
Anytime Near-Optimal Troubleshooting Applied to
a Auxiliary Truck Braking System

Håkan Warnquist ∗ Anna Pernestål ∗∗ Mattias Nyberg ∗∗

∗ Dept. Computer Science, Linköping University, Sweden
∗∗ Dept. Electrical Engineering, Linköping University, Sweden

Abstract: We consider computer assisted troubleshooting of complex systems, for example of a vehicle
at a workshop. The objective is to identify the cause of a failure and repair a system at as low
expected cost as possible. Three main challenges are: the need for disassembling the system during
troubleshooting, the difficulty to verify that the system is fault free, and the dependencies in between
components and observations. We present a method that can return a response anytime, which allows us
to obtain the best result given the available time. The work is based on a case study of an auxiliary braking
system of a modern truck. We highlight practical issues related to model building and troubleshooting in
a real environment.

Keywords: automobile industry; decision support systems; diagnosis; diagnostic inference; fault
diagnosis; heuristic searches; probabilistic models.

1. INTRODUCTION

Modern automotive mechatronic systems are often complex
products integrating electronics, mechanics and software. Due
to their intricate architecture and functionality they are often
difficult to troubleshoot for a workshop mechanic. With com-
puter aided troubleshooting the time for troubleshooting and
repair can be reduced and more inexperienced mechanics can
be supported during their work.

Inspired by an application study of an auxiliary heavy truck
breaking system, called the retarder, we develop a novel de-
cision theoretic approach to troubleshooting. The objective is
to find a sequence of repairs and observations that leads to a
fault free truck at lowest expected cost. Earlier application stud-
ies typically consider electronic systems, such as printers and
electronic control units (Heckerman et al. [1995], Langseth and
Jensen [2002], Olive et al. [2003]). In comparison with these
earlier application studies, the mechatronic system considered
here imply that the solution to the troubleshooting problem
needs to take a number of additional issues into account.

Firstly, not all parts of the retarder can be reached without first
disassembling other parts of the truck or retarder. This means
that the level of disassembly, and the extra time required for
disassembly and assembly actions, needs to be considered in the
solution. Secondly, in automotive mechatronic systems it is not
as straightforward to determine whether there really is a fault
present or not. In the previous works, it is assumed that after
each reparation it can be verified whether the system is fault free
or not. This is often not possible in mechatronic systems, and
such an assumption is therefore not made in the present work.
Third, mechatronic applications typically contains dependen-
cies in between faults and in between observations.

During the troubleshooting the aim is to guide the mechanic by,
in each step, finding the next repair or observation, such that
the expected repair cost is minimized. The approach taken here
is to formulate the problem as a general search problem in an
AND/OR graph. Thereby an optimal solution is guaranteed if
sufficient computing time is allowed. Since total repair time is
? All authors are affiliated with Scania CV AB.

crucial and longer waiting times for the mechanic is generally
not acceptable, the time to find the solution, i.e. the next action
for the mechanic, is crucial. Therefore we emphasize on the
anytime behavior of the proposed solution. That is, the pro-
posed solution quickly computes an action leading to an accept-
able repair cost and also that, for every additional computation
time allowed, the expected repair cost is considerably reduced
by optimizing the choice of the next action.

We begin by presenting the retarder system and discussing
modeling issues in Sections 2 and 3. We then present the
troubleshooting system in Section 4 before summing up with
application results in Section 5.

2. THE RETARDER SYSTEM

The retarder is an auxiliary hydraulic braking system that
allows braking of the truck without applying the conventional
brakes. It consists of a mechanical system and a hydraulical
system, and is controlled by an electronic control unit (ECU),
see Figure 1. The retarder generates breaking torque by letting
oil flow through a rotor driven by the propeller axle causing
friction. The kinetic energy is thereby converted into thermal
energy in the oil that is cooled off by the truck’s cooling system.
At full effect and high rpm, the retarder can generate as much
torque as the engine.

The retarder, which is a representative system of heavy duty
trucks, is difficult to troubleshoot due to its complexity and the
combination of both mechanical, hydraulical and electronical
components.

3. MODELING THE RETARDER

The retarder is a set of components. Each component has two
states: fault free or faulty. A component can be repaired by
applying a repair to that component. During troubleshooting,
the retarder often must be assembled or disassembled. For
example to replace the oil pressure sensor, the retarder oil needs
to be drained and the oil cooler needs to be removed. Each such
disassemblable part of the truck is called an assembly element.

Fig. 1. A gearbox with an integrated retarder. The retarder is
visible on the bottom right of the gearbox.

An action is defined by its requirements on the state of the
assembly elements, its cost, and its effects. An effect is either an
observation, a repair, or a modification of an assembly element.

In the remainder of this section we describe the notation used
and the different models used: a Bayesian network (BN) to
model dependency relations between observations and com-
ponents, an assembly model describing the relations between
assembly elements, and finally the modeling of actions.

3.1 Notation

We use capital letters for variables and lower case letters for
their values, e.g. C = c. Vectors are written in bold face. For
probability distributions we write P (c) to denote the probability
that C = c.

3.2 Bayesian Network for the Retarder

We use a Bayesian network (BN) to model dependencies in
the retarder. A BN is a directed acyclic graph where variables
are represented by nodes and dependencies are represented by
directed edges. See for example Jensen [2001] for a reference
on BN. The retarder BN consists of two kinds of variables
(nodes): observations and components. Dependencies between
nodes are modeled using directed edges. Component variables
represent subsystems of the retarder that can be repaired or
replaced, e.g. the Oil pressure sensor, the Oil pump, and the
ECU. Observation variables represent observations that can be
made, e.g. air leakage at Proportional valve, slow activation of
retarder, engine warning lamp. Observations are typically Di-
agnostic Trouble Codes (DTC:s) generated in the ECU during
driving, driver’s observations, observations made in workshop,
and direct observations of components. A direct observation
means that it is decided by direct inspectation of a component
whether it is faulty or not.

To model a system, there are several different BN:s that can
be used. We use a BN where edges between variables are
chosen to represent causal dependencies. This approach gives
an easy interpretation of the resulting BN and facilitates local
approaches when the system is updated (Pearl [2000]).

The BN describing the retarder is based on engineers expert
knowledge and is shown in Figure 2. In the network there are
20 components, denotedC1 -C20, and 25 observations, denoted
O1 - O25. Direct observations of components are not shown in
Figure 2.

For each node a Conditional Probability Table (CPT) is needed.
CPT:s for components are assigned using expert knowledge and
manufacturer’s specifications. For observations three different
types are used. In general their CPT:s are of the type noisy-
or (Jensen [2001]). Direct observations of components are
assigned logical CPT:s containing zeros and ones only. When
special characteristics must be expressed a full CPT is used.

3.3 Practical Issues when Building BN

In most cases, components are parents to observations, but
there are deviations from this structure. In the remainder of
this section we discuss practical issues when building a BN for
troubleshooting.

Driver or Mechanic Observations concerning the perfor-
mance of the vehicle, for example the braking torque, can be
obtained by asking the driver or by performing a test drive.
In general, the answer from the mechanic can be assumed to
be less uncertain but it is obtained at a lower cost since it is
more expensive to let the mechanic perform a test drive than
interviewing the driver. On the other hand, the driver’s answers
can only be obtained at the first time step. Furthermore, it may
be the case that the driver’s answers bias the mechanic. For
example, if the driver complains about uncontrollable braking
torque it may be reasonable that the mechanic will observe this
with higher probability. This case is modeled as a dependency
between the observation nodes, see O3 and O4 in Figure 2 for
an example.

Components There are several ways to choose the compo-
nents in the BN. The maximum size of components are sets
of parts of the retarder that always are repaired together, also
called minimal repairable unit. Choosing larger components
may lead to that more parts than necessary are replaced during
troubleshooting. Choosing smaller sets of parts of the retarder
as components in the BN is possible, but this gives worse
performance in the troubleshooting algorithm and leads to that
more parameters need to be set in CPT:s.

Here we choose components to be minimal repairable units.
It may be the case that several components are faulty at the
same time. Components can be repaired alone or together with
another components.

Perception In some observations there may be uncertainties.
For example the observation Leakage air tube (O14) can be
mistaken for Leakage Air Valves (O15). We model this by
adding dependencies from both components (tube and valve
package) that can be mistaken for. We give these observations
three possible values: “Sure”, “Ambiguous”, and “No leakage”.
An alternative is to add an extra layer to model the perception
explicitly, but we choose the first alternative to keep the number
of nodes in the BN as small as possible.

Repairs We assume that a repair is always successful, mean-
ing that the repaired component is known to be fault free and
no other faults are introduced during repair. However, it is
not known whether the repair action made the truck fault free
before a verifying observation has been performed.

When a repair is performed, evidence is added in the BN
that the component is fault free. Furthermore, all direct edges
between the repaired component and other component are re-
moved. The reason is that dependencies between components
arise during driving, for example erroneous Oil (C19) may
cause the Radial gasket at the gearbox (C20) to break during

C
17

C
4

C
6

C
8

C
14

C
10 C

16
C
19

C
13

C
11 C

12
C
5

C
1 C

15

C
20

C
18

C
9

C
2

C
3

C
7

O
1

O
2

O
3

O
4

O
5 O

6 O
11

O
12

O
13

O
16

C
17

C
18

O
19

O
9 O

14
O
15

O
7

O
21

O
8

O
20

O
10

O
22

O
23

O
24

O
25

C
lo
gg
ed
 fi
lte
r o
il
co
ol
er

A
cc
um
ul
at
or

Pu
m
p

B
ea
rin
g

Pr
es
. s
en
so
r o
il

G
as
ke
t r
et
ar
de
r s
id
e

M
ag
ne
t v
al
ve
s

G
as
ke
t g
ea
rb
ox
 s
id
e

Te
m
p.
 se
ns
or
 o
il

Te
m
p.
 se
ns
or
 c
oo
la
nt
 w
at
er

A
ir
tu
be

A
ir
va
lv
es

R
ad
ia
l g
as
ke
t r
et
ar
de
r

C
on
tro
l v
al
ve

EC
U

G
as
ke
t r
et
. s
id
e

C
ab
le
s E
C
U

R
ad
ia
l g
as
ke
t g
ea
rb
ox

O
il

Ir
on
 g
oo
ds

O
il
ov
er
he
at
ed

En
gi
ne
 w
ar
ni
ng
 la
m
p

O
il
on
 c
oo
le
r

D
TC
: u
np
la
us
ib
le
 c
oo
la
nt
 te
m
p.

U
nc
on
tro
lla
bl
e
to
rq
ue
, d
riv
er

Ea
rly
 d
is
en
ga
ge
m
en
t

U
nc
on
tro
lla
bl
e
to
rq
ue
, m
ec
h.

D
TC
: u
np
la
us
ib
le
 o
il
te
m
p.

Le
ak
ag
e
m
ag
ne
t v
al
ve

D
TC
: u
np
la
us
ib
le
 o
il
pr
es
.

Sl
ow
 re
sp
on
se

B
ad
 b
ra
ki
ng
 p
er
fo
rm
an
ce

Le
ak
ag
e
ai
r t
ub
e

Le
ak
ag
e
ai
r v
al
ve
s

D
TC
: E
C
U
 c
on
ne
ct
or
s

D
TC
: E
C
U
 in
te
rn
al

O
il
le
ve
l l
ow

G
ea
rb
ox
 b
ro
ke
n

Le
ak
ag
e
O
il
Pr
op
. v
al
ve

Le
ak
ag
e
ai
r P
ro
p.
 v
al
ve

R
et
. O
il
le
ve
l l
ow

Er
ro
ne
ou
s o
il

C
ab
le
s b
ro
ke
n
at
 R
et
.

C
ab
le
 b
ro
ke
n
at
 E
C
U

O
il
on
 n
oi
se
 sh
ie
ld

Fig. 2. A Bayesian network for the retarder

driving. After changing Oil at the workshop, there is no depen-
dency between the oil and the gasket.

3.4 Observations

When an observation is performed, evidence is added to the
corresponding node. If the observation is repeated before at
least one of its parent components is repaired the result will
be the same, for example if Oil on cooler (O8) is observed, the
observation will be the same until the Gasket on gearbox side
(C4) is replaced. Except that this way of modeling observations
is the most natural for most of our observations, it also prohibit
the troubleshooting algorithm from being trapped in cycles
where the same observations is made over and over again.

3.5 Assembly Model

As mentioned in the beginning of Section 3, an assembly ele-
ment is a disassemblable part of the vehicle such as the noise
shield under the retarder or the oil cooler. Each assembly ele-
ment can be in one of two modes, assembled or disassembled .
We model the relations between assembly elements as a di-
rected acyclic graph called the assembly graph where each node
represents an assembly element. To be in the mode assembled
all children of the node need to be in the mode assembled and to
be in the mode disassembled all parents of the node needs to be
in the mode disassembled . The assembly state is an assignment
of modes to all assembly elements. In contrast to the state of
the components, the assembly state is fully observable. The
assembly graph of the retarder is shown in Figure 3.

3.6 Modeling Actions

When troubleshooting the retarder, the mechanic can choose
between 70 actions to perform. Each action Ai has a base
cost, a set of preconditions P , and an ordered set of effects
E ,. The preconditions are all of the type δ = x where x ∈
{assembled , disassembled} and δ is an assembly element. The
effects can be to repair a component C, repair(C), to ob-
serve the value of an observation O in the bayesian network,

Vehicle

Ret. oil
Frame

support
Noise

shield

Coolant

waterProp.

valve

Gear-

box oil

Propel-

ler shaft

Ret. oil

cooler

Ret.

housing

Fig. 3. The assembly graph of the retarder.

observe(O), or to assemble or dissassemble an assembly ele-
ment δ, assemble(δ) or disassemble(δ).

For each component Ci there is at least one action with the
effect repair(Ci) and for each observation Oi, in the BN,
there is at least one action with the effect observe(Oi). For
each assembly element δi there is exactly one action with
the effect assemble(δi) and exactly one action with the effect
disassemble(δi).

For example the action Replace Oil Pressure Sensor (A7) has
the base cost cost(A7) = 175, the preconditions P(A7) =
{δ4 = disassembled , δ8 = disassembled}, and the effect
E(A7) = {repair(C7)}. Actions can have more than one
effect, e.g. when the mechanic removes the noise shield the
observation Oil on Noise Shield (O25) will be made even if this
was not the reason for removing the noise shield. Therefore the
action Remove Noise Shield (A62) is modeled with the effects
E(A62) = {disassemble(δ2), observe(O25)}.

4. TROUBLESHOOTING SYSTEM

The troubleshooting system consists of two subsystems: the
diagnoser and the action planner. The planner suggests the next

action to be performed so that the expected cost of repairing
the vehicle is as low as possible. To be able to suggest an
action the planner creates a conditional plan of actions called
a troubleshooting strategy and uses the diagnoser to predict the
outcome of future actions. The diagnoser uses the BN to com-
pute the probability distribution over possible combinations
of component states given a set of evidence. The probability
distribution over the component states is called the belief state,
and one such assignment with probability larger than zero is
called a diagnosis.

4.1 Diagnoser

The planner asks the diagnoser about the belief state bt+1, given
the current system state and an action. The system state st at
time t consists of the current assembly state dt, an ordered set
e1:t of repairs and observations made so far, and the current
belief state bt: st = 〈dt, e1:t, bt〉. We use the term evidence
to denote a repair or observation that is made. One action can
lead to a sequence of evidence. In the diagnoser, evidence are
handled recursively, and therefore it is sufficient to consider one
evidence at the time.

Let et be the evidence at time t, and let ct = (ct1, c
t
2, . . .) be

the component state at time t. We have that
P (ct|e1:t−1) = P (ct−1|e1:t−1),

meaning that observations and repairs made at times 1, . . . , t−1
does not affect the status of the components at time t. When
et = oj , i.e. when evidence is an observation oj , we update the
belief state bt according to

bt(ct) = P (ct|e1:t−1, oj) =
P (oj |ct−1, e1:t−1)bt−1(ct−1)

ρe1:t

,

(1)
where ρe1:t is a constant independent of ct.

Let sj = e1:t−1∩parents(oj) be the set of observations that are
parents to node Oj and at the same time in the evidence. Since
our BN for the retarder only have causal dependencies we have

P (oj |ct−1, e1:t−1) = P (oj |ct−1, sj), (2)
which can be computed using the BN. However, most observa-
tions in our BN have no other observations as parents. In this
case (2) becomes P (oj |ct−1, e1:t−1) = P (oj |ct−1), and we
can compute (1) by simply looking up the CPT:s for the given
observation.

When the evidence is a repair of component i, i.e. when
et = ai, we obtain after marginalization and some algebra the
updating rule

bt(ct) = P (ct|e1:t−1, ai) =

=
{
ρbt(ct−1) if ckt−1 = clt, k = l 6= j and cjt = 0
0 otherwise,

(3)

where ρ is a normalization constant.

4.2 Action Planner

The task of the action planner is to suggest the next action.
To decide which action this is, the action planner searches for
a troubleshooting strategy that, if executed to end, yields a
minimal expected cost of repair given the current system state.
The time spent calculating a complete troubleshooting strategy
would affect the total cost of repair if the mechanic is actively
waiting for a response. Therefore, if required the action planner
will terminate early and return the currently most promising
partial troubleshooting strategy.

Troubleshooting Strategies A troubleshooting strategy π is a
rooted tree in which each node n is associated with an action
an and a system state sn. Associated to each outgoing edge
from n to a child node m is a possible outcome of an, on,m,
and the likelihood ln,m of having the outcome on,m when an is
performed in sn. The system state of the root node corresponds
to the current system state. The system state of a node m with
parent node n is the resulting system state of performing an in
sn and having the outcome on,m. In a complete troubleshooting
strategy the system state of each leaf node is a goal state. A goal
state is a system state where the probability that the vehicle is
fault free is one. The action in such a leaf node is the action that
restores the vehicle to a fully assembled state. If any leaf node
of a troubleshooting strategy is not a goal state, it is said to be
a partial troubleshooting strategy.

Expected Cost of Repair The expected cost of repair of a
troubleshooting strategy πn rooted in a node n with the system
state sn is denoted ECR(πn, sn). This is the expected cost
of reaching any leaf node in πn. In a node n, the probability
of reaching the subtree πm rooted in the child node m is the
likelihood ln,m. Let cost(an, sn) be the cost of performing an
in sn and let ch(n) be the set of child nodes to n, then the
expected cost of repair can be expressed recursively as

ECR(πn, sn) = cost(an, sn) +
∑

m∈ch(n)

ln,mECR(πm, sm).

(4)

Let Π(s) be the set of all possible complete troubleshooting
strategies with the system state s in the root, then the complete
troubleshooting strategy π∗ is an optimal troubleshooting strat-
egy in s if

π∗ = arg min
π∈Π(s)

ECR(π, s). (5)

The expected cost of repair of π∗ is the minimal expected cost
of repair, ECR∗(s). This strategy can be found by, at each
encountered non-goal state, choose an action a such that the
expected cost of repair becomes minimal.
Proposition 1. (Minimal Expected Cost of Repair) Let n be the
root node of a troubleshooting strategy with the action an and
the system state sn. Then the minimal expected cost of repair
in sn is

ECR∗(sn) = min
an

cost(an, sn) +
∑

m∈ch(n)

ln,mECR∗(sm)


(6)

Applicable Actions Not all actions need to be considered
when deciding candidates to be included in the optimal trou-
bleshooting strategy. We only need to consider actions that can
affect the belief state part of the system state. These actions are
applicable actions. Applicable actions in a system state must be
actions that repair faults with a marginalized probability greater
than zero or makes observations that are causally dependent on
such a fault.

Composite Actions The preconditions are not considered
when finding applicable actions. This is not needed since as
stated in Section 3.6 there exists exactly one action that assem-
bles or disassembles each assembly element. This means that
there is a unique way to fulfill all preconditions. A composite
action is created by combining actions that fulfill the non-
fulfilled preconditions of the original applicable action. The
cost, preconditions, and effects of these actions are added to
the cost, preconditions and effects of the original action. This

allows us to ignore all preconditions and focus on the desired
effects without losing optimality.

Search Graph All possible choices of actions can be rep-
resented as an AND/OR graph with alternating layers of OR
nodes and AND nodes . The OR nodes are labeled with sys-
tem states and correspond to decision points where different
actions can be chosen. The AND nodes correspond to chance
nodes where the outcomes of the last action will decide the
next OR node (see Figure 4). Each different choice successing
AND node to the OR nodes is a solution to the AND/OR
graph. If the leaf nodes in a solution are all goal states the
solution is complete, otherwise it is partial. There is a one-to-
one correspondence between a solution and a troubleshooting
strategy (Vomlelová and Vomlel [2000]), so a complete solution
correspond to a complete troubleshooting strategy and partial
solution correspond to a partial troubleshooting strategies.

The size of the AND/OR graph is highly exponential, but
by using heuristic search algorithms such as AO∗ (Nilsson
[1980]), not the entire graph needs to be explored to find an
optimal solution.

s0

r1

sg

s3

s1

s2

s4

s5

s6

r2

o1

r1

r1

r1

r2

r2

r2

r2

o1

o12

o12

o12

NI

I

NI

I
I

NI

NI
I

NI

I

Fig. 4. Example of an AND/OR graph. Square nodes are
OR nodes and circular nodes are AND nodes. One trou-
bleshooting strategy is highlighted, describing a plan to
reach a goal state sg from the initial system state s0.

Since observations are modeled such that they cannot be re-
peated and repairs always are successful, the search graph is
acyclic when only applicable actions are considered. If we wish
to relax any of these assumptions the search graph may become
cyclic. However, there are variants of the AO∗ algorithm such
as the CFC rev algorithm that can treat cyclic graphs (Jiménez
and Torras [2000]).

Algorithm The main parts of the AO∗ algorithm are shown
in Table 1. It starts out with a search graph and a partial
solution consisting only of the root OR node. Until the root
node is marked solved, an unsolved leaf node in the partial
solution is chosen by findUnsolvedLeaf and expanded by
expandNode. When expanding this node, a succeeding AND
node is created for every applicable action each with succeeding
OR nodes for each possible outcome of these actions. Starting
from the expanded node and backtracking toward the root,
the currently best solution is revised in reviseSolution.
A node is marked solved if all succeeding nodes are solved.
The nodes in the solution are assigned costs in accordance
with Proposition 1 where unsolved leafs receive an estimated
cost given by a heuristic function h. As soon as the root node
becomes solved we have a complete solution. This solution is
optimal if the heuristic function is admissible, i.e. for a node n
labeled with the system state sn, h(n) ≤ ECR∗(sn). (Nilsson
[1980])

while root is unsolved do
nextNode := findUnsolvedLeaf;
expandNode(nextNode);
reviseSolution(nextNode);

end while
Table 1. The AO∗ algorithm

Heuristics The admissible heuristic function used to evaluate
the cost of unsolved OR nodes is derived from a relaxation of
the problem where the true diagnosis is assumed to be found at
zero cost. This is the lower bound h. Let b ∈ sn be the belief
state in the system state sn labeling an OR node n and let c be
a an assignment of component states with non-zero probability,
i.e. a diagnosis. Furthermore, let ac be a composite action that
repairs all faults in the diagnosis and restores the system to fully
assembled state having the cost cost(ac). Then the lower bound
is calculated as

h(n) =
∑

c∈b∈sn

b(c)cost(ac). (7)

The closer h(n) is to ECR∗(sn) the smaller part of the en-
tire AND/OR graph needs to be explored. To further reduce
the search graph we introduce another heuristic function, the
upper bound h based on work by Heckerman et al. [1995] and
Langseth and Jensen [2002]. For this heuristic the problem is
relaxed such that only actions that repair or inspect components
are allowed. This heuristic requires a special function control
action afc that detects if any component is faulty. In a system
state sn of a node n, let oCsn

and rCsn
be composite actions that

inspect and repair component C. Let pC be the marginalized
probability that component C is faulty and let pother be the
probability that any other component is faulty. Let n′ be the
node created after oCsn

is performed, and let cost(a) denote the
cost of an action a then the function h is given by

h(n) = cost(oCsn
)+pC

(
cost(rCsn

) + cost(afc)
)
+potherh(n′).

(8)
If the component C cannot be inspected, the term cost(oCsn

)
is replaced by cost(rCsn

) + cost(afc) and the second term is
removed. If sn is a goal state h(n) is the cost of reassembling
the system. The component C is chosen to be the such that the
value of cost(oCsn

)/pC is the lowest.

For each node in the search graph, values for the upper bound
and lower bound are stored. If the lower bound of an AND node
is higher than the upper bound of another AND node sharing
the same parent, this node and the entire search branch below
can be pruned to save memory. In the original version of AO∗
the next unsolved leaf is chosen arbitrarily. In our domain we
have experienced significant speedups if the unsolved leaf m is
chosen such that the value ln,m · (h(m)−h(m)) is the greatest
where ln,m is the product of all likelihoods on the path from the
root node n to the leaf m.

Anytime Properties Finding optimal troubleshooting for a
problem as large as the model of the retarder can be very time
consuming. Whenever desired by the user, the search can be
aborted and the currently best partial solution is returned. When
this happens, the algorithm stops expanding nodes and sets the
costs in the unsolved leafs to the upper bound and revises the
solution.

5. APPLICATION

We have implemented the troubleshooting system described
above and applied it to the problem of repairing a heavy truck
with a faulty retarder.

In the implementation, the diagnoser is set to disregard diag-
noses where four or more components are faulty. This is done to
keep the size of the belief state manageable since the probability
for several simultaneous faults in the retarder is typically very
small. When the current system state is passed on to the action
planner the size of the belief state is reduced further by only
keeping the k most probable diagnoses. This method of keeping
down he size of the belief state works for our model of the
retarder but it is not feasible for larger systems. In this case
methods as the one presented in ler can be used, where the
diagnoser collapses similar diagnoses into one.

The planner uses a different action model for the test drive
action, to be able to fully use the upper bound heuristic. It
assumes that this action reacts like the function control action
afc mentioned in Section 4.2.7. When this action actually is
performed a more accurate action model is used, observing
several nodes in the bayesian network.

To test the troubleshooting system we inject faults in the model
and simulate the troubleshooting process. The time required to
find an optimal solution varies greatly depending on the initial
observations generated by the fault. To avoid long waiting times
the user can abort the search and perform a suboptimal action
instead.

To illustrate how different waiting times affect the quality of
the solution, we let the action planner create troubleshooting
strategies for a representative test case where an optimal so-
lution is known. Plotted in Figure 5 is the cost of the optimal
troubleshooting strategy (dotted line) and the costs of the par-
tial troubleshooting strategies aborted at different times (solid
line). Finding the optimal solution requires 620 seconds using
a Java implementation on a PC, but when aborted convergence
is reached after 60 seconds.

500

520

540

560

580

600

620

640

660

680

700

0 20 40 60 80 100 120

Abort time

E
C

R

Aborted
ECR*

Fig. 5. Plot showing how the anytime solution at different abort
times converge toward the optimal solution.

6. CONCLUSION

Inspired by the application study of the retarder, a heavy truck
breaking system, we have developed a decision theoretic ap-
proach to troubleshooting. Focus has been on issues important
in real world applications: the need for disassembling the sys-
tem during troubleshooting, the problem of verifying that the

system is fault free, and the fact that there are dependencies in
between observations and in between components. To meet the
crucial requirement on short waiting times for the mechanic we
have proposed a solution with anytime behavior. The solution
utilizes the time available to return a best possible troubleshoot-
ing strategy, and converges toward the optimal solution as more
time is available. We have applied the proposed troubleshooting
approach to the retarder, and discussed carefully how to model
the system and how the troubleshooting is performed.

There are still several challenging and interesting open ques-
tions. The dependencies in between components and in be-
tween faults result in a more complicated BN than the two-
layer BN that is the traditional model in previous work on
troubleshooting. The BN presented here is still fairly simple,
and in our future work we will investigate how interventions
can be modeled in even more complex BN:s. The performance
of the troubleshooting is of course dependent on the assignment
of parameters in the models, and in particular in the BN. Our fu-
ture work will include sensitivity studies of the troubleshooting
result with respect to parameters assigned in the CPT:s in the
BN. Furthermore, one challenge is the dimension of the belief
state, which increases exponential with the number of compo-
nents. We are currently working on methods for focusing on
the most probable diagnoses in the diagnoser, without risking to
loose diagnoses with small probabilities in the first time steps.

The results presented are promising, and show that computer
aided troubleshooting can be applied to complex mechatronic
systems such as the retarder. We look forward to extend our
algorithm to troubleshoot even larger systems.

ACKNOWLEDGEMENTS

Supported by Scania CV AB, IVSS, and Vinnova VICT.

REFERENCES

David Heckerman, John S. Breese, and Koos Rommelse.
Decision-theoretic troubleshooting. Communications of the
ACM, 38(3):49–57, 1995.

Finn V. Jensen. Bayesian Networks. Springer-Verlag, New
York, 2001.

P. Jiménez and C. Torras. An efficient algorithm for searching
implicit and/or graphs with cycles. Artificial Intelligence,
124(1):1–30, 2000.

Helge Langseth and Finn V. Jensen. Decision theoretic trou-
bleshooting of coherent systems. Reliability Engineering &
System Safety, 80(1):49–62, 2002.

Nils J. Nilsson. Principles of Artificial Intelligence. Morgan
Kaufmann, San Francisco, CA, 1980.

Xavier Olive, Louise Trave-Massuyes, and Hervé Poulard. AO*
variant methods for automatic generation of near-optimal di-
agnosis trees. In 14th International Workshop on Principles
of Diagnosis (DX’03), pages 169–174. 2003.

Judea Pearl. Causality. Cambridge, 2000.
Marta Vomlelová and Jiří Vomlel. Troubleshooting: NP-

hardness and solution methods. In Proceedings of the Fifth
Workshop on Uncertainty Processing, WUPES’2000. 2000.

