusions can be represented in an efficient
way. In the system to be diagnosed, identify a set of
The paper is organized as follows. First some basicomponentthat we want to diagnose. Each component
principles used are described in Section 2. The tool fois assumed to be in exactly one out of sevbediavioral

our work is a logical framework, defined in Section 3.modeswhich can be thought of as the fault status of
In Section 4, we generalize and formalize the notiorthe component. A behavioral mode can be for example
of thresholded residual. Section 5 then describes theo-fault, abbreviatedV F', gain-faultG, bias B, open
basic algorithm for solving the fault isolation problem.circuit OC, short circuit.SC, unknown faultU F’, or

In Section 6 it is described how this algorithm can bgust faulty F'. For our purposes, each component is
used to solve the two problems of finding all diagnoseabstracted to a variable specifying the mode of that
and the preferred diagnoses respectively. The approachmponent. Let denote the set of such variables. For
is then illustrated on an application example in Seceach component variabjelet R, denote thelomainof

tion 7. Finally, an empirical comparison between thepossible behavioral modes, i.€ R.,.

new approach and the column matching approach fro

(Gertler, 1998) is presented in Section 8 '%e will now define a set of formulas to be used to ex-

press that certain components are in certain behavioral

2 BASIC PRINCIPLES modes. Ify is a component variable in the sétand

Bef hing th bl f truct fM C R,, the expressiop € M is a formula. For
elore approaching the problém ot constructing an €fg, o mp1e™if) is a pressure sensor, the formylae

ficient algorithm for fault isolation, we will replace the (NF,G,UF}m e
s S e . .G, eans that the pressure sensor is in mode
1:sin the table (1) with X:s. The reason for this is thatmNF’ G, orUF. If M is a singleton, e.gM = {NF},

real systems with noise, model uncertainties, and noRy. il sometimes write alsp — NF. Further, the
linearities present, it is not possible to guarantee tha\évonstanu_ with valuefalse is a formulla Ifeb ar;dv

a residual exceeds its threshold. So for example in th
table (1), when/, is the present fault, only the resid- € formulas them A, 6 v 5, and-—¢ are formulas.

ual r3 may exceed its threshold. When using 1:s, thé\ system behavioral modga conjunction containing a
isolation result becomes incorrectly that is present. unique assignment of all component&inFor example
If instead the 1:s are replaced with X:s meaning that & C = {p1, p2, p3}, a system behavioral mode could be
residual onlymay respond to the failure, the isolation p; = UF Aps = BAps = NF. Now note that by using



the logical framework, certain sets of system behavioradre written as

modes can be represented in an efficientway. Forexam-r7} — o, ¢ MC Vv oy € MS V-V o, € MS (3)
ple, consider a single conjunctidh, = c¢; € M Acy € )

M, A c3 € Ms. Note first that to store this conjunction Where thep;:s are placeholders for component variables
in the computer memory, we need only to store the thre0m the seC, ©; # ¢y if j # k, andd # M; C R,
setsM;, M, and M5 which are usually small. If the Note that not all variables i are necessarily contained

system contains 7 component3; is able to represent in the formula (3).
aset of M |[ M || Ms||Re,||Re, || Reg || Re, | System be-
havioral modes. If each/; would have 37elements, and °- THEBASIC FAULT-ISOLATION ALGORITHM

eachR., 5 elements, the single conjunctidn, would The task of the algorithm presented in this section is
represent 6875 system behavioral modes. to, given a set of test conclusions, compute an expres-

: : : ion representing all diagnoses. Before describing the
m;cg%?;nuﬁ;\’\?ghatgzm:r?tr% %g:g’ég&%irclg %']9 ;\;]%fhaey;l!gonthm, we first give a formal definition of the term
formula~y, and writey |= ¢, if all assignments of the diagnosis.
variablesC that makey true also make true. This can A diagnosis is a system behavioral mode consistent with
be generalized to sets of formulas, ey, ...,v,} =  all test conclusions. That is, P is the set of all test
{b1,...,¢omifandonlyifyiA-- Ay, |E d1A-- A, CONClusions, a system behavioral meblis adiagnosis
If it holds thatl’ = ® and® = T', where® andl" are if {d} UP [~ L or equivalentlyd = P.
formulas or sets of formulagh andI" are said to be

equivalent and we Wit ~ . The algorithm is based on two principles to make it

efficient. The first is to, instead of working with sets
4. DIAGNOSTIC TESTS of diagnoses as in the column matching approach, di-

In the introduction we discussed a diagnosis systerffdN0Ses are represented using the logical framework
based on thresholded residuals. Instead of threshold@§€Sented in Section 3. Then our problem of computing
residuals we will use the generalized notiordignos- 21 Expression representing all diagnosis could simply
tic tests A diagnostic test is considered to be any devic®® sol\|/_|ed by taking tthf gqnjljsnct;pn Olf all t?ft clzoncI:J_-

that takes measured or known signals as inputs and give"'S: MOWEVET, as stated In Section L, our inal goal 1
as output a conclusion about the behavioral modes. Thig cOmPute explicit sets of all diagnoses and preferred
a diagnostic test may for example include a thresholde iagnoses, and the conjunction of all test conclusions

residual, an approach involving parameter estimation, ¢fo€S Not bring us closer to this final goal. Therefore the
some st:’:ltistical signal processing ' “algorithm is based also on a second principle, namely

to represent diagnoses using a specific normal form,
A diagnostic test is a special case of a classical binanghich is defined in the next section. When using this
hypothesis test (Casella and Berger, 1990). To each tasdrmal form, the operations to compute all or preferred
there is anull hypothesisfi® which states the assump- diagnoses become almost trivial, as will be described
tion that is tested by the diagnostic test. In this paper wih Section 6. An additional advantage with this normal

assume thati® is expressed in the logical framework form is that it avoids redundancy in the representation.

defined in Section 3. For example, consider a test bas%d

on a thresholding of residuaj in the table (2). Assum- -1 A Normal Form _
ing that f; means a fault of a corresponding componen¥Vhen presenting the normal form, we will use the
be i = ¢; € {NI'} A cs € {NF}. In general a omponenfvariables from trfejsétandgoij represents

diagnostic test usually tests some relation between mea]-e "th variable in the:th conjunction. We will now say
sured and known signals in the form of a so capedit J- T : L
9 Y that a formula is ilfmaximal normal forrMNF if it is

relation or analytical redundancy relatiarThe null hy- 3

pothesis is then the conjunction of all behavioral moddVritten on the form

assumptions that had to be made to derive this consisy,; € My A i1a € Mig A=+ A@ip, € Mip,) V...
tency relation. More details on the relation between a v ( e Mot A A € M)
consistency relation and its corresponding null hypoth- Ym1 mi P i
esis can be found in (Nyberg and Krysander, 2003). wherey;; # o if j # k, and

The fact that the diagnostic tests are assumed to bea) no conjunction is a consequence of another con-
binary means that there are two possible outcomeswhen  junction, i.e. for each conjunctioP;, there is no
testing the null hypothesis. Either it is rejected which conjunctionD;, j # ¢, such thatD; = D,, and
means that the conclusion drawn from the test is the b) each)M;; is a nonempty proper subsetRB{,, , i.e.
alternative hypothesi&! = —H°. Otherwise the null 0+ M, CR.. .

hypothesis is not rejected which means that no conclu- ! wu

sion is drawn from the test. This “asymmetry” of the testNote that the definition says, that for examplg and
corresponds to the use of only X in the isolation table21 can represent the very same variable, bt and

as exemplified by (2). The underlying reason is that fog12 cannot. Note also that the requirements (a) and (b)
example noise forces us to draw no conclusion wheguarantee that a formula is compact in the sense that it
HP is not rejected, in favour of being able to draw thedoes not contain redundant conjunctions and a that each

conclusionH® when H? is rejected. For the example conjunction does not contain redundant assignments.
of r3 in (2), this means that when the residual is belovweqgr an example consider the following two formulas

its threshold, no conclusion is drawn, and when thentaining pressure sens andn=. where all
residual is above the threshold, we draw the conclusiofaye the ge%avioral modgﬁzpf}VF Gp% UF).

H'=-H~c, e {F}Ves € {F}. 5
Following this principle means that, without loss of ' € {UF} Ap2 € {B,UF} Vps € {UF}

generality, we can assume that all alternative hypotheses P1 € {UF} Ap2 € {B,UF}Vp, € {G,UF}



The first formula is in MNF but not the second sinceof behavioral modes for each componentRs, =

p1E{UF}/\ng{B,UF}):plE{G,UF}.

5.2 The Algorithm

As said above, the task of the algorithm is to compute

{NF,G,B,UF}.

D:D1\/D2:p1G{G,B,UF}VPgE{G,UF}
P:.Pl\/PQ:pQE{B,UF}\/p3€{G,B,UF}

a formula representing all diagnoses. This is done byirst the conditiorD; |~ P is fulfilled which means that

computing a new formul@® in MNF such thatQ ~

D, is removed fronD,,;; and the inner loop is entered.

IP. The algorithm consists of a main algorithm and arhere ap,,., is created such thab,., ~ D; A

subroutine corijD, P).

The inputs to the subroutine are an MNF-formiflla=
V. D; and atest conclusiogR = \/, P;. The purpose of
the subroutine is then to compute the outglin MNF

with the propertyQ ~ D A P. Before presenting the
details of the subroutine, we present the main algorithnﬂ%3
2

Algorithm 1. Main Algorithm
Input: a sefP of test conclusions
Output:Q
remove a test resul from P and letQ := P
forall P € P do

Q = conj(Q, P)
next

Theorem 1.If the test conclusions ir? are on the
form (3), then the outpu® from Algorithm 1 is in MNF
andQ ~ P.

The proof of this theorem can be found in (Nyberg,

2006).

P, =p € {G,B,UF} Apy € {B,UF}. This D, .,
is then compared td, when checking the condition
Dyeww = D2. The condition is not fulfilled which means
that D,,.,, is added toD,4,. Next a D,,.,, IS created
such thatDyey ~ D1 A Py = p; € {G,B,UF} A
€ {G, B,UF}.Also this time the conditio®,,,, =

is not fulfilled, implying thatD,,.,, is added to
D.aq- Next, the conjunctio, is investigated but since
D, E P holds, D, is not removed fronD,;; and the
inner loop is not entered. The algorithm output is finally
formed as

Q :=DyqV Dyga = DoV (Dl APy V Dy /\PQ) =
=p3e{G,UF}Vp, €{G,B,UF}Aps €{B,UF}V
VpL€{G,B,UF} Aps€{G, B,UF} (5)

It can be verified tha® ~ D A P. Also, it can be seen
thatQ is in MNF.

5.3 Details of the Subroutine

To implement the algorithm of the subroutine, some
more details need to be known. The first is how to check
the conditionD, = P. To illustrate this, consider an

To describe the principles of the subroutine, consider thexample wherd®; = ¢; € MP Acy € MP Aes € MP

following expansion ofQ:

QED/\P:\/Di/\\/P ~ (4a)
2D1/\P1\/D1/\P2\/D1/\P3\/...
 VDyAPLNDy APV ... (4b)

Clearly, (4b) is equivalent t&@ but not necessarily

in MNF. The algorithm below computes the expan-
sion (4b) but, when used together with Algorithm 1,

andP = ¢y € MY Ves € MY Veq € M. We
realize that the conditio®; = P holds if and only if
MP C ME or MP C MF. Thus, this example shows
that in generalD; = P holds if and only ifD; and
‘P contain at least one common componentwhere
MP Cc MmP.

The second detail is how to find an express®n..,
in MNF such thatQ ..., ~ D; A P;. To illustrate this,

. . . . i _ D D
avoids to include those redundant conjunctions that dé&:onsider an example whef#; = ¢, € Mi” Acy € M,

stroy the MNF property.

Algorithm 2. Subroutine corD, P)
Input: a formulaD in MNF, a test conclusiof®
Output:Q
Doia =D
forall D; € D do
if D; = P then
RemoveD; from D4
forall P; € P do
Let D,.., be a conjunction in MNF such
thatD, e, ~ D; A Pj
forall D, € D, k # i do
if Dyew E Dy then
goto LABEL1

endif
next
Dadd = Dadd \ Dnew
LABEL1
next
endif

next
Q :=Doia V Dada

andP; = cz € M. ThenQ.,, will be formed as
Diyew = 1 € MP A ey € MP n ML . This means that
Dy = D; A P; and thatl),,,, will be in MNF.

The third detall is how to check the conditidh,.., =
Dy. It can be realized thaD,,.., = Dy holds if
and only if (1) Dy contains only components that are
also contained irD,,..,, and (2) for all components;
contained in bothD,.,, and Dy, i.e.¢; € M and
c; € MP respectively, it holds that/ C MP.

6. USING ALGORITHM 1 FOR FAULT ISOLATION
After having processed all test conclusions using Algo-
rithm 1, we obtain an MNF-expressiad representing

all diagnoses. Given thi€, this section describes how
to compute the sets of all diagnoses and preferred diag-
noses.

To compute the set of all diagnoses is the simplest. First,
the sets of diagnoses represented by each conjunction in
Q are derived. The set of all diagnoses is then obtained
by taking the union of the sets derived from each con-
junction.

Note that when the number of components is large, the

To illustrate the subroutine, consider the following smallnumber of diagnoses represented @yis typically a

example whereC = {p1,p2,ps} and the domain

very large number. It may in this case not be feasible



to compute all diagnoses. Therefore we describe next Q =c; € {E} Ac3 € {B,G}V
an alternative solution, namely to prioritize among the .
diagnoses and pick out only the “most desirable” ones. ¢t B Fine; €{B F}Nes € {B, G}

The preferred diagnoses consistent with the first con-
6.1 Minimal/Preferred Diagnoses junctionarec; = EAcg = NFAcs = Bande; = EA
ca = NF Nez = G. The preferred diagnoses consistent
With the second are;, = F Acy = EAec3 = B and
¢1 = E Necy = E A ez = G, but these will be removed
from A.

In the literature, several criteria for defining what is
meant by “most desirable” diagnoses have been use
Probably the most commonly usedrignimal or pre-
ferred diagnosesThe concept of minimal diagnoses
was originally proposed in (Reiter, 1987; deKleer and

Williams, 1987) for systems where each component has 7. APPLICATION EXAMPLE

only two possible behavioral modes, i.e. the no-fauling 4 application example we will study an electrical
mode and a faulty mode. In (Dressler and Struss, 199gjer for the fuel injectors of a 6-cylinder automotive
the concept was generalized to components with aNYngine. This system has six components, namely one
number of modes. They also used the wordferred  qiver for each of the six injectors. Each driver has eight
diagnosesnstead of minimal diagnoses. behavioral modes: NF, SBB (short between banks),

The basic idea is that the behavioral modes for eacRC (stuck closed), SCG (short circuit to ground), SLB
component are ordered in a partial order defining thagshort circuit on low side to ground), OL (open load),
some behavioral modes are more desirable, or preferregdHB (short circuit on high side to battery), and UF.
than other. For exampléy F is usually preferred over The complexity of this example is illustrated by the
any other mode, and a simple electrical fault, such af&ct that in total, there arg® = 262144 system behav-
short-cut or open circuit, is usually preferred over otheforal modes. Thus, an isolation table, as the one shown
more complex behavioral modes. Further, an unknowH (2) including all multiple faults, would have 262143
fault U F' may be the least preferred mode. columns.

g

For a formal definition leth! >. b? denote the fact
that for component, the behavioral modg! is equally |
or more preferred thah?. For each component, this |
relation forms a partial order on the behavioral modes;:
Further, these relations induce a partial order on the:
system behavioral modes. L&t andd, be two system
behavioral moded; = Accc(c = b2). Then we write
di > do if for all ¢ € C it holds thatbl >. 2. :
A preferred diagnosis can then formally be defined as:
a diagnosisi such that there is no other diagnodis |:
whered’ > d.

Under some assumptions, it can be shown that a pre:
ferred diagnosis is a most probable diagnosis given th&
set of all test conclusiori®. This justifies the conceptof _. : . . .
preferred, or minimal, diagnoses. LB{c = b,) be the Fig. 1. The isolation table for the electrical-driver sys-
prior probability that componentis in behavioral mode tem, shown for single faults.

be. To know the exact value of the pridt(c = b.) may  There are 52 diagnostic tests monitoring this system.
be very difficult or even impossible. Therefore assumerheir response to different single faults are shown in the
only that for each component, the priors are partiallysolation table in Figure 1. This table thereby specifies

ordered and let this define the relation. Then under  the null hypothesis for each diagnostic test as described
the assumption that faults occur independently of eaciy Section 2.

other, the preferred diagnoses, will be exactly the most
probable ones given the test conclusions, i.e. the diad=or the example, we now assume that tests 10, 30, 38,

P(d'|P) is known to be larger thaR(d|P). all diagnoses and the set of all preferred diagnoses are to
be computed. For comparison we use both the column
matching approach from (Gertler, 1998), but extended
to multiple fault types as described in Section 1, and the
Given an MNF-expressior® in MNF, we will now approach based on Algorithm 1, both implemented in
discuss how to obtain the set of preferred diagnoses. F&ciLab. When calculating preferred diagnoses, we use
each conjunction i@, find the preferred diagnoses con-a partial order defined by the relatiodsF < b for
sistent with that conjunction, and collect all diagnosesll behavioral mode$ # NF andb < UF for all
found in a setA. In the general case, two conjunctionsb # UF'. Using these approaches, the total number of
may contain preferred diagnosis andd, respectively diagnoses is computed to be 31960. Further, the num-
and it may hold thatl; > d. Therefore the sef can  ber of preferred diagnoses is 27. Two examples of pre-
contain non-preferred diagnoses. These can be removiatred diagnoses aréVF,SBB, NF,UF,NF,NF)
by a simple pairwise comparison and the remaining oneand(N F, SC, SBB,SLB, NF,NF).
will be the set of preferred diagnoses.

6.2 Computing Preferred Diagnoses

For comparison, a variant of the column matching ap-

For an example, consider two componeatsandca  proach to compute preferred diagnoses, was also imple-
whereR., = {NF,E,F} andNF > E > F,anda mented. The principle used was that the isolation table
third component; whereR., = {NF, B, G} with the s traversed from left to the right. The system behavioral

only relationsNF' > B andNF > G. Then consider  modeb of each column is compared to a Sebf already



computed preferred diagnoses, and if concluded thateeded to compute all diagnoses or preferred diagnoses
b < d for some diagnosid € (2, thenbd is neglected, from the MNF formula, is almost negligible compared
and otherwise added @ if the test response matchesto the time needed to compute the MNF formula.

the column. Furthermore, if concluded thak b, d is

removed front. 9. CONCLUSIONS

The computation time needed for both approaches & this paper a fault isolation algorithm capable of
shown below. For comparison, also the time needed fdrandling the case of multiple faults and multiple fault
Algorithm 1 to compute the MNF-formul@ represent- Mmodes per component has been presented. Compared to
ing all diagnoses is shown. earlier approaches (Gertler, 1998; Nyberg, 2002; Struss

and Dressler, 1989; deKleer and Williams, 1989) we

diaAgoseS PQ?;er,iﬁies '\ﬂoNrqua are able to compute all diagnoses, and to control the
. 9 g complexity, by using an efficient representation of the

column matching| 3144s 8198s NA di Th tati . fficient si di
new algorithm 1155 11.4s 10.7s iagnoses. The representation is efficient since diag-

noses need not to be enumerated explicitly. A single
We can note that the new approach, based on Alg@onjunctionD; in an MNF-formula is potentially able
rithm 1, computes all diagnoses 273 times faster than the represent a large number of diagnoses. To prioritize
column matching approach. Further, the new approachmong the possibly large set of diagnoses, it was shown
computes preferred diagnoses 719 times faster than thew minimal or preferred diagnoses could be extracted
column matching approach. Additionally, it is seen thafrom an MNF-formula representing all diagnoses.

for the new approach, the extra time needed to compute . . : L
all or preferred diagnoses from the MNF formula, is lesd! & cOmparative study, including both a real application

than 10% of the time needed to compute only the MNP."‘nd a large number of randomly generated test cases,
formula it was shown that this new approach outperforms the

more traditional column matching approach in (Gertler,
8. COMPARISON OF COMPUTATION TIMES ~ 1998).
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