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1. INTRODUCTION

The purpose of fault isolation is to identify the faulty
component or components. Fault isolation has, in the
field of FDI, commonly been performed using so called
structured residuals(Gertler and Singer, 1990). This
means that the fault isolation is based on a table such
as f1 f2 f3 f4

r1 1 0 0 1
r2 1 1 0 0
r3 0 1 1 0
r4 0 1 0 0

(1)

Each row is associated with a thresholded residual.
Further, each column is typically associated with one
component, i.e.f1 represents a fault in componentc1,
f2 a fault in componentc2 etc. The fault isolation is then
performed by matching columns to the actual residual
response. For example, if residualsr1 andr2 are above
their thresholds, andr3 andr4 below, the conclusion is
that a fault in componentc1 is present.

This simple approach has two problems. First, only
single faults are considered. Second, only one fault type
per component is considered. In real larger systems,
it is often not sufficient to consider only single faults
and only one type of fault per component. Thus it is
important to handle also the case of multiple faults and
multiple fault types per component.

It could be argued that multiple faults are less probable
and therefore of less importance. However, a common
case is that systems are not immediately repaired even
though a fault has been detected and isolated. The rea-
son is that many faults are not critical for continued
operation. The consequence of this is that the number
of faulty components increases over time, and when the
system is finally repaired, the number of faulty compo-
nents may be substantially larger than one.

The reason why multiple fault types should be consid-
ered is the following. Usually components can fail in
several ways. For example, a sensor can be affected

by bias-fault, gain-fault, short-cut, or open circuit. For
repairing the system or to take appropriate fault ac-
commodation actions, it may be critical that the fault
isolation not only localizes the faulty component but
also concludes which the fault type is. Further on, some
residuals may respond to a certain fault type but not
to another, and it would be a waste not to utilize this
additional information when doing fault isolation.

To solve the first problem, handling of multiple faults,
one column for each possible multiple fault can be
added to the isolation table. This approach was sug-
gested in (Gertler, 1998). However, ifN is the number
of components, the number of columns needed is2N−1,
which makes this approach computationally intractable
for anything but small systems.

The second problem, multiple fault types per compo-
nent, can be addressed by adding separate columns for
each fault type, see (Nyberg, 2002). When combining
this with a consideration of multiple faults, and letting
M denote the number of fault types per component, the
number of columns needed becomes(M+1)N−1. Thus
the computational burden is increased even further.

To perform fault isolation fast is critical in real-time
systems. The reason is that fault isolation often is the
basis for taking decision about fault accommodation.
Knowing exactly the faulty component and type of the
fault can make the difference between shutting down
the process or continuing operation with only slightly
degraded performance. If the fault isolation is too slow,
the absence of fault isolation information in combina-
tion with for example safety requirements, may force
the process to be shut down soon after that the fault is
detected.

The requirements of handling multiple faults and mul-
tiple fault types per component, in combination with a
requirement to perform fault isolation quickly, role out
the approaches used in (Gertler, 1998; Nyberg, 2002).
The contribution in the present paper is a new approach



that we will show to be significantly faster than the
approaches in (Gertler, 1998; Nyberg, 2002). This new
approach is based on a previous algorithm used in the
field of AI (deKleer and Williams, 1987). The differ-
ence is that although the algorithm in (deKleer and
Williams, 1987) can handle multiple faults in an effi-
cient way, it can not handle the case of multiple fault
types.

Before continuing the discussion, we need to formulate
the “fault isolation problem” more precisely. Out of
several possibilities, we aim at solving the following
two problems. The first is to, given a set of thresholded
residuals that have responded to some unknown fault
or faults, compute the set of alldiagnoses, i.e. all fault
combinations that are consistent with the residual re-
sponse. For large systems the number of such diagnoses
can be quite large. Therefore the second problem con-
sidered is to compute the set of only so calledpreferred
diagnoses(Dressler and Struss, 1992). The preferred
diagnoses are, in one sense, all most probable diagnoses,
and they have the advantage that they are considerably
fewer than the set of all diagnoses.

Fault isolation in the case of several fault types has
indeed been discussed earlier in the field of AI, see
e.g. (Struss and Dressler, 1989; deKleer and Williams,
1989). However, these works aim at solving the whole
diagnosis problem, and not only the fault isolation prob-
lem. That is, these works also include so called conflict
recognition, which here corresponds to residual gener-
ation. Also, the model class they consider is models
that can be handled by a so called ATMS (deKleer and
Williams, 1987). Nevertheless, their basic ideas of how
to solve the fault isolation problem could be compared
to the algorithm discussed in the present paper. How-
ever, even though only the fault isolation part is con-
sidered, both these works admit complexity problems.
To handle the complexity, (deKleer and Williams, 1989)
searches only some of the most probable diagnoses,
but this may also cause complexity problems in some
cases. In (Struss and Dressler, 1989), only single-fault
diagnoses are computed.

The paper is organized as follows. First some basic
principles used are described in Section 2. The tool for
our work is a logical framework, defined in Section 3.
In Section 4, we generalize and formalize the notion
of thresholded residual. Section 5 then describes the
basic algorithm for solving the fault isolation problem.
In Section 6 it is described how this algorithm can be
used to solve the two problems of finding all diagnoses
and the preferred diagnoses respectively. The approach
is then illustrated on an application example in Sec-
tion 7. Finally, an empirical comparison between the
new approach and the column matching approach from
(Gertler, 1998) is presented in Section 8.

2. BASIC PRINCIPLES
Before approaching the problem of constructing an ef-
ficient algorithm for fault isolation, we will replace the
1:s in the table (1) with X:s. The reason for this is that in
real systems with noise, model uncertainties, and non-
linearities present, it is not possible to guarantee that
a residual exceeds its threshold. So for example in the
table (1), whenf2 is the present fault, only the resid-
ual r3 may exceed its threshold. When using 1:s, the
isolation result becomes incorrectly thatf3 is present.
If instead the 1:s are replaced with X:s meaning that a
residual onlymay respond to the failure, the isolation

result would be that eitherf2 or f3 is present. Note that
this is a correct conclusion. This issue has earlier been
discussed in (Nyberg, 1999; Cordieret al., 2000).

We will assume that the residual response to multiple
faults can be derived from the single fault response.
That is, the X:s in a multiple-fault column is chosen
as the “union” of the X:s in the corresponding single
fault columns. This assumption should hold in most real
applications. By using only X:s and this assumption, the
multiple-fault version of (1) becomes

f1 f2 f3 f4 f1f2 f1f3 f1f4 . . . f1f2f3f4

r1 X 0 0 X X X X . . . X
r2 X X 0 0 X X X . . . X
r3 0 X X 0 X X 0 . . . X
r4 0 X 0 0 X 0 0 . . . X

(2)

Now instead of only a column matching, we will in
this paper use a more sophisticated approach to search
for diagnoses. To illustrate the principle, assume that
only r2 has responded. We see in the table (2) that the
single faultsf1 andf2 are diagnoses. By construction
of the table, we also know directly that all multiple
faults includingf1 or f2, e.g.f1f2 and f2f3, are the
remaining diagnoses. Then if alsor3 responds, the di-
agnoses are updated. The single faultf1 can no longer
be a diagnosis, but instead all multiple faults including
f1f3 become diagnoses. The old diagnosisf2, and all
multiple diagnoses includingf2, are still diagnoses.

It will be shown that this principle of doing fault
isolation is much more efficient than the use of col-
umn matching. It follows the approach used by diag-
nosis algorithms such as (Reiter, 1987; deKleer and
Williams, 1987), developed within the field of AI. Note
however that the algorithms in (Reiter, 1987; deKleer
and Williams, 1987) cannot, in contrast to the new ap-
proach presented in the present paper, handle multiple
fault types.

3. LOGICAL FRAMEWORK
This section presents a logical framework in which
diagnosis conclusions can be represented in an efficient
way. In the system to be diagnosed, identify a set of
componentsthat we want to diagnose. Each component
is assumed to be in exactly one out of severalbehavioral
modeswhich can be thought of as the fault status of
the component. A behavioral mode can be for example
no-fault, abbreviatedNF , gain-faultG, biasB, open
circuit OC, short circuitSC, unknown faultUF , or
just faulty F . For our purposes, each component is
abstracted to a variable specifying the mode of that
component. LetC denote the set of such variables. For
each component variableϕ letRϕ denote thedomainof
possible behavioral modes, i.e.ϕ ∈ Rϕ.

We will now define a set of formulas to be used to ex-
press that certain components are in certain behavioral
modes. Ifϕ is a component variable in the setC and
M ⊆ Rϕ, the expressionϕ ∈ M is a formula. For
example, ifp is a pressure sensor, the formulap ∈
{NF, G, UF} means that the pressure sensor is in mode
NF , G, or UF . If M is a singleton, e.g.M = {NF},
we will sometimes write alsop = NF . Further, the
constant⊥ with value false, is a formula. Ifφ and γ
are formulas thenφ ∧ γ, φ ∨ γ, and¬φ are formulas.

A system behavioral modeis a conjunction containing a
unique assignment of all components inC. For example
if C = {p1, p2, p3}, a system behavioral mode could be
p1 = UF ∧p2 = B∧p3 = NF . Now note that by using



the logical framework, certain sets of system behavioral
modes can be represented in an efficient way. For exam-
ple, consider a single conjunctionD1 = c1 ∈ M1∧c2 ∈
M2 ∧ c3 ∈ M3. Note first that to store this conjunction
in the computer memory, we need only to store the three
setsM1, M2, andM3 which are usually small. If the
system contains 7 components,D1 is able to represent
a set of|M1||M2||M3||Rc4 ||Rc5 ||Rc6 ||Rc7 | system be-
havioral modes. If eachMi would have 3 elements, and
eachRci 5 elements, the single conjunctionD1 would
represent16875 system behavioral modes.

In accordance with the theory of first order logic we say
that a formulaφ is a semantic consequence of another
formulaγ, and writeγ |= φ, if all assignments of the
variablesC that makeγ true also makeφ true. This can
be generalized to sets of formulas, i.e.{γ1, . . . , γn} |=
{φ1, . . . , φm} if and only ifγ1∧· · ·∧γn |= φ1∧· · ·∧φm.
If it holds thatΓ |= Φ andΦ |= Γ, whereΦ andΓ are
formulas or sets of formulas,Φ and Γ are said to be
equivalent and we writeΓ ' Φ.

4. DIAGNOSTIC TESTS
In the introduction we discussed a diagnosis system
based on thresholded residuals. Instead of thresholded
residuals we will use the generalized notion ofdiagnos-
tic tests. A diagnostic test is considered to be any device
that takes measured or known signals as inputs and gives
as output a conclusion about the behavioral modes. Thus
a diagnostic test may for example include a thresholded
residual, an approach involving parameter estimation, or
some statistical signal processing.

A diagnostic test is a special case of a classical binary
hypothesis test (Casella and Berger, 1990). To each test
there is anull hypothesisH0 which states the assump-
tion that is tested by the diagnostic test. In this paper we
assume thatH0 is expressed in the logical framework
defined in Section 3. For example, consider a test based
on a thresholding of residualr3 in the table (2). Assum-
ing thatfi means a fault of a corresponding component
ci whereRci = {NF, F}, the null hypothesis would
be H0 = c2 ∈ {NF} ∧ c3 ∈ {NF}. In general a
diagnostic test usually tests some relation between mea-
sured and known signals in the form of a so calledparity
relationor analytical redundancy relation. The null hy-
pothesis is then the conjunction of all behavioral mode
assumptions that had to be made to derive this consis-
tency relation. More details on the relation between a
consistency relation and its corresponding null hypoth-
esis can be found in (Nyberg and Krysander, 2003).

The fact that the diagnostic tests are assumed to be
binary means that there are two possible outcomes when
testing the null hypothesis. Either it is rejected which
means that the conclusion drawn from the test is the
alternative hypothesisH1 = ¬H0. Otherwise the null
hypothesis is not rejected which means that no conclu-
sion is drawn from the test. This “asymmetry” of the test
corresponds to the use of only X in the isolation table,
as exemplified by (2). The underlying reason is that for
example noise forces us to draw no conclusion when
H0 is not rejected, in favour of being able to draw the
conclusionH1 whenH0 is rejected. For the example
of r3 in (2), this means that when the residual is below
its threshold, no conclusion is drawn, and when the
residual is above the threshold, we draw the conclusion
H1 = ¬H0 ' c2 ∈ {F} ∨ c3 ∈ {F}.

Following this principle means that, without loss of
generality, we can assume that all alternative hypotheses

are written as
H1

k = ϕ1 ∈ MC
1 ∨ ϕ2 ∈ MC

2 ∨ · · · ∨ ϕn ∈ MC
n (3)

where theϕi:s are placeholders for component variables
from the setC, ϕj 6≡ ϕk if j 6= k, and∅ 6= Mi ⊂ Rϕi .
Note that not all variables inC are necessarily contained
in the formula (3).

5. THE BASIC FAULT-ISOLATION ALGORITHM

The task of the algorithm presented in this section is
to, given a set of test conclusions, compute an expres-
sion representing all diagnoses. Before describing the
algorithm, we first give a formal definition of the term
diagnosis.

A diagnosis is a system behavioral mode consistent with
all test conclusions. That is, ifP is the set of all test
conclusions, a system behavioral moded is adiagnosis
if {d} ∪ P 6|= ⊥ or equivalentlyd |= P.

The algorithm is based on two principles to make it
efficient. The first is to, instead of working with sets
of diagnoses as in the column matching approach, di-
agnoses are represented using the logical framework
presented in Section 3. Then our problem of computing
an expression representing all diagnosis could simply
be solved by taking the conjunction of all test conclu-
sions. However, as stated in Section 1, our final goal is
to compute explicit sets of all diagnoses and preferred
diagnoses, and the conjunction of all test conclusions
does not bring us closer to this final goal. Therefore the
algorithm is based also on a second principle, namely
to represent diagnoses using a specific normal form,
which is defined in the next section. When using this
normal form, the operations to compute all or preferred
diagnoses become almost trivial, as will be described
in Section 6. An additional advantage with this normal
form is that it avoids redundancy in the representation.

5.1 A Normal Form
When presenting the normal form, we will use the
notationDi for thei:th conjunction(ϕi1 ∈ Mi1∧ϕi2 ∈
Mi2∧· · ·∧ϕini ∈ Mini). Theϕij :s are placeholders for
component variables from the setC, andϕij represents
thej:th variable in thei:th conjunction. We will now say
that a formula is inmaximal normal formMNF if it is
written on the form

(ϕ11 ∈ M11 ∧ ϕ12 ∈ M12 ∧ · · · ∧ ϕ1n1 ∈ M1n1) ∨ . . .

· · · ∨ (ϕm1 ∈ Mm1 ∧ · · · ∧ ϕmnm ∈ Mmnm)

whereϕij 6≡ ϕik if j 6= k, and

a) no conjunction is a consequence of another con-
junction, i.e. for each conjunctionDi, there is no
conjunctionDj , j 6= i, such thatDi |= Dj, and

b) eachMij is a nonempty proper subset ofRϕij , i.e.
∅ 6= Mij ⊂ Rϕij .

Note that the definition says, that for exampleϕ11 and
ϕ21 can represent the very same variable, butϕ11 and
ϕ12 cannot. Note also that the requirements (a) and (b)
guarantee that a formula is compact in the sense that it
does not contain redundant conjunctions and a that each
conjunction does not contain redundant assignments.

For an example consider the following two formulas
containing pressure sensorsp1, p2, and p3, where all
have the behavioral modesRpi = {NF, G, B, UF}.

p1 ∈ {UF} ∧ p2 ∈ {B, UF} ∨ p3 ∈ {UF}
p1 ∈ {UF} ∧ p2 ∈ {B, UF} ∨ p1 ∈ {G, UF}



The first formula is in MNF but not the second since
p1 ∈ {UF} ∧ p2 ∈ {B, UF} |= p1 ∈ {G, UF}.

5.2 The Algorithm
As said above, the task of the algorithm is to compute
a formula representing all diagnoses. This is done by
computing a new formulaQ in MNF such thatQ '
P. The algorithm consists of a main algorithm and a
subroutine conj(D,P).

The inputs to the subroutine are an MNF-formulaD =∨
i Di and a test conclusionP =

∨
j Pj . The purpose of

the subroutine is then to compute the outputQ in MNF
with the propertyQ ' D ∧ P . Before presenting the
details of the subroutine, we present the main algorithm.

Algorithm 1. Main Algorithm
Input: a setP of test conclusions
Output:Q
remove a test resultP from P and letQ := P
forall P ∈ P do

Q := conj(Q,P)
next

Theorem 1.If the test conclusions inP are on the
form (3), then the outputQ from Algorithm 1 is in MNF
andQ ' P.

The proof of this theorem can be found in (Nyberg,
2006).

To describe the principles of the subroutine, consider the
following expansion ofQ:

Q 'D ∧P =
∨

i

Di ∧
∨

n

Pn ' (4a)

'D1 ∧ P1 ∨ D1 ∧ P2 ∨ D1 ∧ P3 ∨ . . .

· · · ∨ D2 ∧ P1 ∨ D2 ∧ P2 ∨ . . . (4b)

Clearly, (4b) is equivalent toQ but not necessarily
in MNF. The algorithm below computes the expan-
sion (4b) but, when used together with Algorithm 1,
avoids to include those redundant conjunctions that de-
stroy the MNF property.

Algorithm 2. Subroutine conj(D,P)
Input: a formulaD in MNF, a test conclusionP
Output:Q
Dold = D
forall Di ∈ D do

if Di 6|= P then
RemoveDi fromDold

forall Pj ∈ P do
Let Dnew be a conjunction in MNF such

thatDnew ' Di ∧ Pj

forall Dk ∈ D, k 6= i do
if Dnew |= Dk then

goto LABEL1
endif

next
Dadd := Dadd ∨ Dnew

LABEL1
next

endif
next
Q := Dold ∨Dadd

To illustrate the subroutine, consider the following small
example whereC = {p1, p2, p3} and the domain

of behavioral modes for each component isRpi =
{NF, G, B, UF}.

D =D1 ∨ D2 = p1 ∈ {G, B, UF} ∨ p3 ∈ {G, UF}
P =P1 ∨ P2 = p2 ∈ {B, UF} ∨ p3 ∈ {G, B, UF}

First the conditionD1 6|= P is fulfilled which means that
D1 is removed fromDold and the inner loop is entered.
There aDnew is created such thatDnew ' D1 ∧
P1 = p1 ∈ {G, B, UF} ∧ p2 ∈ {B, UF}. ThisDnew

is then compared toD2 when checking the condition
Dnew |= D2. The condition is not fulfilled which means
that Dnew is added toDadd. Next aDnew is created
such thatDnew ' D1 ∧ P2 = p1 ∈ {G, B, UF} ∧
p3 ∈ {G, B, UF}. Also this time the conditionDnew |=
D2 is not fulfilled, implying thatDnew is added to
Dadd. Next, the conjunctionD2 is investigated but since
D2 |= P holds,D2 is not removed fromDold and the
inner loop is not entered. The algorithm output is finally
formed as

Q := Dold ∨ Dadd = D2 ∨ (D1 ∧ P1 ∨ D1 ∧ P2) =
= p3 ∈{G, UF}∨p1 ∈{G, B, UF}∧p2 ∈{B, UF}∨

∨ p1 ∈{G, B, UF} ∧ p3 ∈{G, B, UF} (5)

It can be verified thatQ ' D ∧ P . Also, it can be seen
thatQ is in MNF.

5.3 Details of the Subroutine
To implement the algorithm of the subroutine, some
more details need to be known. The first is how to check
the conditionDi |= P . To illustrate this, consider an
example whereDi = c1 ∈ MD

1 ∧c2 ∈ MD
2 ∧c3 ∈ MD

2

andP = c2 ∈ MP
2 ∨ c3 ∈ MP

3 ∨ c4 ∈ MP
4 . We

realize that the conditionDi |= P holds if and only if
MD

2 ⊆ MP
2 or MD

3 ⊆ MP
3 . Thus, this example shows

that in general,Di |= P holds if and only ifDi and
P contain at least one common componentci where
MD

i ⊆ MP
i .

The second detail is how to find an expressionQnew

in MNF such thatQnew ' Di ∧ Pj . To illustrate this,
consider an example whereDi = c1 ∈ MD

1 ∧c2 ∈ MD
2

and Pj = c2 ∈ MP
2 . ThenQnew will be formed as

Dnew = c1 ∈ MD
1 ∧ c2 ∈ MD

2 ∩ MP
2 . This means that

Dnew ' Di ∧ Pj and thatQnew will be in MNF.

The third detail is how to check the conditionDnew |=
Dk. It can be realized thatDnew |= Dk holds if
and only if (1)Dk contains only components that are
also contained inDnew, and (2) for all componentsci

contained in bothDnew and Dk, i.e. ci ∈ Mn
i and

ci ∈ MD
i respectively, it holds thatMn

i ⊆ MD
i .

6. USING ALGORITHM 1 FOR FAULT ISOLATION
After having processed all test conclusions using Algo-
rithm 1, we obtain an MNF-expressionQ representing
all diagnoses. Given thisQ, this section describes how
to compute the sets of all diagnoses and preferred diag-
noses.

To compute the set of all diagnoses is the simplest. First,
the sets of diagnoses represented by each conjunction in
Q are derived. The set of all diagnoses is then obtained
by taking the union of the sets derived from each con-
junction.

Note that when the number of components is large, the
number of diagnoses represented byQ is typically a
very large number. It may in this case not be feasible



to compute all diagnoses. Therefore we describe next
an alternative solution, namely to prioritize among the
diagnoses and pick out only the “most desirable” ones.

6.1 Minimal/Preferred Diagnoses

In the literature, several criteria for defining what is
meant by “most desirable” diagnoses have been used.
Probably the most commonly used isminimal or pre-
ferred diagnoses. The concept of minimal diagnoses
was originally proposed in (Reiter, 1987; deKleer and
Williams, 1987) for systems where each component has
only two possible behavioral modes, i.e. the no-fault
mode and a faulty mode. In (Dressler and Struss, 1992)
the concept was generalized to components with any
number of modes. They also used the wordpreferred
diagnosesinstead of minimal diagnoses.

The basic idea is that the behavioral modes for each
component are ordered in a partial order defining that
some behavioral modes are more desirable, or preferred,
than other. For example,NF is usually preferred over
any other mode, and a simple electrical fault, such as
short-cut or open circuit, is usually preferred over other
more complex behavioral modes. Further, an unknown
fault UF may be the least preferred mode.

For a formal definition letb1
c ≥c b2

c denote the fact
that for componentc, the behavioral modeb1

c is equally
or more preferred thanb2

c . For each component, this
relation forms a partial order on the behavioral modes.
Further, these relations induce a partial order on the
system behavioral modes. Letd1 andd2 be two system
behavioral modesdi = ∧c∈C(c = bi

c). Then we write
d1 ≥ d2 if for all c ∈ C it holds thatb1

c ≥c b2
c.

A preferred diagnosis can then formally be defined as
a diagnosisd such that there is no other diagnosisd′
whered′ > d.

Under some assumptions, it can be shown that a pre-
ferred diagnosis is a most probable diagnosis given the
set of all test conclusionsP. This justifies the concept of
preferred, or minimal, diagnoses. LetP (c = bc) be the
prior probability that componentc is in behavioral mode
bc. To know the exact value of the priorP (c = bc) may
be very difficult or even impossible. Therefore assume
only that for each component, the priors are partially
ordered and let this define the relation≥c. Then under
the assumption that faults occur independently of each
other, the preferred diagnoses, will be exactly the most
probable ones given the test conclusions, i.e. the diag-
nosesd such that there is no other diagnosisd′ where
P (d′|P) is known to be larger thanP (d|P).

6.2 Computing Preferred Diagnoses

Given an MNF-expressionQ in MNF, we will now
discuss how to obtain the set of preferred diagnoses. For
each conjunction inQ, find the preferred diagnoses con-
sistent with that conjunction, and collect all diagnoses
found in a set∆. In the general case, two conjunctions
may contain preferred diagnosisd1 andd2 respectively
and it may hold thatd1 > d2. Therefore the set∆ can
contain non-preferred diagnoses. These can be removed
by a simple pairwise comparison and the remaining ones
will be the set of preferred diagnoses.

For an example, consider two componentsc1 and c2

whereRci = {NF, E, F} andNF > E > F , and a
third componentc3 whereRci = {NF, B, G} with the
only relationsNF > B andNF > G. Then consider

Q =c1 ∈ {E} ∧ c3 ∈ {B, G}∨
c1 ∈ {E, F} ∧ c2 ∈ {E, F} ∧ c3 ∈ {B, G}

The preferred diagnoses consistent with the first con-
junction arec1 = E∧c2 = NF ∧c3 = B andc1 = E∧
c2 = NF ∧ c3 = G. The preferred diagnoses consistent
with the second arec1 = E ∧ c2 = E ∧ c3 = B and
c1 = E ∧ c2 = E ∧ c3 = G, but these will be removed
from ∆.

7. APPLICATION EXAMPLE

As an application example we will study an electrical
driver for the fuel injectors of a 6-cylinder automotive
engine. This system has six components, namely one
driver for each of the six injectors. Each driver has eight
behavioral modes: NF, SBB (short between banks),
SC (stuck closed), SCG (short circuit to ground), SLB
(short circuit on low side to ground), OL (open load),
SHB (short circuit on high side to battery), and UF.
The complexity of this example is illustrated by the
fact that in total, there are86 = 262144 system behav-
ioral modes. Thus, an isolation table, as the one shown
in (2) including all multiple faults, would have 262143
columns.

injector 1 injector 2 injector 3 injector 4 injector 5 injector 6
SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF SBB SC SCG SLB OL SHB UF

T 1 X
T 2 X
T 3 X
T 4 X
T 5 X
T 6 X
T 7 X X X X X X X X
T 8 X X X X X X X X X X X X X X X X
T 9 X X X X X X X X
T 10 X X X X X X X X
T 11 X X X X
T 12 X X X X
T 13 X X X X
T 14 X X X X
T 15 X X X X
T 16 X X X X X X X X
T 17 X X X X
T 18 X X X X
T 19 X X X X
T 20 X X X X X X X X
T 21 X X X X X X X X X X X X
T 22 X X X X X X X X X X X X X X X X X X X X X X X X
T 23 X X X X X X X X X X X X
T 24 X X X X X X X X X X X X
T 25 X X X X X X
T 26 X X X X X X
T 27 X X X X X X
T 28 X X X X X X
T 29 X X X X X X
T 30 X X X X X X X X X X X X
T 31 X X X X X X
T 32 X X X X X X
T 33 X X X X X X
T 34 X X X X X X X X X X X X
T 35 X X X X X
T 36 X X X X
T 37 X X
T 38 X X X X X
T 39 X X X X
T 40 X X
T 41 X X X X X
T 42 X X X X
T 43 X X
T 44 X X X X X
T 45 X X X X
T 46 X X
T 47 X X X X X
T 48 X X X X
T 49 X X
T 50 X X X X X
T 51 X X X X
T 52 X X

Fig. 1. The isolation table for the electrical-driver sys-
tem, shown for single faults.

There are 52 diagnostic tests monitoring this system.
Their response to different single faults are shown in the
isolation table in Figure 1. This table thereby specifies
the null hypothesis for each diagnostic test as described
in Section 2.

For the example, we now assume that tests 10, 30, 38,
44, and 45 have responded to some fault. Then the set of
all diagnoses and the set of all preferred diagnoses are to
be computed. For comparison we use both the column
matching approach from (Gertler, 1998), but extended
to multiple fault types as described in Section 1, and the
approach based on Algorithm 1, both implemented in
SciLab. When calculating preferred diagnoses, we use
a partial order defined by the relationsNF < b for
all behavioral modesb 6= NF and b < UF for all
b 6= UF . Using these approaches, the total number of
diagnoses is computed to be 31960. Further, the num-
ber of preferred diagnoses is 27. Two examples of pre-
ferred diagnoses are〈NF, SBB, NF, UF, NF, NF 〉
and〈NF, SC, SBB, SLB, NF, NF 〉.
For comparison, a variant of the column matching ap-
proach to compute preferred diagnoses, was also imple-
mented. The principle used was that the isolation table
is traversed from left to the right. The system behavioral
modeb of each column is compared to a setΩ of already



computed preferred diagnoses, and if concluded that
b < d for some diagnosisd ∈ Ω, thenb is neglected,
and otherwise added toΩ if the test response matches
the column. Furthermore, if concluded thatd < b, d is
removed fromΩ.

The computation time needed for both approaches is
shown below. For comparison, also the time needed for
Algorithm 1 to compute the MNF-formulaQ represent-
ing all diagnoses is shown.

All Preferred MNF
diagnoses diagnoses formula

column matching 3144s 8198s NA
new algorithm 11.5s 11.4s 10.7s

We can note that the new approach, based on Algo-
rithm 1, computes all diagnoses 273 times faster than the
column matching approach. Further, the new approach
computes preferred diagnoses 719 times faster than the
column matching approach. Additionally, it is seen that
for the new approach, the extra time needed to compute
all or preferred diagnoses from the MNF formula, is less
than 10% of the time needed to compute only the MNF
formula.

8. COMPARISON OF COMPUTATION TIMES
For further comparison between the column matching
approach and the new approach, a number of 132 test
cases were randomly generated. The test cases represent
systems with between 4 and 7 components, where each
component has 4 possible behavioral modes. The num-
ber of diagnostic tests that respond varies between 2 and
12.
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Fig. 2. Execution times for the column matching ap-
proach (solid line) and the new approach (dashed
line).

In Figure 2, the results for the 132 test cases are shown.
The upper plot shows the computation time when com-
puting all diagnoses. The lower plot shows the computa-
tion time when computing preferred diagnoses. In both
plots, the reference time on the x-axis is chosen to be the
computation time for the new approach when computing
all diagnoses. In the lower plot, also the time needed by
Algorithm 1 to compute the MNF formula is shown as a
dashed-dotted line.

Even though the test cases studied represent quite small
systems (maximum 7 components), it is seen that the
performance for the new approach is considerably bet-
ter than the column matching approach. In some cases
the performance is more than 1000 times better. This
holds true both when calculating all diagnoses and pre-
ferred diagnoses. Lastly, one can note that the extra time

needed to compute all diagnoses or preferred diagnoses
from the MNF formula, is almost negligible compared
to the time needed to compute the MNF formula.

9. CONCLUSIONS
In this paper a fault isolation algorithm capable of
handling the case of multiple faults and multiple fault
modes per component has been presented. Compared to
earlier approaches (Gertler, 1998; Nyberg, 2002; Struss
and Dressler, 1989; deKleer and Williams, 1989) we
are able to compute all diagnoses, and to control the
complexity, by using an efficient representation of the
diagnoses. The representation is efficient since diag-
noses need not to be enumerated explicitly. A single
conjunctionDi in an MNF-formula is potentially able
to represent a large number of diagnoses. To prioritize
among the possibly large set of diagnoses, it was shown
how minimal or preferred diagnoses could be extracted
from an MNF-formula representing all diagnoses.

In a comparative study, including both a real application
and a large number of randomly generated test cases,
it was shown that this new approach outperforms the
more traditional column matching approach in (Gertler,
1998).
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