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Abstract— A hybrid diagnosis system design is proposed that
combines model-based and data-driven diagnosis methods for
fault isolation. A set of residuals are used to detect if there is
a fault in the system and a consistency-based fault isolation
algorithm is used to compute all diagnosis candidates that
can explain the triggered residuals. To improve fault isolation,
diagnosis candidates are ranked by evaluating the residuals
using a set of one-class support vector machines trained using
data from different faults. The proposed diagnosis system
design is evaluated using simulations of a model describing
the air-flow in an internal combustion engine.

I. INTRODUCTION

Two common approaches in fault diagnosis are usually
referred to as model-based diagnosis [14] and data-driven
diagnosis [15]. Both approaches use models to detect and
isolate faults that occur in the system. In general, model-
based diagnosis uses physical models of the system and
modelled faults, while data-driven diagnosis uses models
learned from training data.

A general diagnosis system design in model-based diag-
nosis is to use a set of residuals, computed based on different
parts of the model, to detect if a fault has occurred in the
system [2]. A residual is said to have triggered if it deviates
from its nominal behavior. Based on the triggered residuals,
all diagnosis candidates that can explain the triggered resid-
uals using a consistency-based fault isolation algorithm are
computed [3].

In many applications, false alarms are troublesome and
will result in the true diagnosis candidate being rejected.
Therefore, thresholds are selected such that the false alarm
rate is very small. As such, not all residuals will trigger as
expected if the fault is small. Thus, even though all faults
are uniquely isolable given the set of residuals in the ideal
case, it is not certain all residuals will trigger when a fault
occurs. As an example, consider the fault signature matrix in
Table I where an X at position (i, j) means that the residual
ri is sensitive to the fault fj . If only r1 and r2 trigger, the
possible conclusions that can be made are either f1 or f2
has occurred.

Having said that, even though both f1 and f2 can explain
the two triggered residuals, the residual values for each fault
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TABLE I
EXAMPLE FAULT SIGNATURE MATRIX.

f1 f2 f3 . . . fnf

r1 X X X . . . 0
r2 X X 0 . . . X
...

...
rnr 0 X X . . . 0

might be different. By analyzing the correlation between the
residuals it could be possible to improve fault isolability
performance and isolate the two faults from each other, or at
least tell which of the faults is more likely to have occurred,
even before all residuals sensitive to the fault have triggered.
As an illustrative example, assume that when analyzing
residuals r1 and r2, the residual values for each of the two
single-fault cases will be located as shown in Fig. 1. The
dashed lines represent thresholds and the highlighted region
at the center represents the nominal residual behavior, i.e. no
residual has triggered. In this example, residual data belongs
to the model of fault f1 which is a more likely diagnosis
candidate with respect to f2.
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Fig. 1. An example where two different faults will trigger the same set of
residuals but different residual outputs.

If there are several diagnosis candidates that can explain
the triggered faults, it might not be obvious which possible
set of faults is present in the system. This will make it more
difficult as well as time-consuming and costly for the control
system to take suitable counter-measures or for an technician
to troubleshoot the system. It is not desired to reject too
many diagnosis candidates if there is a risk that the true
fault might also be rejected. By analyzing the correlation
between residuals and using knowledge from previous faults,
it would be possible to identify which diagnosis candidates
are more likely to have occurred. This is relevant, for
example, when designing diagnosis systems for automotive



applications since the troubleshooting can be performed more
efficiently at the workshop.

This paper proposes a combined diagnosis system design
to make use of the advantages from both model-based and
data-driven fault diagnosis approaches. The purpose is to
improve fault isolation in situations when the fault is not
yet isolated by ranking the diagnosis candidates given which
is more likely. The proposed method can handle both single-
faults and multiple-faults, and also identify when it is likely
that an unknown fault has occurred.

Previous works that also combined model-based and data-
driven fault diagnosis techniques are, for example, [4],
[13], and [8]. In [7] and [8], different test quantities are
designed using model-based and data-driven methods. Com-
bined model-based and data-driven methods have also been
proposed for prognostics and condition-based maintenance
[1], [10]. With respect to previous works, a combined fault
isolation strategy is proposed which combines the advantages
of both consistency-based fault isolation and data-driven fault
modeling.

II. PROBLEM STATEMENT

The goal is to develop a hybrid diagnosis system design
utilizing both model-based and data-driven diagnosis meth-
ods to better identify the faults that are present in the system.
By including data-driven classifiers trained using available
data with known faulty behaviors, it should be possible to
rank different diagnosis statements which is more likely
based on experience from previous faults.

It is assumed that there is an available set of residuals
that has been developed to detect and isolate a set of faults
in the system. The threshold for each residual is tuned such
that the false alarm rate is negligible. However, it is assumed
that all residuals might not always trigger when there is
a fault, such as when the fault is small, and as such the
exoneration assumption is not valid. All diagnosis candidates
that can explain the triggered faults are computed using the
consistency-based fault isolation algorithm described in [3].

During the development of the diagnosis system, a candi-
date set of faults are taken into consideration in the diagnosis
system design. However, new types of faults can occur that
are not included among the fault candidates and this could
result in drawing the wrong conclusions about the system
state if these unknown faults are not taken into consideration
in the fault isolation process. Thus, an important task in the
fault isolation process is to identify when it is likely that an
unknown fault has occurred.

III. MODELING FAULT MODES FOR FAULT ISOLATION

Consider a system to be monitored and let F =
{f1, f2, . . . fnf

} be a set of possible faults. To describe the
system state, the term fault mode is used. A fault mode
F ⊆ F is a set of faults present in the system. The fault mode
describing the fault-free system F = ∅ is the nominal state
and is denoted by NF (No Fault). Let R = {r1, r2, . . . , rnr

}
represent the set of residuals that are computed based on the
sensors and actuators data from the system. The residuals

are designed such that different residuals are sensitive to
different subsets of faults. If a residual rk is not sensitive
to a fault fi, it is said that fi is decoupled from rk. Also,
let RFj

⊆ R denote the subset of residuals where the faults
Fj are decoupled.

One approach to compare different fault isolation ap-
proaches is to analyze the assumptions regarding fault modes
that are utilized in each approach [6]. To perform the
analysis, the set of residual outputs that can be explained by
different fault modes are modeled. Let ΦR(Fi) ∈ Rdim(R)

where R ⊆ R denotes the space of all values of the subset
of residuals R that can be explained by a fault mode Fi.

Then, each fault mode Fi can also be represented by
the set of possible residual values ΦR(Fi) that can be
explained by Fi. It is assumed that different sets of ΦR(Fi)
for different fault modes Fi can be overlapping, i.e. the
exoneration assumption is not valid. This is the case, for
example, if faults are assumed to be small and difficult to
detect. The sets ΦR(Fl) for each fault mode are seldom
completely known, and different assumptions are made about
the different ΦR(Fl) depending on how the diagnosis system
is designed [6].

A. Consistency-based fault isolation

A common approach in model-based diagnosis to perform
fault isolation is to use a set of residuals that are sensitive
to different sets of faults. If a fault is decoupled from a
residual, then the residual is not affected by the presence of
the fault when the fault occurs. Based on which residuals
have triggered, diagnosis candidates that can explain the
triggered residuals are computed. A diagnosis candidate is
called minimal if no subset of faults can explain the triggered
residuals [3]. Thus, a diagnosis candidate is rejected if it
cannot explain the triggered set of residuals.

In consistency-based diagnosis, a set of faults F ⊆ F is
a diagnosis candidate unless a residual where all faults in F
are decoupled has triggered [3]. The fault isolation algorithm
in [3] computes all minimal diagnosis candidates, i.e. all di-
agnosis candidates of which no subset of faults is a diagnosis
candidate. For example, if no residual has triggered, then all
fault combinations are diagnosis candidates. However, the
fault-free case is the minimal diagnosis candidate.

1) Modelling fault modes: The approximation of each
ΦR(Fl) based on the consistency-based approach is denoted
by ΦcbR(Fl) and is defined as follows: Let Ji be a threshold
such that a residual ri is said to have triggered if |ri| > Ji.
Then, the set ΦR(Fl) is approximated as ΦR(Fl) = W1 ×
W2 × . . .×Wi × . . .×Wnr where

Wi =

{
R if ri is sensitive to any fault fj ∈ Fl
[−Ji, Ji] otherwise.

(1)
Note that if F1 ⊆ F2, then ΦcbR(F1) ⊆ ΦcbR(F2) [6].

The approximation of the feature set ΦR(Fl) in (1)
describes a set which has orthogonal boundaries with respect
to residuals where all faults in the fault mode are decoupled.
Note that the fault-free mode NF is described by an nr
dimensional hypercube bounded in each dimension by the



threshold values [−Ji, Ji] as represented by the highlighted
area in Fig. 1. This choice of boundary for the NF mode is
made because each residual is evaluated individually in the
consistency-based fault isolation procedure [3].

Should the thresholds for each residual in R ⊆ R be
selected such that false alarms can be neglected, the approx-
imation ΦcbR (Fl) is expected to be conservative with respect
to the true ΦR(Fl), i.e. ΦR(Fl) ⊆ ΦcbR (Fl). This is because
no assumptions are made about which fault realizations are
possible for each fault. If there are no false alarms, no
diagnosis candidate is falsely rejected. This is an advantage
from the aspect that the correct diagnosis candidate will not
be rejected. However, this could result in unnecessary poor
fault isolation performance since the number of computed
diagnosis candidates might be larger than ideal.

As an example, consider that only residuals r1 and r2 in
Table I are available and the dashed lines in Fig. 1 represent
the thresholds of the two residuals. Then, the fault-free case
Φcbr1,r2(NF ) is illustrated by the colored area within the
thresholds since the fault-free case is rejected if any residual
triggers. The single-fault f3 only affects r1, hence Φcbr1,r2(f3)
is the area within the two horizontal thresholds since f3
cannot explain if r2 triggers. For each single-faults f1 and f2,
i.e. Φcbr1,r2(f1) and Φcbr1,r2(f2) cover the same set including
the whole area since both residuals will be affected by the
two faults.

B. Data-driven modeling of fault modes

The consistency-based fault isolation approach is conser-
vative and will produce many possible diagnosis candidates.
This will be problematic if the different diagnosis candidates
are equally likely to occur since it will be difficult to decide
on a suitable counter-measure if it is not clear which faults
are present in the system. In order to find a prioritized
subset of diagnosis candidates, a data-driven approach is used
to classify if residual outputs resemble data from previous
faults. A set of training data from previous fault scenarios
are used to generate models of the different fault modes.

One candidate data-driven method to estimate each resid-
ual set ΦR(Fl) where the estimation is denoted by Φdd

R (Fl),
is one-class Support Vector Machines (1-SVM) [11]. A clas-
sifier Cl(r̄i) is trained given a set of training data including
only data from one specific fault mode Fl to classify if a
new sample r̄i belongs to that fault mode or not. The areas
in Fig. 1 given f1 and f2 illustrate how Φdd

R (fi) can look
like.

In [11], the 1-SVM is proposed to estimate the support of
an underlying probability distribution that the data is drawn
from. Then, the boundary of the support is selected such that
the probability of a sample taken from the true distribution
should be drawn outside of the boundary equals some a-
priori false positive rate. This description is suitable for this
application where the goal of using 1-SVM is to estimate
ΦR(Fl) for each Fl using training data from the given fault
mode Fl.

If the training data is correctly labeled with respect to
the fault mode, one 1-SVM classifier is used to model the

training data corresponding to each fault mode included in
the training data. Note that one sample of data r̄i can be a
member of different fault modes at the same time. Thus, it
is expected that Φdd

R (Fl) will be an approximately optimistic
estimation of ΦR(Fl) since it is unlikely that training data
represents all possible fault realizations given fault mode Fl.

1) One-class Support Vector Machines: A summary of
the 1-SVM classifier is presented here. Let (r̄1, r̄2, . . . , r̄q)
be a training set including data from mode Fl where r̄i is
the ith sample of a given subset of residuals R ⊆ R. As
described in [12], to train a 1-SVM model, the following
optimization problem is solved

min
w,ξ,ρ

1

2
‖w‖2 +

1

νl

∑
i

ξi − ρ

s. t. w ·Ψ(r̄i) ≥ ρ− ξi, ξi ≥ 0, i = 1, 2, . . . , q

(2)

where ν is a tuning parameter related to the smoothness of
the boundary of the data set. Then, the 1-SVM classifier for
a new sample r̄ is given by

CFl

R (r̄) =

{
1 if

∑
i αik(r̄i, r̄) > ρ

0 otherwise, (3)

i.e., CFl

R (r̄) = 1 if r̄ belongs to the class and zero otherwise,
where k(r̄i, r̄) is the Gaussian kernel

k(x, y) = Ψ(x) ·Ψ(y) = e−‖x−y‖
2/c (4)

and the parameters αi are given by the following dual
problem

min
α

1

2

∑
i,j

αiαjk(xi, xj)

s. t. 0 ≤ αi ≤
1

νl
,
∑
i

αi = 1.

(5)

IV. METHODOLOGY

Based on the discussion about the consistency-based and
data-driven fault isolation approaches, it is expected that the
set of computed diagnosis candidates from the consistency-
based fault isolation is too conservative as there will be many
diagnosis candidates that can make it difficult to identify the
true fault. Conversely, a data-driven approach is limited by
the quality of the training data and there is a risk where
the true diagnosis candidate is rejected. Thus, based on
the discussion in Section III, the relation between the true
ΦR(Fl) and the two approximations: Φdd

R (Fl) and Φcb
R(Fl),

can be written as

Φdd
R (Fl) ⊂∼ ΦR(Fl) ⊆ Φcb

R(Fl) (6)

for each fault mode Fl. However, if the data-driven models
are updated over time as new fault realizations are observed,
the lower bound Φdd

R (Fl) should approach the true ΦR(Fl).
A fault isolation methodology is proposed to take advan-

tage of both consistency-based and data-driven methods to
improve the fault isolation procedure.



A. Combining model-based and data-driven fault isolation

The consistency-based fault isolation algorithm computes
all minimal diagnosis candidates, which also represents all
possible diagnosis candidates. Each fault mode Fl is modeled
as a 1-SVM classifier CFl

R where R ⊆ R is the set of
residuals used by the classifier. Then, the minimal diagnosis
candidates are ranked based on how many of the residual
samples when a fault is detected are classified by each
corresponding CFl

R . Let r̄1, r̄2, . . . , r̄N , be N samples of
the residuals when a fault is detected. If Fi is a minimal
diagnosis candidate, its rank is computed as

Rank(Fi) =

∑N
k=1 C

Fi

R (r̄k)

N
, (7)

i.e. the percentage of the samples that belongs to Fi. A higher
Rank(Fi) means that the minimal diagnosis candidate Fi is
ranked higher.

The 1-SVM classifiers can be interpreted as evaluat-
ing new residual outputs using experience from previous
faults. Some diagnosis candidates might be prioritized, if
the residual data resembles previous observations of the
fault mode, but no diagnosis candidates should be falsely
rejected. Note that even though faulty data is limited initially
when training the 1-SVM classifiers, the performance can
be improved as new data is collected over time. This is
important, for example, at a workshop where a priority list
can be downloaded from the diagnosis system on where to
start the troubleshooting from. As data from new faults are
collected, the 1-SVM classifiers can be improved over time.

It can also be useful to identify the likelihood that an
unknown fault has occurred whereby if the residual output
has not been observed before, then it does not belong to
any existing fault mode. Let D denote the set of minimal
diagnosis candidates, excluding the unknown fault case.
Then, ranking of an unknown fault Fx is performed as

Rank(Fx) =

∑N
k=1 1−

∨
∀Fl∈D C

Fl

R (r̄k)

N
, (8)

i.e., the percentage of the samples that do not belong to any
known fault mode.

B. Modeling multiple-fault modes using single-fault data

Should 1-SMV classifiers be trained for all fault modes
representing combinations of multiple-faults, the amount of
training data required to train all classifiers grows exponen-
tially. In practice, it is impractical to generate data from all
possible multiple-faults scenarios. However, by considering
subsets of residuals where the same set of faults are decou-
pled and then to generate 1-SVM models using these sets, it
is possible to evaluate if residual data belongs to multiple-
fault modes by only using training data from single-faults.

The key is that a residual with a decoupled fault will not
change from its nominal behavior when the fault occurs.
Thus, to evaluate if residual data belongs to a double-fault
mode {fi, fj}, it is possible to evaluate if residual data of the
subset Rj belongs to fault mode fi and vice-versa, whereby
the subset Rj corresponds to residuals where fault fj is

decoupled. If both these cases are true and that each subset
of Ri and Rj is non-empty, then the residual output belongs
to the fault mode {fi, fj}. Then, the rank of the diagnosis
candidate is computed as

Rank({fi, fj}) =

∑N
k=1 C

fi
Rj

(r̄k)C
fj
Ri

(r̄k)

N
. (9)

The same approach can be generalized to multiple-faults of
higher cardinality.

Fig. 2 shows two residuals r1 and r2, where each residual
is sensitive to one fault of f1 and f2, respectively. When
considering both residuals, the double-fault case {f1, f2} will
result in residual values in the upper right region. However, if
only considering r1, which is not sensitive to f2, the residual
output will belong to the fault mode f1. In the same way, by
considering only r2, the residual output will belong to fault
mode f2. Thus, it is possible to classify data to belong to
the double-fault mode without requiring training data from
the double-fault case. However, note that the multiple-faults
that can be classified using this methodology depend on the
fault sensitivity of the different residuals.

In the worst case, in order to classify single-faults and
double-faults, nf × nf 1-SVM models are required.
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Fig. 2. If two residuals are sensitive to two different faults, f1 and
f2, the double-fault case can be classified by classifying each single fault
considering each residual separately.

C. Diagnosis system overview

Combining the model-based and data-driven fault isolation
not only improves fault isolation performance but also helps
to identify new unknown faults and to isolate locations in
the system that they could have occurred. A summary of the
diagnosis system architecture is presented here.

A schematic of the fault isolation strategy is presented
in Fig. 3 where the diagnosis system is divided into two
steps: fault detection and fault isolation. The fault isolation
step is only activated when a fault is detected, i.e., at the
event when a residual has triggered. The fault isolation step
is divided into the consistency-based and the data-driven fault
isolation. In the data-driven fault isolation, residual outputs
are evaluated using a 1-SVM classifier for each fault mode,
and is used to rank the minimal diagnosis candidates. If the
residual data does not belong to any of the fault models
described by the 1-SVM classifiers, it is assumed that an



unknown fault has occurred. The unknown fault mode is
ranked by computing the percentage of residual samples not
belonging to any fault mode (8). Thus, if many of the residual
values does not belong to any fault mode, it is likely that an
unknown fault has occurred. Locating unknown faults can
be performed, for example, using the algorithm in [9].

System

Residuals R = {r1, r2, . . . , rk}

|ri| > Ji ∀ri ∈ R

Consistency-based
fault isolation

Data-driven
fault isolation

Measurements

Residual outputs

triggered

+
classification

diagnosis candidates

Ranked diagnosis candidates

Fig. 3. A schematic of the diagnosis system design. The data-driven fault
isolation is used to rank diagnosis candidates computed by the consistency-
based fault isolation.

V. EVALUATION

For the evaluation of the proposed diagnosis system
design, a model of a generic 2 liter inline-4 cylinders
single-turbocharged gasoline engine is used with 13 states
describing the gas flows in the engine [5]. Three faults are
considered: a clogging fpaf and a leakage fWaf at the
air filter, and a fault in the sensor measuring the intake
manifold pressure fypim. The purpose of the evaluation is
to illustrate the functionality of the proposed method when
a pure consistency-based approach is insufficient. Before the
evaluation, three 1-SVM classifier are trained using training
data, i.e. one for each of the single-faults.

A. Fault isolation and ranking of diagnosis candidates

To illustrate the combined fault isolation approach, two
residuals, r1 and r2 are selected where consistency-based
single-fault isolation is limited as shown in the fault signature
matrix in Table II. One solution to include the possibility
of an unknown fault, is to add an extra column in the
fault signature matrix to accommodate for the effect of an
unknown fault fx. The fault isolability matrix for the two
residuals is given in Table III. It can be seen that fpaf and
fWaf are not isolable from each other and fypim is not
isolable from the other faults.

Fig. 4 shows a 2D plot of the two residuals plotted against
each other. The dashed lines represent the thresholds for each

TABLE II
FAULT SIGNATURE MATRIX FOR r2 AND r3 .

fpaf fWaf fypim fx
r1 X X 0 X
r2 X X X X

TABLE III
FAULT ISOLABILITY MATRIX GIVEN THE TWO RESIDUAS

fpaf fWaf fypim
fpaf X X
fWaf X X
fypim X X X

residual and the solid lines represent the boundaries of the
1-SVM classifiers for each of the three single-fault modes.
The 1-SVM classifier of the fault fpaf covers mainly the
upper left region of the residual space and the model for
fypim covers the area in between the thresholds for r1 since
only r2 is sensitive to the sensor fault. Each fault mode
is trained using only detected faulty data, i.e. no data is
used from missed detections since those cases will not be
considered when the diagnosis system is run on-line in the
system. However, if the data is scattered over a large area
close to the nominal residual behavior, the boundary of the
1-SVM model might overlap the nominal behavior as well.
Also, although fWaf should ideally trigger both residuals,
most of the area belonging to its 1-SVM model corresponds
only to that of r1 being triggered. The corresponding minimal
diagnosis candidates for different combinations of triggered
residuals are tabulated in Table IV.
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Fig. 4. Triggered residual data from a sensor fault.

TABLE IV
COMPUTED MINIMAL DIAGNOSIS CANDIDATES FOR DIFFERENT

COMBINATIONS OF TRIGGERED RESIDUALS.

Triggered residuals Minimal diagnosis candidates
no triggered residuals ∅

r1 {fpaf}, {fWaf}, {fx}
r2 {fpaf}, {fWaf}, {fypim}, {fx}

r1 and r2 {fpaf}, {fWaf}, {fx}

In Fig. 4, evaluation data from fypim is visualized. Since
only r2 has triggered, all single-faults are minimal diag-
nosis candidates. The ranking of each minimal diagnosis



candidate is Rank({fypim}) = 1.00, Rank({fpaf}) = 0.11,
Rank({fWaf}) = 0.00, and Rank({fx}) = 0.00, where the
true diagnosis candidate has the highest rank.

The evaluation data from the detected leakage is shown in
Fig. 5. It is visible that detection performance of r1 is not
ideal since most samples lies within the thresholds. How-
ever, both residuals trigger and the ranking of the different
minimal diagnosis candidates are Rank({fpaf}) = 1.00,
Rank({fWaf}) = 0.77, and Rank({fx}) = 0.00. The true
diagnosis candidate {fWaf} is ranked high but {fpaf} is
ranked higher since the boundary of {fWaf} lies within the
boundary of {fpaf}. It is possible to improve the separation
between the different faults by including other residuals.
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Fig. 5. Triggered residual data from a leakage.

B. Fault isolation of unknown faults

To evaluate how the algorithm would behave to an
unknown fault, a new fault is simulated in the model
and the results are shown in Fig. 6. The ranking of
the different minimal diagnosis candidates in this scenario
are Rank({fpaf}) = 0.20, Rank({fWaf}) = 0.02, and
Rank({fx}) = 0.80 where the occurrence of an unknown
fault has the highest rank.
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Fig. 6. Triggered residual data from an unknown fault.

VI. CONCLUSIONS

The results from the case study show the advantages of
the combined consistency-based and data-driven methods for
fault isolation. The data-driven fault classification improves
the fault isolation and gives a priority list of the differ-
ent diagnosis candidates. Since the consistency-based fault

isolation and data-driven fault classification are performed
sequentially, it is possible to separate the fault isolation
algorithm into two different systems. Fault detection and
the consistency-based fault isolation can run on-line in a
system and the data-driven fault isolation can be performed
during times when the system is off-line, for example, during
troubleshooting. This is beneficial in automotive applications,
especially when the computational capabilities in vehicles are
too restrictive. If the data-driven fault isolation is performed
at a workshop, it is also possible to continuously update
and improve on the 1-SVM models with new residual data
when faults are identified. This is a great advantage since
the number of vehicles is large and data from many vehicles
can be used as training data.
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