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Abstract
Problems with starter batteries in heavy-duty trucks can cause costly unplanned stops along
the road. Frequent battery changes can increase availability but is expensive and sometimes
not necessary since battery degradation is highly dependent on the particular vehicle usage
and ambient conditions. The main contribution of this work is case study where prognostic
information on remaining useful life of lead-acid batteries in individual Scania heavy-duty trucks
is computed. A data-driven approach using random survival forests is used where the prognostic
algorithm has access to fleet operational data including 291 variables from 33603 vehicles from 5
different European markets. A main implementation aspect that is discussed is the treatment
of accumulative variables such as vehicle age in the approach. Battery lifetime predictions are
computed and evaluated on recorded data from Scania’s fleet-management system and the effect
of how accumulative variables are handled is analyzed.
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1. INTRODUCTION

To efficiently transport goods by heavy-duty trucks it is
important that vehicles have a high degree of availability
and in particular avoid becoming standing by the road
unable to continue the transport mission. An unplanned
stop by the road does not only cost due to the delay in
delivery, but can also lead to damaged cargo.

One cause of unplanned stops is a failure in the electrical
power system, and in particular the lead-acid starter
battery. The main purpose of the battery is to power the
starter motor to get the diesel engine running, but it is also
used to, for example, power auxiliary units such as heating,
cooling, and kitchen equipment. High availability can be
achieved by changing batteries frequently but such an
approach is expensive both due to unnecessary maintenance
actions and also due to the cost of the batteries. In addition
battery degradation is highly dependent on the particular
usage and ambient conditions.

A non-parametric and data-driven prognostics approach
was developed in (Frisk et al., 2014) to compute, on an in-
dividual vehicle basis, prognostic information on remaining
useful life of the lead-acid batteries. Prognostic information
is computed by applying a tree based classification method
called Random Survival Forests (RSF) (Ishwaran et al.,
2008; Ishwaran and Kogalur, 2010) on fleet operational
data from the heavy-duty truck manufacturer Scania. The
approach can be classified as a reliability function based
prognostic approach (Linxia and Köttig, 2014).

? This work was sponsored by Scania and FFI - Strategic Vehicle Re-
search and Innovation (Swedish Governmental Agency for Innovation
Systems) and the Swedish Research Council within The Linnaeus
Center CADICS.

The basic idea is to classify vehicles with similar battery
degradation and for each class estimate a reliability function
in a training phase. Then, when prognostics for a specific
vehicle is computed, the reliability function can be obtained
by identifying which class the vehicle belongs to and
compute the corresponding reliability function. The data
contains accumulative variables such as driven distance and
vehicle age. The accumulative variables will increase over
time and if these variables are used in the classification,
a vehicle used in a similar way for its entire life will
change class over time, which is not desirable. The main
contribution of this work is to investigate how accumulated
variables can be handled in RSF and how they affect the
result.

The outline of the paper is as follows. First, Section 2
introduces data and briefly recalls a case study (Frisk et al.,
2014) based on the same data set. Section 3 states the
studied problem. Section 4 recalls how to estimate battery
degradation properties based on fleet operational data by
using random survival forests. One characteristic of the
data set is that it contains variables that are accumulated
over time and how they can be introduced in the approach is
discussed in Section 5. Finally, Section 6 analyze and discuss
how the prognostic result depends on the way accumulated
variables are included and then some conclusions are given
in Section 7.

2. BACKGROUND

There exist a number of approaches in the literature to
do prognostics. A physics based approach is to look for
trends in measured or estimated component health status
indicators, see e.g. (Heng et al., 2009). Then, extrapolating
computed health status indicators give indications on the
amount of useful life left in the component. Such an
approach requires reliable degradation models or measure-
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Figure 1. Normalized histogram of time stamp for vehicles
with and without battery problems.

ments closely related to battery health, neither of which
are available in this work. An alternative to a physics based
approach where the battery health is estimated directly is
to rely on recorded data from a large number of vehicles.
This paper explores a data-driven approach where the
prognostic algorithm has access to fleet operational data
and some characteristics of the data are:

• 33603 vehicles logged from 5 different markets.
• 291 variables are logged for each vehicle.
• No time series, only aggregated data like traveled
distance, year of delivery, histogram of ambient tem-
peratures.
• Heterogeneous data; mix of numerical values such as

temperatures and pressures with categorical data such
as battery mount point or wheel configuration.
• Data set includes histogram variables.
• Significant missing data rate (≈ 15%).
• Each vehicle with a replaced battery has logged time

of failure.
• There are many vehicles where battery failure has not

occurred before the time of observation, i.e., data are
right censored.

Figure 1 shows normalized relative frequency of logged
time in the data set. The red bars show the time of
failure for vehicles with battery problems and the blue
bars show time of logged data for vehicles with no battery
problem. The histogram for vehicles with no battery
problems thus reflects the last time data was logged
from the vehicle, which approximately is the age of the
vehicle. Time is originally in days but has been scaled
to time units to avoid revealing sensitive information. A
first observation is that some batteries fail much earlier
than others and in (Frisk et al., 2014) it has been shown
that battery usage and vehicle configuration have a big
impact on battery degradation. For example, the battery
failure rate is significantly different for different vehicles,
e.g., a long-haulage vehicle with a large battery, kitchen
equipment, and driving in cold weather may experience
significantly different battery degradation behavior than a
city distribution truck. A more detailed discussion is given
in Section 4. Hence there clearly is potential in vehicle
individual maintenance plans.

2.1 Prognostics Approach

Let T be the random variable of failure time. Then the
reliability function, sometimes referred to as the survival
function, is the probability of survival up to time t, i.e.,

R(t) = P (T ≥ t) (1)
which is a fundamental object in the prognostics analysis.
Since vehicle configuration and usage is important for
battery reliability, let V denote configuration and usage
data for a vehicle and let RV(t) denote the reliability
function for that particular vehicle. In (Frisk et al., 2014)
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Figure 2. Variable importance.

Random Survival Forests (RSF) (Ishwaran et al., 2008;
Ishwaran and Kogalur, 2010) have been used to estimate
vehicle specific reliability functions. The key motives for
using random survival forests for the available data are

• it handles heterogeneous data; both discrete and
continuous valued variables
• it handles missing data
• it is non-parametric, i.e., does not rely on a specific
hazard function parameterization like proportional
hazards
• it handles censored data

The basic idea of the approach can loosely be stated as
utilizing a classifier to cluster vehicles with similar battery
degradation properties. Then a non-parametric estimate
for the reliability function RV(t) is computed for a specific
vehicle V using only the vehicles in the corresponding
vehicle cluster.

The RSF algorithm also automatically computes which
variables that are important for clustering vehicles with
similar battery degradation, i.e., which variables that are
important for predicting battery degradation. Figure 2
shows a list of the 20 most important variables, when
considering also accumulative variables, and their variable
importance (VIMP), which is defined and discussed in more
details in (Ishwaran et al., 2008, 2007). The most important
variable, and its corresponding strength, is the undermost
variable in Figure 2.

There are configuration variables such as battery position
Battery pos. and country index Country Id and usage
variables such as battery voltage BattVolt_p2 and driven
distance Distance. Configuration variables describe the
vehicle configuration which does not change with time while
usage variables changes as the vehicle is used. Variables
with the suffix x_pi represents the frequency of a bin in
histogram x, x_ci a cumulative sum of bins in histogram
x, x_pct50 the median of histogram x, x_Ptail the weight
of the tails of histogram x, see (Frisk et al., 2014) for more
details.

2.2 Accumulative Variables

Most of the variables in the Figure 2 are more or less
constant over time if the vehicle is operated in a similar way
over time. However there are a couple of exceptions. Vehicle
age will of course increase with time and if this variable is
used as a classification variable there is a risk of estimating



a reliability function based on vehicles observed only with
a similar age. Then the reliability function estimate will
only be changing values in a tight age interval. If age t
would be omitted as a classification variable, it would still
be used in the prediction step since t is used to evaluate the
reliability function RV(t), see Section 3. Another example
of a variable that is accumulated over time is the traveled
distance. Variables that are accumulated over time will be
called accumulative variables and this paper investigate
how to include accumulative variables in RSF.

3. PROBLEM FORMULATION

The problem studied in this paper is to compute a
probabilistic measure of the remaining useful life of a
particular vehicle with a well functioning battery at a
specified time t = t0. As before, let T be the time of failure
for the battery in a specific vehicle and let V denote usage
and configuration data for the vehicle. The objective is to
estimate the function

B(t; t0,V) = P (T ≥ t+ t0|T ≥ t0,V), t ≥ 0 (2)
which describes, for a specific vehicle V, the probability
that the battery will be operational at least t time units
after t0. This function is closely related to the reliability
function R(t). Let RV(t) be the reliability function for a
specific vehicle V, then

B(t; t0,V) = P (T ≥ t+ t0|T ≥ t0,V) =

=
P (T ≥ t+ t0|V)
P (T ≥ t0|V)

=
RV(t+ t0)

RV(t0)

(3)

The basic problem is then to, given the usage data for
a vehicle V, estimate RV(t) and then compute B(t; t0,V)
according to (3).

A key problem is how to handle accumulative variables
in the classification method. The main objectives of the
paper are to, in a case study with heavy-duty truck
data, analyze and compare the difference in the results
obtained with or without including accumulative variables
in the classification approach. In particular the effects on
variable importance and the estimate of the reliability
function RV(t) for a specific vehicle V will be studied.
Vehicles with similar age and distance but different battery
predictions are compared and their differences in operation
and configuration are analyzed.

4. PROGNOSTICS WITH RANDOM SURVIVAL
FORESTS

This section will briefly outline the algorithm used to
estimate the battery prognostics function B(t; t0,V) as
defined in (2). The key step, from (3), is to estimate the
reliability function (1). Thus, a reliable estimate of the
reliability function RV(t) for a specific vehicle V makes it
possible to compute the prognostics function B(t; t0,V).

4.1 Reliability Function Estimation

Basic techniques for maximum-likelihood estimation of
reliability functions can be found in (Cox and Oakes, 1984).
As will be described below, they are not directly applicable
to this case but they are useful so first a brief summary
of a basic result for reference purposes. Derivations and
details of these expressions can be found in (Cox and Oakes,
1984). Now, assume N vehicles with age ti and response
variable ci for i = 1, . . . , N . The response variable ci = 0
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Figure 3. Reliability function estimate for the full data set.
if the i:th vehicle does not have battery problems at time
t = ti and ci = 1 if the vehicle has battery problems. Then,
in discrete-time, the maximum-likelihood estimator of the
hazard function, i.e., immediate hazard-rate, at time-point
t = ti can be found as

ĥi =
di
ui

(4)

where di and ui is the number of battery failures and the
number of vehicles at risk at time t = ti respectively. Here
it is explicitly taken into consideration that data might
be right right censored, i.e., the time of battery failure
is unknown but is known to be greater than the time of
observation. The Kaplan-Meier (Product-limit) estimator
of the reliability function R(t) is then

R̂(ti) =
∏
tj<ti

(1− ĥj) (5)

This means that expressions (4) and (5) can be used to
estimate the reliability function R(t), and thereby the
battery prognostic function B(t; t0,V) using (3).

4.2 Battery Degradation Characteristics

As described in Section 2, the battery failure rate is
significantly different in different vehicles, e.g., a long-
haulage vehicle with a large battery, kitchen equipment,
and driving in cold weather may experience significantly dif-
ferent battery degradation behavior than a city distribution
truck. To illustrate this, Figure 3 shows the Kaplan-Meier
estimate (5) for the full data set. This estimate would
be useful if it were true that the battery degradation is
equal for all vehicles, no matter the vehicle configuration or
usage. Figure 4 shows corresponding estimates for classes
of vehicles with different battery mount position (a) and
different temperature statistics (b). The blue curve in
Figure 4 a/b corresponds to the full set of vehicles in
the database, as shown in Figure 3. Since the estimated
reliability functions significantly deviate from the blue
curve for different sets of vehicles it is clear that battery
degradation characteristics significantly depends on which
set of vehicles that are investigated. Further, this means
that there is a need to estimate the battery reliability
function for each specific vehicle and (5) can not be directly
applied.

4.3 Reliability Function Estimation for a specific Vehicle V

From the discussion above, the 291 variables that are stored
for each vehicle and describe vehicle configuration and
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Figure 4. Reliability function estimation for different battery positions (a) and vehicles different with different amount of
time with low battery voltage during cold ambient temperatures (b).

usage need to be taken into account when estimating the
reliability function. As said in Section 2, the basic idea of
the approach can loosely be stated as utilizing a classifier to
cluster vehicles with similar battery degradation properties.
Then a non-parametric estimate for the reliability function
RV(t) is computed for a specific vehicle V using only the
vehicles in the corresponding vehicle cluster. The approach
is based on Random Survival Forests (Ishwaran et al., 2008;
Ishwaran and Kogalur, 2010). Random survival forest is a
survival analysis extension of Random Forests (Breiman,
2001) which is a tree-based classifier (Breiman et al.,
1984) extended with bootstrap aggregation (Breiman, 1996)
techniques.

There are 291 variables stored for each vehicle and the
data includes 17 histograms. The treatment of histogram
variables is not described here in detail, the procedure
can be found in (Frisk et al., 2014), but the key step
is that additional variables are derived to take these
histogram variables into account. This results in a total
of 1031 variables for each vehicle. To keep computational
complexity down when building the random survival forest
data size is reduced, the procedure is described in (Frisk
et al., 2014), to 113 or 116 variables depending on how
accumulative variables are handled. The treatment of
accumulative variables is further discussed in Section 5.
This corresponds to a slightly modified version of the
approach from (Frisk et al., 2014) and a flowchart in
Figure 5 outlines the procedure. The procedure to build
a random survival forest model here then comprises the
steps

(1) Collect the data
(2) Handle histogram variables as in (Frisk et al., 2014)
(3) Reduce data size as in (Frisk et al., 2014)
(4) Build the model, see Section 6.1

When built, the random survival forest model is able to
predict a reliability function RV(t), and also B(t; t0,V)
based on vehicle data V . The experiments are conducted in
R (R Core Team, 2014) using the package Random Forests
for Survival, Regression and Classification (Ishwaran and
Kogalur, 2013).
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Figure 5. Flowchart of the reliability function estimation
procedure.

5. ACCUMULATIVE VARIABLES

This section describes how variables, and especially the
accumulative variables, are prepared for the classification
step in RSF. The basic principle is the property that a
vehicle operated similarly over time should remain in the
same class. In that case vehicles at different age with similar
operation characteristics will be collected in a class and
a reliability function estimate for that type of operation
can be computed. Accumulative variables do not have this
property and need to be modified.

In the data there are 17 histograms with bin-values with
units time, distance, count, and fuel volume which are
all accumulative entities. All these 17 histograms are
normalized such that the sum of bin-values equals 1. The
variable Age is removed from the set of classification
variables but the information of vehicle age is used for
estimating the reliability function. The variable Distance
is an accumulative variable and is replaced by distance per
day MilagePerDay.

Figure 6 shows the correlation of the most correlated
variables with age. There is a strong correlation between
Create month and Age and this is caused by the way
data has been collected. Data from all vehicles up to a
certain age has been exported at one single date. This date
subtracted with create month will be an upper bound and
often also a good estimate of vehicle age. Even though
vehicle age can be estimated based on Create month, it
is not accumulated over time and is therefore considered
as a classification variable. By using Create month in the
classification, seasonal and component quality variations for
different months can affect reliability function estimation.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RoadSlopePercDist_I6

InAirTempTime_I1
SnapshotNo

SpeedDist_I0
BrakeStartSpeed_I5
InletAirTempTime_I9
BrakeStartSpeed_I1
InletAirTempTime_I5

RoadSlopePercDist_I4
InAirTempTime_I3
InAirTempTime_I6
InAirTempTime_I8
StartMotorTime_I1
InAirTempTime_I2
InAirTempTime_I7
StartMotorTime_I3

LowerBed
CoolantTempTime_I2
CoolantTempTime_I3

BrakeStartSpeed_I0
Battery pos.

Distance
Create year

Create month
Age

Correlation with age

Figure 6. Most correlated variables with age.

Another non-accumulative variable that has been removed
is snapshot number SnapshotNo which is a serial number
assigned to each vehicle data download in chronologically
increasing numbers. It has been removed because the data
collection method has introduced a correlation with battery
failure in the following way. For vehicles with working
batteries the snapshot is taken within a maintenance
interval from the date of data collection. The snapshot for
vehicles with battery problems is taken at time of battery
failure. Hence a low snapshot number will correlate with
battery problem. However considering a true situation the
snapshot number will not be correlated with battery failure
and therefore should not influence the reliability function
estimation.

To conclude this section a summary of the difference of the
classification variables used here and used in (Frisk et al.,
2014) will be given. In (Frisk et al., 2014) the histograms
where normalized so the change from that work to this
work is

• Age, SnapshotNo, and ChassiNo have been removed
• Distance has been replaced by MileagePerDay

6. CASE STUDY: BATTERY PROGNOSTICS

The objective now is to use the methodology described
in Section 4 to estimate battery prognostic functions and
analyzing the results based on the discussions in Section 5.
To avoid revealing sensitive information, presented data
is normalized. A fundamental property when analyzing
the data set is that there is no ground truth, i.e., the true
battery degradation behaviors for the set of vehicles are not
known. Therefore, a discussion why the predicted battery
prognostic functions are reasonable are included at the end
of the section.

6.1 Building the models from data

First, the approach form Section 4 is used to build the
random survival forest models. Two models will be built,
one using accumulative variables, denotedMacc, and one
who do not which is denotedMno acc. To build the models,
the software package (Ishwaran and Kogalur, 2013) is
used and there are 4 main parameters to be chosen in
the software package

• number of trees to grow in the forest
• minimum size of terminal nodes
• number of random split variables

• number of random split values

The discussion on these variables requires some detailed
knowledge on random survival forest, and a reader not
familiar with the technique can skip this part. Selection
of these parameters is important for the result and in
(Frisk et al., 2014), an investigation on a proper size of the
terminal nodes were conducted and is also here chosen to be
of size 200. Thus, each class in each tree in the grown forest
consists of at least 200 vehicles. Further, when building each
tree in the forest, at each node a random procedure is used
to select the next split variable. A rule of thumb (Ishwaran
and Kogalur, 2013) is to randomly try

√
n variables where

n is the total number of variables. Here, n is 113 and 116
respectively for the cases with and without accumulative
variables. Thus, the number of randomly chosen variables
to try at each split would ≈ 11, here 13 variables is used.
To find a split value for the corresponding node in the
tree classifier, a randomized procedure could be used to
speed up the process. But here instead a complete search
is performed.

The fourth and last of the key parameters in the algorithm
is the number of trees to grow in the forest. Analysis of
the prediction error rate is useful for selecting number of
trees. The error rate measures how well the forest ranks two
random individuals in terms of survival, and 0 is perfect
and 0.5 is no better than guessing. The error rate can
be interpreted as the probability of correctly ranking the
survival of batteries in two random vehicles. Formally,
the error rate is 1 − C where C is Harrell’s concordance
index (Harrell et al., 1982). Figure 7 plots the error rate
as a function of number of trees for both models, i.e.,
the model with accumulative variablesMacc and without
accumulative variablesMno acc. From this plot it is clear
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Figure 7. Error rate as a function of number of trees for
two models, one with and one without accumulative
variables.

that, based on the error rate, there is no reason to grow
more than about 200-300 trees in the forest. Here, 300
classification trees are grown in the forest for both models.
Another observation is that the model Macc obtains a
significantly lower error rate thanMno acc. This is to be
expected since the variables inMacc is a superset of the
variables inMno acc. However, this should not immediately
be interpreted as thatMacc is a more accurate model for
the reasons outlined in Sections 3 and 5.

With the parameter values chosen, building the random
survival forest modelsMacc andMno acc takes about 62



minutes each. The computer used has 128 GB of RAM and
2 Intel Xeon Processor X5675 (12M Cache, 3.06 GHz)
resulting in 12 cores and 24 logical processors. In the
experiment, 20 of the 24 logical processors were allocated
in the tree computation. Note that training the forest is a
one-time task, at least until more data becomes available,
and predicting the reliability for a given vehicle takes about
25 seconds.

6.2 Variable Importance Analysis

Figure 2 and Figure 8 show variable importance for the
models Mno acc and Macc respectively. A comparison of
these figures shows how variable importance get influenced
by different treatments of the accumulative variables.

First remember that the variables Age, SnapshotNo,
ChassiNo, and Distance are not included in Mno acc
and hence not included in Figure 8. A comparison of
the remaining variables show that Create month is the
most important variable in both cases. It is interesting to
note that in Figure 8 Create year and Battery pos. are
higher ranked than in Figure 2. It is also interesting to note
that the 3 most important variables in Figure 8 are the 3
most correlated variables with age according to Figure 6.
The variable Age is important according to Figure 2 and
in the case when Age is not used the most correlated
variables Create month, Create year, and Battery pos.
can provide information of age.

There are some battery related variables that are im-
portant in both cases such as BattVoltTemp_I3_p2 and
BattVolt_p2. It is also worth noting that MilagePerDay
is higher ranked than Distance. Also Country Id is more
important when accumulative variables are not used.

As a conclusion Create month, Create year, and Battery
pos. are most important variables inMno acc but further
investigations need to be done in order to understand if their
importance are due to quality variations of batteries over
time or seasonal conditions degrading the battery different
over time or if those variables are important because of
their correlation with vehicle age.
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6.3 Battery prognostics

Given the two estimated models, Macc and Mno acc, we
can now estimate the battery prognostic function (2) given
vehicle data V. It is clear that there is an age component
to battery degradation, either directly or indirectly for
example due to longer exposure to low temperatures or

vibrations. The objective of the prognostics approach is to
find a vehicle individual maintenance plan that is not based
on age or distance. A set of vehicles to analyze further is
therefore needed. The set of vehicles to predict and further
analyze is selected such that the vehicles have similar age
and distance properties, i.e., vehicles that with a fixed
maintenance schedule based on age or distance should have
similar time for next maintenance.

Now, let W0 be the set of vehicles in the original database
with no battery problems and let the functions age(V) and
distance(V) give the age and distance traveled respectively
for a given vehicle V . Then, a set of vehicles with age about
5 time units is extracted as

W1 = {V;V ∈ W0 and 4.85 ≤ age(V) ≤ 5.15}
Let m be the mean distance traveled among the vehicles in
W1, then the final set of vehicles W are the vehicles in W1
with distance traveled within 10% of the mean distance,
i.e.,
W = {V;V ∈ W1 and 0.9m ≤ distance(V) ≤ 1.1m}

The resulting set W ⊆ W0 consists of 144 vehicles with
no reported battery problems, similar age, and traveled
distance.

Figure 9 shows the predicted battery prognostic function
B(t; t0,V) for the 144 vehicles in W using both models.
From Figure 9 it is evident that there is a wide spread
among the battery prognoses and this is true regardless if
the accumulative variable are included in the model or not.
Let T90 denote the maximum time where we have more
than 90% confidence that the battery will be operational,
i.e.,

T90 = max
t
B(t; t0,V) ≥ 0.9

In Figure 9(a), with predictions using the modelMno acc,
it is clear that the T90 time varies from about 1.3 time units
for the vehicle with the worst prognosis and more than 8
time units for the vehicle with the best prognosis. A similar
situation occurs when predicting using also accumulative
variables. This is interesting since the models predict what
Figure 4 showed, that vehicle configuration and usage
significantly influences the battery prognosis.

To further analyze the results of Figure 9, we identify
the vehicles with the most extreme battery prognoses.
Let V1 and V2 denote the vehicles in W with best and
worst prognosis using the modelMno acc, i.e., the functions
in Figure 9(a) that are highest and lowest respectively.
Figure 10 shows the battery prognostics function for
vehicles V1 and V2 where it is evident that the estimated
prognoses for these two vehicles are significantly different
and needs different maintenance plans. Identifying the
vehicles with best and worst prognosis using modelMacc
instead of modelMno acc shows a similar difference. It turns
out that the vehicle with best predicted prognosis is the
same for both models, but the vehicle with worst predicted
prognosis is different with the two models. Denote the
vehicle with worst predicted prognosis using modelMacc
with V3. Thus, three vehicles with extreme differences in
battery prognosis have been identified as:

• V1 - best predicted prognosis using both models
Mno acc andMacc.
• V2 - worst predicted prognosis using modelMno acc.
• V3 - worst predicted prognosis using modelMacc.

Table 1 shows some detailed data from vehicles V1, V2, and
V3. In the table, not all variables are included, only the 25
most important according to Figure 8 and also distance
and age of the vehicles. The data has been normalized such
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Figure 9. Estimated battery prognostic function of the 144 vehicles in W using both random survival forest models.

Table 1. Normalized data for the three vehicles V1, V2, and V3 which correspond to the vehicle
with best prognosis, the worst prognosis according to modelMno acc, and the worst prognosis

according to modelMacc.

Variable Vehicle V1 Vehicle V2 Vehicle V3

Distance (norm) 1.00 0.93 0.87
Age (norm) 1.00 1.00 1.02
Create month 2011092 2011101 2010122
Create year 2011 2011 2010
Battery pos. Left hand side Left hand side Left hand side
BattVoltTemp_I3_p2 (norm) 1.00 10.20 24.48
BattVolt_p2 (norm) 1.00 10.61 26.64
Country Id 2 1 0
BattVoltTM_p4 (norm) 1.00 5.89 12.34
BattVoltTM_p2 (norm) 1.00 23.25 84.70
FuelConsumption_c10 (norm) 1.00 0.79 0.52
SpeedTM_pct50 (norm) 1.00 1.09 1.36
MileagePerDay (norm) 1.00 0.93 0.86
BattVoltTemp_I1_p2 (norm) 1.00 9.69 28.99
SOCPowerOffTime_I3_Ptail - 1.0 1.0
BattVoltTemp_I3_c3 (norm) 1.00 11.78 34.94
SpeedDist_p10 (norm) 1.00 0.66 0.35
PowerOffSOC_I4_p2 (norm) 1.00 16.91 28.64
KickDownRel - 1.0 1.0
PowerOff_p3 (norm) 1.00 0.64 1.12
NoKitchen yes no no
BattVolt_p1 (norm) 1.00 11.65 31.22
SOCPowerOffTime_I3_p3 - 1.0 1.0
SpeedDist_p2 (norm) 1.00 0.89 0.76
PowerOffSOC_I6_c2 (norm) 1.00 1.11 1.11
AtmPress_var (norm) 1.00 3.48 1.37
PowerOffSOC_I3_p3 - 1.0 1.0

that the vehicle V1 with best battery prognosis has variable
values 1 except for cases when the unnormalized value
is 0 or if it is a categorical variable such as Country_Id.
The variables for vehicles V2 and V3 that are significantly
different from vehicle V1 are mainly variables related to low
battery voltage and sometimes at specified temperature
intervals. For example BattVoltTemp_I3_p2 is the relative
time spent in 10-25◦C with 26-27 V where the normal
voltage is up to 30 V. This is a good temperature for
the battery and low voltages are not expected to be
common in this temperature interval. The batteries in
V2 and V3 had this condition 10.20 and 24.48 times as
frequently as the battery with good prognosis in vehicle
V1. Further, comparing vehicles V2 and V3 it is clear that
the main differences compared to vehicle V1 are in the
same variables. As noted in the beginning of this section,

there is no ground truth available but one conclusion
so far is that for vehicles with similar age and distance,
the most important differences are related to low battery
voltage independent of the treatment of accumulated
variables which is consistent with engineering experience.
Thus, the procedure managed to automatically produce
relevant battery prognostic functions, separating vehicles
that otherwise would have had the same maintenance
schedule.

To further analyze the effect of using accumulative variables,
Figure 11 shows the predicted battery prognostic function
for vehicles Vi using both models with and without the
accumulative variables. Let Bno acc

i and Bacc
i correspond

to the battery prognostic function for vehicle Vi using
modelsMno acc andMacc respectively. From the figure it
is clear that choice of model has significant influence on the
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Figure 10. Battery prognostics function for vehicles in W
with best and worst predicted prognoses using model
Mno acc.
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Figure 11. Battery prognostic estimates for functions for
vehicles V1, V2, and V3 using models Mno acc and
Macc.

estimate of the prognostic function, compare for example
Bno acc
3 with Bacc

3 . This indicates that choice of model is
important. In this case, the modelMacc produces mostly
conservative prognostic estimates, i.e., the dashed lines lies
below the corresponding solid lines in the figure for most
of the prediction horizon. However, this is not generally
true. Consider a vehicle that is old, but has been used in
a way that is not damaging for the battery, for example
operational in mainly +20◦, low speeds with low levels of
vibrations etc. That vehicle would, in theMacc model, be
associated in the same class as other equally old vehicles.
This is due to that the age variable is so important in the
classifier as shown in Figure 2. This would not be true for
the model Mno acc and the vehicle would be associated
with vehicles with similar usage profile and configuration.
This is a key difference between the different models and
the main reason whyMno acc is preferable toMacc.

7. CONCLUSIONS

High degree of availability and reliability is important
in many businesses and in particular heavy-duty trucks
and the lead-acid battery is one important component to
maintain. The battery is a difficult component to predict

since degradation heavily relies on usage profile, vehicle
configuration, and ambient conditions.

A contribution is a case study utilizing the data-driven
approach random survival forests to compute probabilistic
reliability properties for a battery in a specific vehicle. The
case study is based on vehicle data from 33603 vehicles. A
main contribution of the paper is to analyze and compare
the difference in the results obtained with or without includ-
ing accumulative variables in the classification approach.
A first conclusion is that if the accumulative and most
important variable Age is removed, the three most strongly
correlated variables with age become most important. A
second conclusion is that the estimated battery prognostic
function is significantly changed if accumulative variables
are omitted. A third conclusion is that when looking at
vehicles with the same age and driven distance but with
significant different battery predictions the main differences
are in variables related to battery properties such as relative
time with low voltage or relative time with a certain voltage
at a specified temperature interval.
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