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Linköpings universitet,
S–581 83 Linköping,
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Abstract

Today many technical processes are complex and highly integrated. When a process
has failed, the complexity of the process makes it hard for humans to troubleshoot
it. To facilitate troubleshooting a diagnostic system can supervise and alarm an
operator when a fault is detected and also identify one, or several faults, that may
have caused the alarm.

It is a demanding and time-consuming task to design a diagnostic system.
Therefore this thesis presents algorithms and analysis methods that help and au-
tomate the design of diagnostic systems. In model-based diagnosis a model, in this
thesis called a diagnostic model, of the process is used to design a diagnostic sys-
tem. A diagnostic model describes the different behaviors of the behavioral modes
of the process, which are chosen for the diagnosis task. Typical behavioral modes
are the normally working mode and specified faulty working modes.

In a diagnostic system a number of diagnostic tests validate different models, by
using observations of the process. Each test decides if the present behavioral mode
of the process belongs to a subset of considered behavioral modes. If a test gives
the same possible behavioral modes as the behavioral modes that together with
the observations are consistent with a model, and this is true for any observation,
then the test is a strong test for this model.

If the diagnostic model exactly describes the behaviors of the process, a goal
is to design a diagnostic system such that for any observations exactly the same
possible behavioral modes are given from the diagnostic system as the behavioral
modes that together with the observations are consistent with the diagnostic model.
A system with a set of tests so designed is called a sound and complete diagnostic
system.

A key result of the thesis is, if the goal is to design a strong test for each model
in a set of models, a necessary and sufficient condition for which set of models that
results in a sound and complete diagnostic system. An algorithm that computes a
set of models that fulfills this condition is presented. Further, an algorithm that
generates a sound and complete diagnostic system for any linear static model is
given.

In the two proposed algorithms for designing diagnostic systems, there is a com-
mon step that analyzes the structure of the diagnostic model, i.e. which variables
that are included in each equation. The structure is used to find all minimal models
of a certain type, named minimal structurally singular (MSS) sets of equations. A
structural algorithm that finds all MSS sets in a model described by differential-
algebraic equations is given. It uses a new way of handling derivatives in structural
models.

Finally, the structural algorithm is applied to a large non-linear example, a part
of a paper mill. In spite of the complexity of this process, a small set of tests with
high isolability is successfully derived.
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Operators and Notational Conventions

M model, i.e. a set of relations
γ set of models
δ diagnostic test
∆ diagnostic system
M diagnostic model
M(c) diagnostic model for component c

R rejection region or relation
φ(a) set of system behavioral modes that is implied by a

Φ set of system behavioral modes
Xu set of the unknown variables
Z set of the known variables
F set of variables describing faults
x vector of unknown variables
ẋ time derivative of variable x

ė equation e differentiated once with respect to time
g(i) i:th time derivative of g which can be an equation, a function

or a variable
equM(X) equations in M that include some variable in X

A(M,X) matrix A defined by the equations included in M and the vari-
ables X
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x Notation

M ⊆∗ M model M is a feasible model in M
varXM subset of variables in X that are included in some equation in

M

ass M set of system behavioral modes that infer M

varXM non-differentiated variables in X that are included in some equa-
tion in M

v̂arM variables in M with unknown derivatives
OM
M set of observations such that there exists a solution to the set

of equations M in the diagnostic model M
O∆δi

acceptance set of test δi in the diagnostic system ∆

sol(M, z) set of solutions to M at z
mssM all MSS sets in M

Mmax set of most differentiated equations in M

M∞ set of all equations in M together with their differentiated equa-
tions for all numbers of differentiations

MΦ The equations implied by sys ∈ Φ

M+ The (maximal) structurally overdetermined set of equations in
M

M∗
b a subset of Mb which is invalidated with exactly the same set

of observations as Mb

β(M,x) highest derivative of a non-differentiated variable x in a model
M

m(z) limit for variable z ∈ Z of the order of derivative that can be
considered as possible to estimate

NF no-fault system behavioral mode
sys true system behavioral mode
G(M, varXM) bipartite graph with vertices M∪X and edges {(e, x)|e ∈ M,x ∈

varXe}

γB set of all behavioral models
γm set of minimal rejectable models in M
γm(z) set of minimal rejectable models in M at z
IM,I∆ analytical isolability of the diagnostic model M and of the di-

agnostic system ∆ respectively
IM
s (γ) structural isolability of the diagnostic model M given a set of

models γ

I∆s structural isolability of the diagnostic system ∆

Id desired analytical isolability
IM
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PM, P∆ partial order describing the analytical isolability of the diagnos-
tic model M and of the diagnostic system ∆ respectively
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Abbreviations
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1
Introduction

Today many technical processes are complex and highly integrated. When a system
has failed, the complexity of the system makes it hard for humans to troubleshoot
it. Since most systems nowadays have computers for control, the computers can
also be used to record and calculate supporting data for repair engineers. A type of
supporting system that gives possible explanations to which fault that has occurred
is called a diagnostic system.

It is a demanding and time-consuming task to design a diagnostic system.
Therefore it is valuable to automate the design of diagnostic systems. In Model-
based Diagnosis a model of the process is used to design a diagnostic system. This
thesis presents algorithms and analysis methods to design or partly design diag-
nostic systems given a model of the process.

This chapter starts, in Section 1.1, giving an introductionary background to
model-based diagnosis. Fundamental concepts that will be used in this thesis are
introduced. In Section 1.2 two research communities within model-based diagnosis
is presented. Basic concepts of the two communities respectively are presented and
compared to concepts used in this thesis. Then Section 1.3 summarizes the thesis
and gives the main contributions. Finally, Section 1.5 contains the publications
leading to this thesis.

1.1 Basic View on Model-Based Diagnosis

A diagnostic system compares expected behavior with the actual behavior. If the
actual behavior deviates from the expected behavior a symptom is detected and
the diagnostic system generates an alarm. By also including knowledge of faulty

1
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Figure 1.1 Architecture of a diagnostic system.

behaviors in the diagnostic system, it is able to find one or several explanations for
the actual behavior. This is called fault isolation.

The architecture of a diagnostic system considered in this thesis is shown in
Figure 1.1. A number of tests are performed using observations, also called the
known variables, of the process. The goal in this thesis is diagnosis performed
on-line and automatically. The observations are therefore assumed to be the actu-
ator and sensor signals. Each test makes a binary decision. The decisions from all
tests are then, in the unit “Fault Isolation” in Figure 1.1, collected into a diagnos-
tic statement, i.e. a logical formula that expresses all faults that can explain the
observations.

The tests are designed using a special type of process model called a diagnostic
model. This situation is depicted in Figure 1.2. The models used for diagnosis in
this thesis has an important difference compared to models used for simulation.
Here a diagnostic model is actually a set of models. Apart from the model describ-
ing normal behavior, also called no-fault behavior, there are models describing
different possible and pre-defined fault scenarios that are chosen to be diagnosed.
Each defined behavior corresponds to a state of the process. These process states
are called behavioral modes.

A diagnostic test consists of an assumption about the behavioral mode the pro-
cess is working in, a scalar value computed using observations called test quantity,
and a known set. The idea is to design the diagnostic test as follows. If the pro-
cess is operating in one of the assumed behavioral modes, then the test quantity
belongs to the set. If this logical relationship between the three components holds,
we can conclude, if the test quantity not belongs to the set, that the process is not
operating in any of the assumed behavioral modes.

The tests are derived from different parts of the diagnostic model, i.e. they are
valid under different assumptions. When different sets of tests are rejected, fault
isolation can be performed. The isolation capability of a diagnostic system depends
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Knowledge of expected behaviors.

System

Observations

Diagnostic System

Diagnostic Model →

Diagnostic Statement =

= {Possible explanations}

Figure 1.2 Context of a diagnostic system. To compute a diagnostic state-
ment a diagnostic system uses observations from the system,
and knowledge of expected behavior from the diagnostic model.

therefore on the set of tests that is used. The set of tests are on one hand defined
by which parts of the diagnostic model that we want to test and on the other hand
defined by the design of each test quantity and set in each diagnostic test.

Structural methods can be used to compute which models to test in order to
obtain a diagnostic system with high isolation capability. Structural methods takes
as input a structural model that describes which variables that are included in each
equation.

1.2 Research within Model-based Diagnosis

In this section we connect the work presented in this thesis to existing works.
Two research fields have developed model-based diagnosis (MBD) independently:
the artificial intelligence (AI) and the fault detection and isolation (FDI) within
control theory. The work in this thesis is influenced of ideas from both fields. An
early attempt to clarify some links between the AI and FDI approach to MBD
has been presented in (Cordier, Dague, Dumas, Lev́y, Montmain, Staroswiecki &
Travé-Massuyés 2000). Section 1.2.1 and Section 1.2.2 contain the brief overview
on model-based diagnosis within the AI and FDI community respectively. Basic
concepts are compared to the concepts used in this thesis. Finally, Section 1.2.3
summarizes the work done on structural methods used for diagnosis.

1.2.1 The Artificial Intelligence Community

In the AI community a process contains a set of components that can fail. A
diagnostic model consists of a system description (SD) describing the behavior of
each component and their interconnections. A conflict is a set of components, that
if they are all assumed to be working normally, resulting in an inconsistency with
the SD and an observation of the behavior of the process.
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In (Reiter 1987) an algorithm is developed that given conflicts calculates the
set of diagnoses, i.e. a set of failing components that together with SD can explain
the observation. The set of diagnosis is what we call the diagnostic statement. A
diagnosis with more than one failing component is a multiple fault.

In (de Kleer & Williams 1987) the General Diagnostic Engine (GDE) is pre-
sented that combines model-based predictions, called local propagation, with se-
quential diagnosis to propose new measurement in order to isolate the faults. GDE
uses an assumption-based truth maintenance system ATMS to keep record of as-
sumptions and consequences. The GDE and ATMS are described in (Forbus &
de Kleer 1992). The model-based predictions are used to find inconsistencies with
the observed behavior and SD. The procedure of doing model-based predictions us-
ing local propagation is used instead of the testing the pre-defined set of diagnostic
tests in the approach used in this thesis.

GDE handles only components that have no fault modes, i.e. they are either
working normally or abnormally. In (de Kleer & Williams 1989) fault modes are
introduced, i.e. each component can have several abnormal and normal modes.
Considering multiple faults the number of diagnoses grows exponentially with the
number of components. Adding different behavioral modes for each component
also increases the number of possible diagnoses. To handle the typically very large
number of diagnoses, different characterizations are presented in (de Kleer, Mack-
worth & Reiter 1992). In addition to good characterizations of diagnoses, different
ways of estimating probabilities of the diagnoses are proposed. By estimating the
probabilities of the diagnoses, it is possible to rank the diagnoses according to their
probability.

A good introduction to MBD within AI is found in the collection (Hamscher,
de Kleer & Console 1992) of papers. Some of the most difficult issues in MBD within
the AI community are to handle noise in known variables, continuous dynamic
models, and to develop models adequate for diagnosis without excessive human
engineering work (de Kleer & Kurien 2003).

1.2.2 The Fault Detection and Isolation Community

In the FDI community the diagnostic models are often on a state-space form. Faults
are often modeled as deviations in parameter values or unknown signals. The
detection of inconsistencies is a well-studied problem within FDI. To detect that a
fault has occurred, tests as described in Section 1.2 are used. A common choice of
test quantity is to use a residual. Residuals that are suitable to use as test quantities
are zero in absence of faults and non-zero for some faults. Two main approaches to
construct residuals are the parity space approach (Chow & Willsky 1984, Frisk 2001,
Staroswiecki & Comtet-Varga 2001) and the observer based approach (Nikoukhah
1998). Using a set of residuals, fault isolation is performed knowing which residuals
that are sensitive to each fault (Gertler 1998).

Other well-studied areas within FDI are to make a sound detection in noisy
environments (Basseville & Nikiforov 1993, Basseville 1998, Nyberg 1999) and to
do robust design, against model errors, of the tests (Mangoubi 1998, Chen & Patton
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1999).
Furthermore another studied area is data driven methods (Russell, Chiang &

Braatz 2000). These methods collect large amounts of data to capture the distri-
bution of data instead of identifying model parameters in a model suggested by
physical modeling. By estimating the distribution of the data unlikely data sets
are detected. If the data is translated in a direction, a sensor fault can be iso-
lated. However process faults are difficult to isolate because the collected data only
reflects the no-fault behavior.

Finally, an overview of the FDI field is presented in (Patton, Frank & Clark
2000) and some applications are presented in (Natke & Cempel 1997, Chiang,
Russel & Braatz 2001).

1.2.3 Diagnosis Utilizing Structural Methods

A seminal work using structural analysis in diagnosis is (Staroswiecki & P.Declerck
1989, P.Declerck & Staroswiecki 1991) and it is briefly described next. The struc-
ture, i.e. which variables that are included in each equation, is used to find re-
dundant equations and an elimination scheme in a systematic way in large scale
models. The elimination scheme is defined using a matching, i.e. the equations are
assigned to solve for one of their unknown variables and two equations do not solve
for the same variable. Since the equations in the matching make it possible to
calculate the unknown variables the remaining equations are redundant. For each
redundant equation the unknown variables are substituted according to the scheme
defined by the matching. Hence if some structural assumptions are fulfilled each
redundant equation corresponds to a consistency relation.

A development of the work (Staroswiecki & P.Declerck 1989, P.Declerck &
Staroswiecki 1991) is presented in (Blanke, Kinnaert, Lunze & Staroswiecki 2003)
and (Lorentzen, Blanke & Niermann 2003, Izadi-Zamanabadi, Blanke & Katebi
2003). The matching is restricted to fulfill a calculability condition. The condition
forbids a variable and an equation to be matched if the variable cannot always
be uniquely defined with the equation assuming that all other unknown variables
are known. A matching that obey this restriction is called a causal matching. A
discussion of how the calculability restriction is done for differential equations is
presented in (Lorentzen et al. 2003). It is also suggested how fault models can be
included in a structural model.

Another approach that do not distinguish derivatives is given in (Ploix & Fallot
2001). The causal treatment is handled by defining input and output variables
of differential equations. Only the no-fault model is considered. The aim is to
find a model, i.e. a sets of equations, that can be checked for consistency. The sets
found from the structural analysis are obtained using a set of structural elimination
rules. An algorithm to do this elimination is not presented. In (Ploix, Touaf &
Flaus 2003) an example of a complete design, including the structural step, of a
diagnostic system is shown.

In (Travé-Massuyès, Escobet & Milne 2001) it is discussed how structural analy-
sis can be used to find a minimal set of additional sensors to achieve full single fault
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isolation capability. The structural analysis follows the approach in (P.Declerck &
Staroswiecki 1991). The contribution is the calculation of potential additional re-
dundant relation resulting from the addition of sensors.

Within the AI field (Liegeza & Górny 2000) uses a graph obtained from simu-
lation models in simulink/matlab. The vertices of the graph are the variables. A
variable has ending directed edges from the variables that are used to calculate this
variable. No fault models are used and no algorithm is described. The main goal
is to show how conflict generation can be done using a dynamic model.

The AI work presented in (Pulido & Alonso 2000, Pulido & Alonso 2002) con-
tains an important difference compared to (P.Declerck & Staroswiecki 1991). Min-
imal structurally overdetermined subsets of equations are found. The algorithm
finds all minimal structurally overdetermined models. Then to evaluate these
minimal structurally overdetermined models local propagation is used to define
a substitution scheme that computes a test quantity. It is proven that this pre-
compilation technique finds all inconsistencies that GDE finds. An advantage of
pre-compilation is that differential equations can be evaluated.

Other examples of works using structural analysis that is not closely related
to the work in this thesis are the work in (Pisu, Soliman & Rizzoni 2002) that
uses a directed graphs to facilitate hierarchical decision making and (Bouamama,
Staroswiecki, Riera & Cherifi 2000) that uses bond graphs for modeling purposes.

1.3 Summary and Contribution of the Thesis

The chapter summaries, given below, indicates the scope and the organization of
the thesis. Then the main contributions are highlighted.

Chapter 2: Designing Diagnostic Systems using Diagnostic Models

In this chapter a framework for diagnostic models and diagnostic systems is pre-
sented formally. Fault models and multiple faults, fits nicely into the framework.
Key concepts are formally defined such as diagnostic model, diagnostic system,
and diagnostic test. It is shown how the design of a diagnostic system using a
diagnostic model can be done in this framework. Two important properties that
describe how the isolation capability of a diagnostic system is compared to the iso-
lation capability of its diagnostic model are presented. These properties are called
sound and complete. They are later used as a performance measure of the design
of a diagnostic system given a diagnostic model. Finally the process of designing
diagnostic systems is divided into two steps. In the first step a set of models is
suggested to be tested such that a diagnostic system based on these tests becomes
sound and complete. Then in the second step a test is designed for each suggested
model to obtain a diagnostic system. In contrast to most previous works within
the field on fault diagnosis, the focus of this thesis is on the first of these two steps.
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Chapter 3: Structural Models and Their Properties

Structural methods can compute a set of models to test. The input for such meth-
ods is a structural model , i.e. a model containing only which variables that are
included in each equation. Since structural models are less detailed than analytical
models, the structural models can be obtained earlier in the design of a process.
Since structural model can be available earlier in the development of the process,
the design of a diagnostic system can start earlier. This is advantageous because
then it is possible to consider the isolability aspects of for example sensor placement.

Two different structural representations of DAE systems are discussed, the
differentiated-lumped structural-model DLSM and differentiated-separated struc-
tural model DSSM. The structure of a diagnostic system and a diagnostic model
is defined and it is discussed how structural models can be obtained. Two advan-
tages of analyzing structural models instead of analytical models are firstly that a
structural model is easier to obtain than an analytical model, and secondly that
structural analysis is computationally less complex in many cases. Fundamental
structural properties are presented and finally some basic results concerning these
structural properties are given.

Chapter 4: Isolability Analysis of Diagnostic Systems

In this chapter the isolation capability of a diagnostic system is analyzed. A key
property of diagnostic systems is the analytical isolability that is formally defined.
Properties of isolability are given and representations are suggested. Several reasons
to make a simplified isolability analysis are presented. We propose a structural
method that takes as input only a structural model. The notion of structural
isolability is defined and an algorithm is presented that computes the structural
isolability. It is proven that the structural isolability is a necessary condition for
analytical isolability. Thereby it is possible to compute the structural isolability to
get a limitation of the analytical isolability. We define desired isolability that is a
useful and intuitive way to express one design goal of diagnostic systems. Finally, a
structural method is presented. The method takes the desired isolability together
with a proposed diagnostic system as inputs and computes the missing isolability
properties.

Chapter 5: Analytical Characterization of Sound and Complete Diag-
nostic Systems

Each test in a diagnostic system is designed by the use of a model, i.e. a subset of
equations of the diagnostic model. In this chapter we investigate which models that
are important to design tests for, in order to get different desired properties of the
diagnostic system, e.g. completeness and soundness. A key result is a necessary and
sufficient condition for if a set of models can be used to design a sound and complete
diagnostic system. Using this result it is possible to calculate the minimum number
of tests a sound and complete diagnostic system has to have, and also to find which
models to be tested.
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Chapter 6: Isolability Analysis of Diagnostic Models

In this chapter we extend the two definitions analytical and structural isolability of
diagnostic systems to be valid also for diagnostic models. The analytical isolability
of a diagnostic model is the best possible analytical isolability of any diagnostic
system designed using the diagnostic model. Then we present a structural method
that calculates the structural isolability of a diagnostic model. The definition of
structural isolability of a diagnostic model requires that a set of models are sup-
posed to be tested. It is shown that if this set of models are chosen such that it
corresponds to a sound and complete diagnostic system, then the structural isola-
bility of the diagnostic model is a necessary condition for the analytical isolability
of the diagnostic model. The set of models has to be chosen such that the necessary
and sufficient condition presented in previous chapter is fulfilled. When the set of
models is computed, the structural algorithms from Chapter 4 can be reused. It is
shown how the structural algorithm easily can use additional analytical properties
to compute the best possible upper limit of the analytical isolability given available
knowledge. In the end of this chapter an example is presented where it is shown
how the easily computed structural isolability can be used to significantly reduce
the amount of computations needed to find the analytical isolability.

Chapter 7: Computing Testable Models

In Chapter 5 it is shown which sets of models that can be used to design a sound
and complete diagnostic system. In this chapter we present structural methods to
obtain such set of models. Models that are often especially easy to check for validity
are minimal rejectable models. For minimal rejectable model there are observations
such that no solution to exists but if any equation is removed there exist a solution
to the remaining model. If a model is minimal rejectable depends on the analytical
properties of the model. Since structural methods are developed the structural
properties of minimal rejectable models are first presented. Using this structural
characterization, algorithms are developed that compute set of models that can
be used to sound and complete diagnostic systems. Finally an algorithm that is
especially designed to handle large diagnostic models is presented.

Chapter 8: Structural Algorithms for Finding MSS Sets

One significant step in all the proposed structural algorithms in Chapter 7, is
to find models with a structural property called minimal structurally singular
(MSS). In this chapter we will describe algorithms that find all MSS sets for
both differentiated-lumped structural-models DLSM:s and differentiated-separated
structural models DSSM:s. The algorithms in this section take as input the struc-
ture of a diagnostic model. The structure of a diagnostic model can either be
directly provided by the user or obtained automatically from model equations.
The algorithm handles decoupling of faults. It can also take a desired isolability as
input to reduce the total number of MSS sets and thereby the number of resulting
tests. The desired isolability is therefore an easily understandable input that can be
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used to adjust the resulting diagnostic system. Furthermore an additional selecting
step is described that reduce the number of tests even more without reducing the
isolability.

Chapter 9: Industrial Example: A Part of a Paper Mill

In this chapter the algorithm presented in Chapter 8 is applied to a large industrial
example. The example is a stock preparation and broke treatment system of a
paper mill located in Australia. The model includes 4 states and most of the model
equations are non-linear. In spite of the complexity of the model, the maximum
isolability is calculated and a subset of MSS sets are selected that contains this
isolability.

1.4 Main Contributions

Design of Diagnostic Systems:

• A necessary and sufficient condition for which sets of models that results in
a sound and complete diagnostic system if a strong test is designed for each
model.

• An algorithm that computes a set of models such that if a test is designed
for each model a sound and complete diagnostic model is obtained.

• An algorithm that generates a sound and complete diagnostic system for any
linear static diagnostic model. No assumption about linear independence is
required.

Isolability Analysis:

• An algorithm that computes a structural isolability without any assumption
about analytical properties.

• Theorem 4.4 and Theorem 4.5 which imply that the structural isolability can
be improved if the largest set of behavioral modes supporting each equation
is chosen.

• It is shown that the amount of computations needed to calculate the analytical
isolability can be significantly decreased using a structural isolability.

Structural Algorithm:

• To use the minimal structurally overdetermined models also called MSS sets
as a key concept in all algorithms to find a set of testable models.

• An Algorithm that finds all MSS sets in a diagnostic model consisting of DAE
and arbitrary fault models.

• Structural differentiation.
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• A simplification step that reduces the complexity of finding all MSS sets.

• The output of the algorithm for finding MSS sets is easily adjusted by chang-
ing the inputs, for example by changing the desired isolability.
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2
Designing Diagnostic Systems using

Diagnostic Models

In this chapter, we first introduce the essence of what diagnosis really is and presents
basic diagnosis notations used frequently throughout the thesis. In Section 2.1 the
diagnostic task is stated. Further the importance of diagnosis is discussed. When
a fault has occurred in a system it requires a lot of system knowledge to find an
explanation. The knowledge is contained in a model of the system. A general
modeling framework for diagnosis purpose is presented in Section 2.2. Then in
Section 2.3 we reformulate more formally the diagnostic task using the proposed
modeling framework. In Section 2.4 we describe an architecture of a diagnostic
system. Finally in Section 2.5 the design principles of a diagnostic system given a
model is presented. Moreover some properties of diagnostic systems are presented.

2.1 The Diagnostic Task

Generally diagnosis is investigation or analysis of the cause or nature of a condition,
situation, or problem, e.g. diagnosis of engine trouble. Diagnosis can also be a
statement or conclusion from such an analysis. In this theses diagnosis analysis is
performed automatically on-line using a computer. The computations are based
on a model of the behavior of the system to be diagnosed and sensor and actuator
values. To emphasize the importance of a model of the system to be diagnosed
the notion model-based diagnosis is commonly used. The diagnostic task is given
a diagnostic model that describes the expected behavior(s), state which of a set of
pre-defined behavioral modes that are possible explanations for an observation.

11
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2.1.1 Importance of Diagnosis

Efficient diagnosis is important because for example it increases safety and re-
liability. Diagnosis is also important for environment protection and to improve
maintenance. Diagnosis is very time-consuming and advanced to perform manually.
Therefore automated methods are needed.

Automated diagnosis has become more and more important over the last two
decades. The reasons for the increased importance can be divided into two parts,
the needs for diagnosis has increased and the availability of diagnosis has increased.

To produce competitive products for example safety, reliability, and perfor-
mance have to be continuously improved. Often when technical products are im-
proved the systems are divided into a larger number of components where each
component has a more specialized function. Increasing the number of components
and increasing specialization will lead to an increased system complexity. Today
many technical systems have reached the limit where no man can overview the
entire system. To diagnose a system is a delicate task the requires a good system
knowledge. Since the engineers are not able to know all about the systems, manual
diagnosis becomes ineffective or even impossible. Hence the engineers need support
to draw correct conclusions. A diagnostic system supplies information to support
diagnosis or even better supplies the correct diagnosis directly.

A large computation ability is a condition for diagnosis. The second factor
that has made diagnosis important is that computation capacity has increased
dramatically in the last decades. The computers have low production costs and
are used in almost every technical system. Since there already exists processors for
control purposes in many products, little extra hardware is needed to implement
diagnostic systems.

2.2 Modeling Framework

2.2.1 Diagnostic System

Diagnosis as mentioned before can have many different purposes. However inde-
pendent of purpose there is a common core. Diagnostic systems diagnose systems
i.e. to analyze and hopefully also draw conclusions about the cause of an observed
behavior. The causes are typically of the type “The system is working normally”
or “The system operates with a certain fault”. The states that the system can be
working in, as for example no-fault or fault x, are called behavioral modes. Behav-
ioral modes expressing a faulty behavior are also called fault modes. The set of
behavioral modes are often predefined (Gertler 1998, Reiter 1987).

To decide the cause, i.e. to decide which behavioral mode that is present, diag-
nostic systems contain knowledge of expected behaviors of the different behavioral
modes of the system to be diagnosed (Hamscher et al. 1992). The expected behav-
ior of each behavioral mode is then compared to the behavior of the system. In this
thesis the comparison of behavior is made by predefined tests included in the di-
agnostic system. If one such test detects a distinguishing feature of the compared
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behaviors, i.e. a symptom, it can be concluded that the behavioral mode corre-
sponding to the tested behavior is not the cause of the system behavior. Hence it
must be some other behavioral mode that causes the behavior. In diagnosis it is
common to divide the diagnostic task into two tasks. The first task is to detect
a symptom, i.e. to detect a distinguishing feature that concludes that the system
does not work normally. The second task is to find which type of fault that has
occurred. Very seldom it is possible to conclude the cause. Since behavioral-modes
in conflict with the observed behavior are rejected the remaining behavioral modes
constitute a set of possible explanations. If the diagnostic system is designed cor-
rectly the cause belongs to the set of possible explanations. It is desirable that this
set is small because then the number of suspicious causes are small. Details about
the behavior of each behavioral mode are essential to get few explanations (Struss
& Dressler 1992, de Kleer & Williams 1989, Nyberg 1999).

2.2.2 Behavioral Modes

Behavioral modes can be defined for components or systems. To distinguish these
two types of behavioral modes, they will be called component behavioral modes
and system behavioral-modes respectively. A diagnosis contains a set of possible
explanations of the system behavior, i.e. a set of system behavioral-modes.

System Behavioral-modes

The set of all system behavioral-modes B defines the set, that all diagnoses are
chosen among. Hence if an important system behavioral-mode is not defined then
the diagnosis will in that case never include the correct cause. It is not unusual
that a fault in some component infer another fault in another component. This
type of faults when several faults are present at the same time are called multiple
faults. A fault that only change one component behavior is called a single fault.
All possible multiple faults have to be included in the set of all system behavioral-
modes. This approach is a common approach in the FDI community (Gertler &
Singer 1990, Nyberg 1999). Let us exemplify system behavioral-modes with an
illustrative example that will be used throughout the thesis.

Example 2.1 A pump is pumping water into the top of a tank. The system is
shown in Figure 2.1. The water flows out of the tank through a pipe connected to
the bottom of the tank. The known variables are the pump input u, the measured
water-level in the tank yh, and the measured water-flow from the tank yf.

The system behavioral-modes that are relevant for this system has turned out to
be: NF everything is working correctly; PSp pump is stuck; UFp unknown pump
fault; Ct clogging in the bottom of the tank where the pipe is connected; Li, i ∈
{p1, p2} leakage before and after water-flow sensor; UFi, i ∈ {s1, s2} unknown sensor
fault for sensor 1 and sensor 2 respectively. These are the no-fault plus the 7 single
fault system behavioral-modes.

As long as it is assumed that single faults are the only faults that can happen,
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fin
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actuator fault
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f

Figure 2.1 The system to be diagnosed.

i.e. single fault assumption, this method considering system behavioral-modes is
acceptable. However, if all possible combinations of single faults are needed to be
considered, this approach will be inefficient as the number of system behavioral-
modes increase exponentially with the number of components.

Components and Component Behavioral-modes

In the AI community multiple faults have been extensively examined (de Kleer &
Williams 1987, de Kleer et al. 1992). A common way to handle large number of
system behavioral-modes is to introduce the concept of components. Component
behavioral-modes are considered to be single faults, i.e. the behaviors of all fault
modes have to be modeled individually. A possible choice of components is to
define them according to the physical parts of the system that can be replaced.
However with this principal there is different levels of granularity. The level of
granularity is preferably chosen according to which faults that will be analyzed. It is
preferable to divide a component into several smaller components if the component
has a large number of fault modes which are multiple faults considering the smaller
components. On the other hand components without any fault modes can be
merged. The choice of components is clarified with the watertank example.

Example 2.2 Assume that all multiple faults are important behavioral modes
for this system. To consider the entire system as one component results in a large
number of fault modes as a consequence of multiple faults on a more detailed level
of granularity. It is suitable to divide the system into components. To guide this
division all physical components that have one or several single faults are identified.
In Example 2.1 the possible faulty components are the pump, the tank, 2 pipes,
and the 2 sensors. Looking at Figure 2.1 it is clear that, e.g. the pipe connecting the
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Figure 2.2 The system divided into components.

Table 2.1 Component behavioral-modes for the water tank.

component behavioral modes
Pump p ∈ {NF, PS,UF}

Tank t ∈ {NF,C}

Pipe 1 p1 ∈ {NF, L}

Sensor 1 s1 ∈ {NF,UF}

Pipe 2 p2 ∈ {NF, L}

Sensor 2 s2 ∈ {NF,UF}

pump and the tank could also be considered to be another component. However,
this pipe has no fault mode and is not needed for diagnostic purpose. To do
the modeling as simple as possible, the lowest number of components are chosen.
Therefore the pipe connecting the pump and tank is not defined as a component.
The components will be called pump, tank, sensor 1, sensor 2, pipe 1, and pipe
2. The names and the corresponding physical components are seen in Figure 2.2.
With this partition the component behavioral-modes are summarized in Table 2.1.

Connection between System Behavioral-modes and Component Behavioral-
modes

A system behavioral-mode is a mode assignment such that each component has
been assigned a component behavioral-mode. The system behavioral-mode will be
denoted sys. Then for example the system behavioral-mode assignment
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sys = NF in Example 2.2 means that p = NF ∧ t = NF ∧ p1 = NF ∧ s1 =
NF∧p2 = NF∧s2 = NF. This will also be written as the tuple 〈p, t, p1, s1, p2, s2〉 =
〈NF,NF,NF,NF,NF〉 or NF. Note that the total number of system behavioral-
modes has now increased from 8 considering only single faults as in Example 2.1
to 96 adding multiple faults.

2.2.3 Diagnostic Model

In the beginning of this chapter it was stated that diagnostic systems include infor-
mation of expected behavior for the different behavioral modes. The behaviors are
in this thesis assumed to be expressed as a set of nonlinear differential equations
and is called a behavioral model.

Further in the last sections the systems are divided into a set of components.
The behavior of a system behavioral-mode can be obtained using a composite model
of the component behavioral models engaged by this particular system behavioral-
mode. In this way it is sufficient to build behavioral models for the components
individually. A component model is the component behavioral-models for all its
behavioral modes.

Component Model

A component has internal and external variables. External variables are observed
variables and variables shared between connected components. Internal variables
only connects different constraints inside a component. The system in Example 2.2
will in the next example be explained in the component oriented framework to
illustrate the different type of variables.

u

fin fout f

p t p1 p2

h

s1 s2

yh yf

sys

Figure 2.3 A choice of components of the water-tank example.
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Example 2.3 A component oriented view of a model of the water tank system
is shown in Figure 2.3. In this figure external variables corresponds to either
connections between components or lose ends. The dashed line indicate that the
system itself can be considered as a super-component. It is only the observations
that are external variables with respect to the system. It is only these observations
(or external variables with respect to the system) that can be used to diagnose the
system.

Each component has a set of constraints that describe how the external vari-
ables are expected to be related to each other, in different behavioral modes. These
constraints are assumed to be nonlinear differential equations. Assume that a com-
ponent c has the following equations {eic , eic+1, . . . , eic+n}. Since these equations
are going to express sometimes completely different behaviors depending on the
behavioral mode, the validity of each equation depends on the assumed behavioral
mode. The behavioral mode assumption needed to imply an equation e is described
with a set of system behavioral modes denoted ass e ⊆ B. Formally this is writ-
ten sys ∈ ass e → e. To give an example, consider the pump in the water tank
example.

Example 2.4 The pump has, as previously defined in Table 2.1, three behavioral
modes. For each of these behavioral modes, a detailed model has to be designed
constraining the external variables of the pump, i.e. u and fin as seen in Figure 2.3.
When the pump is fault free, p = NF, it holds that fin = u, i.e. p = NF → fin = u.
The next behavioral mode is pump stuck, p = PS. It means that independently
of the applied actuator signal u the water-flow fin remains 0. This is modeled as
p = PS → fin = 0. The last behavioral mode, the unknown behavior p = UF, does
not constrain the external variables and no equation can be supported in this case.
The pump model is

p = NF → fin = u

p = PS → fin = 0
(2.1)

When a diagnostic model consists of several components, logical expressions is
a good way to describe a set of system behavioral modes. We will use the pump in
the water tank example to introduce a useful notation.

Assume that the pump is working, i.e. p = NF, and we are interested to express
the set of all system behavioral modes that says that p = NF. It is easily realized
that

{〈p, t, p1, s1, p2, s2〉| p = NF, t ∈ {NF,C}, p1 ∈ {NF, L},

s1 ∈ {NF,UF}, p1 ∈ {NF, L}, s2 ∈ {NF,UF}}
(2.2)

is the set of system behavioral modes that says that p = NF. This set will be
denoted φ(p = NF). Note that the result of the function φ is also dependent of
the complete set of system behavioral modes B which is implicitly defined by the
diagnostic model considered. This notation will also be used for logical formulas,
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Table 2.2 A diagnostic model for the water tank system.

component assumption equation
Pump φ(p = NF) e1 : u = fin

φ(p = PS) e2 : fin = 0

Tank B e3 : ḣ = fin − fout
φ(t = NF) e4 : h = f2out
φ(t = C) e5 : h = Af2out

e6 : Ȧ = 0

Pipe 1 φ(p1 = NF) e7 : f = fout
φ(p1 = L) e8 : f = θ1 fout

e9 : θ̇1 = 0

Sensor 1 φ(s1 = NF) e10 : yh = h

Pipe 2 φ(p2 = NF) e11 : f = fint
φ(p2 = L) e12 : f = θ2 fint

e13 : θ̇2 = 0

Sensor 2 φ(s2 = NF) e14 : yf = f

e.g. φ(p = NF ∧ p1 = NF). When not all components are assigned a component
behavioral mode as in the previous example, it is called a partial assignment. If a

is a formula expressing a partial assignment then φ is defined as the set of system
behavioral modes that includes the partial assignment a. The operators ass and
φ can be used as ass e2 = φ(p = PS).

Example of a Diagnostic Model

Building a model for each component in the water tank example and collecting
them, the model in Table 2.2 is obtained. The diagnostic model in Table 2.2
describes many different behaviors. It will be important to have a notation for the
equations valid given a system behavioral mode assumption.

Definition 2.1. Given a diagnostic model M and a set of system behavioral-modes
Φ, the model MΦ is defined as

MΦ := {e|Φ ⊆ ass e} (2.3)

If Φ = {b} we will also write Mb as a shorthand notation for M{b}. As an
example consider again the no-fault model of the model in Table 2.2, i.e. MNF =
{e1, e3, e4, e7, e10, e11, e14}. Next we will explain how diagnostic systems use a
diagnostic model to find possible explanations for observations.
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2.3 Diagnosis Utilizing Diagnostic Models

A diagnostic system uses observations from the system to be diagnosed and is
designed using a diagnostic model to find possible causes. A reformulation of
finding possible causes is to decide which of the pre-defined system behavioral-
modes that can explain the observations. Let b ∈ B be any system behavioral
mode, x and z vectors of unknown and known variables respectively. If a M is a
static model then the diagnostic task can be formulated as:

Given an observation z find all system behavioral modes b such that ∃xMb(x, z).

This procedure can be repeated every time instance. If the model M is a set of
non-linear differential-equations, then at a given time t1 and for given observations
{z(t)|t0 ≤ t ≤ t1} the diagnosis task is to find all system behavioral-modes b such
that

∀t ∈ [t0, t1]∃x(t) Mb(x(t), z(t)) (2.4)

For a given b the problem of deciding if there is a trajectory {x(t)|t0 ≤ t ≤ t1}

that satisfy the model Mb and the observations is a hard problem. No efficient
method is available to check validity on-line when Mb consists of DAE:s, which is
the case in this theses. Therefore an off-line pretreatment of the model is needed to
simplify the problem to be solved on-line. A common solution especially explored
in FDI community, is to derive a set of tests using the diagnostic model (Gertler
& Singer 1990). The knowledge of the diagnostic model is ideally also contained
in the derived tests. Then the set of derived tests can replace the diagnostic model
in the diagnostic system. The advantage of deriving tests are that these tests are
much more easily evaluated then directly validate the diagnostic model. Evaluation
of a set of tests is possible to do on-line.

2.4 Diagnostic Systems

2.4.1 Diagnostic Tests

In statistics, theories has been developed to make correct decisions in noisy envi-
ronments using tests. One method is called statistical hypothesis tests (Casella &
R.L.Berger 1990, Berger 1985, Nyberg 2001). Choosing the recommended approach
using tests, the design of a diagnostic system can be devided into two steps. The
first step concerns finding a suitable set of tests. In the second step, it is convenient
to use the well established theories of statistical hypothesis tests.

Each test has a scalar test quantity T(z), that is a function of known variables
z. Typically there are system behavioral-modes that implies that T(z) = 0 ideally.
When T(z) 6= 0 the system behavioral-modes implying that T(z) = 0 are rejected
as possible explanations. In real cases noise and model uncertainties corrupt mea-
surements and therefore is T(z) ≈ 0. To secure that possible explanations are not
rejected, conclusions are drawn only when T(z) ∈ R where R is a rejection region
such that 0 /∈ R.
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When T(z) ∈ R then the behavioral modes that support the test quantity
are rejected and the number of possible explanations are reduced. This method
of utilizing such a statistical framework in diagnosis has been called structured
hypothesis tests (Nyberg 2002). In this theses noise will not be considered so a
simplified test can be used. However, when noise is important the simplified tests
can be replaced with standard statistical hypothesis tests.

Definition 2.2 (Diagnostic Test). Let Φi ⊆ B and let sys denote the true system
behavioral mode. A diagnostic test δi for the null hypothesis H0i : sys ∈ Φi is a
hypothesis test consisting of a test quantity Ti(z) where z is a vector with known
variables and a rejection region Ri such that

sys ∈ Φi → Ti(z) ∈ RCi (2.5)

where RCi is the complement of Ri
Note the index i of all quantities of the diagnostic test. This index shows for

example that Φi is the null hypotheses behavioral-mode assumption of test i. To
summarize the different parts of a diagnostic test, it consists of an assumption Φi,
a test quantity Ti(z), and a rejection region Ri. They all have to be carefully
selected to fulfill their purpose in the definition of diagnostic tests. The water tank
example will be used to exemplify how these three components in a diagnostic test
can be chosen.

Example 2.5 Assume that Φ1 = {NF} then H01 : sys ∈ Φ1. This means that
MNF are the valid equations. A subset of those are

e4 : h = f2out
e7 : f = fout
e10 : yh = h

e14 : yf = f

(2.6)

Eliminating the unknown variables f, fout, and h in equations (2.6) implies

yh − y2f = 0 (2.7)

containing only known variables. From equation (2.7) a test quantity could be
chosen as

T1 = yh − y2f (2.8)

Now it only remains to decide a rejection region R1. From the calculations it is
clear that NF → T1 = 0 and hence any R such that 0 ∈ RC1 is a valid choice. The
rejection region can for example be chosen as R1 = {T1 : 1 < |T1|}. This choice of
R1 is conservative. It can be seen as a precaution to not reject a valid model and
hence draw wrong conclusions. The prize paid is a less sensitive test that needs
more excitation to alarm.

Now diagnostic test has been defined and the next step is to understand how
they are used in diagnosis. When a test is rejected, i.e. Ti(z) ∈ Ri then according
to (2.5) it holds that

Ti ∈ Ri → sys ∈ ΦCi (2.9)
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The expression sys ∈ Φi becomes a conflict (de Kleer & Williams 1989), i.e.
an expression of behavioral modes that is in conflict with the observations. For
example assume that yh = 0 and yf = 2. Then the test quantity (2.8) is T1 =
−4 ∈ R1. This means that sys 6= NF, i.e. a fault is detected.

2.5 Designing Diagnostic Systems

2.5.1 Designing Diagnostic Tests

As seen in Example 2.5 the design of a diagnostic test exploits a part of the diag-
nostic model. Let Mi ⊆ M be the model used to derive test i. Now the design of a
test includes choosing Φi, Ti, Ri and Mi such that expression (2.9) is fulfilled. To
generalize the method in Example 2.5 Φi is first decided. The diagnostic model is
as explained earlier on the form

sys ∈ Φi → z ∈ {z|∃xMΦi
(x, z)} (2.10)

This means that Mi ⊆ MΦi
fulfills

sys ∈ Φi → z ∈ {z|∃xMi(x, z)} (2.11)

The next step is to derive a test quantity Ti and a rejection region Ri from Mi.
To be sure that expression (2.9) is fulfilled the following must hold.

z ∈ {z|∃xMi(x, z)} → Ti(z) ∈ RCi (2.12)

If expressions (2.11) and (2.12) hold then Φi, Ti, and Ri defines a diagnostic test
according to expression (2.5).

2.5.2 Diagnostic Systems

As explained earlier it is difficult or impossible to directly evaluate a diagnostic
model. Therefore the model is replaced with a set of tests in the diagnostic system.
A diagnostic system is in this thesis defined as follows.

Definition 2.3 (Diagnostic System). A diagnostic system is a set of diag-
nostic tests, i.e. {δ1, δ2, . . .} together with the procedure to form a set of candidates
C(z) defined as

C(z) = B ∩
⋂

i:H0
i rejected

ΦCi (2.13)

Candidates are all system behavioral-modes that the diagnostic system suggests
as possible explains for the observation.
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2.5.3 Diagnostic Model vs. Diagnostic System

The goal is to design a diagnostic system that exploit as much of the information
contained in the diagnostic model as possible. For diagnosis purpose a interesting
comparison concerns:

Given any observation, are the same system behavioral-modes consistent
with the diagnostic model as with the diagnostic system?

The candidates are the system behavioral-modes that are consistent with the diag-
nostic system. The system behavioral-modes that are consistent with the diagnostic
model will be defined next.

Definition 2.4 (Diagnosis). Given an observation z and a diagnostic model M,
a diagnosis b is a system behavioral-mode such that ∃xMb(x, z).

A diagnosis is a system behavioral-mode that is consistent with the observations
using the diagnostic model. The set of diagnosis given an observation z will be
denoted D(z). For an optimal diagnostic system it holds that

C(z) = D(z) (2.14)

This is an important property that can be used to compare a diagnostic system
with a diagnostic model. Next we define two different properties that together
imply (2.14).

Definition 2.5 (Complete). Given a diagnostic model M, a diagnostic system ∆

is complete with respect to M if

∀z : D(z) ⊆ C(z) (2.15)

If all tests are designed such that expression (2.5) is fulfilled then the diag-
nostic system is complete. From now on we assume that all tests are designed to
fulfill (2.5).

Definition 2.6 (Sound). Given a diagnostic model M, a diagnostic system ∆ is
sound with respect to M if

∀z : C(z) ⊆ D(z) (2.16)

The task is to design a set of diagnostic tests such that all or as much isolation
capability from the diagnostic model is preserved.

2.5.4 Designing a Sound and Complete Diagnostic System

A diagnostic system should be designed for a diagnostic model M. Let the set of
all system behavioral-modes be denoted B. A diagnostic system is sound if the
following expression holds

∀z∀b ∈ B
(
¬∃xMb(x, z) → ∃δi

(
(Ti(z) ∈ Ri) ∧ (b ∈ Φi)

))
(2.17)
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Table 2.3 A diagnostic model.

component assumption equation
Sensor 1 φ(s1 = NF) e1 : z1 = x1
Comp B e2 : x1 = x22
Sensor 2 φ(s2 = NF) e3 : z2 = x2

The interpretation of (2.17) is that if the model for any system behavioral-mode
is rejected, i.e. this behavioral mode is not a diagnosis, then there is a diagnostic
test that has rejected its null hypothesis. Furthermore, the negated assumption
of the null hypothesis implies that this particular system behavioral-mode is not
a candidate. Since both the observation and the system behavioral-mode were
arbitrarily chosen, any system behavioral-mode that is not a diagnosis is not a
candidate either, i.e. all candidates are diagnosis. Next an example illustrates how
expression (2.17) can be used to design a sound diagnostic system.

Example 2.6 Consider the small diagnostic model in Table 2.3. Using ex-
pression (2.17) all system behavioral-modes have to be analyzed. The system
behavioral-modes are

B = {〈s1, s2〉|〈NF,NF〉, 〈NF,UF〉, 〈UF,NF〉, 〈UF,UF〉} (2.18)

The model for the first system behavioral-mode in (2.18) is M〈NF,NF〉 = {e1, e2, e3}.
Eliminating the unknown variables x1 and x2 gives

{z|∃xM〈NF,NF〉(x, z)} = {z|z1 = z22}

or equivalently
{z|¬∃xM〈NF,NF〉(x, z)} = {z|z1 − z22 6= 0} (2.19)

To fulfill expression (2.17) requires that there is a test, call it δ1, such that T1(z) ∈
R1. This could be done choosing T1 = z1 − z22, RC1 = {0}, and Φ1 = 〈NF,NF〉.
Now (2.17) holds particularly for the system behavioral-mode 〈NF,NF〉.

The next system behavioral-mode in (2.18) is 〈NF,UF〉. Its model is M〈NF,UF〉 =
{e1, e2}. The corresponding set is

{z|¬∃xM〈NF,UF〉(x, z)} = {z|z1 < 0} (2.20)

A new test could be defined as T2 = z1, R2 = R−, and Φ2 = φ(s1 = NF). The
investigation of the remaining two system behavioral-modes in (2.18) implies that
non of its corresponding model can be invalidated. For example is M〈UF,NF〉 =
{e2, e3}. Since x2 ∈ R then z2 ∈ R. Hence there is no z that invalidate M〈UF,NF〉.
No more tests in a diagnostic system are needed to fulfill (2.17). The sound and
complete diagnostic system designed is shown in Table 2.4.

In the example the set {z|∃xMb(x, z)} is calculated for each system behavioral-
mode b ∈ B. This set is the orthogonal projection of the model variables x and
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Table 2.4 A complete and sound diagnostic system for the model in Ta-
ble 2.3.

test H0i : sys ∈ Φi Mi Ti Ri
δ1 φ(s1 = NF ∧ s2 = NF) {e1, e2, e3} z1 − z22 R\{0}

δ2 φ(s1 = NF) {e1, e2} z1 R−

z into z. This is computationally complex and no automatic method exists in the
general case.

To reduce the work of finding and designing tests, abstractions of the diagnostic
models can be used to suggest suitable models, sets of equations, that can be used to
derive tests. These models are smaller than the behavioral models and is therefore
often easier to analytically analyze. One type of model abstraction is to use only
the structure of the model and collect it in a structural model. In the next chapter
structural models and there application to diagnosis is presented.



3
Structural Models and Their Properties

In the previous chapter we explained that the design of diagnostic systems can be
divided into two steps. In the first step a set of models is suggested to be tested
such that a diagnostic system based on these tests becomes sound and complete.
In the second step a diagnostic test is designed for each suggested model to obtain
a diagnostic system. As said in the previous chapter it is possible to suggest a
set of models to design tests with less detailed knowledge than using a complete
diagnostic model. One type of less detailed model that will be used in this thesis
is a so called structural model. In Section 3.1, structural diagnostic model and the
structure of a model is defined and explained. Furthermore two common represen-
tations of structural models are presented. In Section 3.2 a couple of scenarios are
described when structural models can be helpful to use together with structural
analysis in order to design a diagnostic system. In Section 3.3 we briefly discuss
how structural models can be obtained. To solve the tasks stated in Section 3.2
fundamental structural properties are needed. These properties are presented in
Section 3.4. Finally some basic results concerning these structural properties are
given in Section 3.5.

3.1 Structural Models

The basic idea is that a structural model (Cassar & Staroswiecki 1997) contains
information of which variables that are contained in each equation. For example, if
e is an equation, f is a function, z and x are variables such that e : f(x, z) = 0, then
the structure of this equation contains the knowledge that x and z are included in
e, but nothing about the analytical expression of f.

25
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e

x z

Figure 3.1 Equation e : f(x, z) = 0 represented as a bipartite graph.

A structural model will contain two different kinds of variables: known variables
Z, e.g. sensor signals and actuators, and unknown variables Xu, for example internal
states of the system and fault parameters. A structural model can be represented
by an incidence matrix (Harary 1969, Carpanzano & Maffezzoni 1998). The rows
correspond to equations and the columns to variables. A cross in position (i, j) tells
that variable j is included in equation i. The equation e can then be written as

equation unknown known
x z

e X X

Before we continue with the next type of representation for structural models a
useful operator is defined. If X is a set of variables and E is a set of equations,
then the set of variables in X that is included in some equation in E is denoted
varXE. With abuse of notation, we will also allow equations as argument, e.g.
varXe = varX{e}. A common representation of the structure of a model is to use a
bipartite graph, which is a graph with edges Γ where the vertices of the graph can
be partitioned into two sets E and X such that no two vertices in the same set have
an edge in common. If E is a set of equations, X a set of variables, and Γ is a set
of edges such that there is an edge in Γ between x ∈ X and e ∈ E if and only if
x ∈ varXe. Then the bipartite graph defined by E and X is denoted G(E,X). The
equation e will be represented with a bipartite graph as shown in Figure 3.1. The
equations are denoted with a line and variables are denoted with a circle.

3.1.1 The Structure of Dynamic Models

In this thesis mainly two different types of structural models are used to describe
dynamic models. The difference between the two types of dynamic models is
that the connections between variables and its derivatives are treated differently.
The two types of structural models are in this thesis called differentiated-separated
structural-model (DSSM) and differentiated-lumped structural-model (DLSM). An
example will be used to show the differences. Consider the linear-dynamic model

e1 : ẋ1 = x1 + u

e2 : ẋ1 = 2 ẋ2
e3 : 3 x1 − x2 + y = 0

ė3 : 3 ẋ1 − ẋ2 + ẏ = 0

(3.1)
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where the first time-derivative of a variable is denoted with a dot and the an
equation with a dot denotes an equation obtained by differentiating once. The
DSSM is the structural model containing the most information. All equations,
differentiated equations, variables, and differentiated variables are included in the
DSSM. The DSSM of (3.1) is

equation unknown known
x1ẋ1x2ẋ2 u y ẏ

e1 X X X

e2 X X

e3 X X X

ė3 X X X

The differentiated-lumped structural-model (DLSM) of (3.1) is

equation unknown known
x1 x2 u y

e1 X X

e2 X X

e3 X X X

Note that only non-differentiated equations e1, e2, and e3 are included in the
DLSM. In DLSM they are considered to be differential equations. The information
of the differentiated equation ė3 is therefore included in e3. In DLSM each variable
does not represent a value but a functions of time instead. Therefore only non-
differentiated functions of time is included in the model, e.g. x1 and x2, but ẋ1 is
not included in the DLSM.

3.1.2 The Structure of Diagnostic Models and Diagnostic
Systems

A structural diagnostic model is obtained if the analytical expressions of a diagnostic
model are replaced by theirs structure. For example the structural diagnostic model
of the diagnostic model in Table 2.3 is shown in Table 3.1. A diagnostic system
for the diagnostic model in Table 2.3 is shown in Table 2.4. The structure of the
diagnostic system in Table 2.4 is shown in Table 3.2. As can be seen in Table 3.2
there are three typical structural properties of a diagnostic test, i.e. the set defining
the null hypothesis Φi, the set of equations Mi, and the set of known variables Zi
involved in the test.

Looking at Table 3.1 and Table 3.2 it is clear that for a given set of equations
Mi both the other structural properties Φi and Zi of a diagnostic system are easily
computed by using only the structural diagnostic model. Before showing how the
structural properties are computed, useful notation is introduced.

To simplify the notation we extend the use of operator ass to a set of equations
M according to

ass M :=
⋂
e∈M

ass e (3.2)
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Table 3.1 The structural diagnostic model of the diagnostic model shown
in Table 2.3.

component assumption equation unknown known
x1 x2 z1 z2

Sensor 1 φ(s1 = NF) e1 X X

Comp B e2 X X

Sensor 2 φ(s2 = NF) e3 X X

Table 3.2 The structural interpretation of the complete and sound diag-
nostic system in Table 2.4 with respect to the diagnostic model
in Table 2.3.

test Mi Φi Zi
δ1 {e1, e2, e3} φ(s1 = NF ∧ s2 = NF) {z1, z2}

δ2 {e1, e2} φ(s1 = NF) {z1}

Then it follows for a given Mi that Φi = ass Mi and Zi = varZMi. Next an
example is presented to show how the structure of a diagnostic system is obtained
using only a structural diagnostic model.

Example 3.1 Continuation of Example 2.6. The results of extracting the struc-
tural information from the model in Table 2.3 and the system in Table 2.4 are
shown in Table 3.1 and Table 3.2 respectively. Consider the test δ1 in Table 3.2.
Assume that M1 = {e1, e2, e3} is given. Then by using the structural model in
Table 3.1 it follows that

Φ1 = ass M1 = ass e1 ∩ ass e2 ∪ ass e3 = φ(s1 = NF ∧ s2 = NF) (3.3)

The known variables are calculated as

Z1 = varZM1 = {z1, z2} (3.4)

The conclusion of the example is that given a set Mi it is straightforward to
use the structural model to calculate Φi and Zi. To design a diagnostic system the
models M and their corresponding test quantities and a rejection regions have to be
computed. A large part of this thesis is devoted to how to compute a set of models
using mostly structural information. The design of a diagnostic test will not be a
key issue. To read more about how diagnostic test are designed using the analytical
properties of M, see for example (Frisk & Nyberg 2001, Nikoukhah 1998, Basseville
& Nikiforov 1993). In the next section we the objectives of the structural analysis
are presented. The objectives will imply the requirements of the set of models M.
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3.2 Objectives of Structural Analysis

3.2.1 Pre-study without Analytical Models Available

When a diagnostic system is to be constructed for a system and its model, it is
common that the diagnostic system is designed when the design of the system to
be diagnosed is almost finished. A late start of the design of a diagnostic system
is often due to the fact that diagnostic systems require detailed system knowledge.
However, starting the design of the diagnostic system late can be costly. The chosen
design of the system to be diagnosed can turn out to be a bad choice for diagnostic
purpose. This means that the system together with the diagnostic system will
either be less reliable than necessary or some modifications of the system to be
diagnosed has to be done in order to improve the isolability. Adding extra sensors
is one example of modification.

To find problems of different design solutions early in the design process, it
is recommended that the design of the diagnostic system is going on during the
design of the system to be diagnosed. As said earlier, the design of diagnostic
systems requires a lot of detailed system knowledge, usually described in a model.
Therefore it is not possible to do the complete design, before a model of the system
is obtained. However, the structure of a model is much more easily obtained. To
get the structure no analytical properties of the constraints have to be known, for
example parameter values are not needed. Since the structure of a model can be
obtained earlier in the design stage of the system to be diagnosed than an analytical
model, the structure can be used to analyze the isolability earlier and in this way
consider isolability aspects of design choices earlier.

During the design of the system and the diagnostic system, structural analysis
can be used to find out the isolability limitations of the suggested design. Moreover,
if a desired isolability of a diagnostic model cannot be obtained without for example
adding sensors or making fault models, structural analysis can calculate which
sensors or fault models that can be added to obtain the desired isolability. (Travé-
Massuyès et al. 2001)

3.2.2 Deriving a Diagnostic System

Later in the design process, when the analytical relationships of the constraints are
known, structural analysis can be used to find a set of models to be tested in order
to design a good or even a sound and complete diagnostic system.

3.3 Deriving Structural Models

Deriving structural models can be done in different ways depending on the infor-
mation available about the system to be diagnosed. If a structural model is needed
to do an early isolability analysis, little information is available about the system to
be diagnosed. Then a structural model can be obtained by using physical insights
about which variables that have physical constraints to fulfill. If the system to be
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diagnosed consists of several components of the same or similar type the structural
model for one such component can be used for all these components. An example
will show how a structural model can be designed by using physical insights and
without knowing analytical expressions.

Example 3.2 Consider the system in Example 2.1 that is shown in Figure 2.1.
We know that the component behavioral modes that need to be considered are
those shown in Table 2.1. First the mass-flow of water is transferred between the
components. A correct working pump will control the flow of water into the tank.
Using the same variable names as in Table 2.2 the p = NF constraint will look
like c1(u, fin). If the pump is stuck p = PS, then no water will be pumped into
the tank, i.e. structurally there is a constraint c2(fin). Continuing in this way a
structural diagnostic model can be obtained.

3.3.1 Given an Analytical Diagnostic Model

If an analytical model of the system to be diagnosed is known as for example in
Table 2.2, the structural model is easily obtained by finding all including variables
in each constraint. Note that parameter values need not to be known to obtain a
structural model.

3.4 Structural Properties

To prestudy the isolability and to find which models to check for consistency are
the two tasks that will be solved using structural analysis, as said in the previous
section. Both these tasks are solved by finding which models that are rejectable.
To design a diagnostic system it is also important to know which models that are
rejectable models, because it is only rejectable models that can be used to find
inconsistencies. For the isolability analysis, assume that all rejectable models of a
diagnostic model is known and that exactly the same rejectable models are implied
by two different system behavioral modes, then it is clear that these two modes
can not be isolated from each other. This is a simple principle that can be used to
find the isolability once the rejectable models are computed. Before some structural
properties are presented it is useful to review some graph theory. The graph theory
is a tool to explain and understand the structural properties that will be presented.

3.4.1 Some Basic Graph Theoretic Concepts

Structural models can, as mentioned earlier, be represented also as bipartite graphs
(Carpanzano & Maffezzoni 1998, Cassar & Staroswiecki 1997). Given a graph with
edges Γ a matching is a set of edges Γ0 ⊆ Γ such that no two edges have a vertex in
common. A matching Γ0 is a maximal matching if |Γ1| > |Γ0| implies that Γ1 is not
a matching. Given a bipartite graph G = G(E,X), a complete matching of E into
X is a matching such that all vertices in E is an endpoint of an edge. A matching
in G can equally well be a complete matching of X into E. A matching in G that
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firstly is a complete matching of E into X and secondly is a complete matching of
X into E is a perfect matching in G (Grimaldi 1994).

Consider a matching Γ0 in a graph with edges Γ . An alternating path is defined
as a path whose edges are alternately in Γ0 and in Γ\Γ0. An alternating path in
a matching Γ0 is an augmented path in Γ0 if it begins and ends at two distinct
unmatched vertices. For more details concerning bipartite graphs see (Asratian,
Denley & Häggkvist 1998).

3.4.2 Structurally Overdetermined

There is a special and important type of rejectable models that are particular
easy to characterize by using structural properties. They are models, where all
of their unknown variables can be calculated or eliminated and then substituted
into at least one remaining equation. This is sometimes called an overdetermined
model. If no cancellations of variables occur when eliminating unknown variables,
overdetermined models have a structural property, that will be defined next.

Definition 3.1 (Structurally Overdetermined). An equation set E is said to
be structurally overdetermined with respect to the set of variables X iff

∀X ′ ⊆ X,X ′ 6= ∅ : |X ′| < |equE(X
′)| (3.5)

If an equation set H is said to be overdetermined, it means that the set of
variables implicitly are defined as the unknown variables, i.e.

∀X ′ ⊆ varXuH,X ′ 6= ∅ : |X ′| < |equH(X ′)| (3.6)

In (Dulmage & Mendelsohn 1958) it is proven that there is a unique structurally
overdetermined part of a model. A powerful way to obtain the structurally overde-
termined part is to do a canonical decomposition (Dulmage & Mendelsohn 1958).
The decomposition divides a model M in three parts: one structurally overde-
termined denoted M+, one structurally just-determined M0, and one structurally
underdetermined part M−, see Figure 3.2. This is accomplished by first finding
a maximal matching in the bipartite graph G(M, varXuM). Denote the assigned
equations and variables in the maximal matching with Mm and Xm respectively.
Now, the set of all equation vertices such that there is an alternating path from
M\Mm is the structurally overdetermined part of the model M+. The structurally
underdetermined part of the model M− is the set of equation vertices such that
there is an alternating path from varXuM\Xm. The remaining part of the model
is the structurally just-determined part M0. This decomposition can be obtained
by using the command dmperm in matlab.

Example 3.3 Consider the diagnostic model in Table 2.3, the corresponding
structural model in Table 3.1 and the diagnostic system in Table 2.4. The canon-
ical decomposition of M1 = {e1, e2, e3} is M+

1 = M1. Hence M1 is structurally
overdetermined and it is likely that a test can be obtained. Analytically this test
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M+

M0

M−

M maximal matching

0

Figure 3.2 Schematic illustration of a canonical decomposition of a model
M. The rectangle represents an incident matrix of a model M.
All entries in the white area are 0. In the gray area the entries
are 0 or X and in the diagonal, which is a maximal matching,
all entries are X.

can be chosen as in Table 2.4. For M2 = {e1, e2} in Table 3.2, the canonical de-
composition is M0

2 = M2, i.e. the entire model is structurally just-determined.
Analytically it is possible to calculate the unknowns but it is not possible to elim-
inate the unknowns. This is true since x1 := z1 and x2 := ±√

z1. However, even if
it is not possible to eliminate all unknown variables, a test can be designed, as seen
in Table 2.4. It is not necessary to eliminate all unknown variables to design a test.
It is sufficient that the range of the orthogonal projection of the valid model onto
the space of observation does not equal the space of observation. To find all such
sets, analytical properties are needed. For example {e1, e2} has the same structure
as {e2, e3}, but only {e1, e2} can be used to derive a test.

3.4.3 Minimal Overdetermined Models

In the two-step approach for designing diagnostic systems, a test for each model
found in the first step is to be designed in second step. In general it is easier to
design tests for models with a small number of equations. Testing small models
also has the advantage that each test becomes sensitive to few faults. This implies
that small overdetermined models are especially interesting. One type of small
overdetermined models are the minimal structurally overdetermined models which
will be defined in the next two definitions, see (Pantelides 1988).

Definition 3.2 (Structurally Singular). A finite set of equations M is struc-
turally singular with respect to the set of variables X if |M| > |varXM|.
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Definition 3.3 (Minimal Structurally Singular). A structurally singular set
is a minimal structurally singular (MSS) set if none of its proper subsets are
structurally singular.

Given a model M the set of MSS sets in M is denoted mssM. Next some ex-
amples of the connections of other structural properties suggested by other authors
are given. MSS is equivalent to structurally just-overdetermined or minimal struc-
turally overdetermined models. A structurally just-overdetermined set is struc-
turally overdetermined. A structurally overdetermined set is structurally singular.
The next section is mainly for readers who want to read proofs, otherwise it is
possible to directly start to read Chapter 4.

3.5 Structural Results

Before we present two characterizations of MSS sets a classical graph theoretical
result is presented. The following theorem is often referred to as Hall’s theorem
(Harary 1969).

Theorem 3.1 (System of Distinct Representatives). Let V = {V1, V2, · · · , Vm}

be a set of objects and S = {S1, S2, · · · , Sn} a set of subsets of V. Then a complete
matching of S into V exists iff ∀S ′ ⊆ S : |S ′| ≤ |

⋃
Si∈S ′ Si|.

Note that Theorem 3.1 can be used in two ways. The next two corollaries follow
immediately from Theorem 3.1.

Corollary 3.2. There is a complete matching of E into X iff ∀E ′ ⊆ E : |E ′| ≤
|varXE ′|.

Corollary 3.3. There is a complete matching of X into E iff ∀X ′ ⊆ X : |X ′| ≤
|equE(X ′)|.

3.5.1 Characterizations of MSS Sets

In this section two equivalent characterizations of MSS sets will be presented and
proven in the next two lemmas.

Lemma 3.4. For all e ∈ E there exists a perfect matching in (E\{e}, varXuE) if
and only if E is an MSS set.

Proof. ⇒) From the hypothesis that there exist a perfect matching in (E\{e}, varXuE)
for any e ∈ E, it follows that E is structurally singular, because |varXuE| = |E\{e}| <

|E|.
The set E is also minimal if no subset of E is structurally singular, i.e. ∀Ê ⊂

E : |varXu Ê| ≥ |Ê|. For each proper subset Ê of E, it is always possible to choose
an equation e, such that Ê ⊆ E\{e}. Since there exists a perfect matching in
G(E\{e}, varXuE), according to the hypothesis, it follows that there exists a complete
matching of Ê into varXuE.
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Let E = Ê and X = varXuE in Corollary 3.2, then

∀E ′ ⊆ Ê : |E ′| ≤ |varvarXuE
(E ′)| = |varXu(E ′)|. (3.7)

Letting E ′ = Ê, the inequality (3.7) becomes |Ê| ≤ |varXu(Ê)|. The conclusion is
that Ê is not structurally singular and since Ê is an arbitrary chosen proper subset
of E, it follows that E is an MSS set.⇐) Take an arbitrary e ∈ E and let E ′ = E\{e}. It is sufficient to prove that
there exist a perfect matching in G(E ′, varXE). From the definition of MSS sets,
it follows that ∀Ē ⊂ E : |Ē| ≤ |varX(Ē)|. Especially this is true for E ′ ⊂ E , i.e.
∀Ē ⊆ E ′ : |Ē| ≤ |varX(Ē)|. According to Corollary 3.2, there is a complete matching
of E ′ into varXE ′.

Since E is an MSS set and varX(E ′) ⊆ varXE it follows that

|E ′| ≤ |varX(E ′)| ≤ |varXE| < |E| = |E ′| + 1 (3.8)

This implies that |E ′| = |varXE ′|, hence the complete matching is a perfect matching
in G(E ′, varX(E ′)). The inequality (3.8) also implies that |varX(E ′)| = |varXE|,
therefore varX(E ′) = varXE. The perfect matching in G(E ′, varXE ′) is also a perfect
matching in G(E ′, varXE).

Lemma 3.5. The set of equations E is an MSS set if and only if E is structurally
overdetermined and |E| = |varXuE| + 1.

Proof. Let X be the unknown variables X = varXuE. First we starts to prove that
E is MSS implies that E is structurally overdetermined, i.e.

∀X̄ ⊆ X, X̄ 6= ∅ : |equE(X̄)| > |X̄| (3.9)

Consider the negation of the conclusion. That is, E is an MSS set and

∃X̄ ⊆ X, X̄ 6= ∅ : |equE(X̄)| ≤ |X̄|. (3.10)

Let X ′ be an X̄ that fulfill (3.10). From Theorem 3.4 and from the fact that E is
an MSS set, it follows that ∀e ∈ E : G(E\{e}, X), contains a perfect matching. From
the definition of perfect matching it particularly follows that there is a complete
matching from X into E\{e}. The use of Corollary 3.3 makes it possible to write

∀e ∈ E∀X̄ ⊆ X : |X̄| ≤ |equE\{e}(X̄)|. (3.11)

Since X = varXE it means that ∀x ∈ X∃e ∈ E : x ∈ varXue. Especially it holds that
∀x ∈ X ′∃e ∈ E : x ∈ varXue since ∅ 6= X ′ ⊆ X. Hence equE(X ′) 6= ∅. Now apply
(3.11) to X ′ and an e ′ ∈ equE(X ′), that is

|X ′| ≤ |equE\{e ′}(X
′)|. (3.12)

From e ′ ∈ equE(X ′) follows that e ′ ∈ eque ′(X ′), hence |equ{e ′}(X
′)| = 1. Adding

|equ{e ′}(X
′)| = 1 on the right-hand side of (3.12), it becomes

|X ′| < |equE\{e ′}(X
′)| +

+|equ{e ′}(X
′)| = |equE(X

′)|. (3.13)
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This is a contradiction and it follows that E is structurally overdetermined. Now
it remains to prove that |E| = |X| + 1. Since E is an MSS set it follows from
Theorem 3.4 that there exists a perfect matching of E\{e} and X. Hence it follows
that

|E| − 1 = |E\{e}| = |X| (3.14)

which complete the proof in the right direction.
Now, assume that |E| = |X|+1 and E is structurally overdetermined. The state-

ment E is structurally overdetermined can be written as (3.9). For an arbitrarily
chosen e ∈ E it follows from (3.9) that

∀X̄ ⊆ X, X̄ 6= ∅ : |equE\{e}(X̄)| ≥ |X̄| (3.15)

Using 3.15 and Corollary 3.3 it follows that there is a complete matching of X into
E\{e}. Since |E\{e}| = |X| according to |E| = |X| + 1 it follows that the complete
matching of X into E\{e} is a perfect matching. Since e ∈ E was arbitrarily chosen
it follows from Theorem 3.4 that E is an MSS set.
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4
Isolability Analysis of Diagnostic Systems

In this chapter the isolation capability of a diagnostic system is analyzed. A key
property of diagnostic systems is the analytical isolability that is formally defined.
Properties of isolability are given and representations are suggested.

In Section 4.1 the notion of structural isolability is defined. Structural isolability
is needed to analyze the analytical isolability using less computational structural
methods that only take structural models as input. It is proven that the structural
isolability is a necessary condition for analytical isolability. Thereby it is possi-
ble to compute the structural isolability to get an analytical isolability limitation.
In Section 4.2 an algorithm is presented that computes the structural isolability.
Finally, in Section 4.7 desired isolability is defined that is an useful and intuitive
way to express design specifications of diagnostic systems. A structural method
is presented that takes the desired isolability together with a proposed diagnostic
system as inputs and computes the missing isolability properties.

4.1 Structural and Analytical Isolation Capability

It is assumed that the structure of a diagnostic system ∆ is given. The analysis uses
only the structural information contained in ∆ to decide which behavioral modes
that pairwise can be isolated. To be able to state the problem formally two binary
relations are defined.

Definition 4.1 (I∆s , Structural Isolability of a Diagnostic System). Given
a diagnostic system ∆ there is a binary relation I∆s on B × B defined as

I∆s = {(b1, b2)|∃δi :
(
b1 /∈ Φi ∧ b2 ∈ Φi

)
} (4.1)

37
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The relation I∆s is called the structural isolability of a diagnostic system ∆.

If (b1, b2) ∈ I∆s we say that b1 is structurally isolable from b2 using ∆. Note
that the definition of structural isolability of ∆ assumes that the diagnostic system
∆ is, or can be rewritten as, the particular type defined in Definition 2.3. However
most on-line diagnostic systems are of this type. The idea behind Definition 4.1 is
that if b1 is structurally isolable from b2 then there exists a test that can reject b2
but not b1. Note that only the structural properties of ∆ are needed to calculate
I∆s .

Definition 4.2 (I∆, Analytical Isolability of a Diagnostic System). Given
a diagnostic system ∆ there is a binary relation I∆ on B × B defined as

I∆ = {(b1, b2)|∃z :
(
b1 ∈ C(z) ∧ b2 /∈ C(z)

)
} (4.2)

The relation I∆ is called the analytical isolability of the diagnostic system
∆.

If (b1, b2) ∈ I∆ we say that b1 is analytically isolable from b2 with the diagnos-
tic system ∆. Definition 4.2 defines which behavioral modes that can be analytically
isolable from each other. This property requires also the analytical properties of ∆.
The isolation capability of a diagnostic system is limited to the analytical isolability
and therefore the interesting relation is I∆. Sometimes it is difficult to calculate I∆
and sometimes only the structural properties of ∆ are known. In both these cases it
is still possible to calculate I∆s . The structural isolability is a necessary condition
for the analytical isolability as we show later. Since I∆s in both the mentioned
situations can be calculated, properties of the analytical isolability are obtained.
An example will show how the two definitions are applied to a diagnostic system.

Example 4.1 Consider the diagnostic system in Example 2.6, i.e.

∆ H0i : Φi Mi Ti Ri
δ1 {〈NF,NF〉} {e1, e2, e3} z1 − z22 R\{0}

δ2 {〈NF,UF〉} {e1, e2} z1 R−

(4.3)

where
B = {〈NF,NF〉, 〈NF,UF〉, 〈UF,NF〉, 〈UF,UF〉} (4.4)

Let this diagnostic system be denoted ∆. Now, we can determine for example if

(〈UF,UF〉, 〈NF,NF〉) ∈ I∆s (4.5)

using expression (4.1). Since
〈UF,UF〉 /∈ Φ1 (4.6)

and
〈NF,NF〉 ∈ Φ1 (4.7)

it follows that δ1 together with (4.1) imply (4.5). Hence (4.5) is true, i.e. given
the diagnostic system ∆ 〈UF,UF〉 is structurally isolable from 〈NF,NF〉. In this
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example the diagnostic system ∆ also implies that 〈UF,UF〉 is analytically isolable
from 〈NF,NF〉 which will be explained next. Let (z1, z2) = (5, 0) then

T1 = 5 ∈ R1 = R\{0} (4.8)

and
T2 = 5 /∈ R2 = R− (4.9)

The diagnostic statement is then

C(5, 0) = B ∩
⋂

i:H0
i rejected

ΦCi = ΦC1 = {〈UF,NF〉, 〈NF,UF〉, 〈UF,UF〉} (4.10)

Hence 〈UF,UF〉 is a candidate because 〈UF,UF〉 ∈ C(5, 0) and 〈NF,NF〉 is not a
candidate because 〈NF,NF〉 /∈ C(5, 0). Definition 4.2 implies that

(〈UF,UF〉, 〈NF,NF〉) ∈ I∆ (4.11)

In the previous example it turned out that the pair of behavioral modes was
both structurally isolable and analytically isolable. The next theorem shows that
the structural isolability is a necessary condition for the analytical isolability.

Theorem 4.1. Given a diagnostic system ∆ it holds that

I∆ ⊆ I∆s (4.12)

Proof. Take an arbitrary (b1, b2) ∈ I∆. From Definition 4.2 it follows that there
exists a z = z0 such that b1 is a candidate and b2 is not a candidate. From the
definition of candidate it follows that

C(z0) (4.13)

and
b2 /∈ C(z0) (4.14)

The definition of the diagnostic statement gives

C(z0) = B ∩
⋂

i:H0
i rejected

(B\Φi) (4.15)

From (4.14) and (4.15) it follows that

b2 /∈
⋂

i:H0
i rejected

(B\Φi) (4.16)

This means that there is a test δ1 such that H01 is rejected and

b2 /∈ (B\Φ1) (4.17)
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or equivalently
b2 ∈ Φ1 (4.18)

Since
b1 ∈

⋂
i:H0

i rejected

(B\Φi) (4.19)

it means that
b1 ∈ B\Φi (4.20)

or equivalently
b1 /∈ Φi (4.21)

for all δi such that H0i is rejected. Hence it holds also for δ1 and the theorem
follows from (4.18) and (4.21).

4.2 Algorithm Calculating Structural Isolation Ca-
pability

We can analyze the structure of a diagnostic system ∆ to obtain I∆s . According to
Theorem 4.1, I∆s is a superset of I∆. Next an algorithm is presented that given a
diagnostic system ∆ calculates I∆s .

Algorithm 4.1.
Input: B and Φi of ∆.

a) Set I∆s := ∅.

b) For each test δi set

I∆s := I∆s ∪ {(b1, b2)|b1 /∈ Φi ∧ b2 ∈ Φi} (4.22)

Output: I∆s
The next theorem proves that the output of Algorithm 4.1 is the I∆s defined in

Definition 4.1.

Theorem 4.2. Algorithm 4.1 calculates I∆s .

To discriminate between I∆s in Definition 4.1 and I∆s found in the output of
Algorithm 4.1, let the output be denoted I∆s,alg in the proof of Theorem 4.2.

Proof. Theorem 4.2 holds iff
I∆s = I∆s,alg (4.23)

where I∆s is defined in (4.1) and I∆s,alg is defined as the output of Algorithm 4.1.
The straightforward calculations proving the theorem are

I∆s = {(b1, b2)|∃δi :
(
b1 /∈ Φi ∧ b2 ∈ Φi

)
} =

= {(b1, b2)|
∨
δi

(
b1 /∈ Φi ∧ b2 ∈ Φi

)
} =

=
⋃
δi

{(b1, b2)|b1 /∈ Φi ∧ b2 ∈ Φi} =

= I∆s,alg
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Next an example shows how the algorithm step by step works.

Example 4.2 Consider the diagnostic system (4.3). Apply Algorithm 4.1 to the
structure of the diagnostic system (4.3). In step (a) I∆s := ∅. From the diagnostic
system it follows that

Φ1 = {〈NF,NF〉}
Φ2 = {〈NF,UF〉} (4.24)

When step (b) is applied to test 1 the conclusion is

I∆s = {(b1, b2)|b1 ∈ B\{〈NF,NF〉} ∧ b2 = 〈NF,NF〉} =
= {(〈UF,NF〉, 〈NF,NF〉), (〈NF,UF〉, 〈NF,NF〉), (〈UF,UF〉, 〈NF,NF〉)} (4.25)

Test 2 implies that

I∆s := I∆s ∪ {(b1, b2)|b1 ∈ B\{〈NF,UF〉} ∧ b2 = 〈NF,UF〉} =
= {(〈UF,NF〉, 〈NF,NF〉), (〈NF,UF〉, 〈NF,NF〉), (〈UF,UF〉, 〈NF,NF〉),

(〈NF,NF〉, 〈NF,UF〉), (〈UF,NF〉, 〈NF,UF〉), (〈UF,UF〉, 〈NF,UF〉)}
(4.26)

Since there are only two tests, the output of Algorithm 4.1 is I∆s defined in (4.26).

4.3 Representing Isolability

As seen in the previous example the set representation of I∆s is difficult to interpret
even for small size systems like (4.3). Another common representation of a relation
R is to use a relation (incidence) matrix R = (rij). If R is a relation on a finite set
B then

rij =

{
1 if (bi, bj) ∈ R
0 if (bi, bj) /∈ R (4.27)

Let the relation defined as complement set to I on B be denoted I .

Definition 4.3 (Structural (Analytical) Isolability Matrix). Given I∆s (I∆)
the isolability matrix of I∆s (I∆) is defined as the relation matrix to I∆s (I∆).

The structural (analytical) isolability matrix is denoted I∆s (I∆). To make the
isolability matrix even easier to interpret, the ones are replaced with “X” and the
zeros are left out. The interpretation of an “X” in position (i, j) is that for all differ-
ent z, the diagnostic statement implies that bj is a candidate if bi is a candidate.
Hence bi is not analytically isolable from bj. The structural isolability matrix I∆s
of I∆s in (4.26) is

present necessary interpreted mode
mode 〈NF,NF〉 〈NF,UF〉 〈UF,NF〉 〈UF,UF〉
〈NF,NF〉 X X X

〈NF,UF〉 X X X

〈UF,NF〉 X X

〈UF,UF〉 X X

(4.28)
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{〈NF,NF〉} {〈NF,UF〉}

{〈UF,NF〉, 〈UF,UF〉}

Figure 4.1 The Hasse diagram of P∆s of (4.28).

Note that the isolability matrix shows the complement set of the isolability relation.
The isolability relation for (4.28) is the set corresponding to the blank entries in
the isolability matrix.

It is interesting to note that I∆ and I∆s both are reflexive and transitive. It is
possible to define a relation that also is antisymmetric. Relations with these three
properties are partial orders.

Definition 4.4 (P∆s (P∆)). Given a binary relation I∆s (I∆) on B×B. Let B ′ be
a partition of B defined as the set of the equivalent classes of I∆s (I∆) on B. The
equivalent class that contains b is denoted [b]. The partial order P∆s (P∆) on B ′

is defined as
([b1], [b2]) ∈ P∆s ↔ (b1, b2) ∈ I∆s (4.29)

The relation matrix of P∆s of (4.28) is

present necessary interpreted modes
modes {〈NF,NF〉} {〈NF,UF〉} {〈UF,NF〉, 〈UF,UF〉}
{〈NF,NF〉} X X

{〈NF,UF〉} X X

{〈UF,NF〉, 〈UF,UF〉} X

(4.30)

The partial order P∆ has a nice interpretation that follows from Definition 4.2
and Definition 4.4 that is if b1 is a candidate then all b2 that fulfill

([b1], [b2]) ∈ P∆ (4.31)

are candidates.
A partial order P on a set B can be represented by a Hasse diagram. In such a

diagram an element is represented with a node. If ([b1], [b2]) ∈ P where b1, b2 ∈ B,
then b1 is at a lower level then b2, and there exists a path from b1 upwards to
b2. The Hasse diagram for P∆s in (4.30) is shown in Figure 4.1. To explicitly state
that a relation R is used to obtain the equivalent class [b], the notation [b]R will
be used.
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Corollary 4.3. Given a diagnostic system ∆ it holds that

([b1]I∆
s

, [b2]I∆
s

) ∈ P∆s → ([b1]I∆ , [b2]I∆) ∈ P∆ (4.32)

Proof. Take an arbitrary
([b1]I∆

s
, [b2]I∆

s
) ∈ P∆s (4.33)

From (4.29) and (4.33) it follows that

(b1, b2) ∈ I∆s (4.34)

Using Theorem 4.1 and (4.34) it follows that

(b1, b2) ∈ I∆ (4.35)

Finally (4.35) and (4.29) gives that

([b1]I∆ , [b2]I∆) ∈ P∆ (4.36)

The interpretation of Corollary 4.3 is that if b1 is a candidate then all b2 that
fulfill

([b1], [b2]) ∈ P∆s (4.37)

are candidates. In (4.31) we used the analytical properties of ∆ to draw conclusions
about the isolation capability but in (4.37) only the structural properties are used.
From Figure 4.1 and Corollary 4.3 it is clear that e.g. if 〈NF,NF〉 is a candidate
then 〈UF,NF〉 and 〈UF,UF〉 are candidates too.

4.4 Comparison between Structural and Analyti-
cal Isolability

From previous sections we know that structural isolability is a necessary condition
for analytical isolability. In this section we use Example 4.2 to show the difference
between the structural isolability and the analytical isolability. For the diagnostic
system in Example 4.2, it is possible to calculate I∆. Before the calculations are
carried out a useful definition is presented.

Definition 4.5 (Acceptance Set, O∆δi
). Given a diagnostic system ∆ and one

of its tests δi the acceptance set for δi is

O∆δi
:= {z|Ti(z) ∈ RCi } (4.38)

Theoretically O∆δi
contains equivalent information as Ti and Ri. However in

practice, Ti and Ri also express an efficient way to evaluate δi. In the next example
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I∆ is calculated for (4.3) and compared with I∆s which is calculated in Example 4.2.

Example 4.3 The continuation of Example 4.2. A good way to illustrate a
static diagnostic system with two known variables is to plot the acceptance set of
each test. For the diagnostic system (4.3) this plot is shown in Figure 4.2. The set
O∆δ1

is the parabola and O∆δ2
is right half-plane. The set O∆δ1

and O∆δ2
divides the

space of observations in 3 parts, i.e.

z ∈ O∆δ1
∧ z ∈ O∆δ2

(4.39)

or
z /∈ O∆δ1

∧ z ∈ O∆δ2
(4.40)

or
z /∈ O∆δ1

∧ z /∈ O∆δ2
(4.41)

Each of these three cases implies a different set of candidates. If (4.39) holds then no
null hypothesis is rejected and hence all behavioral modes are candidates. Since all
behavioral modes is candidates no isolability property in I∆ is implied. If (4.40)
holds then H01 is rejected and the result is that all behavioral modes except for
〈NF,NF〉 are candidates. According to the definition of I∆ it follows that

{(b1, b2)|b1 ∈ C(z) ∧ b2 /∈ C(z)} =
{(b1, b2)|b1 ∈ B\{〈NF,NF〉} ∧ b2 = 〈NF,NF〉} =

{(〈UF,NF〉, 〈NF,NF〉), (〈NF,UF〉, 〈NF,NF〉), (〈UF,UF〉, 〈NF,NF〉)} ∈ I∆
(4.42)

Finally if (4.41) holds then both null hypothesis are rejected and the candidates
are 〈UF,NF〉 and 〈UF,UF〉. This case implies that

{(b1, b2)|b1 ∈ {〈UF,NF〉, 〈UF,UF〉} ∧ b2 ∈ {〈NF,NF〉, 〈NF,UF〉}} ∈ I∆ (4.43)
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{〈NF,NF〉}

{〈NF,UF〉}

{〈UF,NF〉, 〈UF,UF〉}

Figure 4.3 Hasse diagram of (4.45).

It can be realized that I∆ is the union of the set in (4.42) and set in (4.43), i.e.

I∆ = {(〈UF,NF〉, 〈NF,NF〉), (〈NF,UF〉, 〈NF,NF〉), (〈UF,UF〉, 〈NF,NF〉),
(〈UF,NF〉, 〈NF,UF〉), (〈UF,UF〉, 〈NF,UF〉)} (4.44)

The analytical isolability matrix I∆ is

present necessary interpreted mode
mode 〈NF,NF〉 〈NF,UF〉 〈UF,NF〉 〈UF,UF〉
〈NF,NF〉 X X X X

〈NF,UF〉 X X X

〈UF,NF〉 X X

〈UF,UF〉 X X

(4.45)

Comparing I∆s and I∆ reveals that

I∆s = I∆ ∪ {(〈NF,NF〉, 〈NF,UF〉)} (4.46)

This difference is marked with a bold “X” in (4.45).

Note that in the previous example I∆ ⊆ I∆s as stated in Theorem 4.1. Note
also that I∆ 6= I∆s . The origin of the difference can be understood looking at (4.26)
and (4.43). The same analytical isolability as the structural isolability in (4.26) is
obtained, if in this case only the null hypothesis of test 2 is rejected. However,

O∆δ1
⊂ O∆δ2

(4.47)

implies that the null hypotheses of test 1 is rejected when the null hypothesis of
test 2 is rejected. Hence the tests have analytical constraints of which sets of tests
that can be invalidated. In the structural analysis these constraints are not known
and therefore not considered. This implies that the structural isolability is more
optimistic than the analytical isolability.

4.5 Improving Structural Isolability

In the previous example, it was shown that I∆s 6= I∆. Next a method is described
that makes the structural isolability less optimistic. The key issue is to change the
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structural representation of a diagnostic system without changing the analytical
properties. Then the structural representation which gives the “best” structural
isolability can be used. The structural property that is going to be changed is the
null hypothesis. To be able to compare two different behavioral mode assumptions
the notion weaker will be defined.

Definition 4.6 (Weaker). If Φ1 and Φ2 ⊂ Φ1 are two set of system behavioral-
modes that define the null hypotheses of two tests respectively, then Φ1 is weaker
than Φ2.

A way to compare the analytical properties of two diagnostic systems is defined
as follows.

Definition 4.7 (∆ = ∆̄). If ∆ and ∆̄ are two diagnostic systems, C(z) and C̄(z)
are their diagnostic statement respectively, then the diagnostic systems are equal,
i.e. ∆ = ∆̄, iff

∀z : C(z) = C̄(z) (4.48)

Next a theorem is presented that describes how the structural representation of
a diagnostic system can be changed, without affecting the analytical properties.

Theorem 4.4. Let a diagnostic system ∆ be given. Suppose that there are two test
δ1 and δ2 with the following property

O∆δ1
⊆ O∆δ2

(4.49)

If a new diagnostic system ∆̄ is defined identical to ∆ except that Φ2 is replaced
with

Φ̄2 = Φ1 ∪ Φ2 (4.50)

then ∆ = ∆̄.

If two diagnostic systems are identical then all their Ti, Ri, and Φi respectively
are exactly the same. Since ∆ and ∆̄ in Theorem 4.4 are identical it follows that

Φ̄i = Φi for i 6= 2 (4.51)

Proof. According to (4.48), it is equivalent to show that ∆ = ∆̄ and

∀z : C(z) = C̄(z) (4.52)

For all z ∈ O∆δ2
, it follows trivially that C(z) = C̄(z). Consider any z such that

z /∈ O∆δ2
(4.53)

Then from (4.49) it follows that
z /∈ O∆δ1

(4.54)

From the definition of diagnostic statement it follows for ∆ that

C(z) =
⋂

i:H0
i rejected

ΦCi = A ∩ ΦC1 ∩ ΦC2 (4.55)
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for some set A. For ∆̄ it follows that

C̄(z) =
⋂

i:H0
i rejected

Φ̄Ci = A ∩ ΦC1 ∩ Φ̄C2 (4.56)

Expression (4.50) can be rewritten as

Φ̄C2 = ΦC1 ∩ ΦC2 (4.57)

From (4.55), (4.56) and (4.57) it follows that C(z) = C̄(z). Since it holds that
C(z) = C̄(z) for all z it follows that ∆ = ∆̄.

Theorem 4.4 shows that the behavioral mode assumptions can be made weaker
with the method described in Theorem 4.4 without affecting the diagnostic state-
ment.

Example 4.4 Continuation of Example 4.3. In (4.47) it was concluded that

O∆δ1
⊂ O∆δ2

(4.58)

Then condition (4.49) is fulfilled and Theorem 4.4 can be applied. A new diagnostic
system ∆ ′ is constructed where

Φ ′
2 = Φ1 ∪ Φ2 = {〈NF,NF〉, 〈NF,UF〉} (4.59)

Then ∆ = ∆ ′, i.e. the two diagnostic systems always produces the same candidates.
This can also be interpreted as two different representations of equal diagnostic
systems.

Now we know that there are different descriptions of equal diagnostic systems.
This is interesting because these different descriptions change only structural prop-
erties. That is equal diagnostic systems with the same analytical isolability relation
can have different structural isolability relations. Hence there could be some de-
scriptions that produce better structural isolability. The next theorem describes
how to chose a representation of a diagnostic system such that better structural
isolability can be obtained.

Theorem 4.5. Let two diagnostic systems ∆ and ∆̄ be defined as in Theorem 4.4.
Then it holds that

I∆̄s ⊆ I∆s (4.60)

Proof. Let any (b1, b2) ∈ I∆̄s such that

b1 /∈ Φ̄2 ∧ b2 ∈ Φ̄2 (4.61)

It follows from (4.50) that

b1 /∈ Φ̄2 → (
(b1 /∈ Φ1) ∧ (b1 /∈ Φ2)

)
(4.62)

and
b2 ∈ Φ̄2 → (

(b2 ∈ Φ1) ∨ (b2 ∈ Φ2)
)

(4.63)

Hence according to (4.62) and (4.63), δ1 or δ2 secures that (b1, b2) ∈ I∆s .
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Example 4.5 Let Algorithm 4.1 be applied to ∆ ′. Everything will be identical
with Example 4.2 until Step (b) is applied to δ ′

2. The corresponding expression
to (4.26) is

I∆ ′
s := I∆ ′

s ∪ {(b1, b2)|b1 ∈ {〈UF,NF〉, 〈UF,UF〉} ∧ b2 ∈ {〈NF,NF〉, 〈NF,UF〉} =
= {(〈UF,NF〉, 〈NF,NF〉), (〈NF,UF〉, 〈NF,NF〉), (〈UF,UF〉, 〈NF,NF〉),

(〈UF,NF〉, 〈NF,UF〉), (〈UF,UF〉, 〈NF,UF〉)}
(4.64)

A comparison between the different isolability relations gives that

I∆ = I∆ ′
s ⊂ I∆s (4.65)

This example and Theorem 4.5 show that using weaker behavioral mode as-
sumptions the structural isolability can be less optimistic, i.e. be more similar to
the analytical isolability.

4.6 Optimality Condition for Structural Isolabil-
ity

The previous example showed that improvements of the structural isolability can
be made if the behavioral mode assumptions are made weaker. In Example 4.5,
it holds that I∆ ′

s = I∆. Is there a condition, that is easy to check and that
guarantees that the structural isolability is equal to the analytical isolability? The
next example will show that it is not sufficient that all assumptions are made as
strong as possible according to the method described in Theorem 4.4.

Example 4.6 Consider a diagnostic system ∆ such that B = {b1, b2, b3} and

∆ H0i : sys ∈ Φi O∆δi

δ1 {b1} {0, 1}

δ2 {b1} {0, 2}

δ3 {b2} {0, 3}

(4.66)

No assumption in this model can be made weaker. The analytical isolability matrix
I∆ is

present necessary interpreted mode
mode b1 b2 b3
b1 X X X

b2 X X

b3 X

(4.67)
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and the structural isolability matrix I∆s is

present necessary interpreted mode
mode b1 b2 b3
b1 X X

b2 X X

b3 X

(4.68)

Hence I∆ 6= I∆s .

Since there is no condition to the authors knowledge that is easy to check, a
more complicated condition that guarantees that the structural isolability relation
is equal to the analytical isolability relation is given in the next theorem.

Theorem 4.6. I∆s =I∆ if and only if

∀bi, bj ∈ B(∀z(bi ∈ C(z) → bj ∈ C(z)) → ∀δk(bj ∈ Φk → bi ∈ Φk)) (4.69)

Proof. Let b1, b2 ∈ B be arbitrarily chosen. It holds that (4.69) is equivalent to

∀z(b1 /∈ C(z) ∨ b2 ∈ C(z)) → ∀δk(b2 /∈ Φk ∨ b1 ∈ Φk) (4.70)

or
∃δk(b2 ∈ Φk ∧ b1 /∈ Φk) → ∃z(b1 ∈ C(z) ∧ b2 /∈ C(z)) (4.71)

This can be written as

(b1, b2) ∈ I∆s → (b1, b2) ∈ I∆ (4.72)

Since b1 and b2 were arbitrarily chosen it follows that

I∆s ⊆ I∆ (4.73)

Theorem 4.1 concludes the proof.

4.7 Practical Use of Structural Analysis of (Ana-
lytical) Isolability

It is not uncommon that diagnostic systems are introduced to alarm if the diagnosed
system is working in a behavioral mode that is dangerous for humans or can lead
to serious damage. When the diagnostic system alarms suitable precautions can be
taken to avoid accidents. If there are several different dangerous behavioral modes
with completely different precautions, it becomes important to isolate which of
these behavioral modes that are present so the right precaution can be taken. This
means that certain behavioral modes are important to isolate. This knowledge can
be described as the desired (analytical) isolability.

Definition 4.8 (Desired Isolability Id). Given all system behavioral modes B
there is a binary relation defined Idon B ×B that defines the desired isolability.
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There are two main reasons why we would like to analyze a diagnostic system
structurally to find I∆s . The first reason is that the analytical analysis is too
complex to carry out or unnecessary. The second reason is, as we will see in the
next chapter, that the diagnostic system is under construction. This means that the
diagnostic system for the moment consists of a set of potential test. The analytical
properties of the tests are not known. Then if the result of the structural analysis
looks promising the analytical properties of the tests are derived. The isolability
analysis presented in this chapter can be used to answer the following question:
Given the structural properties of a diagnostic system ∆ find if it is possible that
Id ⊆ I∆. If it is not possible that Id ⊆ I∆ which properties cannot be obtained
with ∆? According to Theorem 4.4 use the strongest possible assumptions to get
the best results of the structural analysis. Apply Algorithm 4.1 to ∆ and find I∆s .
According to Theorem 4.1 it holds that I∆ ⊆ I∆s . If it holds that

Id ⊆ I∆s (4.74)

then it is possible that
Id ⊆ I∆ (4.75)

Contrary if
Id * I∆s (4.76)

then the diagnostic system ∆ has not the desired (analytical) isolation capability.
Those isolability properties that are missing to make it possible to obtain the
desired isolability can be found using

Id\I∆s ⊆ Id\I∆ (4.77)

The superset in the previous expression is the isolability properties missing to
obtain the desired isolability. Hence I∆s \Id is some of the missing isolability prop-
erties. Finally an example will show how desired isolability is defined and how
conclusions are drawn using structural analysis applied to a diagnostic system.

Example 4.7 Continuation of Example 4.5. Assume that the desired isolability
is defined with the following matrix

present necessary interpreted mode
mode 〈NF,NF〉 〈NF,UF〉 〈UF,NF〉 〈UF,UF〉
〈NF,NF〉 X X X X

〈NF,UF〉 X X X

〈UF,NF〉 X X

〈UF,UF〉 X

(4.78)

Note that the desired isolability relation is defined as the complement of the cor-
responding set to the desired isolability relation matrix. From the analysis in
Example 4.5 it was found that

Id = I∆s ∪ {(〈UF,UF〉, 〈UF,NF〉)} (4.79)
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Hence ∆ cannot fulfill the desired isolability. The missing isolability properties are
found according to (4.77) as

Id\I∆s = {(〈UF,UF〉, 〈UF,NF〉)} (4.80)

A remedy to this shortage can be found using the definition of I∆s . Assume that
(〈UF,UF〉, 〈UF,NF〉) ∈ I∆s then it follows that there is a test such that 〈UF,NF〉 ∈ Φ

and 〈UF,UF〉 /∈ Φ. Since this diagnostic system is sound as shown in Example 2.6,
there is no more information to obtain from the diagnostic model. Hence a more
detailed model is needed to obtain the desired isolability.
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5
Analytical Characterization of Sound and

Complete Diagnostic Systems

Tests are designed by the use of different models, i.e. subsets of equations of the
diagnostic model. In this chapter we investigate for which models that it is impor-
tant to design tests, in order to get different desired properties of the diagnostic
system, e.g. completeness and soundness. A key result is a necessary and suffi-
cient condition for which sets of models that must be used to design a sound and
complete diagnostic system. Using this result it is possible to calculate a set of
minimum number of models that corresponds to a sound and complete diagnostic
system.

5.1 Complete Diagnostic System

Completeness of a diagnostic system is independent of which models that are
checked and how many tests that are used. For completeness the important prop-
erty of the diagnostic system is how each test δi is designed, i.e. how Φi and Oδi

are
chosen in relation to the diagnostic model. The next theorem states how the tests
must be designed to produce a complete diagnostic system. Before the theorem is
presented some useful notation is introduced. Let M be a diagnostic model and B
its system behavioral modes. The expression M ⊆∗ M denotes that M ⊆ Mb for
some b ∈ B. Moreover if M is a diagnostic model and M ⊆∗ M then

OM
M := {z|∃x : M(x, z)} (5.1)

Theorem 5.1 (Complete Diagnostic System). Given a diagnostic model M
and a diagnostic system ∆, ∆ is complete with respect to M if and only if all tests

53
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δi are designed such that ⋃
b∈Φi

OM
Mb

⊆ O∆δi
(5.2)

where Φi is the set of behavioral modes that corresponds to δi.

Before we prove Theorem 5.1 some useful formulas are summarized. The diag-
nostic statement is calculated as

C(z) = B ∩
⋂

i:H0
i rejected

ΦCi = B ∩
⋂

i:z/∈Oδi

ΦCi (5.3)

For a complete diagnostic system it holds that

∀z(D(z) ⊆ C(z)) (5.4)

Finally it holds that
b ∈ D(z) ↔ z ∈ OM

Mb
(5.5)

Proof. We start to show that the tests in a complete ∆ satisfy (5.2). Take an
arbitrary δi in ∆. We will show that

∀z(z /∈ O∆δi
→ z /∈

⋃
b∈Φi

OM
Mb

) (5.6)

which is equivalent to (5.2). Take an arbitrary z = z0 such that

z0 /∈ O∆δi
(5.7)

From (5.3) and (5.7) it follows that

C(z0) ⊆ ΦCi (5.8)

According to (5.4) and (5.8) it holds that

D(z0) ⊆ ΦCi (5.9)

Expression (5.9) implies that

∀b ∈ Φi : b /∈ D(z0) (5.10)

Using (5.5) and (5.10) implies that

∀b ∈ Φi : z0 /∈ OM
Mb

(5.11)

But then
z0 /∈

⋃
b∈Φi

OM
Mb

(5.12)

Since z0 was arbitrarily chosen expression (5.6) follows from (5.7) and (5.12).
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Now it remains to prove that ∆ is complete if (5.2) holds for all δi. Assume
that ∆ is such that all tests δi fulfill (5.2). We will show that ∆ is complete, i.e.
∆ has the property expressed in (5.4). Take an arbitrarily chosen z = z0 and an
arbitrary b0 such that

b0 ∈ D(z0) (5.13)

or equivalently
z0 ∈ OM

Mb0
(5.14)

Let a set A be defined such that

i ∈ A ↔ b0 ∈ Φi (5.15)

Then it holds that
∀i ∈ A : OM

Mb0
⊆

⋃
b∈Φi

OM
Mb

(5.16)

From (5.14) and (5.16) it follows that

∀i ∈ A : z0 ∈
⋃
b∈Φi

OM
Mb

(5.17)

The condition (5.2) gives that

∀i ∈ A : z0 ∈ O∆δi
(5.18)

According to (5.3) and (5.18) it holds that

C(z0) = B ∩
⋂

z0/∈O∆
δi

∧i/∈A
ΦCi ⊇

⋂
i/∈A

ΦCi (5.19)

Expression (5.15) can be rewritten as

i /∈ A ↔ b0 ∈ ΦCi (5.20)

From (5.19) and (5.20) it follows that

b0 ∈ C(z0) (5.21)

Hence b0 is a candidate and Theorem 5.1 is proved.

Next a useful corollary states sufficient conditions for completeness. The con-
ditions of this corollary is easier to check then the condition of Theorem 5.1.

Corollary 5.2. Given a diagnostic model M and a diagnostic system ∆, ∆ is
complete with respect to M if all tests δi are designed such that

Φi ⊆ ass Mi (5.22)

and
OM
Mi

⊆ O∆δi
(5.23)
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Before we prove Corollary 5.2 a Lemma is presented and proved.

Lemma 5.3. Given a diagnostic model M, a set of system behavioral modes Φ ⊆ B,
and a model M ⊆∗ M it follows that

Φ ⊆ ass M ↔ (M ⊆ MΦ) (5.24)

First we recall the definitions

MΦ := {e|Φ ⊆ ass e} (5.25)

and
ass M =

⋂
e∈M

ass e (5.26)

Proof. We begin to prove the right direction of (5.24). Assume that

Φ ⊆ ass M (5.27)

Expression (5.27) is rewritten using (5.26) as

Φ ⊆
⋂
e∈M

ass e (5.28)

From (5.28) it follows that
∀e ∈ M : Φ ⊆ ass e (5.29)

Expression (5.25) and (5.29) imply that

M ⊆ MΦ (5.30)

The conclusion of (5.27)-(5.30) is that

Φ ⊆ ass M → M ⊆ MΦ (5.31)

Now, we prove the left implication of (5.24). Assume that

M ⊆ MΦ (5.32)

From the definition in (5.26) it follows that

M ⊆ MΦ → ass MΦ ⊆ ass M (5.33)

Expressions (5.32) and (5.33) imply that

ass MΦ ⊆ ass M (5.34)

From the definition (5.25) it follows that

Φ ⊆ ass MΦ (5.35)
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and using (5.34) implies that
Φ ⊆ ass M (5.36)

The conclusion from the calculations done in (5.32)-(5.36) is that

M ⊆ MΦ → Φ ⊆ ass M (5.37)

From (5.31) and (5.37), expression (5.24) follows.

Now, we prove Corollary 5.2.

Proof. For b ∈ Φi it follows that MΦi
⊆ Mb. This implies that OM

Mb
⊆ OM

MΦi
.

Since this is true for all b ∈ Φi it follows that
⋃
b∈Φi

OM
Mb

⊆ OM
MΦi

(5.38)

From (5.22) and Lemma 5.3 it follows that

OM
MΦi

⊆ OM
Mi

(5.39)

Theorem 5.1 together with (5.38), (5.39), and (5.23) completes the proof.

The most sensitive test to check validity of Mi appears when equality holds
for expressions (5.22) and (5.23). However a common situation is that OM

Mi
only

approximate the true behavior of the system. Therefore, to be sure that O∆δi
is a

superset to the observations of the true behavior, a larger set has to be chosen. In
expression (5.22) the weakest and only reasonable choice is Φi = ass Mi.

Example 5.1 Consider the diagnostic model and the diagnostic system in Ex-
ample 2.6. The two tests δ1 and δ2 satisfy condition (5.22) and (5.23). Hence
according to Corollary 5.2 the diagnostic system is complete.

From now on we assume that all tests are designed such that the considered
diagnostic systems are complete.

5.2 Examples of Complete and Sound Diagnostic
System

A diagnostic system is complete if each test is designed such that (5.2) is fulfilled.
That is, completeness is independent on which set of models M ⊆∗ M that are
checked. In this section we present conditions for a complete diagnostic system to
be sound. It is not just a question of how tests are designed, it is also important
which set of models that are checked.



58 Chapter 5 Analytical Characterization of Sound and Complete Diagnostic Systems

5.2.1 Model Definitions

First we need some definitions to characterize different types of models.

Definition 5.1 (Feasible Model). Given a diagnostic model M, a model M ⊆ M
is a feasible model if ass M 6= ∅.

From now on all models that are mentioned are feasible models.

Definition 5.2 (Rejectable Model at z0). Given a diagnostic model M, a
(feasible) model M ⊆∗ M is a rejectable model at z0 if

∀x¬M(x, z0) (5.40)

Definition 5.3 (Minimal Rejectable Model at z0). Given a diagnostic model
M, a rejectable model M ⊆∗ M at z0 is a minimal rejectable model at z0 if no
proper subset to M is a rejectable model at z0.

Definition 5.4 (Minimal Rejectable Model). Given a diagnostic model M, a
model M is a minimal rejectable model if there is a z such that M is a minimal
rejectable model at z.

The set of all minimal rejectable models in M at z0 is denoted γm(z0) and the
set of all minimal rejectable models in M is denoted γm. Next we exemplify the
different types of models in a diagnostic model.

Example 5.2 Continuation of Example 2.6. In Table 2.3 the diagnostic model
is given. To get the a nontrivial example the diagnostic model is extended with
two new equations such that

component assumption equation
Sensor 1 φ(s1 = NF) e1 : z1 = x1
Comp B e2 : x1 = x22
Sensor 2 φ(s2 = NF) e3 : z2 = x2
Sensor 3 φ(s3 = NF) e4 : z3 = x2

φ(s3 = SG) e5 : z3 = 0

(5.41)

and
component behavioral modes
Sensor 1 s1 ∈ {NF,UF}

Sensor 2 s2 ∈ {NF,UF}

Sensor 3 s3 ∈ {NF, SG}

(5.42)

The model {e4, e5} in (5.41) is not a feasible model because

ass {e4, e5} = ∅ (5.43)

The model {e5} is a feasible model. Let z0 = (z1, z2, z3) be such that z1 < 0 and
z2 = z3 6= 0. The (feasible) rejectable models at z0 are

{e5}, {e1, e2}, {e1, e5}, {e2, e5}, {e3, e5},

{e1, e2, e3}, {e1, e2, e4}, {e1, e2, e5}, {e1, e3, e5},

{e2, e3, e5}, {e1, e2, e3, e4}, {e1, e2, e3, e5}

(5.44)
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An example of a model that is not a rejectable model at z0 is {e3, e4}. The minimal
rejectable models at z0 are

γm(z0) = {{e1, e2}, {e5}} (5.45)

The rejectable model {e1, e5} at z0 is not a minimal rejectable model at z0 because
the proper subset {e5} is a rejectable model at z0.

The minimal rejectable models are

γm = {{e5}, {e3, e4}, {e1, e2}, {e1, e2, e3}, {e1, e2, e4}} (5.46)

Note that both {e1, e2} and {e1, e2, e3} are minimal rejectable models even though
{e1, e2} ⊂ {e1, e2, e3}. To explain this, let z1 = (z1, z2, z3) be such that z1 ≥ 0,
z1 6= z22, and z2 = z3 6= 0. The minimal rejectable models at z1 are

γm(z1) = {{e1, e2, e3}, {e1, e2, e4}, {e5}} (5.47)

The model {e1, e2, e3} is a minimal rejectable model at z1 and one of its subset
{e1, e2} is a minimal rejectable model at z0. According to Definition 5.4 it holds
that both {e1, e2} and {e1, e2, e3} are minimal rejectable models. An example of a
model that is not a minimal rejectable model is {e1, e2, e3, e4}. This model is for
example rejectable at z0 as seen in (5.44) but if it is rejectable at any z there is
always a proper subset that is rejectable at z too. It is for example {e1, e2} that is
a minimal rejectable model at z0.

In the next sections we will show two sets of tests that can be used to design a
sound diagnostic system.

5.2.2 Check Behavioral Models

To compare the diagnoses and the candidates both the diagnostic model and the
diagnostic system have to be defined. The diagnostic system is designed using the
diagnostic model. The tests are assumed to be of the type defined next.

Definition 5.5 (Strong Diagnostic Test for M). A test δi is a strong diag-
nostic test for a model M if

Φi := ass M (5.48)

and
Oδi

:= OM (5.49)

Example 5.3 The two diagnostic tests δ1 and δ2 in Example 2.6 are examples
of strong diagnostic tests for M1 and M2 respectively.

Note that strong tests are in practice often not possible to use because there are
uncertainties and noise that influence the physical system. Therefore the diagnostic
model is often only a good approximation of the physical system. Next a condition
is given to design a sound and complete diagnostic system.
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Theorem 5.4. Given a diagnostic model M, a diagnostic system ∆ is complete
and sound if there is a strong test δi for each system behavioral model Mb.

Before we prove Theorem 5.4 an example show how the design is done.

Example 5.4 The behavioral models in (5.41) are

b Mb

〈NF,NF,NF〉 {e1, e2, e3, e4}

〈UF,NF,NF〉 {e2, e3, e4}

〈NF,UF,NF〉 {e1, e2, e4}

〈NF,NF, SC〉 {e1, e2, e3, e5}

〈UF,UF,NF〉 {e2, e4}

〈UF,NF, SC〉 {e2, e3, e5}

〈NF,UF, SC〉 {e1, e2, e5}

〈UF,UF, SC〉 {e2, e5}

(5.50)

According to Theorem 5.4, a complete and sound diagnostic system for (5.41) is

∆ Mi H0i : sys ∈ Φi = ass Mi O∆δi
= OMi

δ1 {e1, e2, e3, e4} φ(s1 = NF ∧ s2 = NF ∧ s3 = NF) {z|z1 = z22, z2 = z3}

δ2 {e2, e3, e4} φ(s2 = NF ∧ s3 = NF) {z|z2 = z3}

δ3 {e1, e2, e4} φ(s1 = NF ∧ s3 = NF) {z|z1 = z23}

δ4 {e1, e2, e3, e5} φ(s1 = NF ∧ s2 = NF ∧ s3 = SC) {z|z1 = z22, z3 = 0}

δ5 {e2, e4} φ(s2 = NF) R3

δ6 {e2, e3, e5} φ(s2 = NF ∧ s3 = SC) {z|z3 = 0}

δ7 {e1, e2, e5} φ(s1 = NF ∧ s3 = SC) {z|z1 ≥ 0, z3 = 0}

δ8 {e2, e5} φ(s3 = SG) {z|z3 = 0}

(5.51)

Note that in general is assMb 6= {b}. For example in δ2 it holds that

ass M〈UF,NF,NF〉 = {〈NF,NF,NF〉, 〈UF,NF,NF〉} 6= {〈UF,NF,NF〉} (5.52)

However it holds that b ∈ ass Mb. The null hypothesis of test δ5 is not be rejectable
since O∆δ5

= R3. Therefore it is possible to omit δ5.

Proof. All tests are strong tests and a strong test fulfill both (5.22) and (5.23).
Hence the conditions in Corollary 5.2 are fulfilled and it follows that ∆ is complete
with respect to M. Now it remains to prove that ∆ is sound with respect to M, i.e.

∀z(C(z) ⊆ D(z)) (5.53)

Chose an arbitrary z = z0 and an arbitrary system behavioral mode called b1 such
that

b1 ∈ C(z0) (5.54)
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Enumerate the behavioral modes bi and design a strong test for each Mbi
such

that
O∆δi

:= OM
Mbi

(5.55)

and
Φi := ass Mbi

(5.56)

Assume that
b1 /∈ D(z0) (5.57)

or equivalently
z0 /∈ OM

Mb1
(5.58)

From (5.55) and (5.58) it follows that

z0 /∈ O∆δ1
(5.59)

Further using (5.56) it is easy to realize that

b1 ∈ ass Mb1
= Φ1 (5.60)

From (5.3), (5.59), and (5.60) it follows that

b1 /∈ C(z0) ⊆ ΦC1 (5.61)

Expression (5.54) and (5.61) is a contradiction. It follows that b1 ∈ D(z). Since z
and b1 ∈ C(z) were arbitrarily chosen the theorem follows.

If exactly the diagnostic system (5.51) was implemented we would for example
check if z3 = 0 in 4 out of the 8 tests. This is computationally not an efficient
way to diagnose the system. Larger models are more difficult to evaluate in gen-
eral. Behavioral models have the disadvantage of being the largest feasible models.
These two reasons rise the question if there exist alternative sound and complete
diagnostic systems using fewer and simpler tests?

5.2.3 Check Minimal Rejectable Models

A sound and complete diagnostic system can be constructed designing tests for a
the minimal rejectable models of a diagnostic model. As the name indicates they
are the smallest models that can be used. Hence test quantities are often more
easily obtained.

Theorem 5.5. Given a diagnostic model M, a diagnostic system ∆ is complete
and sound if there is a strong test δi for each minimal rejectable model Mi ⊆∗ M.

Example 5.5 The minimal rejectable models in (5.41) are

γm = {{e1, e2}, {e1, e2, e3}, {e1, e2, e4}, {e3, e4}, {e5}} (5.62)
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A complete and sound diagnostic system for (5.41) is

∆ H0i : Φi = ass Mi Mi O∆δi
= OMi

δ1 φ(s1 = NF) {e1, e2} {z|z1 ≥ 0}

δ2 φ(s1 = NF ∧ s2 = NF) {e1, e2, e3} {z|z1 = z22}

δ3 φ(s1 = NF ∧ s3 = NF) {e1, e2, e4} {z|z1 = z23}

δ4 φ(s2 = NF ∧ s3 = NF) {e3, e4} {z|z2 = z3}

δ5 φ(s3 = SG) {e5} {z|z3 = 0}

(5.63)

A comparison between (5.51) and (5.63) reveals that the number of tests in (5.63)
is smaller, the tests in (5.63) contains less number of equations, and the sets O∆δi

in (5.63) is described easier.

Proof. From (5.48) and (5.49), expression (5.22) and (5.23) follows respectively.
Hence according to Corollary 5.2, ∆ is complete with respect to M. It remains to
prove that ∆ is sound with respect to M. Assume the contrary, i.e. there is a z0
such that b is a candidate but b is not a diagnosis. From the definition of diagnosis
it follows that

z0 /∈ OM
Mb

(5.64)

From the definition of minimal rejectable model at z0 there exist a minimal re-
jectable model M1 at z0 such that

M1 ⊆ Mb ∧ z0 /∈ OM
M1

(5.65)

Note that the existence follows from the fact that if no proper subset to Mb has
property (5.65) then Mb is a minimal rejectable model at z0. Since all minimal
rejectable models at z0 are minimal rejectable models it follows from the conditions
stated in Theorem 5.5 that there is a strong test δ1 for M1. From (5.49) and (5.65)
it follows that

z0 /∈ O∆δ1
(5.66)

Hence H01 is rejectable and from (5.3) it follows that

C(z0) ⊆ ΦC1 (5.67)

Now, (5.48) implies that
Φ1 = ass M1 (5.68)

and (5.65) implies that
b ∈ ass Mb ⊆ ass M1 (5.69)

Hence (5.67), (5.68), and (5.69) gives that

b /∈ C(z0) (5.70)

i.e. b is not a candidate. This contradict the assumption and it follows that ∆ is
sound.
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5.3 Sound and Complete Diagnostic Systems

Finally we would like to give a if and only if condition of the set of models that
can be used to derive a sound diagnostic system. It turns out that the condition
also implies that the diagnostic system is complete. Hence it is also a if and only
if condition of the set of models that can be used to design a sound and complete
diagnostic system. To be able to state the condition, some definitions are needed.

Definition 5.6 (Detection Model for Mb). Given a diagnostic model M and a
behavioral model Mb ⊆∗ M, a minimal rejectable model M ⊆ Mb is a detection
model for Mb if no proper superset to M, that is a subset of Mb, is a minimal
rejectable model.

Let the set of all detection models for Mb be denoted Σb. Let σb ⊆ Σb be a
minimal set such that ⋂

M∈Σb

OM
M =

⋂
M∈σb

OM
M (5.71)

Theorem 5.6 (Sound Diagnostic System). Given a diagnostic model M, let
γ be a set of models M ⊆∗ M. Let a strong test for each model in γ define a
diagnostic system ∆. Then the diagnostic system ∆ is sound with respect to the
diagnostic model M if and only if γ fulfills

∀b ∈ B(∃σb∀M ′ ∈ σb∃M ∈ γ : M ′ ⊆ M ⊆ Mb) (5.72)

An especially interesting type of γ that satisfies (5.72) is those γ:s that only
contain minimal models such that (5.72) is fulfilled.

Corollary 5.7. Given a diagnostic model M, let γ be a set of models M ⊆∗ M. Let
a strong test for each model in γ define a diagnostic system ∆. The minimal models
M, that can be used to define a diagnostic system ∆ that is sound with respect to
the diagnostic model M, are minimal rejectable models.

The proof of Corollary 5.7 follows directly from Theorem 5.6, the definitions of
σb, Σb, and detection model. Now we prove Theorem 5.6. Two examples follow
after the proof.

Proof. We start to show that (5.72) is a sufficient condition for soundness. Hence
we will prove that

∀z(C(z) ⊆ D(z)) (5.73)

holds if (5.72) is satisfied. Let z0 be an arbitrary z and let b be an arbitrary

b0 ∈ C(z0) (5.74)

We will show that b0 is a diagnosis. From the definition of diagnostic statement it
follows that

b0 ∈ C(z0) =
⋂

z0/∈O∆
δi

ΦCi ∩ B (5.75)
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From (5.75) it follows that

z0 /∈ O∆δi
→ b0 /∈ Φi (5.76)

The implied expression in (5.76) can be rewritten using the fact that there is a
strong test for each model Mi ∈ γ according to

b0 /∈ Φi ↔ b0 /∈ ass Mi ↔ Mi * Mb0
(5.77)

The last equivalence in (5.77) follows from Lemma 5.3 by setting Φ = {b0} in (5.24).
Using (5.76) and (5.77) it follows that

z0 /∈ O∆δi
→ Mi * Mb0

(5.78)

Since δi is a strong test it holds that

Mi ⊆ Mb0
→ z0 ∈ OM

Mi
(5.79)

From (5.72) it follows that there is a σb0
according to (5.71) such that

∀M ∈ σb0
∃Mi ∈ γ : M ⊆ Mi ⊆ Mb0

(5.80)

holds. Expression (5.79), and (5.80) imply that

∀M ∈ σb0
: z0 ∈ OM

M (5.81)

From Definition 5.6 and (5.71) it follows that

z0 /∈ OM
Mb0

→ ∃M ∈ σb0
: z0 /∈ OM

M (5.82)

or equivalently
∀M ∈ σb0

: z0 ∈ OM
M → z0 ∈ OM

Mb0
(5.83)

Finally from expression (5.81), and (5.83) it follows that

z0 ∈ OM
Mb0

(5.84)

Hence b0 ∈ D(z0). Since z0 and b0 were arbitrarily chosen the sufficient direction
follows. Now, the necessary direction remains to prove. We will prove the equivalent
statement, if (5.72) does not hold then ∃z : C(z) * D(z). Assume that (5.72) does
not hold, i.e.

∃b ∈ B∀σb∃M ′ ∈ σb∀Mi ∈ γ : M ′ * Mi ∨ Mi * Mb (5.85)

Let a behavioral mode b and an arbitrary σb and an M ′ that fulfill (5.85) be b0,
σb0

, and M ′
0 respectively. Since M ′

0 ∈ σb0
it holds using (5.71) that there exists a

z0 such that

z0 /∈ OM
M ′

0
∧ ∀M ′ ∈ σb0

: M ′ 6= M ′
0 → z0 ∈ OM

M ′ (5.86)



5.3 Sound and Complete Diagnostic Systems 65

From M ′
0 ∈ σb0

it follows that M ′
0 ⊆ Mb0

. Then it is true that

z0 /∈ OM
M ′

0
→ z0 /∈ OM

Mb0
(5.87)

Using (5.86) and (5.87) it is clear that

b0 /∈ D(z0) (5.88)

Now we will investigate if b0 is a candidate. Since δi are strong test for the models
Mi ∈ γ the candidates are calculated as

C(z0) =
⋂

Mi ⊆ Mb0
z0 /∈ OM

Mi

ΦCi ∩
⋂

Mi * Mb0
z0 /∈ OM

Mi

ΦCi ∩ B (5.89)

If we start to look at the first intersection in (5.89), where Mi ⊆ Mb0
. We know

that M ′
0 ⊆ Mb0

because M ′
0 ∈ σb0

. Furthermore M ′
0 satisfy (5.85), that is

Mi ∈ γ : Mi ⊆ Mb0
→ M ′

0 * Mi (5.90)

From Definition 5.6 and (5.86) it follows that

M ′
0 ⊆ Mi ↔ z0 /∈ OM

Mi
(5.91)

Now from (5.90) and (5.91) it follows that

∀Mi ∈ γ : Mi ⊆ Mb0
→ z0 ∈ OM

Mi
(5.92)

Hence the candidates can be rewritten as

C(z0) =
⋂

Mi * Mb0
z0 /∈ OM

Mi

ΦCi ∩ B (5.93)

Now, looking at those Mi ∈ γ where Mi * Mb0
. From Lemma 5.3 and since only

strong tests are used
Mi * Mb0

↔ b /∈ ass Mi = Φi (5.94)

From (5.93) and (5.94) it follows that

b0 ∈
⋂

Mi*Mb0

ΦCi ∩ B ⊆ C(z0) (5.95)

From (5.88) we have that b0 /∈ D(z0) and from (5.95) that b0 ∈ C(z0). Hence
C(z0) * D(z0) and the other direction follows.

Example 5.6 Consider the diagnostic model in (5.41). The detection models
for each system behavioral mode are shown in Table 5.1. In this example σb = Σb
for all behavioral modes except for b = b1 where

σb1
= {{e1, e2, e3}, {e3, e4}} (5.97)
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Table 5.1 The set of detection models for each system behavioral mode in
the diagnostic model defined in (5.41).

b Mb Σb
b1 {e1, e2, e3, e4} {{e1, e2, e3}, {e1, e2, e4}, {e3, e4}}

b2 {e2, e3, e4} {{e3, e4}}

b3 {e1, e2, e4} {{e1, e2, e4}}

b4 {e1, e2, e3, e5} {{e1, e2, e3}, {e5}}

b5 {e2, e4} ∅
b6 {e2, e3, e5} {{e5}}

b7 {e1, e2, e5} {{e1, e2}, {e5}}

b8 {e2, e5} {{e5}}

(5.96)

or
σb1

= {{e1, e2, e4}, {e3, e4}} (5.98)

According to Theorem 5.6 a complete and sound diagnostic system is obtained
if and only if (5.72) holds. Two particular sets γ that we studied earlier were
γB = {Mb|b ∈ B} and γm. Starting with γ = γB, (5.72) trivially holds. Since all
detection models for a behavioral mode are minimal rejectable models it follows
that the diagnostic system is complete and sound when γ = γm.

Theorem 5.6 can be used to find the minimal number of tests that have to be
used to design a sound and complete diagnostic system. The minimal number of
tests for the diagnostic model described in (5.41) is 5. This can be realized from the
following discussion. Row b3 in Table 5.1 and condition (5.72) imply that there
must be a set M ∈ γ such that {e1, e2, e4} ⊆ M ⊆ {e1, e2, e4}. Hence a sound
and complete diagnostic system must include a strong test of {e1, e2, e4}. Row b8
implies that either {e5} or {e2, e5} must be included in γ. Since {e2, e5} /∈ Σb for
any b ∈ B, {b5} can be chosen. With γ = {{e5}, {e1, e2, e4}} condition (5.72) of b3,
b5, b6, and b8 are fulfilled. Continuing in this way the minimum number of 5 tests
must be used to fulfill all conditions on γ. The diagnostic system using all minimal
rejectable model shown in (5.63) is an example of a sound and complete diagnostic
system with only 5 tests.

Note also that Theorem 5.6 can be used to design a sound and complete di-
agnostic system for a subset of system behavioral modes. Exchange B in (5.72)
with a set A ⊆ B. If the modified condition (5.72) is fulfilled then the diagnostic
system will be sound and complete with respect to the behavioral modes in A but
only complete with respect of the behavioral modes not included in A. This can
be expressed as

∀z : A ∩ C(z) = A ∩ D(z) (5.99)

and
∀z : (B\A) ∩ D(z) ⊆ (B\A) ∩ C(z) (5.100)
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Next an example will show the special case when A is the set of all single faults
and no-fault.

Example 5.7 Assume that A = {b1, b2, b3, b4}. The minimal number of tests
that has to be used is 3. One example is γ = {{e3, e4}, {e1, e2, e4}, {e1, e2, e3, e5}}.
Note that {e1, e2, e3, e5} is not a minimal rejectable model. If only minimal re-
jectable models are used, 4 tests are needed. If behavioral models are used, 4 tests
are also needed. Assume that sys = b2, that is the first sensor is broken. It has
been observed that z1 < 0. The only minimal rejectable model for this z is assumed
to be {e1, e2}. This implies that

D(z) = {b2, b5, b6, b8} (5.101)

and
C(z) = {b2, b5, b6, b7, b8} (5.102)

Expression (5.99) is clearly fulfilled in this example since

A ∩ C(z) = {b2} = A ∩ D(z) (5.103)

Furthermore
(B\A) ∩ D(z) = {b5, b6, b8} (5.104)

and
(B\A) ∩ C(z) = {b5, b6, b7, b8} (5.105)

imply that (5.100) is fulfilled. Note that b7 is a candidate in (5.105) but not a
diagnosis in (5.104). Hence this diagnostic system is not sound with respect to all
behavioral modes.
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6
Isolability Analysis of Diagnostic Models

In Chapter 4 we defined structural and analytical isolability of a diagnostic sys-
tem. It was shown that structural isolability is a necessary condition for analytical
isolability of a diagnostic system. Then a structural method was suggested to cal-
culate the structural isolability of a diagnostic system. In this chapter we extend
the two definitions analytical and structural isolability of diagnostic systems to be
valid also for diagnostic models. The analytical isolability of a diagnostic model
M is the best possible analytical isolability of a diagnostic system designed using
the diagnostic model M. Then we present a structural method that calculates the
structural isolability of a diagnostic model M. In the same way as in Chapter 4,
it will be shown that the structural isolability of a diagnostic model is a necessary
condition for the analytical isolability of a diagnostic model.

The structural isolability of a diagnostic model is calculated in a two step ap-
proach. Later we will see that with this two step approach, results from Chapter 5
extend easily the method to calculate the isolability of a diagnostic system pre-
sented in Chapter 4, to be applicable also to diagnostic models.

In the first step a set of models γ is calculated using the diagnostic model
such that Theorem 5.6 is fulfilled. Since Theorem 5.6 is fulfilled it follows that γ

represents a sound and complete diagnostic system with respect to the analyzed
diagnostic model. In this chapter it will be shown that a sound and complete di-
agnostic system with respect to the diagnostic model M has the same analytical
isolability as the diagnostic model M. Since the analytical isolability of the diag-
nostic model is equal to the analytical isolability of a diagnostic system represented
by a γ satisfying Theorem 5.6, the structural isolability of the diagnostic system
represented by γ is a necessary condition also for the analytical isolability of the

69
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diagnostic model.
In the second step the structural isolability of the diagnostic system represented

by γ is calculated. These calculations have been defined in Chapter 4. According to
Definition 4.1 the set of Φi defines the structural isolability of a diagnostic system.
This set can be obtained directly from the set γ and the diagnostic model M, i.e.
there is no need to calculate the diagnostic system represented by γ to calculate
the structural isolability of the diagnostic system.

In Section 6.1 structural and analytical isolability of a diagnostic model is de-
fined. In Section 6.2 we give a sufficient condition of γ:s that implies that the
structural isolability is a necessary condition for the analytical isolability. Then
we give two important examples of γ:s, i.e. all behavioral models and all minimal
rejectable models. These two sets γ imply different structural isolability. In Sec-
tion 6.3 a condition on γ is given that implies the best structural isolability. In
Section 6.4 different options are discussed to calculate a γ that fulfills the con-
dition in Section 6.3 without using analytical properties. Finally in Section 6.5
the analytical isolability of a diagnostic model is calculated. The computationally
complexity of calculating the analytical isolability is significantly decreased using
the structural isolability computed in previous sections.

6.1 Structural and Analytical Isolability of a Di-
agnostic Model

We start to define analytical isolability of a diagnostic model.

Definition 6.1 (IM, Analytical Isolability of a Diagnostic Model). If M is
a diagnostic model, then the analytical isolability of the diagnostic model M
is a binary relation IM on B × B defined as

IM := {(b1, b2)|∃z :
(
b1 ∈ D(z) ∧ b2 /∈ D(z)

)
} (6.1)

If (b1, b2) ∈ IM we say that b1 is isolable from b2 with the diagnostic model M.
Definition 6.1 defines which behavioral modes that are analytically isolable from
each other given a model M. The calculation of the analytical isolability requires
that analytical properties of M are known. The analytical isolability of a model M,
IM, is interesting, because it is equal to the best analytical isolability of any diag-
nostic system designed using M. Often it is difficult to exactly calculate IM given
the diagnostic model M, but the structural properties of M are easily obtained.
Later it will be clear that necessary conditions for the analytical isolability can be
derived using only structural properties. Next we use the definition of structural
isolability of a diagnostic system to define the structural isolability of a diagnostic
model.

Definition 6.2 (IM
s (γ), Structural Isolability of a Diagnostic Model). If M

is a diagnostic model, γ is a set of models contained in M, and ∆ is a diagnostic
system such that there is a strong test δi for each M ∈ γ, then the structural
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isolability of the diagnostic model M is a binary relation IM
s (γ) on B × B

defined as
IM
s (γ) := I∆s (6.2)

The idea behind Definition 6.2 is that if b1 is structurally isolable from b2, then
there exists a model M that can reject b2 but not b1. Note that in Definition 6.2,
γ is an arbitrary set of models contained in M. However, it is only for some sets γ

that the structural isolability is a necessary condition for the analytical isolability.
Sufficient conditions for such sets of models γ will be presented later.

If γ in (6.2) can be calculated structurally, then only the structural properties of
M are needed to calculate IM

s (γ). According to Definition 6.2 it is straightforward
to calculate IM

s (γ) as soon as γ is known. The structural isolability IM
s (γ) is

calculated by putting H0i : Φi = ass Mi for each Mi ∈ γ and then applying
Algorithm 4.1. Combining it all together gives that

IM
s (γ) =

⋃
M∈γ

{(b1, b2)|b1 /∈ ass M ∧ b2 ∈ ass M} (6.3)

In Theorem 4.5 it was stated that larger sets Φi give less optimistic structural
isolability, i.e. a stronger restriction of the analytical isolability. Since Φi = ass Mi,
the size of Φi is determined from assMi that is derived from ass e where e ∈ Mi.
During the design of the diagnostic model, behavioral mode assumptions ass e are
used to imply e. After the design of a diagnostic model it can be worthwhile to
analyze if system behavioral modes can be added to the some ass e defined during
the design. This is desirable because if any ass e can be increased, the sets Φi can
become larger and the structural isolability of the model becomes less optimistic.

6.2 Structural Isolability Necessary Condition for
Analytical Isolability

In Definition 6.2, γ plays an important role to define the structural isolability of
a diagnostic model. The next lemma and theorem gives sufficient conditions on γ

such that the structural isolability of a diagnostic model is a necessary condition
for the analytical isolability of the analyzed diagnostic model.

Lemma 6.1. If ∆ is a sound and complete diagnostic system with respect to a
diagnostic model M it follows that

IM = I∆ (6.4)

Proof. Since ∆ is a sound and complete diagnostic system with respect to a diag-
nostic model M it means that

∀z : (D(z) = C(z)) (6.5)

Definition 6.1 implies that

IM = {(b1, b2)|∃z :
(
b1 ∈ D(z) ∧ b2 /∈ D(z)

)
} (6.6)
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From (6.5) and (6.6) it follows that

IM = {(b1, b2)|∃z :
(
b1 ∈ C(z) ∧ b2 /∈ C(z)

)
} (6.7)

Expression (4.2) in Definition 4.2 and (6.7) imply (6.4).

Theorem 6.2. Given a diagnostic model M and a γ that fulfills Theorem 5.6, it
follows that

IM ⊆ IM
s (γ) (6.8)

Proof. Since M and γ fulfill Theorem 5.6 a diagnostic system ∆ is defined such that
it is sound and complete with respect to M. Lemma 6.1 implies that

IM = I∆ (6.9)

From Theorem 4.1 it holds that
I∆ ⊆ I∆s (6.10)

Using (6.2), (6.9) and (6.10) it follows that

IM ⊆ IM
s (γ) (6.11)

A sufficient condition of the choice of γ is that M and γ fulfill Theorem 5.6.
In Chapter 5 two important examples of γ that fulfill Theorem 5.6 were shown,
namely γB from Theorem 5.4 and γm from Theorem 5.5. In the next two sections,
these two choices of γ will be discussed and exemplified.

6.2.1 Structural Isolability Using System Behavioral Models

The first choice to be considered is the set of all system behavioral models of a
diagnostic model, i.e. γ = γB from Section 5.2.2. The set γB is of special interest
because it is easy to calculate for any diagnostic model and fulfills Theorem 5.6.
Later we will see that the disadvantage of using γB is that the structural isolability
is more optimistic than for other choices of γ. Next we state that γ = γB implies
that the structural isolability is a necessary condition for the analytical isolability.

Corollary 6.3. Given a diagnostic model M and

γB = {Mb|b ∈ B} (6.12)

it holds that
IM ⊆ IM

s (γB) (6.13)

Proof. The result follows directly from Theorem 5.4 and Theorem 6.2.
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In this special case when γ = γB, the expression (6.3) can be simplified. A
particular simple expression appears for the set complement of IM

s (γB), i.e.

IM
s (γB) = {(bi, bj)|bi ∈ ass Mbj

} (6.14)

Note that this expression can directly be applied to any diagnostic model. The
structural isolability IM

s (γB) can be calculated as follows.

Algorithm 6.1.
Input: B and ass e for all e in M.

a) Set IM
s (γB) := ∅.

b) For each system behavioral-mode bj ∈ B, set

IM
s (γB) := IM

s (γB) ∪ {(bi, bj)|bi ∈ ass Mbj
} (6.15)

Output: IM
s (γB)

An example now shows how IM
s (γB) is calculated using Algorithm 6.1.

Example 6.1 Continuation of Example 5.4. Recall that the diagnostic model is
defined as

component assumption equation
Sensor 1 φ(s1 = NF) e1 : z1 = x1
Comp B e2 : x1 = x22
Sensor 2 φ(s2 = NF) e3 : z2 = x2
Sensor 3 φ(s3 = NF) e4 : z3 = x2

φ(s3 = SG) e5 : z3 = 0

(6.16)

and
component behavioral modes
Sensor 1 s1 ∈ {NF,UF}

Sensor 2 s2 ∈ {NF,UF}

Sensor 3 s3 ∈ {NF, SG}

(6.17)

Let the system behavioral modes be enumerated as

b1 = 〈NF,NF,NF〉
b2 = 〈UF,NF,NF〉
b3 = 〈NF,UF,NF〉
b4 = 〈NF,NF, SG〉
b5 = 〈UF,UF,NF〉
b6 = 〈UF,NF, SG〉
b7 = 〈NF,UF, SG〉
b8 = 〈UF,UF, SG〉
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When Algorithm 6.1 is applied to this diagnostic model the calculated structural
isolability is

present necessary interpreted mode
mode b1 b2 b3 b5 b4 b6 b7 b8
b1 X X X X

b2 X X

b3 X X

b5 X

b4 X X X X

b6 X X

b7 X X

b8 X

(6.18)

According to Algorithm 6.1 the first iteration calculates the column in (6.18) cor-
responding to behavioral mode b1 in IM

s (γB). In this column there will be an “X”
in each row corresponding to behavioral modes in assMb1

. The set ass Mb1
is

calculated in two steps. First Mb1
is found to be

Mb1
= {e1, e2, e3, e4} (6.19)

Then assMb1
is calculated as

ass Mb1
= ass ({e1, e2, e3, e4}) = φ(s1 = NF ∧ s2 = NF ∧ s3 = NF) = {b1} (6.20)

The first column in (6.18) is the result of assMb1
= {b1}. The next behavioral

mode b2 calculates the next column in IM
s (γB). The behavioral mode b2 has the

model
Mb2

= {e2, e3, e4}

From this model the assumption is obtained as

ass Mb2
= ass ({e2, e3, e4}) = φ(s2 = NF ∧ s3 = NF) = {b1, b2} (6.21)

These calculations are repeated for all system behavioral modes B. The isolability
matrix IM

s (γB) can be interpreted in two different ways. First assume that a com-
plete but not necessarily sound diagnostic system is designed using γB. Further-
more, assume for example that b1 is the present system behavioral mode, i.e. the
diagnosed system is working in behavioral mode b1 and the observation z0 ∈ Ob1

is observed. Then (6.18) implies that all modes where the corresponding column
is denoted with an “X” in the row corresponding to b1 are candidates. For this
example it means that {b1, b2, b3, b5} ⊆ C(z0). Since γB fulfills Theorem 4.1 it
follows that (6.18) can also be interpreted as {b1, b2, b3, b5} ⊆ D(z0). This means
that given any complete diagnostic system for this diagnostic model, {b1, b2, b3, b5}

must be candidates when b1 is the present mode. Note that, if b1 is the present
behavioral mode, then (6.18) does not imply that b4, b6, b7, and b8 are not di-
agnosis or candidates depending on the interpretation. The Hasse diagram of the
corresponding partial order PM

s (γB) is shown in Figure 6.1.
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{b1}

{b2} {b3}

{b5}

{b4}

{b6} {b7}

{b8}

Figure 6.1 The Hasse diagram of the partial order PM
s (γB).

Among the component behavioral modes, it is common that the unknown fault
component behavioral mode UF is included. Since the behavior of this component
behavioral mode is unknown, it is for example impossible to isolate NF from UF.
This information does not need to be added separately to the structural isolability
analysis, because it is contained in the structural isolability as the next example
shows.

Example 6.2 The structural isolability analysis can be done separately on each
component. Consider Sensor 1 in the diagnostic model (6.16). Calculating the
structural isolability using Algorithm 6.1 involves the following computations

ass MNF = ass {e1} = {NF}

ass MUF = ass ∅ = {NF,UF}
(6.22)

that gives

present necessary interpreted mode
mode NF UF

NF X X

UF X

(6.23)

It is clear that NF is not isolable from UF. Finally we analyze the connection
between the structural isolability analysis of a component and the structural isola-
bility analysis of the entire diagnostic model. Since we know the isolability of the
model of Sensor 1, it implies that for any pair of s2 ∈ {NF,UF} and s3 ∈ {NF, SG}

it follows that

present necessary interpreted mode
mode 〈NF, s2, s3〉 〈UF, s2, s3〉
〈NF, s2, s3〉 X X

〈UF, s2, s3〉 X

(6.24)

The implication of (6.24) in the structural isolability matrix (6.18) is marked with
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four boxes of size 2 × 2 in

present necessary interpreted mode
mode b1 b2 b3 b5 b4 b6 b7 b8
b1 X X X X

b2 X X

b3 X X

b5 X

b4 X X X X

b6 X X

b7 X X

b8 X

(6.25)

In (6.24) we can for example put s2 = NF and s3 = NF and get a relation between
the behavioral mode b1 = 〈NF,NF,NF〉 and b2 = 〈UF,NF,NF〉. In (6.25), the
upper-left box corresponds two b1 and b2. This box and (6.24) is equal. If M
is a diagnostic model where c is one of the components, then M(c) denotes the
diagnostic model for component c. If the diagnostic model contains the components
c1, . . . , cn then

IM
s (γB) = IM(c1)

s (γB) × . . . × IM(cn)
s (γB) (6.26)

That is the structural isolability of the diagnostic model M can be obtained com-
bining the structural isolability of each component model.

6.2.2 Structural Isolability Using Minimal Rejectable Mod-
els

Another choice of γ is to use the set of all minimal rejectable models γm described in
Section 5.2.3. This γ is of special interest because it gives, as we will see later, often
a less optimistic structural isolability than for example γB. The disadvantage is that
γm cannot be used in a purely structural analysis, because analytical properties of
the diagnostic model are used to calculate γm.

Corollary 6.4. For a diagnostic model M it holds that

IM ⊆ IM
s (γm) (6.27)

Proof. The result follows directly from Theorem 5.5 and Theorem 6.2.

In the next example the structural isolability of the diagnostic model (6.16) is
calculated when γ = γm.

Example 6.3 The set of all minimal rejectable models in the diagnostic model (6.16)
was presented in Example 5.5. From (5.63) in Example 5.5 a sound and complete
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{b1}

{b2} {b3}

{b4}

{b7}

{b8, b6}

{b5}

Figure 6.2 The Hasse diagram of the partial order PM
s (γm).

diagnostic system is

∆ Mi Φi = ass Mi O∆δi
= OMi

δ1 {e1, e2} φ(s1 = NF) {z|z1 ≥ 0}

δ2 {e1, e2, e3} φ(s1 = NF ∧ s2 = NF) {z|z1 = z22}

δ3 {e1, e2, e4} φ(s1 = NF ∧ s3 = NF) {z|z1 = z23}

δ4 {e3, e4} φ(s2 = NF ∧ s3 = NF) {z|z2 = z3}

δ5 {e5} φ(s3 = SG) {z|z3 = 0}

(6.28)

where a test is designed for each minimal rejectable model. Calculating (6.3) when
γ = γm gives that the structural isolability of the diagnostic model IM

s (γm) is

present necessary interpreted mode
mode {b1} {b2} {b3} {b4} {b7} {b8, b6} {b5}

{b1} X X X X

{b2} X X

{b3} X X

{b4} X X X X

{b7} X X X

{b8, b6} X X

{b5} X

(6.29)

The corresponding partial order is shown in Figure 6.2.

6.2.3 Comparison of Structural Isolability for Different γ:s

Comparing (6.18) and (6.29) reveals some differences. For example, there is a
difference in the column corresponding to b5 = 〈UF,UF,NF〉. The analytical ex-
pressions of Mb5

= {e2, e4} are x1 = x22 and z3 = x2. Any z3 will satisfy these two
constraints, i.e. the model Mb5

is not rejectable. Then according to the definition
of diagnosis it follows that b5 is always a diagnosis.

In Example 6.3 we know all minimal rejectable models γm. All models that
are rejectable are equal to, or a superset to, a minimal rejectable model. In (6.28)
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the minimal rejectable models are shown in the “Mi” column. If these models
are compared with Mb5

, it is clear that Mb5
is not equal to, or a superset to,

any minimal rejectable model. This implies that Mb5
is not rejectable at any z.

Since Mb5
is not rejectable it will also with this argument follow that b5 always

is a diagnosis. The structural isolability given in Example 6.3 also states that b5
always is a diagnosis. This can be seen in (6.29) where there is an “X” in every row
of the column corresponding to b5. This means that b5 is a diagnosis independent
of the present mode. Hence b5 is always a diagnosis.

This conclusion cannot be obtained from the structural isolability (6.18) in
Example 6.1. In the column corresponding at b5 in (6.18), we have for example
not ruled out that b4 is isolable from b5. If b4 is isolable from b5 then a necessary
condition is that there exists a test δi, such that b4 /∈ Φi and b5 ∈ Φi. In
Example 6.1, the tests are defined with γ = γB. A test that fulfill both requirements
is δ5 with Φ5 = ass Mb5

= {b1, b2, b3, b5} where b4 is not included. When the
structural isolability is calculated it is assumed that the null hypothesis of each
test can be rejected. Since Mb5

is not rejectable at any z the structural analysis
in Example 6.1 gets more optimistic than the structural analysis in Example 6.3.

If (6.18) and (6.29) are inspected it is clear that

IM
s (γm) ⊂ IM

s (γB) (6.30)

Note that the diagnostic system derived using γB and γm are both sound and com-
plete with respect to a diagnostic model, i.e. they have exactly the same analytical
isolability. In spite of the fact that they have the same analytical isolability, we
have seen an example that shows that they can have different structural isolability.

6.3 Structural Isolability as a Function of γ

The structural isolability is obviously dependent on which γ that is chosen among
those satisfying (5.72). From Theorem 6.2 we know that for all γ that fulfill (5.72)
it holds that

IM ⊆ IM
s (γ) (6.31)

Since we know that all γ that fulfill (5.72) have the desired property (6.31) and
that the structural isolability is dependent on which of these sets γ that is used, the
resulting question is which of these sets γ that gives the least optimistic structural
isolability. Before the next Theorem is stated that characterize these sets γ of
models, an assumption is presented.

Assumption 6.1. Let M be a diagnostic model such that for all behavioral modes
b ∈ B it holds that

∀σb(
⋃

M∈σb

M =
⋃

M∈Σb

M) (6.32)

where Σb and σb is defined in Section 5.3.



6.3 Structural Isolability as a Function of γ 79

Assumption 6.1 can be interpreted, as for each behavioral mode there exists a
unique minimal set of equations,

⋃
M∈Σb

M, that describes the same set of possible
observations z as Mb.

Assumption 6.1 is often fulfilled, for example the for the diagnostic model de-
scribed in Example 6.1. For this diagnostic model, the sets Σb and σb is calculated
in Example 5.6. Using the calculated Σb:s and σb:s in Example 5.6, condition (6.32)
is verified and it follows that Assumption 6.1 holds. To simplify the notation let

M∗
b :=

⋃
M∈Σb

M (6.33)

Theorem 6.5 (Structural Isolability of a Diagnostic Model). Let M be
a diagnostic model that fulfills Assumption 6.1 and γ and γ ′ two sets of models
satisfying Theorem 5.6. If γ fulfills

∀b ∈ B( ⋃
M ∈ γ
M ⊆ Mb

M = M∗
b

)
(6.34)

then it follows that
IM ⊆ IM

s (γ) ⊆ IM
s (γ ′) (6.35)

Proof. Since γ and γ ′ fulfill (5.72) it follows from Theorem 6.2 that

IM ⊆ IM
s (γ) (6.36)

and
IM ⊆ IM

s (γ ′) (6.37)

respectively. Now, it remains to prove that

IM
s (γ) ⊆ IM

s (γ ′) (6.38)

Take an arbitrary
(b1, b2) ∈ IM

s (γ) (6.39)

From (6.3) and (6.39) it follows that

∃M ∈ γ : b1 /∈ ass M ∧ b2 ∈ ass M (6.40)

Using Lemma 5.3, expression (6.40) can be rewritten as

∃M ∈ γ : M * Mb1
∧ M ⊆ Mb2

(6.41)

Let M̄ be a model that satisfy (6.41). Then from (6.34) it follows that

M̄ * Mb1
∧ M̄ ⊆ M∗

b2
(6.42)

This implies that
M∗
b2

\Mb1
6= ∅ (6.43)
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Since it holds that γ ′ fulfills (5.72), there is a σb2
such that

∀M ′ ∈ σb2
∃M ∈ γ ′ : M ′ ⊆ M ⊆ Mb2

(6.44)

From Assumption 6.1 and (6.43) it follows that there is a M̂ ∈ σb2
such that

M̂ * Mb1
∧ M̂ ⊆ Mb2

(6.45)

Expression (6.44) and (6.45) imply that there exists an M̃ ∈ γ ′ such that

M̃ * Mb1
∧ M̃ ⊆ Mb2

(6.46)

Using Lemma 5.3, (6.46) is rewritten as

∃M̃ ∈ γ ′ : b1 /∈ ass M̃ ∧ b2 ∈ ass M̃ (6.47)

This means according to (6.3) that

(b1, b2) ∈ IM
s (γ ′) (6.48)

Hence from (6.39) and (6.48), it follows that

IM
s (γ) ⊆ IM

s (γ ′) (6.49)

Example 6.4 Once again we will compare the structural isolability obtained
if γB is used as in Example 6.1 and if γm is used as in Example 6.3. However
the differences will this time be discussed in light of Theorem 6.5. First note
that condition (6.32) follows from Example 5.6. It is clear that γm fulfills the
condition (6.34) and from Theorem 6.5 it follows that the structural isolability is
the least optimistic structural isolability that can be obtained. Contrary γB does
not fulfill (6.34). This can be seen in

bi Mbi
M∗
bi

b1 {e1, e2, e3, e4} = {e1, e2, e3, e4}

b2 {e2, e3, e4} 6= {e3, e4}

b3 {e1, e2, e4} = {e1, e2, e4}

b4 {e1, e2, e3, e5} = {e1, e2, e3, e5}

b5 {e2, e4} 6= ∅
b6 {e2, e3, e5} 6= {e5}

b7 {e1, e2, e5} = {e1, e2, e5}

b8 {e2, e5} 6= {e5}

(6.50)

The condition (6.34) is fulfilled for the behavioral modes b1, b3, b4, and b7. In-
terpreting Theorem 6.5 and (6.50) gives that the structural isolability in (6.18) is
the best in the columns corresponding to b1, b3, b4, and b7. Since Theorem 6.5
only gives sufficient conditions for optimal isolability it does not state that the
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columns corresponding to b2, b5, b6, and b8 are not optimal. To find out if these
columns are equal we have to compare these columns in (6.18) with the correspond-
ing columns in (6.29) which is the best structural isolability. It is clear that apart
from b1, b3, b4, and b7 the column corresponding to b2 in (6.18) is identical to
the column corresponding to b2 in (6.29).

6.4 Structural Isolability Using Structural Prop-
erties

In Theorem 6.5 it was shown how to chose γ among those γ:s that fulfill Theorem 5.6
to derive the best structural isolability. However Σb in condition (6.34) is often
not known and to compute Σb detailed analytical analyses are needed to be done.
Therefore it is not easy to directly use (6.34) as a design criteria for γ. In this
section we will discuss which γ that implies the best structural isolability given a
certain level of knowledge about the diagnostic model.

6.4.1 The Best Structural Isolability Given a Certain Level
of Knowledge

If Σb in condition (6.34) is not known, γ can not be chosen to fulfill (6.34) in
Theorem 6.5 to obtain the best structural isolability IM

s (γ). An alternative is to
use a structural method, as will be explained later, to get a γ that corresponds
to a good structural isolability. As before we study those γ:s that fulfill (5.72) in
Theorem 5.6, which implies according to Theorem 6.2 that the structural isolability
is a necessary condition for the analytical isolability. To design a structural method
that finds a γ that can be used to get good structural isolability, it is important to
understand how the structural isolability varies depending on γ. This section will
give details of how the structural isolability varies depending on γ. Then in the
following sections two different structural methods will be suggested.

Dependence between γ and Structural Isolability

Before a Theorem is presented, that characterize the dependence between γ and
IM
s (γ), some useful notation is introduced. Let Cb be an arbitrary model such

that Cb ⊆ Mb. Sometimes a set of models γ will define particular Cb:s. Then the
notation Cb(γ) will be used and is defined as

Cb(γ) :=
⋃

M ∈ γ
M ⊆ Mb

M (6.51)

The model Cb(γ) is the set of equations that a diagnostic system defined by γ

uses to check inconsistencies for behavioral mode b. A model Cb, not defined with
a γ, can be thought of as the set of equations that a diagnostic system uses to
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check inconsistencies for behavioral mode b. The model M∗
b is the smallest set of

equations that exactly defines the set of possible observations for behavior mode b.
It will especially for theoretical purposes be convenient to define a primitive

structural isolability as

IM
sp(〈Cb1

, . . . , Cbn〉) := {(bi, bj) ∈ B × B|bi /∈ ass Cbj
} (6.52)

where Cbi
is an arbitrary model such that Cbi

⊆ Mbi
. The difference between

IM
s ({Cb1

, . . . , Cbn }) and IM
sp(〈Cb1

, . . . , Cbn〉) is in the latter case that, if the model
Cbi

is not valid then only bi is rejected as the next example will show.

Example 6.5 Continuation of Example 6.4. Consider the following three choices
of Cb:s corresponding to each column in

b C1bi
= M∗

bi
C2bi

C3bi
= Mbi

b1 {e1, e2, e3, e4} {e1, e2, e3, e4} {e1, e2, e3, e4}

b2 {e2, e3, e4} {e2, e3, e4} {e2, e3, e4}

b3 {e1, e2, e4} {e1, e2, e4} {e1, e2, e4}

b4 {e1, e2, e3, e5} {e1, e2, e3, e5} {e1, e2, e3, e5}

b5 ∅ {e2, e4} {e2, e4}

b6 {e5} {e5} {e2, e3, e5}

b7 {e1, e2, e5} {e1, e2, e5} {e1, e2, e5}

b8 {e5} {e2, e5} {e2, e5}

(6.53)

Consider C1b6
= {e5} where ass C1b6

= {b4, b6, b7, b8}. The model C1b6
contributes

according to (6.52) to the primitive structural isolability as

{(bi, b6)|bi /∈ ass C1b6
} = {(bi, b6)|bi ∈ {b1, b2, b3, b5}} (6.54)

and in the structural isolability defined in (6.3) as

{(bi, bj)|bi /∈ ass C1b6
∧ bj ∈ ass C1b6

} =

{(bi, bj)|bi ∈ {b1, b2, b3, b5} ∧ bj ∈ {b4, b6, b7, b8}}
(6.55)

These two sets can be represented in the isolability matrix as

present necessary interpreted mode
mode b1 b2 b3 b4 b5 b6 b7 b8
b1 0 0 0 0

b2 0 0 0 0

b3 0 0 0 0

b4
b5 0 0 0 0

b6
b7
b8

(6.56)

where the zeros corresponds to the set defined by (6.55) and the bold zeros denote
the set in (6.54). The primitive structural isolability only draw conclusions about
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the column corresponding to b6, i.e. if C1b6
= {e5} is not valid then b6 is not a

diagnosis. This means that the null hypothesis for C1b6
in this case is sys = b6.

For the standard structural isolability the weakest behavioral mode assumption is
used as a null hypothesis, i.e. sys ∈ ass C1b6

= {b4, b6, b7, b8}.

The next theorem presents basic properties needed to understand the relation
between different sets γ and their corresponding structural isolability.

Theorem 6.6. Let M be a diagnostic model, let b1, . . . , bn be the system behavioral
modes, and let 〈Cb1

, . . . , Cbn〉 be a tuple of one model for each behavioral mode such
that Cbi

⊆ Mbi
. Then the following holds:

a) It holds that IM
sp(〈Cb1

, . . . , Cbn〉) ⊆ IM
s ({Cb1

, . . . , Cbn }).

b) If there exists a γ such that (Cb1
, . . . , Cbn) = (Cb1

(γ), . . . , Cbn(γ)), then
IM
s (γ) = IM

s ({Cb1
, . . . , Cbn }) = IM

sp(〈Cb1
, . . . , Cbn〉).

c) If γ is a set of models that satisfy the condition (6.34) in Theorem 6.5, if and
only if ∀bi ∈ B : Cbi

(γ) = M∗
bi

holds.

d) If Cbi
⊆ C ′

bi
holds for all bi ∈ B, then IM

sp(〈Cb1
, . . . , Cbn〉) ⊆

⊆ IM
sp(〈C ′

b1
, . . . , C ′

bn
〉).

e) If M fulfills Assumption 6.1 and M∗
bi

⊆ Cbi
holds for all bi ∈ B, then there

exists a γ such that IM ⊆ IM
s (γ) ⊆ IM

sp(〈Cb1
, . . . , Cbn〉).

Before Theorem 6.6 will be proven a discussion and an example will illustrate
how the results are used. The goal is, as said before, to derive the least optimistic
structural isolability that is a necessary condition for the analytical isolability.
Items (b), (c), and (d) in Theorem 6.6 imply that the primitive structural isolability
is a necessary condition for the analytical isolability if

∀b ∈ B : M∗
b ⊆ Cb ⊆ Mb (6.57)

holds. It can be realized in the following way. Using item (c), Theorem 6.2 and
Theorem 6.5 it follows that IM ⊆ IM

s ({M∗
b}). From items (b) and (c) it follows

that IM
s ({M∗

b}) = IM
sp(〈M∗

b〉). Item (d) implies that IM
sp(〈M∗

b〉) ⊆ IM
sp(〈Cb〉) if

M∗
b ⊆ Cb. Finally, from the definition of Cb it follows that Cb ⊆ Mb. It is clear

that all three choices of C
j
bi

in (6.53) fulfill (6.57) , i.e. M∗
bi

⊆ C
j
bi

⊆ Mbi
for all

system behavioral modes bi and for all three cases j ∈ {1, 2, 3}. This implies as said
before that IM ⊆ IM

sp(〈Cjbi
〉).

To get the least optimistic structural isolability, item (d) in Theorem 6.6 implies
that the smallest Cb that fulfills (6.57), i.e. M∗

b, corresponds to the best structural
isolability. Note that M∗

b in general is unknown. However it is easier to conclude
that a set Cb fulfills M∗

b ⊆ Cb than to calculate M∗
b, as will be shown later in

Section 6.4.3. Consider a case where M∗
b is unknown, but it is assumed that there

is a set of Cb for each system behavioral mode b that fulfill (6.57). If for each
behavioral mode b, the smallest Cb among the considered models are chosen, the
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best structural isolability among the considered models will be obtained according
to item (d) in Theorem 6.6. Consider the three choices of C

j
bi

in (6.53). The
primitive structural isolability of case 1 is

present necessary interpreted mode
mode b1 b2 b3 b4 b5 b6 b7 b8
b1 X X X X

b2 X X

b3 X X

b4 X X X X X

b5 X

b6 X X X

b7 X X X X

b8 X X X

(6.58)

in case 2
present necessary interpreted mode
mode b1 b2 b3 b4 b5 b6 b7 b8
b1 X X X X

b2 X X

b3 X X

b4 X X X X

b5 X

b6 X X

b7 X X X

b8 X X

(6.59)

and in case 3

present necessary interpreted mode
mode b1 b2 b3 b4 b5 b6 b7 b8
b1 X X X X

b2 X X

b3 X X

b4 X X X X

b5 X

b6 X X

b7 X X

b8 X

(6.60)

Item (d) is illustrated noting that C1bi
⊆ C2bi

⊆ C3bi
and comparing (6.58), (6.59),

and (6.60). For example, the difference between the case 2 and 3 is that C2b6
= {e5}

but C3b6
= {e2, e3, e5}. From the calculation of IM

sp(〈Cbi
〉) this difference implies

that the column corresponding to b6 can differ. The difference of (6.59) and (6.60)
is that (b7, b6) and (b8, b6) is not in the isolability matrix (6.60). Remember that
the isolability matrix is defined as the complement set to the isolability relation.
Then it follows from (6.59) and (6.60) that IM

sp(〈C2bi
〉) ⊆ IM

sp(〈C3bi
〉). If all three
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isolability matrices are compared, it is easy to see that smaller sets Cb:s give
less optimistic structural isolability, i.e. larger numbers of “X”:s in the isolability
matrices.

When the best possible tuple of Cb:s is chosen, item (a) in Theorem 6.6 suggests
that the primitive structural isolability IM

sp(〈Cbi
〉) gives a less optimistic structural

isolability than the structural isolability IM
s ({Cbi

}). Item (e) implies that even
if IM

sp(〈Cbi
〉) gives a less optimistic structural isolability, it is still a necessary

condition for the analytical isolability.
Finally item (c) and (e) imply that the least optimistic structural isolability

using a γ defined in Theorem 6.5 is the same as the least optimistic structural
isolability calculated as IM

sp(〈Cbi
〉) defined by any tuple of Cbi

that fulfills (6.57).
In the example this can be seen noting Cbi

(γm) = C1bi
= M∗

b and that (6.29) is
equal to (6.58), i.e.

IM
sp(〈C1bi

〉) = IM
s (γm) (6.61)

To summarize the discussion above, the least optimistic structural isolability
is obtained with the smallest set Cb for each system behavioral mode b that can
be proven to fulfill (6.57). Calculate the primitive structural isolability IM

sp(〈Cb〉)
to improve the structural isolability. It holds that IM ⊆ IM

sp(〈Cb〉). Finally the
primitive structural isolability obtained if Cb = M∗

b is equal to the structural
isolability obtained by a γ that fulfills the condition of Theorem 6.5.

In the next section the items in Theorem 6.6 will be proven. For readers that
are mainly interested in using this technique, it is possible to omit the following
section and continue reading Section 6.4.2.

Theoretical Results Proving Theorem 6.6

Each item except for item (c) in Theorem 6.6 will have a corresponding lemma.
Item (c) is just a reformulation of the result stated in Theorem 6.5. The first item
is stated and proven in the next lemma.

Lemma 6.7. If M is a diagnostic model, b1, . . . , bn are the system behavioral
modes, and 〈Cb1

, . . . , Cbn〉 is a tuple of one model for each behavioral mode such
that Cbi

⊆ Mbi
then

IM
sp(〈Cb1

, . . . , Cbn〉) ⊆ IM
s ({Cb1

, . . . , Cbn }) (6.62)

Proof. The right part of (6.62) can be expressed using (6.3) as

IM
s ({Cb1

, . . . , Cbn }) =
⋃
bi∈B

{(b1, b2)|b1 /∈ ass Cbi
∧ b2 ∈ ass Cbi

} (6.63)

Since Cbi
⊆ Mbi

, Lemma 5.3 implies that bi ∈ ass Cbi
. Using this expression, the

right-hand side of expression (6.63) can be rewritten as⋃
bi∈B

(
{(b1, bi)|b1 /∈ ass Cbi

} ∪ {(b1, b2)|b1 /∈ ass Cbi
∧ b2 ∈ ass Cbi

∧ b2 6= bi}
)

(6.64)
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or equivalently

{(b1, b2)|b1 /∈ ass Cb2
}∪

⋃
bi∈B

{(b1, b2)|b1 /∈ ass Cbi
∧b2 ∈ ass Cbi

∧b2 6= bi} (6.65)

Hence the structural isolability IM
s ({Cb1

, . . . , Cbn }) is equal to (6.65) and it follows
that

IM
sp(〈Cb1

, . . . , Cbn〉) ⊆ IM
s ({Cb1

, . . . , Cbn }) (6.66)

which completes the proof.

Next item (b) in Theorem 6.6 will be proven in the following two lemmas. Given
a diagnostic model M, let Ab denote a set defined as

Ab := {(b1, b)|b1 ∈ B} (6.67)

Lemma 6.8. Let M be a diagnostic model and let γ be an arbitrary set of models.
If b0 ∈ B, Cb0

(γ) is defined as in (6.51), and Ab0
is defined as in (6.67), then

IM
s (γ) ∩ Ab0

= IM
s ({Cb0

(γ)}) ∩ Ab0
(6.68)

Before Lemma 6.8 is proven an example of the result (6.68) is presented.

Example 6.6 Consider the diagnostic model in Example 6.1. Let

γ := {{e5}, {e1, e2}} (6.69)

and b0 := b4 in (6.68). Then it follows that

Cb4
(γ) = {e1, e2, e5}

Ab4
= {(bi, b4)|bi ∈ {b1, . . . , b8}}

(6.70)

Remember that IM
s (γ) is calculated as

IM
s (γ) =

( ⋃
M∈γ

{(bi, bj)|bi /∈ ass M ∧ bj ∈ ass M}
)

(6.71)

and using (6.67) it follows that

IM
s (γ) ∩ Ab4

=
( ⋃
M∈γ

{(bi, b4)|bi /∈ ass M ∧ b4 ∈ ass M}
)

Using that ass {e5} = {b4, b6, b7, b8} and ass {e1, e2} = {b1, b3, b4, b7} imply that
b4 ∈ ass {e5} and b4 ∈ ass {e1, e2} respectively. It follows that

IM
s (γ) ∩ Ab4

= {(bi, b4)|bi ∈ {b1, b2, b3, b5}} ∪ {(bi, b4)|bi ∈ {b2, b5, b6, b8}}

Then
IM
s (γ) ∩ Ab4

= {(bi, b4)|bi ∈ {b1, b2, b3, b5, b6, b8}} (6.72)
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The right-hand side of (6.68) is in this example

IM
s ({Cb4

(γ)}) ∩ Ab4
= {(bi, b4)|bi ∈ {b1, b2, b3, b5, b6, b8}} (6.73)

because ass Cb4
(γ) = ass {e1, e2, e5} = {b4, b7}. Equation (6.72) and (6.73) are

equal as Lemma 6.8 stated.

Proof. From (6.3) it follows that

IM
s (γ) ∩ Ab0

=
( ⋃
M∈γ

{(b1, b2)|b1 /∈ ass M ∧ b2 ∈ ass M}
) ∩ Ab0

(6.74)

Using (6.67) it follows that (6.74) can be expressed as( ⋃
M∈γ

{(b1, b2)|b1 /∈ ass M∧b2 ∈ ass M}
)∩Ab0

=
⋃
M∈γ

{(b1, b0)|b1 /∈ ass M∧b0 ∈ ass M}

(6.75)
From Lemma 5.3 it follows that⋃
M∈γ

{(b1, b0)|b1 /∈ ass M ∧ b0 ∈ ass M} =
⋃

M ∈ γ
M ⊆ Mb0

{(b1, b0)|b1 /∈ ass M} (6.76)

Using basic set theory it holds that⋃
M ∈ γ
M ⊆ Mb0

{(b1, b0)|b1 /∈ ass M} =
⋃

M ∈ γ
M ⊆ Mb0

{(b1, b0)|b1 ∈ (ass M)C} (6.77)

Since b0 is fixed it follows that⋃
M ∈ γ
M ⊆ Mb0

{(b1, b0)|b1 ∈ (ass M)C} = {(b1, b0)|b1 ∈
⋃

M ∈ γ
M ⊆ Mb0

(ass M)C} (6.78)

Set theory gives that

{(b1, b0)|b1 ∈
⋃

M ∈ γ
M ⊆ Mb0

(ass M)C} = {(b1, b0)|b1 ∈
( ⋂

M ∈ γ
M ⊆ Mb0

ass M
)C

} (6.79)

The definition of operator ass implies that

{(b1, b0)|b1 ∈
( ⋂

M ∈ γ
M ⊆ Mb0

ass M
)C

} = {(b1, b0)|b1 ∈
( ⋂

M ∈ γ
M ⊆ Mb0

(
⋂
e∈M

ass e)
)C

}

(6.80)
It is equivalent to intersect over all equations contained in some model M ∈ γ such
that M ⊆ Mb0

. From the definition of Cb0
(γ) in (6.51) it follows that

{(b1, b0)|b1 ∈
( ⋂

M ∈ γ
M ⊆ Mb0

(
⋂
e∈M

ass e)
)C

} = {(b1, b0)|b1 ∈
( ⋂
e∈Cb0

(γ)

ass e
)C

}

(6.81)
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From the definition of operator ass it follows that

{(b1, b0)|b1 ∈
( ⋂
e∈Cb0

(γ)

ass e
)C

} = {(b1, b0)|b1 ∈
(
ass Cb0

(γ)
)C

} (6.82)

Basic set theory implies

{(b1, b0)|b1 ∈
(
ass Cb0

(γ)
)C

} = {(b1, b0)|b1 /∈ ass Cb0
(γ)} (6.83)

The right-hand side of (6.68) can be written as

IM
s ({Cb0

(γ)}) ∩ Ab0
= {(b1, b2)|b1 /∈ ass Cb0

(γ) ∧ b2 ∈ ass Cb0
(γ)} ∩ Ab0

(6.84)

Using the definition of Ab0
it follows that

{(b1, b2)|b1 /∈ ass Cb0
(γ) ∧ b2 ∈ ass Cb0

(γ)} ∩ Ab0
=

{(b1, b0)|b1 /∈ ass Cb0
(γ) ∧ b0 ∈ ass Cb0

(γ)}
(6.85)

From Cb0
(γ) ⊆ Mb0

, and Lemma 5.3 it follows that

{(b1, b0)|b1 /∈ ass Cb0
(γ) ∧ b0 ∈ ass Cb0

(γ)} = {(b1, b0)|b1 /∈ ass Cb0
(γ)} (6.86)

Since that the right-hand side of (6.83) and (6.86) are equal Lemma 6.8 follows.

Lemma 6.9. If M is a diagnostic model, γ is an arbitrary set of models, and
Cb(γ) is defined as in (6.51), then

IM
s (γ) = IM

sp(〈Cb1
(γ), . . . , Cbn(γ)〉) (6.87)

Expression (6.87) can be used to calculate IM
s (γ) in a different way than in Al-

gorithm 6.1. According to expression (6.87), IM
s (γ) can be calculated by calculating

Cb and then assCbfor each system behavioral mode b. However Algorithm 6.1 is
less computational intense. Hence Lemma 6.9 is mainly important for theoretical
purposes.

Proof. From (6.67) it follows that

IM
s (γ) =

⋃
bj∈B

(IM
s (γ) ∩ Abj

) (6.88)

Then from the equalities (6.74)-(6.83) it follows that⋃
bj∈B

(IM
s (γ) ∩ Abj

) =
⋃
bj∈B

{(bi, bj)|bi /∈ ass Cbj
(γ)} (6.89)

Finally it holds that⋃
bj∈B

{(bi, bj)|bi /∈ ass Cbj
(γ)} = {(bi, bj)|bi /∈ ass Cbj

(γ)} (6.90)

which can be rewritten using (6.3) and (6.52) as

IM
s (γ) = IM

sp(〈Cb1
(γ), . . . , Cbn(γ)〉) (6.91)
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Item (d) in Theorem 6.6 is proven in the following Lemma.

Lemma 6.10. Let M be a diagnostic model, let b1, . . . , bn be the system behavioral
modes, and let (Cb1

, . . . , Cbn) be a tuple of one model for each system behavioral
mode. If

∀bi ∈ B : Cbi
⊆ C ′

bi
(6.92)

then
IM
sp(〈Cb1

(γ), . . . , Cbn(γ)〉) ⊆ IM
sp(〈C ′

b1
(γ), . . . , C ′

bn
(γ)〉) (6.93)

Proof. Take an arbitrary b ∈ B then it holds that

Cb ⊆ C ′
b (6.94)

From (6.94) and the definition of ass it follows that

ass C ′
b ⊆ ass Cb (6.95)

Expression (6.95) is equivalent to

B\ass Cb ⊆ B\ass C ′
b (6.96)

Expression (6.96) implies that

{(bi, b)|bi ∈ B\ass Cb} ⊆ {(bi, b)|bi ∈ B\ass C ′
b} (6.97)

Expression (6.97) is equivalent to

{(bi, b)|bi /∈ ass Cb} ⊆ {(bi, b)|bi /∈ ass C ′
b} (6.98)

Since b was arbitrarily chosen it follows that⋃
b∈B

{(bi, b)|bi /∈ ass Cb} ⊆
⋃
b∈B

{(bi, b)|bi /∈ ass C ′
b} (6.99)

Hence it holds that

{(bi, bj)|bi /∈ ass Cbj
} ⊆ {(bi, bj)|bi /∈ ass C ′

bj
} (6.100)

Rewriting (6.100) using (6.52) completes the proof.

Item (e) in Theorem 6.6 is proven in the following Lemma.

Lemma 6.11. Let M be a diagnostic model that fulfills Assumption 6.1, let b1, . . . , bn
be the system behavioral modes, and let (Cb1

, . . . , Cbn) be a tuple of one model for
each behavioral mode such that Cbi

⊆ Mbi
. If

∀bi ∈ B : M∗
bi

⊆ Cbi
(6.101)

then there exists a γ such that

IM ⊆ IM
s (γ) ⊆ IM

sp(〈Cb1
, . . . , Cbn〉) (6.102)
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Proof. For any diagnostic model M there exists a unique set of minimal rejectable
models γm. Let γb := {M ∈ γm|M ⊆ Mb}. According to the definition of Σb it
follows that models in Σb are the maximal models that are included in γb. Since
this holds for all system behavioral modes it follows that γm satisfy (6.34). Since
M fulfills Assumption 6.1, it follows from Theorem 6.5 that

IM ⊆ IM
s (γb) (6.103)

From Lemma 6.9 it follows that

IM
s (γb) = {(bi, bj)|bi /∈ ass Cbj

(γb)} (6.104)

Since γb fulfills condition (6.34), then it follows that

∀b ∈ B : Cb(γb) = M∗
b (6.105)

Now for any tuple (Cb1
, . . . , Cbn) such that (6.101) is fulfilled it follows from (6.105)

that
∀bi ∈ B : Cbi

(γb) ⊆ Cbi
(6.106)

Since (6.106) is equivalent with (6.92) the condition in Lemma 6.10 is fulfilled and
it follows that

{(bi, bj)|bi /∈ ass Cbj
(γb)} ⊆ {(bi, bj)|bi /∈ ass Cbj

} (6.107)

The conclusion (6.102) follows from (6.103), (6.104), (6.107), and (6.52).

6.4.2 System Behavioral Models

Depending on available knowledge contained in the diagnostic model, the smallest
set Cb will be chosen such that M∗

b ⊆ Cb can validated for each system behavioral
mode to obtain the least optimistic structural isolability given that level of knowl-
edge. Two different approaches that calculate the best structural isolability given
different levels of information of the diagnostic model are presented in this and in
the next section respectively.

To ensure that M∗
b ⊆ Cb holds if no analytical properties are known, the only

option is to use Cb = Mb for all system behavioral modes. This choice can also be
written as γ = γB. From item (e) in Theorem 6.6 it follows that

IM ⊆ IM
s (γB) (6.108)

It is not likely that item (c) in Theorem 6.6 is fulfilled and if no analytical proper-
ties are known, it is impossible to check if item (c) in Theorem 6.6 is fulfilled. An
example of the resulting structural isolability using γB is shown in (6.60). Remem-
ber also that the structural isolability obtained from γB in (6.60) is not as good
as the structural isolability obtained using γm in (6.58). In general, the structural
isolability calculated using γB is optimistic.
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6.4.3 Structurally Over-determined Models

In previous section no analytical information was available and therefore the Cb:s
could not be chosen smaller than Mb to be sure that M∗

b ⊆ Cb holds. In this
section we assume that analytical expressions are available and it will be shown
how the sets Cb can be chosen smaller then Mb. Then according to item (d) in
Theorem 6.6, the resulting structural isolability is better than the one obtained
using γB.

The method that will be presented uses first the structure of the model to
suggest a tuple of Cb:s. Then each of these models are analyzed, first structurally
and if needed also analytically to validate that M∗

b ⊆ Cb holds.
The idea is that the structure of the model suggests a small Cb that is likely

to have the property M∗
b ⊆ Cb. For the structurally overdetermined part M+

b

defined in Section 3.4.2, it holds for example in the linear case that M∗
b ⊆ M+

b if
the matrix, corresponding to Mb\M+

b and the unknown variables not in M+
b , has

full row-rank. This could make it a reasonable choice to find M+
b for all system

behavioral modes b.
To make this method applicable to models that are not linear, results to decide if

M∗
b ⊆ Cb is fulfilled have to be given. The next theorem gives sufficient conditions

for a model M̂ ⊆ Mb to fulfill M∗
b ⊆ M̂.

Theorem 6.12. Let Mb and M̂ ⊆ Mb be two models and let (6.32) be fulfilled for
b. If X̂ := varXuM̂, X̄ := Xu\X̂, M̄ := Mb\M̂, and

∀z∀x̂ :
(
M̂(z, x̂) → ∃x̄ : M̄(z, x̂, x̄)

)
(6.109)

then it follows that M∗
b ⊆ M̂, where M∗

b is defined in (6.33).

Proof. From (6.109) and the definition of M̄ it follows that

∀z∀x̂ :
(
M̂(z, x̂) → ∃x̄ : Mb(z, x̂, x̄)

)
(6.110)

This means for an arbitrary x̂1 that

∀z :
(
M̂(z, x̂1) → ∃x̄ : Mb(z, x̂1, x̄)

)
(6.111)

Then it follows that

∀z :
(∃x̂ : M̂(z, x̂) → ∃x̂∃x̄ : Mb(z, x̂, x̄)

)
(6.112)

From the definition of M∗
b and from (6.32) it follows that M∗

b is the unique minimal
set of equations M such that

{z|∃xM(z,x)} = {z|∃xMb(z,x)} (6.113)

holds. Since M̂ fulfills (6.113) according to (6.112), it follows from the fact that
M∗
b is the unique minimal set of equations that satisfies (6.113) that

M∗
b ⊆ M̂ (6.114)
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Next a weaker alternative to Theorem 6.12 is presented. The advantage is that
the next condition requires less computations to be validated.

Corollary 6.13. Let Mb and M̂ ⊆ Mb be two models and let (6.32) be fulfilled
for b. If X̂ := varXuM̂, X̄ := Xu\X̂, M̄ := Mb\M̂, and

∀z∀x̂∃x̄ : M̄(z, x̂, x̄) (6.115)

then it follows that M∗
b ⊆ M̂ where M∗

b is defined in (6.33).

Corollary 6.13 follows directly from (6.109) in Theorem 6.12. Note that in
Corollary 6.13 the analytical test (6.115) only involves the equations to be removed
from Mb. Since not all equations are analyzed, the computations become eas-
ier. An example will show how a model is tested according to Theorem 6.12 and
Corollary 6.13.

Example 6.7 Consider the diagnostic model in Example 6.1. Assume that we
want to check if M∗

b6
⊆ {e5}. The models defined in Theorem 6.12 are in this

example Mb6
= {e2, e3, e5}, M̂ = {e5}, and M̄ = {e2, e3}. Even if the model M∗

b6
is

shown in previous examples, M∗
b6

is in this example considered to be unknown. The
set of variables in Theorem 6.12 are X̂ = ∅ and X̄ = {x1, x2}. To validate (6.109)
the set

{(z, x̂)|M̂(z, x̂)} (6.116)

is calculated. In this example it is

{z|z3 = 0} (6.117)

Now, (6.109) holds if
∀z ∈ {z|z3 = 0}∃x1, x2 : {e2, e3} (6.118)

or equivalently
∀z2∃x1, x2 : {x1 = x22, z2 = x2} (6.119)

For an arbitrary z2, x2 is defined as x2 := z2 and then x1 is defined as x1 := x22 = z22.
This assignment prove that (6.119) holds. Hence according to Theorem 6.12 it
follows that M∗

b6
⊆ {e5}.

If M∗
b6

⊆ {e5} is validated using Corollary 6.13 instead of Theorem 6.12, the
test in this example is to validate only expression (6.119). Hence when using
Corollary 6.13 the set in (6.116) needs not to be calculated.

In Section 3.4.2 it was explained how the structurally overdetermined part is
found and Theorem 6.12 describes a method to test if the structural isolability is
a necessary condition for the analytical isolability. Next we combine the struc-
tural algorithm from Section 3.4.2 with the suggested test such that the calculated
structural isolability is a necessary condition for the analytical isolability of the
diagnostic model considered.
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Given a set {M+
b |b ∈ B} let the set B ′ ⊆ B be the system behavioral modes

b such that the expression M∗
b ⊆ M+

b can be validated, for example with Theo-
rem 6.12 or Corollary 6.13. Then for b ∈ B ′, Cb is preferably defined as

Cb := M+
b (6.120)

and for b ∈ B\B ′, Cb is defined as

Cb := Mb (6.121)

Then from Theorem 6.6 it follows that this choice of Cb corresponds to a better
structural isolability than if all Cb:s are chosen to be equal to Mb. However it is
not sure Cb = M∗

b holds. Therefore it is possible that there are other Cb:s that
corresponds to better structural isolabilities. According to item (a) in Theorem 6.6,
it holds that the best structural isolability given the chosen set of Cb:s is obtained
if the primitive structural isolability IM

sp(〈Cb1
, . . . , Cbn〉) is used, The primitive

structural isolability is calculated as

IM
sp(〈Cb1

, . . . , Cbn〉) = {(bi, bj)|bi /∈ ass Cbj
} (6.122)

Item (e) in Theorem 6.6 implies that

IM ⊆ IM
sp(〈Cb1

, . . . , Cbn〉) (6.123)

An example will show how this method is applied a diagnostic model.

Example 6.8 Consider the diagnostic model in Example 6.1. The structure of
the diagnostic model (6.16) is

component assumption equation
x1 x2 z1 z2 z3

Sensor 1 φ(s1 = NF) e1 : X X

Comp B e2 : X X

Sensor 2 φ(s2 = NF) e3 : X X

Sensor 3 φ(s3 = NF) e4 : X X

φ(s3 = SG) e5 : X

(6.124)

The models M∗
bi

, the structural overdetermined models M+
bi

, and the behavioral
models Mbi

are

b M∗
bi

M+
bi

Mbi

b1 {e1, e2, e3, e4} {e1, e2, e3, e4} {e1, e2, e3, e4}

b2 {e2, e3, e4} {e2, e3, e4} {e2, e3, e4}

b3 {e1, e2, e4} {e1, e2, e4} {e1, e2, e4}

b4 {e1, e2, e3, e5} {e1, e2, e3, e5} {e1, e2, e3, e5}

b5 ∅ ∅ {e2, e4}

b6 {e5} {e5} {e2, e3, e5}

b7 {e1, e2, e5} {e5} {e1, e2, e5}

b8 {e5} {e5} {e2, e5}

(6.125)
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The meaning of the models that are written in bold will be explained later. The
models M∗

bi
are in this example assumed to be unknown. However since they

corresponds to the best structural isolability of all Cb:s defined in Theorem 6.6,
they can be of interest to show for comparison.

Each M+
bi

is tested to conclude if M∗
b ⊆ M+

bi
holds. For the behavioral modes

b1, . . . , b4 it holds that M+
bi

= Mbi
and since M∗

bi
⊆ Mbi

it follows that M∗
bi

⊆
M+
bi

without doing any analytical calculations. If Corollary 6.13 is applied to M+
b5

condition (6.109) becomes

∀z3∃x1, x2 : {x1 = x22, z3 = x2} (6.126)

This expression is easily validated finding the assignment x2 := z3 and x1 :=
x22 = z23. Continuing in this way, the sets to be analyzed using Corollary 6.13 are
M̄ = {e2, e3}, M̄ = {e1, e2} and M̄ = {e2}, for each remaining behavioral mode
respectively.

The behavioral mode b7 is of special interest, because it can be seen in (6.125)
that M∗

b7
* M+

b7
. First it holds that {e1, e2} and {e5} have no variable in common.

This implies that the condition in Theorem 6.12 and the condition in Corollary 6.13
are equivalent. The condition is

∀z1∃x1, x2 : {z1 = x1, x1 = x22} (6.127)

If it is assumed that all variables are real, it is easy to verify that (6.127) is false
because there is no x2 for z1 < 0. Only for behavioral mode b7, it is not possible
to verify that M∗

bi
⊆ M+

bi
. Hence B ′ = B\{b7} and from (6.120) and (6.121)

the model Cb for each behavioral mode is defined. The models Cb are written in
bold in (6.125). In this example the set of Cb:s corresponds to the best structural
isolability shown in (6.29) or (6.58). This can also be realized noting in (6.125)
that M∗

b = Cb for all system behavioral modes.

An interesting insight that is one justification for the contents of Section 6.4 is
that the same structural isolability is obtained in Example 6.8 as in Example 6.3.
The important difference is how the structural isolability was calculated. In Exam-
ple 6.3 all minimal rejectable models where used to get the structural isolability.
Detailed analytical knowledge about the diagnostic model must be used to derive all
minimal rejectable models. In Example 6.8 considerable less analytical calculations
were carried out to obtain the same result.

6.5 Calculating Analytical Isolability of Diagnos-
tic Models

In this section the analytical isolability IM of the diagnostic model in Example 6.1
is calculated. The calculations show how the structural isolability can be used to
reduce the amount of analytical computations significantly. The method that will
be applied to the diagnostic model in Example 6.1 is not intended to hold generally.
However in the construction of a general algorithm, these ideas can be used.
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{b1}

{b2} {b3}

{b4}

{b7}

{b8, b6}

{b5}

Figure 6.3 The Hasse diagram of the partial order PM
s (γm).

6.5.1 Calculating Analytical Isolability Using Structural Isola-
bility

The calculations done later assumes that the structural isolability is derived from
a γ such that

IM ⊆ IM
s (γ) (6.128)

A sufficient condition for γ is that Theorem 5.6 is satisfied. Then the needed
property (6.128) follows from Theorem 6.2. From (5.46) in Example 5.2 the minimal
rejectable models are

γm = {{e5}, {e1, e2}, {e3, e4}, {e1, e2, e3}, {e1, e2, e4}} (6.129)

This set satisfies the conditions of Theorem 6.2. Moreover, γm also satisfies The-
orem 6.5 which is not needed but implies that the structural isolability is less
optimistic, i.e. more similar to the analytical isolability. The structural isolability
IM
s (γm) is shown in (6.29) and the partial order PM

s (γm) is shown in Figure 6.2.
Since Figure 6.2 will be used a lot in the calculations, it is duplicated and is also
shown in Figure 6.3.

The structural isolability IM
s (γm) can be used to calculate IM in a more efficient

way, because we know that

IM ⊆ IM
s (γm) (6.130)

It means that for those elements that satisfy

(b1, b2) /∈ IM
s (γm) (6.131)

it follows from (6.130) that

(b1, b2) /∈ IM (6.132)
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This situation can be illustrated in the isolability matrix IM as

present necessary interpreted mode
mode {b1} {b2} {b3} {b4} {b7} {b8, b6} {b5}

{b1} X X X ? ? ? X

{b2} ? X ? ? ? ? X

{b3} ? ? X ? ? ? X

{b4} ? ? ? X X X X

{b7} ? ? ? ? X X X

{b8, b6} ? ? ? ? ? X X

{b5} ? ? ? ? ? ? X

(6.133)

Here the “X” denotes that (bi, bj) /∈ IM as usual, “?” denotes that we do not know
if (bi, bj) /∈ IM or (bi, bj) ∈ IM is true, and later we will use “0” to denote that
(bi, bj) ∈ IM. Hence it is sufficient to check the properties corresponding to the
matrix elements “?”, i.e. to check if

(b1, b2) ∈ IM (6.134)

holds for the isolability properties

(b1, b2) ∈ IM
s (6.135)

Remember that an equivalent expression for (6.134) is

OMb1
\OMb2

6= ∅ (6.136)

Since there is no risk for confusion the specification of diagnostic model is omitted
in (6.136). If (6.136) is evaluated for every ordered pair of two different system-
behavioral modes, then 48 evaluations have to be done. If only ordered pairs of
equivalent classes included in the structural isolability (6.29) are evaluated, the
number of evaluations is equal to the number of “?” in (6.133), i.e. 31. However
using the partial order PM

s (γm) it is even not necessary to evaluate all 31 pairs of
equivalent classes, it will be shown that only 7 evaluations are sufficient to calculate
the analytical isolability.

6.5.2 Minimal and Maximal Elements of Partial Orders

Before we continue some notions concerning partial orders are defined. If R is a
partial order on A, then an element a ∈ A is called a minimal element of A if for
all x ∈ A and x 6= a implies that (a, x) /∈ R. An element b is called a maximal
element of A if whenever y ∈ A and y 6= b, then (y, b) /∈ R.

6.5.3 Method Description

The method considers one system behavioral mode at a time. We find a minimal
element, a, of PM

s that is not already considered. For each maximal element among
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those elements b such that there is a“?” in the entry (a, b) in IM check if (a, b) ∈ IM

by validating (6.136). Then update the matrix IM by setting “0”:s in all entries
(bi, bj) such that

([a], [bi]) ∈ PM
s (γm) (6.137)

and
([bj], [b]) ∈ PM

s (γm) (6.138)

Next it will be proven for any such pair (bi, bj), that (a, b) ∈ IM implies (bi, bj) ∈
IM or equivalently OMbi

\OMbj
6= ∅. Take an arbitrary pair of behavioral modes

(bi, bj) that fulfills (6.137) and (6.138). From the definition of PM
s (γm) it follows

that for any b1 and b2 it holds that

([b1], [b2]) ∈ PM
s (γm) → OMb1

⊆ OMb2
(6.139)

Applying this expression to (6.137) and (6.138) implies that

OMa
⊆ OMbi

(6.140)

and
OMbj

⊆ OMb
(6.141)

respectively. Using that
OMa

\OMb
6= ∅ (6.142)

(6.140), (6.141), and elementary rules concerning sets gives that

OMbi
\OMbj

6= ∅ (6.143)

which was the expression to be proven.

6.5.4 Calculation of the Analytical Isolability

Now we return to the calculation of the analytical isolability of the diagnostic
model in Example 6.1. The sets of consistent observations for each behavioral
mode respectively are

b OMb

b1 {z|z1 = z22, z2 = z3}

b2 {z|z2 = z3}

b3 {z|z1 = z23}

b4 {z|z1 = z22, z3 = 0}

b5 R3

b6 {z|z3 = 0}

b7 {z|z1 ≥ 0, z3 = 0}

b8 {z|z3 = 0}

(6.144)

The minimal elements of PM
s in Figure 6.3 is {b1} and {b4}. We start to inves-

tigate {b1}. In the row corresponding to {b1} in (6.133) there is a “?” in the
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columns corresponding to the elements {b4}, {b7}, {b6, b8}. Of these three ele-
ments, {b6, b8} is the only maximal element defined by PM

s in Figure 6.3. Then we
test if ({b1}, {b6, b8}) /∈ PM

s by choosing arbitrary representatives of the equivalent
classes respectively, for example b1 and b6. From (6.144) it is easy to see that

OMb1
\OMb6

6= ∅ (6.145)

is true. From PM
s (γm), (6.139), and (6.145) it follows that all of the following

inequalities holds
OMb1

\OMb8
6= ∅

OMb1
\OMb6

6= ∅

OMb1
\OMb7

6= ∅

OMb1
\OMb4

6= ∅

OMb2
\OMb8

6= ∅

OMb2
\OMb6

6= ∅

OMb2
\OMb7

6= ∅

OMb2
\OMb4

6= ∅

OMb3
\OMb8

6= ∅

OMb3
\OMb6

6= ∅

OMb3
\OMb7

6= ∅

OMb3
\OMb4

6= ∅

OMb5
\OMb8

6= ∅

OMb5
\OMb6

6= ∅

OMb5
\OMb7

6= ∅

OMb5
\OMb4

6= ∅

(6.146)

Next it is explained as an example how OMb2
\OMb4

6= ∅ in (6.146) is implied
by (6.145). In Figure 6.4 it is shown how (6.145) implies that OMb2

\OMb4
6= ∅.

The set OMb1
\OMb6

is colored in gray. From PM
s (γm) we know that OMb1

⊆
OMb2

and OMb4
⊆ OMb6

. In the figure it is easy to see that if OMb1
\OMb6

6= ∅

then OMb2
\OMb4

6= ∅.
If inequality OMbi

\OMbj
6= ∅ holds then (bi, bj) ∈ IM. From (6.146) it follows

that IM is

present necessary interpreted mode
mode {b1} {b2} {b3} {b4} {b7} {b8, b6} {b5}

{b1} X X X 0 0 0 X

{b2} ? X ? 0 0 0 X

{b3} ? ? X 0 0 0 X

{b4} ? ? ? X X X X

{b7} ? ? ? ? X X X

{b8, b6} ? ? ? ? ? X X

{b5} ? ? ? 0 0 0 X

(6.147)
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OMb1

OMb2

OMb4

OMb6

Figure 6.4 The set OMb1
\OMb6

is colored in gray. The set OMb2
\OMb4

is a superset of OMb1
\OMb6

.

Now the element {b1} has been analyzed. The minimal elements of PM
s in Figure 6.3

when {b1} is removed are {b2}, {b3}, and {b4}. Consider {b2}. The columns with “?”
are {b1} and {b3}. The maximal element of these are {b3}. Then

OMb2
\OMb3

6= ∅ (6.148)

is found to be true. Inequality (6.148) together with PM
s (γm) and (6.139) imply

that

OMb2
\OMb3

6= ∅

OMb5
\OMb3

6= ∅

OMb2
\OMb1

6= ∅

OMb5
\OMb1

6= ∅

(6.149)

and the updated analytical isolability matrix is

present necessary interpreted mode
mode {b1} {b2} {b3} {b4} {b7} {b8, b6} {b5}

{b1} X X X 0 0 0 X

{b2} 0 X 0 0 0 0 X

{b3} ? ? X 0 0 0 X

{b4} ? ? ? X X X X

{b7} ? ? ? ? X X X

{b8, b6} ? ? ? ? ? X X

{b5} 0 ? 0 0 0 0 X

(6.150)
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Continuing in this way it follows that

present necessary interpreted mode
mode {b1} {b2} {b3} {b4} {b7} {b8, b6} {b5}

{b1} X X X 0 0 0 X

{b2} 0 X 0 0 0 0 X

{b3} 0 0 X 0 0 0 X

{b4} 0 0 0 X X X X

{b7} 0 0 0 0 X X X

{b8, b6} 0 0 0 0 0 X X

{b5} 0 0 0 0 0 0 X

(6.151)

is the analytical isolability. In this example it holds that IM = IM
s (γm). Remember

that a straightforward approach would lead to 31 inequalities to test but using the
structural isolability and the corresponding partial order the number of tests are
decreased to only 7 tests.



7
Computing Testable Models

In Chapter 5 it was shown which sets γ that can be used to design a sound and
complete diagnostic system. In this chapter we will present methods, that mainly
is structural, to obtain such γ:s. In Section 7.1 two types of γ:s that correspond to
sound and complete diagnostic systems are used to present some additional desired
properties of γ:s. When a γ is derived, it is sufficient to design a strong test for
each model in γ to derive a sound and complete diagnostic system. The difficulty
of deriving a strong test for a model will in general increase with the number of
equations in the model. Minimal rejectable models are therefore especially attrac-
tive to use. Since the analysis here is assumed to be mainly structural, it will be
important to know the structural properties of minimal rejectable models. In Sec-
tion 7.2 structural properties for minimal rejectable models are presented. These
properties are the basics for the structural algorithms defined in Section 7.3. These
algorithms find γ:s such that the models in γ are small and correspond to sound
and complete diagnostic systems. However these algorithms have the disadvantage
that they can be computational intractable for large diagnostic models. In Sec-
tion 7.4 an algorithm is presented that has a lower computational complexity than
the algorithms presented in Section 7.3. The reduction of complexity is gained by
removing the soundness condition. Hence the output γ corresponds to a complete
but not necessarily sound diagnostic systems. Even though the output γ from this
algorithm is not guaranteed to correspond to a sound diagnostic system, it often
holds that the corresponding diagnostic system detects most inconsistencies.

101
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7.1 Set of Tests to Obtain Sound and Complete
Diagnostic Systems

To decide suitable tests in the diagnostic system, structural analysis can be used
to compute a set of models γ. If γ fulfills Theorem 5.6, then a sound and complete
diagnostic system can be designed. A sufficient condition for deriving a sound
and complete diagnostic system is to design a strong test for each model M ∈ γ.
Generally it is difficult to derive tests. However, in many cases the difficulty in
deriving a test increases with the number of constraints in the model M. In these
cases a reasonable additional condition on γ is that the models M ∈ γ should be
as small as possible to simplify the calculations to obtain a test for M. In the next
two sections we discuss two choices of γ that are discussed frequently in previous
chapters, i.e. the set of behavior models and the set of Cb:s. These two choices
of γ are discussed in the light of the additional condition, i.e. small models are
preferable in γ.

7.1.1 Tests for Behavioral Models

It is easy to obtain the behavioral models Mb using the structure. However the
disadvantage is, as we have mentioned earlier, that behavioral models are the largest
models that can be used to design a complete and sound diagnostic system. So
the advantage of easily being obtained with the structure is of little importance
compared to the big disadvantages in the analytical step when diagnostic tests are
designed. If it is not possible to design tests directly for Mb smaller models are
those Cb:s derived with methods described in Chapter 6.

7.1.2 Tests for the Models Cb

If structural isolability analysis of the diagnostic models M is done, a tuple of Cb:s
is known. The set γC = {Cb|b ∈ B} can be used to design a sound and complete
diagnostic system. It is true that Cb ⊆ Mb which means that the derivation of
tests can sometimes be less difficult. Since some models Cb for different behavioral
modes can be equal and some models Cb can be the empty set of equations it
follows that the total number of models to design tests for can be less then the
number of nonempty behavioral models. However if there exists a M ∈ γC such
that no test can be derived depending on too high complexity of M, it is possible
to use even more detailed structural analysis. This will be explained in the later
sections. The goal is to obtain a γ with the smallest models that can be used to
design a sound and complete diagnostic system. Since smaller models such as the
minimal rejectable models according to Corollary 5.7 can be used to design a sound
and complete diagnostic system it follows that the set of Cb:s is not particularly
good choice.
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7.1.3 Aim at Finding the Smallest Models

We would like to find the smallest models such that a sound and complete diagnostic
system can be derived. To derive a sound and complete diagnostic system, γ has to
fulfill Theorem 5.6. The smallest models that satisfy expression (5.72) are according
to Corollary 5.7 the set or a subset of the minimal rejectable models. Since that goal
is to design a structural method, the structure of these models will be important
to know.

7.2 Structural Properties of Minimal Rejectable
Models

In this section we describe structural properties of minimal rejectable models. A
necessary structural property for minimal rejectable models is presented in the first
section. However, it will then be shown that this structural property is not suffi-
ciently informative to reduce the number of possible models that can be minimal
rejectable models. Therefore in Section 7.2.2 a stronger necessary structural con-
dition is presented that reduces the number of possible minimal rejectable models.

7.2.1 Connected Models

First we define a structural property for a model M.

Definition 7.1 (Connected Model). If M is a model such that G(M, varXuM)
is connected, then M is a connected model.

The connection between the structural property connected models and the min-
imal rejectable models are stated in the next theorem.

Theorem 7.1. A minimal rejectable model is a connected model.

Before the proof of Theorem 7.1 is presented, an example will show connected
and not connected models and there connection to minimal rejectable models.

Example 7.1 Consider the diagnostic model in Example 6.8 and especially the
model M = {e1, e2, e5}. The bipartite graph G(M, varXuM) is shown in Figure 7.1.
The graph G(M, varXuM) is not connected, because e5 have no connecting edge to
any other vertices. Hence M is not a connected model and therefore not a minimal
rejectable model according to Theorem 7.1. In Example 5.5, it is shown that
{e1, e2} and {e5} are minimal rejectable models. In Figure 7.1 it can be seen that
both these models are connected models which once again exemplify the conclusion
of Theorem 7.1.

Proof. Assume that M is a minimal rejectable and a not connected model. Since
M is a not connected model it follows that there is a partition M = M1 ∪M2 such
that varXuM1 ∩ varXuM2 = ∅. Let the set of variables varXuM1 and varXuM2 be
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e1 e2 e5

x1 x2

Figure 7.1 The disconnected bipartite graph G(M, varXuM) defined with
the diagnostic model in Example 6.8 and M = {e1, e2, e5}.

denoted X1 and X2 respectively. Since M is a minimal rejectable model there is a
z0 such that M is a minimal rejectable model at z0. Then the following calculations
can be done:

¬∃x : M(x, z0) =

¬∃x1∃x2 : (M1(x1, z0) ∧ (M2(x2, z0)) =

(¬∃x1 : M1(x1, z0)) ∨ (¬∃x2 : M2(x2, z0))

From the calculations above, it follows that M1 or M2 is also rejectable at z0.
Since M1 ⊂ M and M2 ⊂ M this contradicts the fact that M is assumed to be
a minimal rejectable model at z0. Since z0 was arbitrarily chosen such that M

is a minimal rejectable model at z0, it follows that M is not a minimal rejectable
model.

Let a maximal connected model be a connected model such that no superset
is a connected model. To obtain a γ that fulfills (5.72), it is sufficient to find all
maximal connected models in each Mb. This method is only exemplified with one
example, because the resulting γ will in many cases be γB.

Example 7.2 Consider the diagnostic model in Example 6.8. The structure of
the diagnostic model is

Component Assumption Equation
x1 x2 z1 z2 z3

Sensor 1 φ(s1 = NF) e1 : X X

Comp B e2 : X X

Sensor 2 φ(s2 = NF) e3 : X X

Sensor 3 φ(s3 = NF) e4 : X X

φ(s3 = SG) e5 : X

(7.1)
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The behavioral models Mbi
and the connected models of Mbi

are

b Mbi
maximal connected models

b1 {e1, e2, e3, e4} {e1, e2, e3, e4}

b2 {e2, e3, e4} {e2, e3, e4}

b3 {e1, e2, e4} {e1, e2, e4}

b4 {e1, e2, e3, e5} {e1, e2, e3}, {e5}

b5 {e2, e4} {e2, e4}

b6 {e2, e3, e5} {e2, e3}

b7 {e1, e2, e5} {e1, e2}, {e5}

b8 {e2, e5} {e2}, {e5}

(7.2)

The resulting γ is the union of all models in the rightmost column in (7.2), i.e.

γ = {{e1, e2, e3, e4}, {e2, e3, e4}, {e1, e2, e4}, {e1, e2, e3},

, {e5}, {e2, e4}, {e2, e3}, {e1, e2}, {e2}}
(7.3)

When tests are designed to each of these models, it turns out that the only
rejectable models are

γ = {{e1, e2, e3, e4}, {e2, e3, e4}, {e1, e2, e4}, {e1, e2, e3}, {e5}, {e1, e2}} (7.4)

This γ corresponds to a sound and complete diagnostic system.

In Example 7.2 it can be seen that this method does neither propose small
models nor few models. To be able to not find all maximal connected models, a
more restrictive structural property for minimal rejectable models is needed.

7.2.2 Models with Spanning Tree

A common assumption when using structural analysis is that models can only
be rejectable when all unknown variables can be eliminated. We need not do
this assumption that generally is not true. However models where all unknown
variables can be eliminated are an important type of minimal rejectable models. For
connected models such that all unknown variables can be eliminated, the structure
of the model contains a special type of spanning tree defined next.

Definition 7.2 (1-2-Spanning Tree Model). If M is a model and there exists
a spanning tree for G(M, varXuM) where for each variable vertex the vertex degree
is 1 or 2, the model is a 1-2-spanning tree model.

We will also use 2-spanning tree model that has a spanning tree where for each
variable the vertex degree is 2. For the special case when no system of equations
included in a model has to be solved, a 2-spanning tree defines a substitution
scheme as the next example will illustrate. However note that Definition 7.2 can
be applied to models with equation systems that have to be solved.

Example 7.3 Consider the diagnostic model in Example 6.8 and especially
the models M1 = {e1, e2, e3, e4} and M2 = {e1, e2, e3}. The bipartite graphs
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e1 e2 e3 e4

x1 x2

Figure 7.2 The bipartite graph G(M1, varXuM1).

e1 e2 e3

x1 x2

Figure 7.3 The bipartite graph G(M2, varXuM2).

G(M1, varXuM1) and G(M2, varXuM2) are shown in Figure 7.2 and Figure 7.3
respectively.

In Figure 7.2, the graph G(M1, varXuM1) has no spanning tree where the un-
known variables have a vertex degree of 1 and 2. If all equation vertices are included
in a tree, the vertex x2 has to have a degree of 3. Hence M1 has no 1-2-spanning
tree.

The corresponding bipartite graph G(M2, varXuM2) of M2 is, as seen in Fig-
ure 7.3, a 2-spanning tree. Note that all unknown variables have a degree of 2 and
no systems of equations that has to be solved simultaneously are included in this
tree. Then if e1 is considered to be the root of the tree then the following substi-
tution scheme is define by the 2-spanning tree. Calculate x2 using the equation e3.
Using the calculated value of x2, e2 can be used to calculate a value of x1. The
calculated value of x1 is substituted into equation e1 and model validity can be
evaluated.

A model that is connected does not to have a 1-2-spanning tree, e.g. M1 in
Example 7.3, but if a model has a 1-2-spanning tree then the model is connected.
Hence a more restrictive structural property than the connected property has been
defined. The next question to answer is if it is true that all minimal rejectable
models have a 1-2-spanning tree? Below, an example shows that there are minimal
rejectable models that do not have a 1-2-spanning tree. First let the set of solutions
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to the model M be denoted sol(M, z) and defined as

sol(M, z) := {x|M(x, z)} (7.5)

Example 7.4 Consider the diagnostic model

component assumption equation
Sensor 1 φ(s1 = NF) e1 : z1 = (x + 1)2 − 1

Sensor 2 φ(s2 = NF) e2 : z2 = (x − 1)2 − 1

Sensor 3 φ(s3 = NF) e3 : z3 = x2 − 4

(7.6)

where the system behavioral modes are defined by

component behavioral modes
Sensor 1 s1 ∈ {NF,UF}

Sensor 2 s2 ∈ {NF,UF}

Sensor 3 s3 ∈ {NF,UF}

(7.7)

It can be realized that the only model that is not a 1-2-spanning tree model is
{e1, e2, e3}. If {e1, e2, e3} is a minimal rejectable model then an counterexample
for the statement that all minimal rejectable models have a 1-2-spanning tree has
been found. The model {e1, e2, e3} is a minimal rejectable model according to
Definition 5.4 if there exists a z such that

z ∈ O{e1,e2} ∩ O{e1,e3} ∩ O{e2,e3} ∧ z /∈ O{e1,e2,e3} (7.8)

i.e. there is a z such that {e1, e2, e3} is rejectable at z but no subset is rejectable at
z. If z = (0, 0, 0) then

sol({e1, e2}, (0, 0, 0)) = {0}

sol({e1, e3}, (0, 0, 0)) = {−2}

sol({e2, e3}, (0, 0, 0)) = {2}

sol({e1, e2, e3}, (0, 0, 0)) = {−2} ∩ {0} ∩ {2} = ∅

(7.9)

Hence {e1, e2, e3} is a minimal rejectable model but not a 1-2-spanning tree model.
It can be realized that a sufficient condition for minimal rejectable models with one
unknown variable to have a 1-2-spanning tree is that for each equation the solution
set is connected for all observations. In this example when a solution exists the
solution set is almost always not connected for all equations.

From Example 7.4, it follows that there are minimal rejectable models that are
not 1-2-spanning tree models. However, there are still many models that have this
property and if this structural property holds the structural advantage is, as we
will see in the next section, large. Therefore it is motivated to study those models
that fulfill the following assumption.

Assumption 7.1. Let M be a model such that for any minimal rejectable model
M ′ ⊆ M it follows that M ′ is a 1-2-spanning tree model.
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If M is a diagnostic model and Assumption 7.1 holds for all behavioral models
Mb, then M is said to fulfill Assumption 7.1. Section 7.3.2 is only devoted to linear
static systems, it will be shown that such models fulfill Assumption 7.1. Next it
will be shown that Assumption 7.1 is also fulfilled for a nonlinear example.

Example 7.5 The set of minimal rejectable models for the diagnostic model in
Example 5.2 is

γm = {{e5}, {e3, e4}, {e1, e2}, {e1, e2, e3}, {e1, e2, e4}} (7.10)

as shown in (5.46). Using the structure of the diagnostic model as shown for
example in (7.1) it is easy to conclude that for each M ∈ γm it follows that M has
a 1-2-spanning tree. Hence Assumption 7.1 holds for this diagnostic model.

7.3 Strategies to Find a Sound and Complete Sys-
tem

In the previous section it was explained that Assumption 7.1 is an important ana-
lytical property of a diagnostic model. In Section 7.3.1 an algorithm is presented
that takes as input a diagnostic model that fulfills Assumption 7.1. In Section 7.3.3,
methods are presented that handle diagnostic models for which it is not possible
to show that Assumption 7.1 holds or not.

7.3.1 Spanning Tree Assumption Holds

In this section we consider models that fulfill Assumption 7.1. Remember that γm
denotes the set of minimal rejectable models of M. If a γ fulfills

∀b ∈ B(∀Mm ∈ γm(Mm ⊆ Mb → (∃M ∈ γ : Mm ⊆ M ⊆ Mb))) (7.11)

then γ also fulfills the conditions of Theorem 5.6. Since Assumption 7.1 is assumed
to hold, all minimal rejectable models are 1-2-spanning tree models. If ΣT denotes
the set of all 1-2-spanning tree models, it follows from (7.11) that a set γ that
fulfills

∀b ∈ B(∀Mm ∈ ΣT (Mm ⊆ Mb → (∃M ∈ γ : Mm ⊆ M ⊆ Mb))) (7.12)

fulfills Theorem 5.6. From (7.12) it follows that a γ, where each model M ∈ γ is
maximal 1-2-spanning tree model in some behavioral model, fulfills Theorem 5.6.
It is therefore sufficient to find all maximal 1-2-spanning tree models in each be-
havioral model.

Spanning Trees and MSS Sets

MSS sets are as described in Chapter 3 the minimal models that are structurally
overdetermined. If a structurally overdetermined model is also analytical overde-
termined, there is redundancy that can be used to detect inconsistencies. The
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correspondence between the structural and analytical property that we will use is
now stated in Assumption 7.1. It is interesting to investigate the analytical prop-
erties of the MSS sets inferred by Assumption 7.1. The next theorem explains the
connection between models with 1-2-spanning trees and MSS sets in structurally
overdetermined models.

Theorem 7.2. If H is a structurally overdetermined model such that |varXuH| <∞, E ⊆ H is a 1-2-spanning tree model, then it follows that there exists an M ∈
mssH such that E ⊆ M.

An example will illustrate Theorem 7.2, before we prove it.

Example 7.6 Consider MNF = {e1, e2, e3, e4} of the diagnostic model in Ex-
ample 7.2. The behavioral model MNF is structurally overdetermined. All 1-2-
spanning tree models are

{e1, e2, e3} {e1, e2, e4}

{e1, e2} {e2, e3} {e2, e4} {e3, e4}

{e1} {e2} {e3} {e4}

The models that are written with bold letters are the MSS sets. Note that {e2, e4}

is not a maximal 1-2-spanning tree model, because {e1, e2, e4} is a 1-2-spanning
tree model. It is clear that the MSS sets are exactly the maximal models that have
a 1-2-spanning tree.

Note that in Example 7.6 all MSS sets have a 2-spanning tree. In Section 8.5
it will be proven that a model is an MSS sets if and only if it is a 2-spanning tree
model.

The proof of Theorem 7.2 is divided into several lemmas. The idea is to build
an MSS set of E by adding appropriate equations of H\E. This is done by first
finding a set X ⊆ varXuE such that E is MSS with respect to X. If not all unknown
variables of E are included in X, one of these variables x and one equation e of H

is added to E such that E ∪ {e} is MSS with respect to X ∪ {x}. Since it is assumed
that there is only a finite number of unknown variables in H and therefore also of
the extended set E, the number of times an unknown variable is added is finite.
Hence the method will end up with an extended set E ⊆ H that is MSS.

In Lemma 7.3 it is proven that E is MSS with respect to the variables that have
degree 2 in a 1-2-spanning tree of E. In Lemma 7.4 it is described and proven how
E and X can be extended with one equation e and one equation x respectively, such
that E ∪ {e} is MSS with respect to X ∪ {x}. In Lemma 7.5 it is proven that the
result of the extending method described in Lemma 7.4 is either an MSS set or
fulfills the conditions needed to apply the method in Lemma 7.4 once more.

Lemma 7.3. Let E be a model that has a 1-2-spanning tree T and let X be the set
of variables that has degree 2 in T , then it follows that E is MSS with respect to X.

Proof. According to Theorem 3.4 it follows that E is MSS with respect to X if and
only if for all e ∈ E there exists a perfect matching in G(E\{e}, X).
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Now we will prove that there is a complete matching of X into E. Using
Corollary 3.3 it is equivalent to show that for any set X ′ ⊆ X it holds that
|X ′| ≤ |equE(X ′)|. Let X ′ be an arbitrary subset of X. The subgraph (Grimaldi 1994)
of T induced by the vertices equE(X ′)∪X ′ is a forest (Grimaldi 1994) consisting of
the trees T1, . . . , Tn. Let Xi be the set of variables vertices included in tree Ti.

For any tree it holds that the number of vertices is equal to the number of
edges plus 1. Using the fact that all variable vertices have degree 2, it follows that
the number of edges in Ti is 2 |Xi|. The number of vertices are |equTi

(Xi)| + |Xi|

which, gives using the equation describing how the number of edges depends on
the number of vertices in a tree, that

|equTi
(Xi)| + |Xi| = 2 |Xi| + 1 ⇔ |equTi

(Xi)| = |Xi| + 1 (7.13)

Since (7.13) is valid for each tree in the forest it follows that |X ′| + n = |equT (X ′)|.
Since the number of trees n is at least 1 it follows that |X ′| ≤ |equT (X ′)| holds.
Hence there is a complete matching of X into E in T .

Take any complete matching from X into E in T . We will show that this complete
matching can be used to construct a perfect matching in G(E\{e}, X,). Hence take
any e ∈ E. If e is not included in the complete matching then the complete matching
is a perfect matching in G(E\{e}, X,). Assume therefore that e is included in the
complete matching. By first removing all variable vertices with degree 1 in T and
then e, T ′ is obtained. Assume that x was assigned to e in T . Let the connected
component of T ′ that contains x be denoted T ′′.

Note that T ′′ by the construction is a tree. The vertex x has degree 1 in T ′′. The
variable x is the only variable in T ′′ with degree 1 and it can be realized as follows.
If two variables have degree 1 in T ′′ it means that both variables are connected to
e in T . Hence there is two paths between these two variables, one that is contained
in T ′′ and one that goes through e. Both these paths are contained in T which then
contains a cycle. A contradiction is derived because T is assumed to be a tree. It
follows that x is the only variable vertex of degree 1 in T ′′.

Since T ′′ is a subgraph of T and all other variable vertices in T have a degree
of 2 it follows that there exists an augmented path between x and an unmatched
equation. Switching the matched and non-matched edges in the augmented path
will produce a perfect matching in the subgraph of T induced by the vertices E\{e}∪
X. Since e was arbitrarily chosen it follows that for any e ∈ E there is a perfect
matching in G(E\{e}, X). Hence E is MSS with respect to X.

Lemma 7.4. Let H be a structurally overdetermined set. If E ⊆ H is a set of
equations and X ⊂ varXuE is a set of variables such that E is MSS with respect to
X, then it follows that there is an x ∈ varXu(E)\X and an e ∈ H\E such that E∪ {e}

is MSS with respect to X ∪ {x}.

Proof. According to (3.5), the statement that the set H is structurally overdeter-
mined can formally be written as

∀X ′ ⊆ varXu(H), X ′ 6= ∅ : |X ′| < |equH(X ′)|, (7.14)
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Since E is MSS with respect to the proper subset X of unknown variables in E, i.e.
varXuE, it follows from Theorem 3.4 that there is a complete matching of E into
varXuE. From Corollary 3.2 it follows that

∀E ′ ⊆ E : |E ′| ≤ |varXu(E ′)|, (7.15)

holds. The fact that E is MSS with respect to X can be stated in the follow-
ing equivalent way. Considering only the variables X as unknown variables, E is
structurally overdetermined, i.e.

∀X ′ ⊆ X, |X ′| 6= 0 : |X ′| < |equE(X
′)|. (7.16)

and
|E| = |X| + 1 (7.17)

To show that E ∪ {e} is MSS with respect to X ∪ {x} can therefore be shown by
proving that

∀X ′ ⊆ X ∪ {x}, |X ′| 6= 0 : |X ′| < |equE∪{e}(X
′)| (7.18)

and
|E ∪ {e}| = |X ∪ {x}| + 1. (7.19)

holds.
First we will find an x such that x /∈ X and x ∈ varXuE. Using (7.17) and

|E| ≤ |varXuE| derived from (7.15), it is clear that |X| < |E| ≤ |varXuE|. Hence there
must be an x ∈ varXu(E)\X. Take an arbitrary x ∈ varXu(E)\X.

Let a set of variables X ′, where X ′ 6= ∅ and X ′ ⊆ X∪ {x}, be called a critical set
if

|equE(X
′)| = |X ′|. (7.20)

There exists always a critical set because X ′ = X ∪ {x} is a critical set.
Next, we will show that there is a unique minimal critical set. Suppose there

are two minimal critical sets Xc1 and Xc2 where Xc1 6= Xc2. Note that Xci 6= ∅ for
i ∈ {1, 2} to satisfy (7.20).

Suppose that X ′ ⊂ X ∪ {x} is a critical set such that x /∈ X ′. Then X ′ ⊆ X and
(7.16) can be used deriving |X ′| < |equE(X ′)|. This contradicts the fact that X ′ is
critical. Hence all critical sets include x.

Then it is possible to do the following partition of Xc1∪Xc2, denoting Xc1∩Xc2 =
X12 ∪ {x} where x /∈ X12, X1 = Xc1\Xc2, and X2 = Xc2\Xc1. Figure 7.4 visualizes
the partition.

According to the partition, the critical sets Xc1 and Xc2 are expressed as

Xc1 = X1 ∪ X12 ∪ {x} (7.21)

and
Xc2 = X2 ∪ X12 ∪ {x}. (7.22)

From (7.20), (7.21), (7.22), and the fact that Xci is critical it follows that

|equE(Xci)| = |Xci| = |Xi| + |X12| + 1 for i ∈ {1, 2}. (7.23)
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Xc1 Xc2

X1 X2

X12

x

Figure 7.4 The partition of Xc1 and Xc2.

Since Xc2 is a minimal critical set it follows that Xc1 * Xc2. Using (7.21) and
(7.22) and the knowledge that these are partitions, imply the equivalent expression
X1 6= ∅. This implies that

X12 ∪ {x} ⊂ X1 ∪ X12 ∪ {x} = Xc1. (7.24)

Consider first any subset X ′ 6= ∅ of X ∪ {x} such that X ′ 6= {x}. From (7.16) it
follows that

|X ′| ≤ |X ′\{x}| + 1 ≤ |equE(X
′\{x})| ≤ |equE(X

′)|. (7.25)

Further on, if X ′ = {x} then
|{x}| ≤ |equE({x})|, (7.26)

because of the fact that x is chosen such that x ∈ varXuE. The inequalities (7.25)
and (7.26) implies that

∀X ′ ⊆ X ∪ {x}, X ′ 6= ∅ : |X ′| ≤ |equE(X
′)|. (7.27)

Now, the minimality of Xc1 and (7.24) imply that X12 ∪ {x} is not critical, i.e.

|equE(X12 ∪ {x})| 6= |X12 ∪ {x}|. (7.28)

The set X12 ∪ {x} satisfies (7.27) and (7.28), hence

|equE(X12 ∪ {x})| ≥ |X12 ∪ {x}| + 1 = |X12| + 2. (7.29)

From the definition of the function equ it follows that for arbitrary variable
sets A and B and for an arbitrary equation set Ē it holds that

equĒ(A ∪ B) = equĒ(A) ∪ equĒ(B). (7.30)

Using (7.30) and basic set theory imply that

|equE(X1 ∪ X12 ∪ {x}) ∪ equE(X2 ∪ X12 ∪ {x})| =
|equE(X1 ∪ X12 ∪ {x} ∪ X2 ∪ X12 ∪ {x})| =

|equE(X1 ∪ X2 ∪ X12 ∪ {x})|.
(7.31)
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Further on, it holds that

equE(X1 ∪ X12 ∪ {x}) ∩ equE(X2 ∪ X12 ∪ {x}) =(
equE(X1) ∪ equE(X12 ∪ {x})

) ∩ (
equE(X2) ∪ equE(X12 ∪ {x})

)
=(

equE(X1) ∩ equE(X2)
) ∪ equE(X12 ∪ {x}).

(7.32)

The last row in (7.32) can be estimated from below using (7.29)∣∣(equE(X1) ∩ equE(X2)
) ∪ equE(X12 ∪ {x})

∣∣ ≥
|equE(X12 ∪ {x})| ≥ |X12| + 2.

(7.33)

Now, we will apply |A∪B| = |A| + |B| − |A∩B|, where A = equE(X1 ∪X12 ∪ {x})
and B = equE(X2 ∪ X12 ∪ {x}). The left hand side |A ∪ B| can be simplified using
(7.31). The result is

|equE(X1 ∪ X2 ∪ X12 ∪ {x})| = |equE(X1 ∪ X12 ∪ {x})|+
|equE(X2 ∪ X12 ∪ {x})|−

|equE(X1 ∪ X12 ∪ {x}) ∩ equE(X2 ∪ X12 ∪ {x})|.
(7.34)

Further, substitute the results in (7.21), (7.22), (7.23), and (7.32) into (7.34), then

|equE(X1 ∪ X2 ∪ X12 ∪ {x})| = |X1| + |X12| + 1 + |X2|+

|X12| + 1 − |
(
equE(X1) ∩ equE(X2)

) ∪ equE(X12 ∪ {x})|.
(7.35)

The last part of (7.35) is estimated from above using (7.33)

|X1| + |X2| + 2|X12| + 2−

|
(
equE(X1) ∩ equE(X2)

) ∪ equE(X12 ∪ {x})|
≤ |X1| + |X2| + 2|X12| + 2 − (|X12| + 2) = |X1| + |X2| + |X12|.

(7.36)

The result of putting (7.35) and (7.36) together is

|X1| + |X2| + |X12| ≥ |equE(X1 ∪ X2 ∪ X12 ∪ {x})|
≥ |equE(X1 ∪ X2 ∪ X12)|.

(7.37)

Finally, X1 ∪ X2 ∪ X12 ⊆ X and according to (7.16) is

|X1| + |X2| + |X12| < |equE(X1 ∪ X2 ∪ X12)|. (7.38)

The inequalities (7.37) and (7.38) implies a contradiction. Hence there can-
not be two minimal critical sets. Let the unique minimal critical set be denoted
Xcritical.

Now, it is time to show that there exists an equation e ∈ H\E that fulfill
(7.18). Suppose that equH(Xcritical) ⊆ E. This together with (7.20) implies
that |Xcritical| = |equE(Xcritical)| = |equH(Xcritical)|. This is a contradiction
according to (7.14). Hence there is an equation e ∈ H\E such that varXcritical

(e) 6=
∅. Xcritical ∩ varX∪{x}(e) 6= ∅.
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Now, we will show that this e fulfills (7.18). Take an arbitrary X ′ ⊆ X ∪ {x}

where X ′ 6= ∅. Consider first the case when Xcritical ⊆ X ′. Then it follows from
(7.27) that |X ′| ≤ |equE(X ′)| < |equE∪{e}(X

′)|. The last inequality follows from the
fact that equ{e}(Xcritical) = {e}.

The opposite case is when Xcritical * X ′. From the fact that there is a unique
minimal critical set it follows that X ′ cannot be a critical set. Hence (7.27) and
|X ′| 6= |equE(X ′)| conclude that |X ′| < |equE(X ′)| ≤ |equE∪{e}(X

′)|, i.e. (7.18) holds.
Finally, it remains to prove (7.19). Simple calculations using (7.17) gives |E ∪

{e}| = |E|+1 = |X|+2 = |X∪{x}|+1. Hence E∪{e} is MSS with respect to X∪{x}.

Lemma 7.5. Let H, Ej ⊆ H, and Xj ⊆ varXuEj fulfill the conditions in Lemma 7.4.
If Ej+1 = Ej ∪ {e} and Xj+1 = Xj ∪ {x} where x and e are defined in Lemma 7.4,
then Ej+1 is either an MSS set, with respect to the unknown variables, or fulfills
the conditions in Lemma 7.4.

Proof. Note that according to Lemma 7.4, (7.19) and (7.18) hold for the set Ej+1
and Xj+1. Take any Ê ⊂ Ej+1. Then there is an e ∈ Ej+1\Ê such that Ê ⊆ Ej+1\{e}.
From (7.18) it follows that

∀X ′ ⊆ Xj+1, X
′ 6= ∅ : |X ′| ≤ |equEj+1

(X ′)| − 1 ≤ |equEj+1\{e}(X
′)| (7.39)

Especially, if X ′ = Xj+1 in (7.39) then

|Xj+1| ≤ |equEj+1\{e}(Xj+1)| (7.40)

holds. From (7.19) it follows that

|equEj+1\{e}(Xj+1)| ≤ |Ej+1\{e}| = |Xj+1|. (7.41)

The inequalities (7.40) and (7.41) imply

|Xj+1| = |equEj+1\{e}(Xj+1)|. (7.42)

Now, using (7.39) in Corollary 3.3 it follows that there is a complete matching of
Xj+1 into Ej+1\{e}. The complete matching is also a perfect matching, according
to (7.42). A perfect matching is especially a complete matching of Ej+1\{e} into
Xj+1. Corollary 3.2 implies that

∀E ′ ⊆ Ej+1\{e} : |E ′| ≤ |varXj+1
(E ′)|. (7.43)

Since Ê ⊆ Ej+1\{e}, then E ′ = Ê in (7.43) implies that

|Ê| ≤ |varXj+1
(Ê)|. (7.44)

The set Ê was an arbitrary proper subset to Ej+1. This implies that

∀E ′ ⊂ Ej+1 : |E ′| ≤ |varXj+1
(E ′)| ≤ |varXu(E ′)|. (7.45)
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Now, it remains to study |varXu(Ej+1)|. From (7.45) it holds that

|Ej+1| = |Ej| + 1 ≤ |varXj+1
(Ej)| + 1 ≤ |varXj+1

(Ej+1)| + 1 ≤
|varXu(Ej+1)| + 1.

(7.46)

There are two cases. Suppose that equality in (7.46) holds, i.e.

|Ej+1| = |varXu(Ej+1)| + 1. (7.47)

From (7.45), (7.47), and the definition of MSS sets it follows that Ej+1 is an MSS
set.

Next assume that, (7.46) is a strict inequality, i.e.

|Ej+1| ≤ |varXu(Ej+1)|. (7.48)

Hence according to (7.45) and (7.48) it follows that

∀E ′ ⊆ Ej+1 : |E ′| ≤ |varXu(E ′)|. (7.49)

Now it is time to prove Theorem 7.2.

Proof. Let T be a 1-2-spanning tree for E, such that Definition 7.2 is satisfied.
According to Lemma 7.3 there is a set X ⊆ varXuE such that E is MSS with respect
to X. If X = varXuE, E is an MSS set and there is nothing more to prove. Assume
therefore that X ⊂ varXuE. Then H, E, and X fulfill the conditions in Lemma 7.4.
This means that if E1 = E and X1 = X, Lemma 7.5 can repeatedly be applied until
there is for some i ≥ 2 an MSS set Ei such that E ⊂ Ei ⊆ H. That is, for some i,
Ei will be MSS with respect to Xu. The existence of such an i can be proven as
follows. Each time the method that Lemma 7.5 describes is applied, one additional
unknown variable will be included. Since we have assumed that |varXuH| < ∞ it
follows that varXuH is an upper bound for i.

The conclusion of Theorem 7.2 is that in a structurally overdetermined model
the maximal models that has a 1-2-spanning tree are subsets to MSS sets. If M is
a diagnostic model, M ⊆∗ M then mssM denotes the MSS sets that correspond to
a feasible models. Moreover mssM := ∪b∈BmssMb.

Corollary 7.6. If M is a diagnostic model that fulfills Assumption 7.1 and where
M∗
b ⊆ M+

b for all system behavioral modes b ∈ B, then γ = mssM gives a sound
and complete diagnostic system.

Proof. From the definition of the set M∗
b in (6.33) it follows that M∗

b is a superset
of all detection models for b that are needed to find all inconsistencies of Mb.
From the definition of detection model it follows that detection models are minimal
rejectable models. From Assumption 7.1 it follows that all minimal rejectable
models are tree models. Hence all detection models are tree models. From condition
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M∗
b ⊆ M+

b and Theorem 7.2 it follows that all detection models for b are subsets of
MSS sets. Since this holds for all system behavioral modes it follows that γ = mssM
fulfills (5.72) and it follows from Theorem 5.6 that γ corresponds to a sound and
complete diagnostic system.

This corollary gives the results needed to prove that the algorithm presented
next finds a γ that corresponds to a sound and complete system.

Algorithm 7.1.
Input: M that fulfills Assumption 7.1.

a) Set γ := mssM.

b) For each behavioral mode b ∈ B if (6.109) in Theorem 6.12 is false when
M̂ = M+

b , then add to γ all the maximal models that has a 1-2-spanning tree
and that has a non-empty intersection with Mb\M+

b .

Output: γ

To check that the condition M∗
b ⊆ M+

b in Corollary 7.6 is fulfilled, Theorem 6.12
is used by validating (6.109) when M̂ = M+

b . Note that (6.109) in step (b) is an
analytical condition. Even if the (6.109) is the condition in Theorem 6.12 that relies
on Assumption 6.1, it can be realized that Assumption 6.1 need not be fulfilled to
find a set γ that corresponds to a complete and sound diagnostic system using
Algorithm 7.1. If M∗

b ⊆ M+
b holds it follows that the MSS sets contained in Mb

is sufficient according to Corollary 7.6. If M∗
b ⊆ M+

b cannot be validated, i.e.
the condition of Corollary 7.6 cannot be validated, the goal is to find all maximal
1-2-spanning tree models according to the conclusion in Section 7.3.1. Step (b) is
designed to add all maximal 1-2-spanning tree models to γ.

Example 7.7 Consider the diagnostic model M in Example 7.2. From Ex-
ample 7.5 it follows that Assumption 7.1 is fulfilled. Then Algorithm 7.1 can be
applied to M. In step (a) the resulting MSS sets are

mssM = {{e5}, {e3, e4}, {e1, e2, e3}, {e1, e2, e4}} (7.50)

In Example 6.8, the test in step (b) in Algorithm 7.1 is performed for each be-
havioral mode. All passed except the test for behavioral mode b7. The maximal
tree model that has a nonempty intersection with Mb7

\M+
b7

is {e1, e2}. This set
together with the MSS sets is the output of Algorithm 7.1, i.e.

γ = {{e5}, {e1, e2}, {e3, e4}, {e1, e2, e3}, {e1, e2, e4}} (7.51)

Note that this set γ is equal to γm. To compute γ the only analytical calculations
done are the calculations done in Example 6.8.

The next section describes how Algorithm 7.1 can be simplified for the special
case when the equations of the diagnostic model are linear static equations.
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7.3.2 Linear Static Example

To be able to apply Algorithm 7.1 to a diagnostic model, we first have to prove
that the diagnostic model fulfills Assumption 7.1. The next theorem implies that
diagnostic models that have linear static equations fulfill Assumption 7.1.

Theorem 7.7. If a minimal rejectable model M can be written on the form

M : Ax + B z + c = 0 (7.52)

where A and B are constant matrices and c is a constant vector, then it follows
that M has a 1-2-spanning tree, i.e. M fulfills Assumption 7.1.

Proof. A model M is minimal rejectable if and only if there exists a z = z0 such
that

∀x¬M(x, z0) (7.53)

and for all Mi = M\{ei}

∃xMi(x, z0) (7.54)

If (B z0 + c) is denoted b then expression (7.53) can be rewritten as

rank(A) < rank(
[
A b

]
) (7.55)

If D is a matrix or vector, e.g. A, B, or c, M is a set of equations corresponding to
rows in D, X a set of variables corresponding to columns in D, then D(M,X) is the
matrix consisting of the rows corresponding to M and the columns corresponding
to X in the matrix D. Further let D(M) be the matrix consisting of all rows of
D corresponding to M and let D(X) be the matrix consisting of all columns of D

corresponding to X.
With the new notation, expression (7.54) can be rewritten as

rank(A(Mi)) = rank(
[
A(Mi) b(Mi)

]
) (7.56)

Elementary linear algebra implies the inequalities

rank(A(Mi)) ≤ rank(A) (7.57)

and

rank(
[
A(Mi) b(Mi)

]
) ≤ rank(

[
A b

]
) ≤ rank(

[
A(Mi) b(Mi)

]
) + 1 (7.58)

From (7.58) it is clear that

rank(
[
A b

]
) =

{
rank([A(Mi) b(Mi)]) or
rank([A(Mi) b(Mi)]) + 1

(7.59)

Assume that
rank(

[
A b

]
) = rank(

[
A(Mi) b(Mi)

]
) (7.60)
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holds. From (7.56) and (7.60) it follows that

rank(
[
A b

]
) = rank(A(Mi)) (7.61)

From (7.57) and (7.61) it follows that

rank(
[
A b

]
) ≤ rank(A) (7.62)

Finally from (7.55) and (7.62) it follows that

rank(
[
A b

]
) < rank(

[
A b

]
) (7.63)

which is a contradiction. Hence the assumption that (7.60) is false. From (7.59) it
follows then that

rank(
[
A b

]
) = rank(

[
A(Mi) b(Mi)

]
) + 1 (7.64)

Since (7.64) holds for any ei ∈ M it follows that

rank(
[
A b

]
) = |M| (7.65)

We will show that it is possible to construct a spanning tree in G(M, varXuM)
with vertex degree 1 or 2 for all variable vertices. Those variable vertices that have
degree 2 are the variables that connect two equations. This set of variables cannot
be chosen arbitrarily. Let X2 ⊆ varXuM be the variables that will have degree 2 in
the tree to be constructed. From (7.55) it follows that a set X2 can be chosen such
that

[
A(X2) b

]
is a quadratic full rank matrix, i.e.

rank(
[
A(X2) b

]
) = |M| (7.66)

There is such an X2 because
[
A b

]
has full row-rank. The matrix A and some of

the defined equation sets and variable sets are shown in Figure 7.5.

M Mi

ei

X2

A(Mi, X2)

A(X2)

matching

Figure 7.5 A sketch of matrix A.

Since
[
A(X2) b

]
is a full rank square matrix it follows that

rank(A(X2)) = |M| − 1 (7.67)
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From (7.55) and (7.65) it follows that

rank(A) = |M| − 1 (7.68)

Equalities (7.67) and (7.68) imply that there exists a matrix F such that

A(varXuM\X2) = A(X2) F (7.69)

This implies that
A(Mi, varXuM\X2) = A(Mi, X2) F (7.70)

and therefore it follows that

rank(A(Mi)) = rank(A(Mi, X2)) (7.71)

Equality (7.65) implies using (7.56) and (7.64) that

rank(A(Mi)) = |M| − 1 = |Mi| (7.72)

Then (7.71) and (7.72) imply that

rank(A(Mi, X2)) = |M| − 1 = |Mi| (7.73)

The last equality will turn out to be an important property to be able to construct
a tree.

The structural rank for A is defined as the size of a maximum matching in
G(M, varXuM) and will be denoted srank(A). From the definitions of rank and
structural rank it follows that

srank(A) ≥ rank(A) (7.74)

From (7.73) and (7.74) it follows that there exists a complete matching of Mi into
X2. Assume that a tree is constructed starting with e1 ∈ M. Then if i = 1 in (7.73)
it follows that there is a perfect matching P in G(M1, X2). Next a constructive
algorithm is presented that builds a spanning tree. To have an example to think
about when reading the algorithm description, a graph is shown in Figure 7.6. The
edges marked in bold are P in this example.

Given P, a spanning tree is constructed in the following way:

• Let T0 be the a graph with no vertices and let T1 be a tree with the vertex
e1 and no edges. The tree T1 in the example is the equation vertex e1.

• Given a tree Ti, the next tree Ti+1 is defined in the following way. Let the
equation vertices contained in Ti, but not in Ti−1, be denoted E. Add to
the tree Ti, all variable vertices V that is not included in Ti and that, in
G(M, varXuM), are adjacent to some vertex of E. To the resulting graph,
add one edge included in G(M, varXuM) to each new variable vertex in V

such that the edge connects the new variable vertex with any equation vertex
in E. Finally, to obtain Ti+1, add all edges in P and corresponding equation
vertices in P that are incident with some vertex in V.
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e1 e2 e3 e4 e5

x1 x2 x3 x4 x5 x6

Figure 7.6 A bipartite graph. The bold marked edges are P defined in .

e1 e2 e3 e4 e5

x1 x2 x3 x4 x5 x6

Figure 7.7 The tree T2 of the graph in Figure 7.6.

• The tree Ti+1 is a 1-2-spanning tree for M when all equations in M have a
corresponding vertex in Ti+1.

The consecutive tree constructed of this algorithm on the graph in Figure 7.6 is
shown in Figures 7.7-7.9. It is clear that the variable vertex degrees are 1 or 2 in
all Ti. Therefore the only way the algorithm could fail to find a 1-2-spanning tree
for M is if the numbers of equation vertices in Ti are equal to the equation vertices
in Ti+1 for some i such that not all equations in M are included in Ti. Now, we
will prove that this case is impossible and hence the algorithm will always find a
1-2-spanning tree.

Assume that the numbers of equation vertices in Ti are equal to the equation
vertices in Ti+1 and the number of equation vertices are less than |M|. Denote this

e1 e2 e3 e4 e5

x1 x2 x3 x4 x5 x6

Figure 7.8 The tree T3 of the graph in Figure 7.6.
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e1 e2 e3 e4 e5

x1 x2 x3 x4 x5 x6

Figure 7.9 A spanning tree T4 of the graph in Figure 7.6 with degree 1 or
2 for all variable vertices.

set of equations M̄ ⊂ M. In Figure 7.10 M̄ among other notions are illustrated.
According to the description of Ti+1, it follows that varX2

M̄ do not include any of
the variables assigned to equations in M\M̄. But then it follows that

|M̄| = |varX2
M̄| + 1 (7.75)

In Figure 7.10 the conclusion (7.75) is illustrate with the zero. This means that

srank(A(M̄, X2)) < |M̄| (7.76)

M
Mn

X2

0M̄

matching P

perfect matching A(Mn, X2)

contradiction

Figure 7.10 A sketch of matrix A(X2).

Since (7.73) holds for any Mi, there exists an Mn such that M̄ ⊆ Mn. Using
Mn in (7.73) it follows that A(Mn, X2) is a full rank matrix. The matrix A(Mn, X2)
includes the rows of A(M̄, X2). Hence A(M̄, X2) has full row rank, i.e.

rank(A(M̄, X2)) = |M̄| (7.77)

From (7.74) and (7.77) it follows that

srank(A(M̄, X2)) ≥ |M̄| (7.78)
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Now, (7.76) and (7.78) is a contradiction. Hence Ti+1 will always include more
equation vertices than Ti until all equations in M are included. Since M was
an arbitrary minimal rejectable linear static model it is shown that all minimal
rejectable linear static models M, are 1-2-spanning tree models.

From Theorem 7.7 it follows that Algorithm 7.1 can always be applied to linear
static models. Further the test (6.109) in Theorem 6.12 is in this case transformed
to test if A(M̄, X̄) has full row-rank.

Example 7.8 Consider the following diagnostic model that consists of 15 static
linear equations

e1
e2
e3
e4
e5
e6
e7
e8
e9

e10
e11
e12
e13
e14
e15

2
666666666666666666666664

0 0 0 0 0 0.92 0 0.78 0 0
0.33 0 0 0 0 0 0 0 0 0

0 0.74 0.44 0 0 0 0 0.59 0.11 0
0.32 0 0 0.62 0 0 0 0 0 0

0 0 0.89 0.96 0 0 0.02 0 0 0
0 0 0 0 0 0 0.11 0 0.4 0.097
0 0 0.29 0.68 0 0.98 0.4 0 0 0
0 0.82 0 0 0 0 0.13 0 0 0
0 0 0 0 0 0 0 0.84 0 0
0 0 0 0 0.23 0.067 0.33 0.58 0 0.14
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

3
777777777777777777777775

x+

2
666666666666666666666664

0.48 0 0 0 0 0 0
0 0.97 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

3
777777777777777777777775

z +

2
666666666666666666666664

0
0
0

0.58
0
0
0
0
0
0
0
0
0
0
0

3
777777777777777777777775

= 0

(7.79)

The system behavioral modes that are considered are that each equation can be
faulty. This means that there are 215 = 32768 system behavioral modes. We want
to design a sound and complete diagnostic system with respect to the diagnostic
model given in (7.79). To make one test for each behavioral mode that can be
rejected the total number of tests will in this case be 14292. Using Algorithm 7.1
the number of tests in the resulting sound and complete diagnostic system is 62.
In this linear static example the analytical test used in step (b) in Algorithm 7.1
for each behavioral mode is

rank(A(Mb\M+
b , Xu\varXuM+

b )) = |Mb\M+
b | (7.80)

This expression is equivalent to (6.115) that implies (6.109. In this example ex-
pression 7.80 was true for all system behavioral modes. The 62 acceptance sets are
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defined with the following 62 equations




0 0 0 0 0.65 0 0
0.29 0 −0.56 0 0 0 0
0.31 0 −0.59 0 −0.5 0 0

0 0 0 −0.1 0 −0.37 −0.089
0 0.33 −0.58 −0.23 0 0 0

0.26 −0.28 0 0.2 0 0 0
0.27 −0.29 0 0.2 −0.43 0 0
0.26 0 0 0.15 0 0.044 0
0.16 0 0.25 0.16 0 0.049 0
0.26 0 0 0.15 −0.19 0.044 0

0 0.37 0 −0.067 0 0.06 0
0 0.38 0 −0.068 0.31 0.061 0
0 −0.13 0.23 0 0 −0.34 −0.082
0 0 0.5 0.15 0 0.045 0
0 0 −0.5 −0.15 −0.23 −0.045 0

−0.094 −0.3 0 0 0 −0.064 0
0.19 0.28 −0.2 0 0 0.06 0
0.19 0.17 0 0.079 0 0.06 0

0.095 0.3 0 0 0.18 0.065 0
0.18 0.35 −0.34 −0.062 0 0.055 0
0.19 −0.37 0 0.17 0 −0.028 0

−0.095 −0.4 0.56 0.18 0 −0.03 0
−0.19 0.39 0 −0.18 0.46 0.029 0
0.12 −0.13 0 0 0 −0.33 −0.08

−0.12 0.13 0 0 0.19 0.33 0.081
−0.26 0 0 −0.13 0 0 0.011
0.15 0 0 0 0 −0.28 −0.075

−0.16 0 −0.25 −0.15 0 0 0.012
0.084 0 0.13 0 0 −0.29 −0.077
−0.26 0 0 −0.14 0.19 0 0.011
0.15 0 0 0 −0.11 −0.28 −0.075

0 −0.37 0 0.082 0 0 0.014
0 0.31 0 0 0 0.25 0.049
0 0.38 0 −0.084 0.31 0 −0.014
0 0.31 0 0 0.26 0.25 0.049
0 0.29 0.17 0 0 0.061 0
0 −0.29 −0.17 0 −0.32 −0.062 0
0 −0.44 0.42 0.2 0 −0.033 0
0 −0.44 0.42 0.2 −0.17 −0.033 0
0 0 −0.49 −0.14 0 0 0.011
0 0 0.28 0 0 −0.28 −0.075
0 0 0.5 0.14 0.23 0 −0.011
0 0 0.28 0 0.13 −0.29 −0.075

0.12 0.27 0 0 0 0 −0.015
0.19 0.26 −0.16 0 0 0 −0.014
0.19 0.17 0 0.062 0 0 −0.014

−0.12 −0.27 0 0 −0.14 0 0.015
0.15 0.14 0 0 0 −0.18 −0.056

−0.18 −0.34 0.33 0.077 0 0 0.013
−0.15 −0.29 0.29 0 0 −0.24 −0.046
−0.19 0.37 0 −0.18 0 0 −0.0067
0.095 −0.19 0 0 0 −0.33 −0.077
0.094 0.4 −0.56 −0.19 0 0 −0.0071

−0.046 −0.19 0.27 0 0 −0.34 −0.078
−0.19 0.39 0 −0.19 0.46 0 −0.007

−0.096 0.19 0 0 0.23 0.34 0.078
0 0.26 0.21 0 0 0 −0.015
0 0.26 0.21 0 0.32 0 −0.015
0 −0.44 0.41 0.21 0 0 0.0078
0 0.2 −0.19 0 0 0.35 0.08
0 0.44 −0.42 −0.21 0.17 0 −0.0079
0 0.2 −0.19 0 0.076 0.35 0.08




z +




0
0
0
0

−0.2
0.17
0.18

0
0
0

−0.23
−0.24
0.082

0
0

0.19
−0.17
−0.1

−0.19
−0.21
0.23
0.25

−0.24
0.079
−0.08

0
0
0
0
0
0

0.23
−0.19
−0.23
−0.19
−0.18
0.18
0.27
0.27

0
0
0
0

−0.17
−0.16
−0.1
0.17

−0.084
0.21
0.18

−0.23
0.12

−0.25
0.12

−0.24
−0.12
−0.16
−0.16
0.27

−0.12
−0.27
−0.12




= 0 (7.81)

It is interesting to note that for example consistency relation 18 and 21 include the
same set of sensors, even though these consistency relations are linearly indepen-
dent. These two consistency relations corresponds to the MSS sets {e1, e2, e3, e4,

e5, e7, e8, e12, e14} and {e1, e2, e3, e4, e7, e8, e9, e12, e14}.

Static linear models fulfill Assumption 7.1 and Algorithm 7.1 can therefore be
used. A future work will be to investigate which other types of models that fulfill
Assumption 7.1. It is also interesting to find easily checked sufficient and if possible
necessary conditions for Assumption 7.1 to hold.
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7.3.3 Tree Model Assumption Cannot be Validated

When Assumption 7.1 cannot be validated for a diagnostic model M, it is still
probable that Assumption 7.1 holds for many models M ⊆∗ M. Therefore one
strategy is to find maximal tree models using the structure as before and then
validate that no superset to each maximal tree model is a minimal rejectable model.
Before an algorithm is presented that find a γ using this strategy, a theorem is
presented that gives a sufficient analytical condition for a model M to conclude
that no superset is a minimal rejectable model.

Theorem 7.8. Assume that M is a model such that

∀z(sol(M, z) 6= ∅ → (∃e ∈ M : sol(M\{e}, z) = sol(M, z))
)

(7.82)

then no superset to M is a minimal rejectable model.

Proof. Assume that there is a minimal rejectable model M̂ such that M ⊂ M̂.
From the definition of minimal rejectable model it follows that

∃z(sol(M̂, z) = ∅ ∧ ∀M ′ ⊂ M̂ : sol(M ′, z) 6= ∅) (7.83)

Let z = z0 fulfill (7.83). Since M ⊂ M̂ it follows from (7.83) that

sol(M, z0) 6= ∅ (7.84)

Expression (7.82) and (7.84) imply that there exists an e ∈ M such that

sol(M, z0) = sol(M\{e}, z0) (7.85)

From the definition of operator sol, it follows that

sol(M̂, z0) = sol(M, z0) ∩ sol(M̂\M, z0) (7.86)

Using (7.85) and (7.86) it holds that

sol(M, z0) ∩ sol(M̂\M, z0) = sol(M\{e}, z0) ∩ sol(M̂\M, z0) (7.87)

From the definition of operator sol, it follows that

sol(M\{e}, z0) ∩ sol(M̂\M, z0) = sol(M̂\{e}, z0) (7.88)

From (7.86), (7.87) and (7.88) it follows that

sol(M̂, z0) = sol(M̂\{e}, z0) (7.89)

Now, since z0 satisfy (7.83) it follows that (7.83) and (7.89) is a contradiction.
Hence M̂ is not a minimal rejectable model.
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Theorem 7.8 will be illustrated in an example considering the same diagnostic
model as in Example 7.7.

Example 7.9 The MSS models are

mssM = {{e1, e2, e3}, {e1, e2, e4}, {e3, e4}, {e5}} (7.90)

Consider the first MSS {e1, e2, e3} = {z1 = x1, x1 = x22, z2 = x2}. According to
Theorem 7.8 we take an arbitrary z such that {e1, e2, e3} is fulfilled. Denote this
observation ẑ1 and ẑ2. Then it holds that

sol({e1, e2, e3}, z) = {(x1, x2)|x1 = ẑ1, x2 = ẑ2} (7.91)

The e in (7.82) can be chosen as e2 in this example. Then

sol({e1, e3}, z) = {(x1, x2)|x1 = ẑ1, x2 = ẑ2} (7.92)

Hence from (7.82), (7.91), and (7.92) it follows that no superset to {e1, e2, e3} is a
minimal rejectable model. In this example all MSS sets fulfill Theorem 7.8.

Now an algorithm is presented that finds a γ that corresponds to a sound and
complete diagnostic system that uses the result of Theorem 7.8. The algorithm
is rather computationally complex and therefore not suitable for large diagnostic
models. Some details of how each step can be performed are omitted. Instead an
example after the algorithm will show how each step is performed for a particular
case. Let γb denote the set of models testing behavioral mode b.

Algorithm 7.2.
Input: M.

For each b ∈ B
a) If b satisfies Theorem 6.12 then let Cb = M+

b , else let Cb = Mb.

b) Set γb = mssCb.

c) For each M ∈ γb do the test according to Theorem 7.8. If (7.82) not holds
then set γb = γb\{M}.

d) Find all maximal models M ′ ⊆ Cb that are connected and and that fulfill
∀M ∈ γb : M * M ′ ∧ M ′ * M). Add all such models M ′ to γb.

Output: γ =
⋃
b∈B γb

Next an example show how Algorithm 7.2 is applied to a model.

Example 7.10 Consider the diagnostic model M in Example 7.2. This model
is not linear and therefore it is not clear that Assumption 7.1 is fulfilled. Then
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Algorithm 7.2 can be applied to M. In (a) the resulting behavioral models are
calculated as in Example 6.8. The result is

b Cbi
mssCbi

b1 {e1, e2, e3, e4} {e1, e2, e3}, {e1, e2, e4}, {e3, e4}

b2 {e2, e3, e4} {e3, e4}

b3 {e1, e2, e4} {e1, e2, e4}

b4 {e1, e2, e3, e5} {e1, e2, e3}, {e5}

b5 ∅
b6 {e5} {e5}

b7 {e1, e2, e5} {e5}

b8 {e5} {e5}

(7.93)

The MSS sets are

mssM = {{e5}, {e3, e4}, {e1, e2, e3}, {e1, e2, e4}} (7.94)

In Example 7.9, the test in step (c) in Algorithm 7.2 is performed for each
behavioral mode. Expression (7.82) is valid for all M ∈ γb.

To exemplify the calculations in step (d) the behavioral mode b1 is used. For
b1 it holds that Cb1

= Mb1
= {e1, e2, e3, e4}. The MSS sets that are contained in

Mb1
are {e3, e4}, {e1, e2, e3}, and {e1, e2, e4}. If all supersets of {e3, e4} are built,

it is clear that all sets with three equations are superset to some MSS set. If all
subsets with two equations are found it is clear that all sets with two equations
are subsets to some MSS set. Hence no model fulfills the condition in step (d) for
behavioral mode b1.

Another example is for behavioral mode b7. From previous steps in Algo-
rithm 7.2 it follows that Cb7

= Mb7
= {e1, e2, e5} and the only MSS sets is {e5}.

The maximal set that satisfies the conditions in step (d) is {e1, e2}. This set is
added to γ.

After a great deal of calculations the output of Algorithm 7.2 is

γ = {{e5}, {e1, e2}, {e3, e4}, {e1, e2, e3}, {e1, e2, e4}} (7.95)

This set γ is equal to γm. The only analytical calculations done are the calculations
done in Example 6.8 and in Example 7.9.

For large diagnostic models Algorithm 7.2 is computationally intractable. Next
an algorithm is presented that reduce the computational complexity, but does not
imply that the diagnostic system can be made sound. However, diagnostic sys-
tems produced using the next algorithm will often detect most inconsistencies and
completeness is always obtained.

7.4 A Simplified Algorithm

Assume that Assumption 7.1 holds. Then we know that Algorithm 7.1 finds a
γ that corresponds to a sound and complete diagnostic system. If we just do
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step (a) in Algorithm 7.1 then what result could we expect? If Corollary 7.6
holds then the result will be the same as when Algorithm 7.1 is applied. The
diagnostic model in Example 7.8 fulfills Corollary 7.6. For many diagnostic models
step (b) in Algorithm 7.1 is used little. For those models that step (b) is used little,
the difference in results doing only step (a) will be small. If for some behavioral
modes inconsistencies are important to detect, more detailed analysis according to
previous sections can be done only for these behavioral modes.

Algorithm 7.3.
Input: M
Set γ := mssM.
Output: γ

Note that the output of this algorithm is not guaranteed to correspond to a
sound diagnostic system but it always corresponds to a complete diagnostic sys-
tem. Finally we use the same diagnostic models as in Example 7.10 to show that
the output of Algorithm 7.3 that is much less computational complex than Algo-
rithm 7.2 gives almost as good results.

Example 7.11 The structural analysis gives that the MSS sets are

{e1, e2, e3}, {e1, e2, e4}, {e3, e4}, {e5} (7.96)

Using Theorem 5.6 and the from previous examples calculated detection models, it
can be seen that all behavioral modes except for b7 satisfy (5.72). That means the
corresponding diagnostic system is complete and all inconsistencies of all behavioral
models except for b7 can be detected by the diagnostic system. For b7 inconsisten-
cies are not detected for the following reason. No MSS set in Mb7

= {e1, e2, e5} is a
superset to the detection model {e1, e2}. The observations when the candidates are
different from the diagnoses is if z1 < 0 and z3 = 0. Then it follows that b7 /∈ D(z)
since {e1, e2} is not consistent with the observation, but the only assumption of a
test that includes b7 is the test for {e5}. This set is consistent with the observation
and therefore it follows that b7 ∈ C(z). This shows that in this case the diagnostic
system constructed using only the MSS sets is still rather good.



128 Chapter 7 Computing Testable Models



8
Structural Algorithms for Finding MSS Sets

In the previous chapter different algorithms were presented that under different
assumptions found a set of models that corresponds to a sound and complete di-
agnostic system. In the simplified Algorithm 7.3, the only step was to find all
MSS sets. In all other algorithms presented in Chapter 7 the MSS set finding was
one of the most important steps. Hence to compute a “good” set of tests using
the structure of a model, it is important to find the MSS sets. In this chapter
we will describe algorithms that find all MSS sets for both differentiated-lumped
structural-models DLSM:s and differentiated-separated structural models DSSM:s.
The algorithms in this section take the structure of a diagnostic model as input .
The structure of a diagnostic model can either be directly provided by the user or
as explained in Section 3.3 obtained automatically from model equations. First in
Section 8.1 different objectives for the MSS algorithm is presented and the basic
steps toward finding MSS sets are described. Then in sections 8.2-8.7 all steps
of the algorithm are presented. Finally in Section 8.8 some improvements of the
computational complexity of the algorithm are discussed.

8.1 The Steps Toward Finding All MSS Sets

The objective is to find a set γ of all MSS sets that is contained in a diagnostic
model M. The algorithm can be summarized in the following steps.

Algorithm 8.1.
Input: The structure of a diagnostic model M and let B = B.

a) Extracting a behavioral model: Let b ∈ B and set B = B\{b}. Extract the

129
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behavioral model Mb. First the no-fault model is extracted.

b) Differentiating the model: This step is done only if the algorithm is applied
to a DSSM. Then equations that are meaningful to differentiate for finding
MSS sets are structurally differentiated and added to the extracted model.

c) Extracting the overdetermined part of the model: Given the extracted model
and the additional equations found in step (b), remove all equations that can-
not be included in any MSS set, i.e. all equations not in the structurally
overdetermined part.

d) Merging equation sets: To simplify the next step, merge sets of equations that
have to be used together in each MSS set.

e) Finding MSS sets: Search for MSS sets in the resulting model from the pre-
vious step.

f) If B 6= ∅ goto step (a).

Output: All set of MSS sets.

When a diagnostic model is complex, for example contains a large number of
equations, is highly redundant, and contains a large number of system behavioral
modes the set γ will be large. Then the number of tests are too large to be able
to check all tests on-line. Then it is interesting to find a subset of MSS sets that
possibly has a desired isolability Id. To find a subset of MSS sets given a desired
isolability the following steps can be added to Algorithm 8.1.

The objective is to find a small set γ of MSS sets with, by the user defined
desired isolability Id. If full isolability is desired the resulting set γ has the same
structural isolability obtained when Cb = M+

b in (6.122).

Algorithm 8.2.

g) Evaluating isolability: Examine the isolability of the MSS sets found in step (e)
in Algorithm 8.1.

h) Extracting behavioral models: If the isolability has to be improved to fulfill
the desired isolability, a behavioral mode b ∈ B is computed using the desired
isolability and the so far obtained isolability. Then this behavioral mode is fed
to step (a) in Algorithm 8.1. If no such b in B exists goto step (i).

i) Selecting a subset of MSS sets: Select a small set of MSS sets that contains
the highest possible structural isolability or desired isolability.

Output: A small set of MSS sets and their isolability.

Note that to avoid searching for all MSS sets in all behavioral models, Algo-
rithm 8.2 has been organized so that, firstly, the fault free model is analyzed. The
no-fault mode has often one of the most detailed models of all modes. Therefore
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this model contains many overdetermined models. Hence the MSS sets in MNF

will usually have a high isolability. Then, if it is necessary for achieving higher
isolability, fault models are analyzed. Note also that step (i) in Algorithm 8.2 can
be used separately. Any γ obtained from one of the algorithms 7.1, 7.2, or 7.3 can
be used as the input to step (i) in Algorithm 8.2. The following sections discuss
each of the steps in Algorithm 8.1 and Algorithm 8.2.

8.2 Extracting a Behavioral Model

The goal is to compute mssM. As defined earlier mssM only contains the MSS
sets that describe feasible models. One approach to find only such MSS sets is to
search for MSS sets in each behavioral model. Then all MSS sets found will be
feasible. Therefore the first step in Algorithm 8.1 extracts a behavioral model, in
which MSS sets in later steps are to be found.

Algorithm 8.3.
Input: A diagnostic model M and a system behavioral mode b ∈ B.

Calculate Mb = {e ∈ M|b ∈ ass e}.

Output: Mext = Mb.

An example will be used to exemplify the extraction.

Example 8.1 Consider the diagnostic model in Table 2.2 of the water-tank
example in Section 2.2. If Algorithm 8.3 is applied to the behavioral mode NF the
resulting model is Mext = MNF = {e1, e3, e4, e7, e10, e11, e14}.

To reduce the computational complexity of finding all MSS sets for all different
behavioral modes, it is often a good choice to start with the no-fault model MNF.
It is common that faulty behavioral models Mb are obtained by removing different
equation sets from the no-fault model MNF. For these behavioral modes b it holds
that Mb ⊆ MNF. Then no extra search for MSS sets needs to be performed for
these behavioral models, because the MSS sets found in Mb will also be included
in MNF. Hence all the MSS sets in a Mb ⊆ MNF are found in the MSS sets of
MNF.

Example 8.2 Consider the diagnostic model in Example 7.8. There are 15 model
equations. The behavioral modes are described by removing different equation sets
from MNF. If all multiple faults are considered the number of behavioral modes
are 215 = 32768. Finding all MSS sets in a behavioral model is computationally
complex as we will see later. This computational cost grows rapidly if the search for
MSS sets has to be done in each behavioral mode individually. However, if all MSS
sets first is found for the no-fault model, then it can be realized that all MSS sets for
all behavioral models are obtained. This follows from the fact that all behavioral
models Mb are subsets of the no-fault behavioral model, i.e. Mb ⊆ MNF. Then if
an MSS set M is included in M ⊆ Mb then M ⊆ MNF.
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8.3 Handling Dynamic Models

If a DLSM is used, the algorithms in this section can be omitted and the extracted
structural model Mext can be directly fed to the algorithms in Section 8.4. If the
model is a DSSM, derivatives have to be considered. Then there are two choices:
either the additional structural information in a DSSM is used and then the method
that will be described in Section 8.3.1 has to be used, or the DSSM is transformed
to a DLSM that is described in Section 8.3.2.

8.3.1 Differentiating the Model

In this section an algorithm for handling derivatives is defined. This algorithm is
referred to as Algorithm 8.4. First an example will show why differentiation has to
be considered.

Example 8.3 Consider the model Mext in Example 8.1. This model is a part
of the model in Table 2.2. An algorithm that is not capable of differentiating
equations can obviously not eliminate ḣ in e3, because there is no other equation
including ḣ. In general, all derivatives of a model M have to be considered. If
M(i) denote the set of the i:th time derivative of each element, the equation set
generally considered is ∪∞

i=0M
(i). �

To summarize the example, Algorithm 8.4 must be capable of differentiating
equations. The next question to answer is if it is possible to predict the structural
model of a differentiated analytical model by using only the structural model of
the analytical diagnostic model? An example is used to answer this question.

Example 8.4 Consider again the model in Example 8.1. The differentiated
equation ė4 is ḣ = 2 fout ḟout. The variable h is linearly dependent in e4 and
therefore ḣ is linearly contained in equation ė4. Furthermore, both fout and ḟout
are nonlinearly contained in ė4 as a consequence of the fact that fout is nonlinearly
contained in e4.

This example shows that variables are handled in different ways depending on
if they are linearly or nonlinearly dependent. To be able to take this different treat-
ment into account, information about which variables that are linearly contained
is added to the structural model. With this additional knowledge a structural
differentiation can be defined that produce a correct structural representation of
differentiated equations. Structural differentiation for an arbitrary variable x and
an arbitrary equation e is defined in the following way:

1. If x is linearly contained in e then ẋ is linearly contained in ė.

2. If x is nonlinearly contained in e then both x and ẋ are nonlinearly contained
in ė.

Now structural differentiation can be applied to the structural model. Since
all numbers of differentiations of each equation implies a new equation, there are
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infinitely many equations in the differentiated model. Let m(z) be a limit for
variable z ∈ Z of the order of derivative that can be considered as possible to
estimate. If these limits are introduced and if the structural assumption to be
presented next is fulfilled, it is possible to find all MSS sets in a finite subset of the
differentiated model.

Before the assumption is presented, some notation is needed. If g is any equa-
tion, function or variable, let g(i) denote the i:th time derivative of g. Then define
varXE = {undifferentiated x|∃i(x(i) ∈ varXE)}, e.g. varXu∪Z{z = ẋ} = {z, x}.

Assumption 8.1. The model Mext has the property

∀E ⊆ Mext : |E| ≤ |varXu∪ZE|. (8.1)

The meaning of condition (8.1) is that each subset of equations include more
or equally many different variables, considering derivatives as the same variable.
If Assumption 8.1 is not fulfilled and there are no redundant equations, the model
would normally be inconsistent.

The easiest way to verify Assumption 8.1 is to verify the equivalent statement
that there is a complete matching of Mext into varXu∪ZMext in the corresponding
bipartite graph G(Mext, varXu∪ZMext).

A sufficient condition that there is a model with finitely many equations that
contains all MSS sets is that the model Mext satisfy Assumption 8.1 and all known
variables have finite limitations.

Algorithm 8.4 is greatly influenced by Pantelides’ algorithm (Pantelides 1988).
Before the algorithm is presented, a few definitions are introduced. Let M̄ =⋃n
i=1

⋃αi

j=1{e
(j)
i } be a differentiated model of M =

⋃n
i=1{ei}. Then the highest

number of differentiations in M̄ of equation i is αi. Let Mmax = {e
(αi)
i |1 ≤ i ≤ n}

be the set of most differentiated equations in M and let M∞ = {e
(j)
i |ei ∈ M, j ∈

N}. The highest derivative of a non-differentiated variable x in a model M is
denoted β(M,x), i.e. β(M,x) = max({i|x(i) ∈ varXu∪ZM}). Finally let v̂arM be
the variables varXu∪ZM that fulfill the following two requirements:

• It is the highest derivative of each variable that are considered.

• It is the variables, whose derivative is unknown.

For example, if ż ∈ varXu∪ZM, ∀i ∈ Z+\{1} : z(i) /∈ varXu∪ZM, and m(z) = 1,
then ż ∈ v̂arM because ż is the highest derivative of z in M and z̈ is unknown.

Algorithm 8.4.
Input: The extracted model Mext, a description of which variables that are linearly
contained in each equation, and for each z ∈ varZMext, m(z) < ∞.

1. Let the current model Mc be Mext and let i = 1.

2. If i ≤ |Mext| then let Mmax
c be only the most differentiated equations of

Mc. Let Mmax
c (i) denote the i first equations in Mmax

c and let equation i in
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Mmax
c be denoted ei. A complete matching of Mmax

c (i−1) into v̂arMmax
c in

the bipartite graph G(Mmax
c , v̂arMmax

c ) is found in previous steps. Search for
an augmented path in G(Mmax

c , v̂arMmax
c ) from ei to an unassigned variable

in v̂arMmax
c .

a) If an augmented path P is found with respect to the matching Γ a complete
matching of Mmax

c (i) into v̂arMmax
c is (Γ ∪ P)\(Γ ∩ P). Set i = i + 1

and goto step (2).

b) No augmented path is found. Then an MSS set with respect to v̂arMmax
c

is found as follows. Let all edges not included in the matching be di-
rected edges from the equation vertices to the variable vertices. Then
the MSS set with respect to v̂arMmax

c is defined as all equation vertices
reachable from ei. Denote this MSS set E. Note the difference between
this set which is MSS with respect to v̂arMmax

c instead of MSS with re-
spect to Xu. Differentiate E until |v̂arE(i)| ≥ |E| using the description of
which variables that are linearly contained. Let the obtained differenti-
ated model be Mc. Goto step (2).

3. Rename the current model Mc to Mdiff.

Output: Mdiff.

If mssallM = mss(∪∞
i=0M

(i)) then it is possible to state the following theorem.

Theorem 8.1. If Assumption 8.1 is satisfied and for each z ∈ varZMext,
m(z) < ∞, then

mssallMext = mssMdiff

The consequence of this theorem is that all MSS sets that are possible to find if
the model Mext is differentiated an infinite number of times, can always be found in
Mdiff. Before Theorem 8.1 is proved the continuation of Example 8.1 is presented
to describe how Algorithm 8.4 works.

Example 8.5 Consider the structural model in Table 2.2 and the extracted
model Mext = MNF = {e1, e3, e4, e7, e10, e11, e14}. The corresponding bipartite
graph
G(Mext, varXu∪ZMext) is shown in Figure 8.1. This model satisfies Assumption 8.1
since it is possible to find a complete matching of Mext into varXu∪ZMext in the
graph G(Mext, varXu∪ZMext) shown in Figure 8.2. An example of a complete
matching of Mext into varXu∪ZMext is {e1, fin}, {e3, fout}, {e4, h}, {e7, f}, {e10, yh},
{e11, fint}, and {e14, yf}. This matching is shown in Figure 8.2 by the bold edges.
Let m(u) = m(yf) = 1 and m(yh) = 0. According to Theorem 8.1 it is possible to
use Algorithm 8.4 to produce the model Mdiff.

Step (2) in Algorithm 8.4 is fed with the structural model Mc shown in Fig-
ure 8.1 and the m-values. Figure 8.3 shows the graph G(Mmax

c , v̂arMmax
c ) built

in step (2). Note that the vertex corresponding to h is not considered, because
h is not the highest derivative of h in the model. The known variables u and yf
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e1 e3 e4 e7 e10 e11 e14

fin fout h ḣ f fint u yh yf

Figure 8.1 The bipartite graph G(Mext, varXu∪ZMext).

e1 e3 e4 e7 e10 e11 e14

fin fout h f fint u yh yf

Figure 8.2 The bipartite graph G(Mext, varXu∪ZMext). The thick edges
denotes a complete matching of Mext into varXu∪ZMext.

have known derivatives and are therefore not included in v̂arMmax
c . However, the

derivative of yh is an unknown variable and yh is therefore included.
Step (2) in Algorithm 8.4 searches for an augmented path from e1 to v̂arMmax

c

in the graph showed in Figure 8.3. The path P = {{e1, fin}} is found and this single
edge becomes the first matching, i.e. Γ = {{e1, fin}}. Then the assignment {e3, fout}

will be found and Γ := {{e1, fin}, {e3, fout}}. When e4 is analyzed the alternating
path found is P := {{e4, fout}, {fout, e3}, {e3, ḣ}}. The new matching becomes

Γ := (Γ ∪ P)\(Γ ∩ P) = {{e1, fin}, {e3, fout}, {e4, fout}, {e3, ḣ}}\{{e3, fout}} =

= {{e1, fin}, {e4, fout}, {e3, ḣ}}

The assignments in the matching are then found in the following order {e7, f},
{e10, yh}, and {e11, fint}. These are the edges denoted with a bold edge in the
graph in Figure 8.3. When e14 is going to be assigned, there is no variable vertex
left. Since no augmenting path is found, step (2b) finds an MSS set with respect to
v̂arMmax

c . When edges not contained in the matching are directed from equation
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e1 e3 e4 e7 e10 e11 e14

fin fout ḣ f fint yh

Figure 8.3 The bipartite graph G(Mmax
c , v̂arMmax

c ) built in step (2). The
bold edges are the matching found. The bold equation vertices
are the MSS set found in step (2b).

vertices to variable vertices, the reachable equation vertices from e14 are e4 and e7.
A directed path from e14 containing equation e4 and e7 are shown in Figure 8.3
by arrows on the edges. This path proves that e4 and e7 is reachable form e14
considering the directed edges. Hence this is the equation set to be differentiated.

The structural differentiation uses additional information about which variables
that are nonlinearly included in each equation. Nonlinearly included variables are
denoted with “O” in Table 8.1. Differentiating once implies that ẏf appears in
v̂ar({ė4, ė7, ė14}). The new model consists of {e1, e3, e4, ė4, e7, ė7, e10, e11, e14, ė14}

and the new bipartite graph showed in Figure 8.4 is extracted in step (2). Equations
e4, e7, and e14 are not anymore the most differentiated equations in the new model.
Further, ẏf is included, because ÿf is considered as an unknown variable. Note that
an edge in the matching in Figure 8.3 is either unchanged or replaced with an edge
between the replaced vertices corresponding to the differentiated equation and the
differentiated variable in Figure 8.4. For example {e1, fin} is unchanged and the
edge {e4, fout} in Figure 8.3 is replaced with {ė4, ḟout} in Figure 8.4.

Step (2) finds an assignment for ė14. The structural model Mdiff obtained
from Algorithm 8.4 is shown in Table 8.1. The three differentiated equations are
ė4 : ḣ = 2 fout ḟout, ė7 : ḟ = ḟout, and ė14 : ẏf = ḟ. Note the exact correspondence
between the analytical differentiation and the structural differentiation in Table 8.1.

Now, we finally prove Theorem 8.1.

Proof. The proof consists of two parts. The first part states that Algorithm 8.4 ter-
minates and that the differentiated model has the property that there is a complete
matching from Mmax

diff into v̂arMmax
diff . In the second part this complete matching

is used to show that mssallMext = mssMdiff.
Algorithm 8.4 terminates when i = |Mext|. The variable i is increased in

step (2a). Step (2a) is done when an augmented path from ei to an unassigned
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e1 e3 ė4 ė7 e10 e11 ė14

fin ḟout ḣ ḟ fint yh ẏf

Figure 8.4 The bipartite graph G(Mmax
c , v̂arMmax

c ) built in step (2) after
one differentiation. The bold edges are the complete matching
found in step (2).

Table 8.1 The structural model MDSSM
diff obtained from Algorithm 8.4

when applied to the structural model Mext = MDSSM
NF . Nonlin-

early included variables are denoted with an ”O”.

model unknown known

finfout ḟouth ḣ f ḟ fint u yhyfẏf

e1 X X

e3 X X X

e4 O X

ė4 O O X

e7 X X

ė7 X X

e10 X X

e11 X X

e14 X X

ė14 X X

variable in v̂arMmax
c is found.

To show that Algorithm 8.4 terminates is equivalent to show that an augmented
path from ei to an unassigned variable in v̂arMmax

c is always found in finitely many
iterations using step (2b).

First it will be shown that the differentiation in step (2b) is always terminated.
Therefore assume that there is no augmented path from ei to an unassigned variable
in v̂arMmax

c in step (2). Then step (2b) finds an MSS set with respect to v̂arMmax
c .

Let this MSS set be denoted E. In Figure 8.5 the vertices denoted with lines are
the equation vertices Mmax

c and the circles denotes the variable vertices v̂arMmax
c .

The bold edges represents a matching. The bold equation vertices are an MSS set
E with respect to v̂arMmax

c .



138 Chapter 8 Structural Algorithms for Finding MSS Sets

Figure 8.5 The equation vertices are Mmax
c and the variable vertices are

v̂arMmax
c . The bold edges represents a matching. The bold

equation vertices are an MSS set E with respect to v̂arMmax
c .

Since both the highest derivatives of each variable and all limits on known
variables are finite, it is possible to exceed those limits by differentiating E, let say
m number of times. Then it can be realized that the model Mc and the MSS set
E have the following property:

(∀x ∈ varXu∪ZE : β(Mc, x) < ∞∧

∀z ∈ varZE : m(z) < ∞) ⇒
∃m ∈ N :

(∀x ∈ varXuE : β(E(m), x) ≥ β(Mc, x)∧

∀z ∈ varZE : β(E(m), z) ≥ max(β(Mc, z),m(z))
) (8.2)

Assumption 8.1 guarantees that |E| ≤ |varXu∪ZE|. According to expression (8.2)
each variable in varXu∪ZE will have a corresponding derivative in v̂arE(m). Hence
|v̂arE(m)| = |varXu∪ZE| ≥ |E| which is the stop condition of step (2b). After
the redefinition of Mmax

c in step (2) at least one new variable is included in
var cvarMmax

c
(E(m)). According to Lemma 8.2 the differentiation in step (2b) will

not remove any corresponding edge in previous found matching.
Next it is shown that the loop using step (2b) terminates, i.e. after a finite

number iterations using step (2b) Algorithm 8.4 finds an augmented path and
step (2a) is applied. Since the previous matching has a corresponding matching, the
corresponding matching together with the augmented path defines a new extended
matching.

As explained above the differentiation is terminated and there is at least one
new variable included in var cvarMmax

c
(E(m)). The result of finding new variable

vertices is divided into two cases.

1. All new variable vertices are already included in the matching. An example
is shown in Figure 8.6 where the dashed edge is the newly appeared. Then
there is a new MSS set Ê with respect to v̂arMmax

c in the right graph in
Figure 8.6 denoted with bold vertices. Let the notation x(i) be generalized
such that {x1, . . . , xn}(i) denotes the set of variables {x

(i)
1 , . . . , x

(i)
n }. Then

the definition of structural differentiation implies that the graphs G(E, v̂arE)
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Figure 8.6 In the left graph the two rightmost equations have been dif-
ferentiated. As a result of the differentiation the dashed edge
appears. The new variable vertex is already included in the
matching as shown in the left graph. Then there is a new MSS
set with respect to v̂arMmax

c in the right graph denoted with
bold vertices. Note that the MSS set in the left graph is a
subset to the MSS set in the right graph.

and G(E(m), (v̂arE)(m)) are isomorphic (Grimaldi 1994). If E is differenti-
ated m number of times then it is clear according to how the MSS set is
obtained in Algorithm 8.4 and the fact that the subgraphs G(E, v̂arE) and
G(E(m), (v̂arE)(m)) are isomorphic that E(m) ⊂ Ê. Since the new MSS set Ê

is including E(m) then this case can only be repeated i times. Therefore it
is sufficient to prove that given case 2 an augmented path will be found and
hence step (2b) will be followed by step (2a).

2. There is a new variable that is not included in the matching. All vertices
are reachable from e

(m)
i when all edges not included in the matching are di-

rected edges from the equation vertices to the variable vertices, i.e. there is an
augmented path from e

(m)
i to the new variable vertex in v̂arE(m). This aug-

mented path defines a new complete matching including e
(m)
i . In Figure 8.7

there is a new edge to a new unassigned variable. There is an augmenting
path from the last equation vertex to the last variable vertex. In the right
figure the new matching is defined.

Hence the algorithm will terminate and find a complete matching of Mmax
diff

into v̂arMmax
diff . Now it remains to prove that Mdiff contains all MSS sets. From

Lemma 8.3 it follows that mssallMext ⊆ mssMdiff. Since Mdiff ⊂ M∞
ext, it implies

that mssMdiff ⊆ mssM∞
ext = mssallMext. Hence mssMdiff = mssallMext.

Now the two Lemmas 8.2 and 8.3 will be discussed and proven. According to
Algorithm 8.4 assignments for each equation in Mc are sequentially found. How-
ever, it is important that the differentiation of the MSS set E in step (2b), does
not remove any edge that is included in the matching. To show that differentiation
does not remove any edge included in the matching, let a bipartite graph be defined
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Figure 8.7 In the left graph the to last equation vertices have been dif-
ferentiated. As a result of the differentiation the dashed edge
appears. There is an augmenting path from the last equation
vertex to the last variable vertex. In the right figure the new
matching is defined switching assigned and unassigned edges.

as G1 = G(Mmax
c , v̂arMmax

c ). Consider two subsequent graphs G1 and G2, i.e. G2
is the resultant bipartite graph in step (2) after step (2b) is applied to G1. Suppose
that step (2b) differentiate E, m number of times.

Lemma 8.2. Step (2b) preserves any matching, i.e. if there is an edge {e, x} in-
cluded in the matching in G1, then either {e, x} is included in G2 or there is a
corresponding edge in G2 between {e(m), x(m)}.

Proof. Let ei denote the first equation in G1 that has not been assigned. Assume
that there is no augmenting path in G1 from ei. Otherwise no differentiation has to
be done and therefore it is nothing to prove. The complete matching of Mmax

c (i−1)
into v̂arMmax

c in G1 together with ei define an MSS set E. Now for e it holds that
either e /∈ E or e ∈ E.

1. If e /∈ E, e is not differentiated. Then according to Algorithm 8.4 there can
not be a directed path from ei to e considering unmatched edges as directed
edges from equation vertices to variable vertices. This implies that there
is no directed path from ei to x either. If any of the equations reachable
from ei included x then x would also be reachable from ei. This is not true
and the conclusion is that no equations including x are differentiated. Hence
the variable x is not involved in the differentiation. The edge {e, x} and the
vertices e and x are unchanged from G1 to G2.

2. If e ∈ E, e is differentiated. Then according to Algorithm 8.4 there is a
directed path from ei to e considering unmatched edges as directed edges
from equation vertices to variable vertices. Since the only incoming edge to
e is the edge {e, x} the only possible directed path to e goes through the
variable vertex corresponding to x. Hence e and x are replaced with e(1)

and x(1) in G2 respectively. The edge {e(1), x(1)} is obviously included in the
graph corresponding to one differentiation. If the differentiation is repeated it
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follows that {e(j), x(j)} will be included in the corresponding graph. Especially
{e(m), x(m)} will be included in G2.

In both two cases the matching is preserved and therefore the lemma is proven.

Lemma 8.3. If there is a complete matching of the most differentiated equations in
Mdiff into the variable vertices in to v̂arMmax

diff . Then all mssallMext ⊆ mssMdiff.

Proof. Let the equations and variables in the complete matching be denoted ei and
xi respectively such that {ei, xi} is an assignment. It is clear that ∀j ∈ Z+ : e

(j)
i /∈

Mdiff and ∀j ∈ Z+ : x
(j)
i /∈ varXu∪ZMdiff.

Take an arbitrary set of equations E such that E ⊂ M∞
ext and E∩(M∞

ext\Mdiff) 6=
∅. Call this intersection E ′. Let the equations in E ′ be

e
(α1)
1 , · · · , e

(αn1
)

1
...
e

(α1)
m , · · · , e

(αnm)
m

(8.3)

Note that all αi > 0. According to the complete matching, it is clear that x
(α)
i ∈

varXu∪Ze
(α)
i for 0 < α ≤ αni

. Further x
(α)
i /∈ Mdiff, where 0 < α ≤ αni

.
Now, the idea is to apply Lemma 3.5 on the variables set X = {x

(αj)
i |1 ≤ i ≤

m, 1 ≤ j ≤ ni}. The number of variables is |X| =
∑m

i=1 ni. From the fact that
varXMdiff = ∅ and x

(α)
i ∈ varXe

(α)
i it follows that equE(X) = E ′. The number of

equations in E ′ is |E ′| =
∑m

i=1 ni = |X|. Lemma 3.5 conclude that E can not be an
MSS set. Hence, given any MSS set E, it follows that E ⊆ Mdiff.

8.3.2 Computing the DLSM

Another approach is to consider the differentiated-lumped structural-model. Using
this approach, a smaller structural model than the differentiated structural-model
is obtained. Hence this approach is especially suitable for large models. For the
DLSM the limitations of the number of derivatives of known variables m(z) are not
needed.

The DLSM of MNF obtained from Table 2.2 can be seen in Table 8.2. Note that
the number of equations and unknown variables in the DLSM are 7 and 5 respec-
tively. These numbers are smaller than corresponding numbers of the differentiated
DSSM MDSSM

diff in Table 8.1 with 10 equations and 8 unknown variables.

8.4 Simplifying the Model

It is a complex task to find all MSS sets in a structural model. Therefore it can be of
great help if it is possible to simplify the model. Here two kinds of simplifications
are used. In the first step the structurally overdetermined part of the model is
found and in the second step equations that must be used together in MSS sets are
merged.



142 Chapter 8 Structural Algorithms for Finding MSS Sets

Table 8.2 The DLSM MDLSM
NF .

equation unknown known
finfouth ffint u yhyf

e1 X X

e3 X X X

e4 X X

e7 X X

e10 X X

e11 X X

e14 X X

8.4.1 Extracting the Overdetermined Part of the Model

In a first step, the structurally overdetermined part of MDSSM
diff or MDLSM

NF is
found. This is done using canonical decomposition described in Section 3.4.2. As
a reminder the description of canonical decomposition is rewritten. Canonical de-
composition divides a model M into three parts: one structurally overdetermined
denoted M+, one structurally just-determined M0 and one structurally underde-
termined part M−. This is accomplished by first finding a maximal matching in
the bipartite graph G(M, varXuM). Denote the assigned equations and variables in
the maximal matching with Mm and Xm respectively. Now, all vertices such that
there is an alternating path from M\Mm is the structurally overdetermined part
of the model M+. The structurally underdetermined part of the model M− is the
vertices such that there is an alternating path from varXu(M)\Xm. The remain-
ing part of the model is the structurally just-determined part M0. The output of
this step will be denoted Mover and is equal to M+

diff. The two different types of
structural models of the water-tank example are used to illustrate this step.

Example 8.6 First we study the DLSM MDLSM
NF in Table 8.2. A maximal

matching in the graph G(MDLSM
NF , varXuMDLSM

NF ) is shown with bold crosses in
Table 8.3 and with bold edges in Figure 8.8.

There exists an alternating path from the equation vertices not assigned, i.e. e1
and e14, to e3, e4, e7, and e10. An example of two alternating paths are {e14, f},

{f, e7}, {e7, fout}, {fout, e4}, {e4, h}, {h, e10} and {e1, fin}, {fin, e3}. However it is
not possible to find an alternating path between e11 and e1 or e14. This means
that (MDLSM

NF )+ = MDLSM
over = {e1, e3, e4, e7, e10, e14} and (MDLSM

NF )0 = {e11}.

For the differentiated DSSM in Table 8.1 the decomposition is shown in Ta-
ble 8.4. As for the DLSM equation e11 is the structurally just-overdetermined part
while the set of the remaining equations are the structurally overdetermined part.
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Table 8.3 A maximal matching in G(MDLSM
NF , varXuMDLSM

NF ) is shown
with bold crosses. Equation e11 is the structurally just-
determined part and the set of all other equations is the struc-
turally overdetermined part.

model unknown known
fint f h foutfin u yhyf

e11 X X

e14 X X

e7 X X

e10 X X

e4 X X
e3 X X X
e1 X X

e11 e14 e7 e10 e4 e3 e1

fint f h fout fin

Figure 8.8 The bipartite graph G(MDLSM
NF , varXuMDLSM

NF ).
The thick edges denotes a maximal matching in
G(MDLSM

NF , varXuMDLSM
NF ).

8.4.2 Merging Equation Sets

In a second simplification step, equations that must be used together in MSS sets
are merged. The rest of this section will be devoted to a discussion about this
second step.

If there is a set X ⊆ Xu with the property 1 + |X| = |equMover
(X)|, then either

no equation in equMover
(X) or all equations in equMover

(X) must be used in MSS
sets to fulfill the condition in Lemma 3.5. This means that all MSS sets including
any equation of equMover

(X) have to include all equations in equMover
(X). The

idea is to find these sets of equations. Then it is possible to merge equMover
(X)

and only consider the unknown variables varXu(equMover
(X))\X.

This second simplification step finds subsets of variables that are included in
exactly one more equation than the number of variables. To reduce the compu-
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Table 8.4 The structural model MDSSM
diff obtained from Algorithm 8.4

when applied to the structural model Mext. The structural
model MDSSM

over is all equations except e11.

model unknown known

fint f fouth ḟ ḟoutḣ fin u yhyfẏf

e11 X X

e14 X X

e7 X X

e4 O X

e10 X X

ė14 X X

ė7 X X

ė4 O O X

e3 X X X

e1 X X

tational complexity, a complete search for such sets is in fact not performed here.
Instead only a search for single variables included in two equations is done. When
a variable is included in just two equations, these equations are merged. If all
variables are examined and some simplification was possible, then all remaining
variables are examined once more. When no more simplifications can be made, the
simplification step is finished and the resulting structural model is denoted Msimp.
Note that with this strategy larger sets than two equations will also be merged,
since the algorithm can merge sets of equations merged in previous steps.

Algorithm 8.5.
Input: Mover

1. Set X = varXuMover and Msimp = Mover.

2. For all variables x ∈ X do step (3).

3. If |equMover
(x)| = 2 then set X = X\{x} and let the two equations equMover

(x)
in Msimp be replaced with one new model M where varXu∪ZM =
varX∪Z(equMsimp

(x)). For all e ∈ Msimp\equMsimp
(x) let varXu∪Ze =

varX∪Ze.

4. If some simplifications were made in step (3) go back to step (2).

Output: Msimp.

The complexity of Algorithm 8.5 is O(|varXuMsimp|
2). The next theorem en-

sures that no MSS set is lost in the simplification steps.

Theorem 8.4. mssMdiff = mssMsimp
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Table 8.5 The model MDLSM
over that is input to Algorithm 8.5. The variables

that are involved in the merging are denoted with bold crosses.

model unknown known
finfouth f u yhyf

e1 X X

e3 X X X

e4 X X

e7 X X
e10 X X

e14 X X

Table 8.6 The model MDLSM
simp .

model unknown known
fout h u yhyf

{e1 , e3} X X X

{e7 , e14} X X

{e4} X X

{e10} X X

The proof is at the end of this section.

Example 8.7 Consider Example 8.6. First we consider the DLSM in Table 8.3.
The overdetermined part MDLSM

over is shown in Table 8.5. The second simplification
step searches for variables which belong only to two equations. The first time
step (3) is applied to MDLSM

over , it is found that fin is included in {e1, e3} and f in
{e10, e14}. In Table 8.5 the variables that are involved in the merging are denoted
with bold crosses. The structural model obtained after each of these two equation
sets are merged is shown in Table 8.6. Since two merges were done, the algorithm
searches for simplifications once more but now in the structural model in Table 8.6.
In this model, both unknown variables are contained in 3 equations. Hence no more
simplification can be done and the structural model in Table 8.6 is the result of

Table 8.7 An analytical model corresponding to MDLSM
simp in Table 8.6.

model expression

{e1 , e3} ḣ = u − fout
{e7 , e14} yf = fout

{e4} h = f2out
{e10} yh = h
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Table 8.8 The structural model MDSSM
simp .

model unknown known
fout u yhyfẏf

{e7 , e14} X X

{e4 , e10} X X

{e1 , e3 , ė4 , ė7 , ė14} X X X

Table 8.9 An analytical model corresponding to MDSSM
simp in Table 8.8

model expression

{e7 , e14} yf = fout

{e4 , e10} yh = f2out
{e1 , e3 , ė4 , ė7 , ė14} u = fout(1 + 2 ẏf)

the simplification steps, i.e. MDLSM
simp . An analytical interpretation of the simplified

model is shown in Table 8.7.
Now we consider the DSSM, MDSSM

over , below the lowest horizontal line in Ta-
ble 8.4. The second simplification step searches for variables which belong only
to two equations. In the first search for such variables, the algorithm finds f in
{e14, e7}, h in {e4, e10}, ḟ in {ė14, ė7}, and ḟout in the models produced by {ė14, ė7}

and ė4. The last merging makes a set {ė4, ė7, ė14}. Continuing in the same way it is
found that ḣ is contained in {ė4, ė7, ė14} and e3. Finally the algorithm finds fin in
{e3, ė4, ė7, ė14} and e1. Simplifications are made when step (3) is applied and there-
fore step (2) and (3) are performed once more. The second time no simplifications
are made and the simplification step is therefore complete. The structural model
MDSSM
simp is shown in Table 8.8 and a corresponding analytical model is shown in

Table 8.9.

Before we prove Theorem 8.4 a Lemma is presented.

Lemma 8.5. Given that

1. a model M has the property ∀X̄ 6= ∅,

X̄ ⊆ varXuM : |X̄| < |equM(X̄)|,

2. X 6= ∅,

3. 1 + |X| = |equM(X)|,

4. E is an MSS set and E ⊆ M,

5. E ∩ equM(X) 6= ∅,

then equM(X) ⊆ E.
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The proof of Lemma 8.5 follows immediately after the proof of Theorem 8.4
which is presented next.

Proof. From Lemma 3.5 it follows that for any E ∈ mssMdiff implies that E ⊆
M+
diff = Mover. Hence mssMdiff = mssMover. It remains to prove that mssMover =

mssMsimp. Since Algorithm 8.5 only changes the model Msimp in step 3 it is suf-
ficient to prove that this operation on Msimp preserves the MSS sets included.
Let the structural models Msimp before and after a simplification in step (3) be
denoted M1 and M2 respectively.

Since the model Mover is structurally overdetermined, it satisfy (1) in Lemma 8.5.
Assume that Algorithm 8.5 finds that x ∈ varXuM1 fulfills |equM1

(x)| = 2. If
X = {x} in Lemma 8.5 then (2), and (3) in Lemma 8.5 are fulfilled. Take an arbi-
trary MSS set E ⊆ M1 i.e. property (4). in Lemma 8.5. There are two cases to
consider, either E ∩ equM1

(x) = ∅ is true or E ∩ equM1
(x) 6= ∅ is true.

1. If E ∩ equM1
(x) = ∅, then E is not involved in the simplification and it is

clear that E ⊆ M2.

2. Otherwise it holds that E ∩ equM1
(x) 6= ∅. This is condition (5). in

Lemma 8.5. Since all 5 conditions in Lemma 8.5 are fulfilled the conclu-
sion equM1

(x) ⊆ E follows. This means that equM1
(x) could be considered

as one model derived from equM1
(x) by eliminating the variable x. Hence

E ⊆ M2. Moreover if M1 has property (1). in Lemma 8.5, then M2 has also
this property because

∀X̄ 6= ∅, X̄ ⊆ varXuM2 : |X̄| = |X̄ ∪ {x}| − 1 <

< |equM1
(X̄ ∪ {x})| − 1 = |equM2

(X̄)|

Since E was an arbitrary MSS set then mssM1 = mssM2. Algorithm 8.5 applies
step (3) repeatedly, hence mssMover = mssMsimp.

Now we continue with the proof of Lemma 8.5.

Proof. Let E ′ = E ∩ equM(X) and XE ′ = varXE ′. Since E ∩ equM(X) 6= ∅, then
∃e ∈ E ′∃x ∈ X : x ∈ varX{e}. It follows that ∅ 6= {x} ⊆ varXE ′ = XE ′ . Suppose
that X\XE ′ = ∅. Then XE ′ = X because XE ′ ⊆ X. Apply Lemma 3.5 to X ⊆ varXE

where X 6= ∅ then it follows that |equE(X)| > |X|. Then |E ′| > |X| since the definition
of E ′ gives |E ′| = |equE(X)|. Condition (3) implies an upper bound on |E ′|,

|E ′| = |E ∩ equM(X)| ≤ |equM(X)| = 1 + |X|. (8.4)

From inequality (8.4) and |E ′| > |X| it follows that equM(X) = E ′, hence equM(X) ⊆
E. Suppose contrary that X\XE ′ 6= ∅. Now, condition (1) of the system M where
X̄ = X\XE ′ gives the inequality

|X\XE ′ | ≤ |equM((X\XE ′))| − 1. (8.5)
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Consider the negation of the conclusion in Lemma 8.5, i.e. equM(X)\E ′ 6= ∅, E is
an MSS set, and XE ′ 6= ∅. From Lemma 3.5 where X̄ = XE ′ it follows that

|XE ′ | ≤ |equE(XE ′)| − 1. (8.6)

Add inequality (8.5) and (8.6)

|X| = |XE ′ | + |X\XE ′ | ≤
≤ |equE(XE ′)| + |equM((X\XE ′))| − 2 ≤ (8.7)

≤ |equM(X)| − 2.

The last inequality in (8.7) follows since equE(XE ′) ∩ equM((X\XE ′)) = ∅. Condi-
tion 3. implies a contradiction |X| + 2 ≤ |equM(X)| = |X| + 1. Hence, equM(X) ⊆
E.

8.5 Finding MSS Sets

After the simplification steps are completed, step (e) in Algorithm 8.1 finds all
MSS sets in the simplified model Msimp. This section explains how the MSS sets
are found. The task is to find all MSS sets in the model Msimp with equations
{e1, · · · , en}. Let Mk = {ek, · · · , en} be the last n − k + 1 equations. Let E be the
current set of equations that is examined. The set of MSS sets found is denoted
γmss. Then the following algorithm finds all MSS sets in Msimp.

Algorithm 8.6.
Input: The model Msimp.

1. Set k = 1 and γmss = ∅.

2. Choose equation ek. Let E = {ek} and X = ∅.

3. Find all MSS sets that are subsets of Mk and include equation ek.

a) Let X̃ = varXu(E)\X be the unmatched variables.

b) If X̃ = ∅, then E is an MSS set. Insert E into γmss.

c) Else take a remaining variable x̃ ∈ X̃ and let X = X ∪ {x̃}. Let
Ẽ = equMk\E(x̃) be the remaining equations. For all equations e in Ẽ

let E = E ∪ {e} and goto step (a).

4. If k < n set k = k + 1 and goto step (2).

Output: The set of MSS sets found, i.e. γmss.

Algorithm 8.6 finds all MSS sets in Msimp according to the next theorem.

Theorem 8.6. γmss = mssMsimp
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Table 8.10 The DLSM obtained after the simplification step. To simplify
the notation, the sets of equations are renamed according to
the left column.

renamed model model unknown known
fout h u yhyf

1 {e1 , e3} X X X

2 {e7 , e14} X X

3 {e4} X X

4 {e10} X X

In (Pulido & Alonso 2002) there is a similar algorithm for computing minimal
evaluation chain (MEC) which is almost the same as the MSS sets. The differ-
ence is that a MEC has to include known variables. The next example illustrates
Algorithm 8.6.

Example 8.8 Consider the structural model in Table 8.6. To simplify the nota-
tion, let the equations be renamed as defined in Table 8.10. The important variables
computed when Algorithm 8.6 is applied to the structural model in Table 8.10 are
shown in Table 8.11. First in step (1) k and γmss are initialized. Then in step (2)
the set of current equation is E = {1} where 1 is the name of the first equation and
the set of matched variables X = ∅. These two variables are shown in the first row
and in the second and third column respectively in Table 8.11. In step (3a) the
unmatched unknown variables in E are stored. In this case equation 1 includes the
unknown variables fout and h, i.e. X̃ = {fout, h} as shown in the fourth column
in Table 8.11. Since X̃ 6= ∅ step (3c) is done. First let x̃ := fout ∈ X̃ and set
X = X ∪ {x̃} = {fout}. In Table 8.10 it is seen that the equations {1, 2, 3} contain
fout. The algorithm finds that equations {2, 3} in the set M1\E = {1, 2, 3, 4}\{1}

include fout. Hence Ẽ = {2, 3} in step (3c). The first equation in Ẽ = {2, 3} is added
to E, i.e. E = {1, 2} and X = {fout}. This is seen in the second row of Table 8.11.
Now continuing in the same way as described the computed variables can be seen
Table 8.11. In the third row in Table 8.11 it is interesting to note that X̃ = ∅.
Then in step (3b) the set E is inserted into γmss because it is an MSS set. The
MSS set obtained is {1, 2, 3} and it has the following structure

renamed model unknown known
fout h u yhyf

1 X X X

2 X X

3 X X

(8.8)

This MSS was found because first equation 1 was chosen and then there is a perfect
matching of all unknown variables of E into E\{1} as can be seen in (8.8). This
matching defines a 2-spanning tree in the following way. First equation 1 is the
root of the tree. The children of the root are its unknown variables, i.e. fout and
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h. The matching defines the child of each variable vertex, in this example 2 is a
child of fout and 3 is a child of h. If the equations in E are rearranged in the
same order as they are added to E in Algorithm 8.6, then the parent vertex to each
variable vertex is defined as the first equation that contains the variable. In this
way a spanning tree is built for any MSS set.

Before the row that starts with a 2 in Table 8.11 the algorithm has found all
MSS sets that include equation 1, i.e. {1, 2, 3}, {1, 2, 4}, and {1, 3, 4}. Since all MSS
sets are found that include equation 1, it remains to find MSS sets in M2 = {2, 3, 4}.
Continuing in this way the MSS sets found are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}.
In the original notation the MSS sets are

γmss = {{e1, e3, e4, e7, e14}, {e1, e3, e7, e10, e14}, {e1, e3, e4, e10}, {e4, e7, e10, e14}}

(8.9)
Finally we also present the MSS sets found in the DSSM. The 3 MSS sets contained
in the model shown in Table 8.8 are

γmss = {{e4, e7, e10, e14}, {e1, e3, ė4, e7, ė7, e14, ė14}, {e1, e3, e4, ė4, ė7, e10, ė14}}

(8.10)
Note that {e4, e7, e10, e14} is found both in (8.9) and (8.10). This follows from the
fact that all these equations are static equations and it is only with respect to differ-
entiation these two methods are different. Furthermore we see that {e1, e3, ė4, e7,

ė7, e14, ė14} in (8.10) uses the same original equations as {e1, e3, e4, e7, e14} in (8.9).
There are no MSS sets in (8.10) that use exactly the same original equations as
the second and third MSS in (8.9), because the differentiation limitations m(z) are
too low to find such sets. In (8.10) another MSS set is found that uses the original
equations {1, 3, 4, 7, 10, 14} and fulfills the differentiation limitations.

Next we prove Theorem 8.6.

Proof. To show the inclusion γmss ⊆ mssMsimp, we will take an arbitrary E ∈
γmss and show that E is an MSS set. The set E is an MSS set if and only if ∀e ∈ E

there exist a perfect matching in G(E\{e}, varXuE) according to Lemma 3.4. The
goal is to find a perfect matching in G(E\{e}, varXuE) for all e.

Number the equations in E as they were found in Algorithm 8.6, i.e. E =
{e1, . . . , en}. Let Ej = {e1, . . . , ej} be the first j equations found. Note that
when Algorithm 8.6 stores E in step (3b) it holds that j = n. If n = 1, then
varXuE1 = X̃1 = ∅ in (3b) and E1 = {e1} is an MSS set. Otherwise, if n ≥ 2

take an arbitrary ea ∈ E. The next paragraph shows that there will be a perfect
matching in G(E\{ea}, varXE) for all a ∈ {1, 2, 3, . . . , n}.

If n ≥ 2 the algorithm finds a complete matching of varXuE into E. This
assignment is {e2, x1}, {e3, x2}, . . . ,{en, xn−1}. If a = 1 a perfect matching is the
previous assignment. If a 6= 1, then all variables but xa−1 have an assignment. The
next paragraph shows that it is always possible to construct an augmenting path
between ea and e1. This path defines a reassignment such that the new assignment
is a perfect matching in G(E\{ea}, varXuE).

Algorithm 8.6 picks an equation ei in step (3c) only if xi−1 is included in ei.
In step (3c) a search for xi−1 is performed only if xi−1 ∈ varXuEi−1 according to
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Table 8.11 The time evolution of the important variables in Algorithm 8.6
applied to the structural model in Table 8.10.

ek E X X̃ = varXu(E)\X MSS
1 {1} ∅ {fout, h}

{1, 2} {fout} {h}

{1, 2, 3} {fout, h} ∅ ⇒ {1, 2, 3}

{1, 2, 4} {fout, h} ∅ ⇒ {1, 2, 4}

{1, 3} {fout} {h}

{1, 3, 4} {fout, h} ∅ ⇒ {1, 3, 4}

2 {2} ∅ {fout}

{2, 3} {fout} {h}

{2, 3, 4} {fout, h} ∅ ⇒ {2, 3, 4}

3 {3} ∅ {fout, {h}

4 {4} ∅ {h}

Table 8.12 Test quantities for the MSS sets in (8.9).

H0i : sys ∈ Φi test quantity Ti
φ(p = NF ∧ t = NF ∧ p1 = NF ∧ s2 = NF) T1(s) = 1

s+1 (s (y2f) − u + yf)

φ(p = NF ∧ p1 = NF ∧ s1 = NF ∧ s2 = NF) T2(s) = 1
s+1 (s yh − u + yf)

φ(p = NF ∧ t = NF ∧ s1 = NF) T3(s) = 1
s+1 (s yh − u +

√
yh)

φ(t = NF ∧ p1 = NF ∧ s1 = NF ∧ s2 = NF) T4 = yh − y2f

step (3a). The conclusion is that for any i ∈ {2, 3, . . . , n}, it is possible to find an
equation eb such that xi−1 ∈ varXueb and b < i. This is a sufficient condition to
find an augmenting path from ea to e1.

Starting in equation ea the assignment imply the first edge to xj−1. From the
previous paragraph there is an edge between eb1

and xj−1 where b1 < j. This
can be repeated until bk = 1. Since b1 is finite and (bi) is a strictly decreasing
list of natural numbers, it follows that k is finite. Reassign the equations and
variables included in the augmenting path so {eb1

, xa−1}, {eb2
, xb1−1}, {eb3

, xb2−1},
. . . ,{e1, xbk−1−1}. This assignment is a perfect matching in G(E\{ea}, varXuE).
Using Theorem 3.4 the conclusion is that γmss ⊆ mssMsimp.

The second part of the proof shows that mssMsimp ⊆ γmss. Take an arbi-
trary E ∈ mssMsimp. Let e1 be the first equation in E that Algorithm 8.6 picks
in step (2). If E = {e1} then varXue1 = ∅ and the algorithm finds the MSS set
immediately in step (3b). If {e1} ⊂ E then according to Theorem 3.4 there is a per-
fect matching in G(E\{e1}, varXE). Take any perfect matching in G(E\{e1}, varXE).
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This perfect matching is {x1, e2}, {x2, e3} . . . {x|E|−1, e|E|}. We will now show that
the algorithm will find this perfect matching. The enumeration of the variables are
defined step by step as they are found in Algorithm 8.6.

Since {e1} is not an MSS set then varXe1 6= ∅. The algorithm picks a x ∈
varXe1 in step (3c). This x is defined as x1 by the algorithm. The given perfect
matching assigns x1 to e2. This is only possible if e2 ∈ equMk\{e1}(x1). Then
Ẽ1 = equMk\{e1}(x1) in step (3c). Finally step (3c) will assign x1 once at a time
to all e ∈ equMk\{e1}(x1). Particularly the algorithm will assign x1 to e2.

Now, suppose that the algorithm has assigned {x1, e2}, {x2, e3}, . . . ,{xi, ei+1}
for any 1 ≤ i ≤ |E| − 2. This means that step (3c) is just done and the algorithm
will start in step (3a) again.

The current value of the variables are

Ei+1 = {e1, e2, . . . , ei+1}

Xi+1 = {x1, x2, . . . , xi}.

In step (3a) X̃i+1 = varXuEi+1\Xi+1. From the assumption it follows that Ei+1
is not structurally singular, because i ≤ |E| − 2, hence varXuEi+1\Xi+1 6= ∅. This
implies that X̃i+1 6= ∅. Hence it must be at least one variable in X̃i+1. The variable
that the algorithm picks is denoted xi+1.

The variable xi+1 is assigned ei+2 according to the given matching. Then
ei+2 ∈ equMk(xi+1) and especially ei+2 ∈ equ(Mk\Ei+1)(xi+1). Hence ei+2 ∈ Ẽi+1

in step (3c). Since step (3c) assign xi+1 to all e ∈ Ẽi+1 one at a time, the algorithm
will particularly assign xi+1 to ei+2.

Now, E|E| = {e1, . . . , en}, X|E| = {x1, . . . , x|E|−1}, and Algorithm 8.6 starts at
step (3a). Since E is an MSS set it follows that |E| > |varXuE|. From the defi-
nition of {x1, . . . , x|E|−1}, it follows that varXuE = {x1, . . . , x|E|−1}. Then X̃|E| =
varXuE\{x1, . . . , x|E|−1} = ∅. This is detected in step (3b) and the algorithm con-
clude that E|E| = E is an MSS set. Hence mssMsimp ⊆ γmss.

8.6 Evaluating Isolability and Extracting Behav-
ioral Models

Let, as before, Id be the desired isolability. More information about isolability can
be found in Chapter 4 and desired isolability is defined in Section 4.7. The relation
Id can be specified by the demands of the isolability of the diagnostic system or
just set to full isolability.

Before we describe step (g) and (h) in Algorithm 8.2 a desired isolability is
defined for the water-tank example. An isolability analysis is used to guide the
choice of desired isolability.

Assume that we want to design a diagnostic system that can detect and isolate
all single faults. Let B01 be the set of system behavioral modes that either are
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single faults or NF. Then the desired isolability can be defined as

Id = {(bi, bj)|bi ∈ B01, bj ∈ B01, bi 6= bj} (8.11)

To find out if this isolability can be obtained, a structural isolability analysis of the
diagnostic model described for example as a DLSM can be done. The structural
isolability IM

sp(〈Mbi
〉) introduced in (6.52) is

present necessary interpreted mode
mode NF PSp UFp Ct Lp1

UFs1
Lp2

UFs2

NF X X X X X X X

PSp X X

UFp X

Ct X

Lp1
X

UFs1
X

Lp2
X

UFs2
X

(8.12)

If the structurally overdetermined models are found the isolability IM
sp(〈M+

bi
〉) is

present necessary interpreted mode
mode NF PSp UFp Ct Lp1

UFs1
Lp2

UFs2

NF X X X X X X X

PSp X X

UFp X

Ct X

Lp1
X X

UFs1
X

Lp2
X X X X X X X

UFs2
X

(8.13)

Note that the process of making the assumptions weaker, as described in Sec-
tion 4.5, was done in order to obtain (8.12) and (8.13). This means that the
assumptions for e5, e6, e8, e9, e12, and e13 are set to B.

It can be realized that the set of all MSS sets have the same structural isolability
as (8.13). Since the best structural isolability of any set of MSS sets is (8.13), the
desired isolability can be chosen as (8.13) instead of (8.11). By changing the desired
isolability fewer behavioral models are analyzed in Algorithm 8.1 without loosing
any structural isolability.

The structural isolability IM
s (γ) where γ = mssMDLSM

NF computed in step (g)
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in Algorithm 8.2 is

present necessary interpreted mode
mode NF PSp UFp Ct Lp1

UFs1
Lp2

UFs2

NF X X X X X X X X

PSp X X

UFp X X

Ct X

Lp1
X X

UFs1
X

Lp2
X X X X X X X X

UFs2
X X

(8.14)

The crosses marked in bold denote missing isolability properties in order to fulfill
the desired isolability in (8.13).

Now, step (h) in Algorithm 8.2 is described. Suppose that the (bi, bj) ∈ Id but
(bi, bj) /∈ IM

s (γ) where γ is the set of MSS sets found. This means that the desired
isolability is not fulfilled with the MSS sets found in the behavioral models analyzed
so far. However, it could still be possible to structurally isolate behavioral mode bi
from behavioral mode bj by search for MSS sets in behavioral model Mbj

. If the
set of behavioral modes b ∈ B ⊆ B have been applied to step (a)-(e) Algorithm 8.1,
step (a) in Algorithm 8.1 is applied to a bj ∈ B if

∃bi ∈ B : (bi, bj) ∈ Id\IM
s (γ) (8.15)

Then if there is an MSS set M ⊆ Mbj
such that bi /∈ ass M then the desired

structural isolability property is obtained. If no bj exists such that (8.15) is fulfilled
then go to step (i) in Algorithm 8.2.

Now we continue with the water-tank example. The first column in (8.14) where
missing isolability properties appear is in column PSp. Step (a) in Algorithm 8.1
is applied to PSp according to (8.14). The additional MSS sets found in the model
MDLSM

PSp
= {e2, e3, e4, e7, e10, e11, e14} are

{{e2, e3, e4, e7, e14}, {e2, e3, e7, e10, e14}, {e2, e3, e4, e10}} (8.16)

Using these 3 additional MSS sets the structural isolability is

present necessary interpreted mode
mode NF PSp UFp Ct Lp1

UFs1
Lp2

UFs2

NF X X X X X X X

PSp X X

UFp X

Ct X

Lp1
X X

UFs1
X

Lp2
X X X X X X X

UFs2
X X

(8.17)
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Note that the missing isolability properties in the column corresponding to PSp
are with the additional MSS sets obtained. Now the only column with a missing
isolability property is the column corresponding to Lp1

. The additional MSS sets
found in MDLSM

Lp1
are

{{e1, e3, e4, e8, e9, e14}, {e1, e3, e8, e9, e10, e14}, {e4, e8, e9, e10, e14}} (8.18)

With these additional MSS sets the desired isolability in (8.13) is obtained.

8.7 Selecting a Small Subset of MSS Sets

It is not unusual that the number of MSS sets or models γ ′ found is large. Many
of the models probably use almost as many equations as unknown variables in the
entire system. These models usually rely on too many uncertainties to be useable
for fault isolation. Small models are more robust and are usually sensitive to fewer
faults. Therefore a goal can be to find a set of models with the highest possible
robustness and with the same structural isolability as the set of all models.

Assume that it is possible to calculate a real number for each model that is
inversely proportional to the robustness of the model. Let this number for model
m be denoted nm. This number can for example be as in this thesis, the number
of equations in each model.

Now, let Ψ(γ, i) be a function that has a set γ of models and an isolability
property i as arguments and returns the models of γ with property i.

Let γ ′ be the set of models that is the input to step (i) in Algorithm 8.2.
Furthermore γ ⊆ γ ′ is a subsets of models with the maximum structural isolability
and maximum robustness according to the defined values nm if γ fulfills

∀i ∈ IM
s (γ ′)

(
Ψ(γ ′, i) 6= ∅ →→ minψ∈Ψ(γ ′,i) nψ = minψ∈Ψ(γ,i) nψ

) (8.19)

Note that γ is not unique, but the minimum number for each i ∈ IM
s (γ ′) is unique.

Step (i) in Algorithm 8.2 start to sort the models in γ ′ in an increasing order
of robustness. The models are examined in the rearranged order. If a model
increases the isolability, then the model is selected. This means that for each
isolability property, the smallest models with this isolability property will be one of
the chosen models. In this way the final output from Algorithm 8.2 will be a small
set γ of models with highest possible isolability and highest possible robustness,
i.e. γ fulfills expression (8.19). An upper bound to |γ| is |Id|.

For the water-tank example Step (i) in Algorithm 8.2 rearranges the models
from (8.9), (8.16), and (8.18) with increasing size as shown in Table 8.13. It is pos-
sible to define an upper limit of the isolability requirement fulfillment as |IM

s (γ)|/|Id|
where γ is the set of selected models. This number is for the water-tank example
shown in the right column of Table 8.13 when the MSS sets are added one at a
time. The 5:th, 7:th, 9:th, and 10:th MSS set in Table 8.13 does not increase the
isolability requirement fulfillment and is therefore rejected. Hence the MSS sets 1,



156 Chapter 8 Structural Algorithms for Finding MSS Sets

Table 8.13 The accumulated isolability requirement fulfillment for MSS
sets found in DLSM of the water-tank example.

MSS set accumulated isolability
ful↓llment

1 {1, 3, 4, 10} 38%
2 {2, 3, 4, 10} 55%
3 {4, 7, 10, 14} 74%
4 {1, 3, 4, 7, 14} 86%
5 {2, 3, 4, 7, 14} 86%
6 {1, 3, 7, 10, 14} 98%
7 {2, 3, 7, 10, 14} 98%
8 {4, 8, 9, 10, 14} 100%
9 {1, 3, 4, 8, 9, 14} 100%
10 {1, 3, 8, 9, 10, 14} 100%

(8.20)

Table 8.14 Test quantities for the selected MSS sets in Table 8.13. Using
physical properties of the known variables it is assumed that
u, yh, yf ≥ 0. Note that non-linearly transformed variables
can be seen as input signals to the linear filters.

H0i : sys ∈ Φi Test quantity Ti
φ(p = NF ∧ t = NF ∧ s1 = NF) T1 = 1

s+1 (s yh − u +
√

yh)

φ(p = PS ∧ t = NF ∧ s1 = NF) T2 = 1
s+1 (s yh +

√
yh)

φ(t = NF ∧ p1 = NF ∧ s1 = NF ∧ s2 = NF) T3 = yh − y2f
φ(p = NF ∧ t = NF ∧ p1 = NF ∧ s2 = NF) T4 = 1

s+1 (s (y2f) − u + yf)

φ(p = NF ∧ p1 = NF ∧ s1 = NF ∧ s2 = NF) T5 = 1
s+1 (s yh − u + yf)

φ(t = NF ∧ s1 = NF ∧ s2 = NF) T6 = s
s+1 (y

−1/2
h yf) if yh 6= 0

2, 3, 4, 6, and 8 are selected. Examples of test quantities for these MSS sets can
be seen in Table 8.14. Using the physical properties of the known variables it is
assumed that u, yh, yf ≥ 0.

8.8 Algorithm Improvements

If all MSS sets are to be found in a diagnostic model M with many behavioral
modes, many behavioral models have to be analyzed. Since the finding of MSS
sets is computationally complex it would decrease the amount of computations
dramatically if only few behavioral models have to be analyzed. Two improvements
to reduce the number of analyzed behavioral models are presented.

In Section 8.2 it was mentioned that behavioral models that are subsets of
analyzed behavioral models need not be analyzed. This fact can be used to start
with behavioral models that are maximal, i.e. no strict superset is a behavioral
model.

The second improvement can be done if a DLSM is used. The idea is to use the
merging technique in Algorithm 8.5 of the internal variables of each component-
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Table 8.15 A structural model containing the sufficient structural infor-
mation to directly find all MSS sets of the diagnostic model in
Table 2.2. The notation (X) in the first row denotes that X is
included in e1 but not in e2.

models unknown known
finfouth ffint u yhyf

e1 ∨ e2 X (X)

e3 X X X

e4 ∨ {e5 , e6} X X

e7 ∨ {e8 , e9} X X

e10 X X

e11 ∨ {e12 , e13} X X

e14 X X

behavioral mode. As an example, consider the tank in the water-tank example.
The only internal variable is A. After merging equation e5 and e6 the resulting
structural model of {e5, e6} is the same as e4. Generalizing the notation of struc-
tural models, the result of the first merging-step of component behavioral modes is
shown in the column denoted models in Table 8.15. This model contains sufficient
information to find all MSS sets that are contained in the 96 behavioral models of
the diagnostic model in Table 2.2. Applying Algorithm 8.1 to the model in Ta-
ble 8.15, which is structurally the same as MDLSM

NF shown in Table 8.2, all MSS
sets are found directly. All 20 MSS sets are shown in Table 8.16.
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Table 8.16 All 20 MSS sets of the diagnostic model of the water-tank sys-
tem.

MSS set
1 {e1, e3, e4, e10}

2 {e2, e3, e4, e10}

3 {e4, e7, e10, e14}

4 {e1, e3, e4, e7, e14}

5 {e2, e3, e4, e7, e14}

6 {e1, e3, e7, e10, e14}

7 {e2, e3, e7, e10, e14}

8 {e1, e3, e5, e6, e10}

9 {e2, e3, e5, e6, e10}

10 {e5, e6, e7, e10, e14}

11 {e4, e8, e9, e10, e14}

12 {e1, e3, e5, e6, e7, e14}

13 {e2, e3, e5, e6, e7, e14}

14 {e1, e3, e4, e8, e9, e14}

15 {e2, e3, e4, e8, e9, e14}

16 {e1, e3, e8, e9, e10, e14}

17 {e2, e3, e8, e9, e10, e14}

18 {e5, e6, e8, e9, e10, e14}

19 {e1, e3, e5, e6, e8, e9, e14}

20 {e2, e3, e5, e6, e8, e9, e14}



9
Industrial Example: A Part of a Paper Mill

In this chapter Algorithm 8.1 and Algorithm 8.2 are applied to an industrial exam-
ple. The maximum single fault isolability is calculated and a subset of MSS sets
are selected which contains this isolability. The example is a stock preparation and
broke treatment system of a paper mill located in Australia. The process is used
for mixing and purifying recycled paper for production of new paper. An overview
of the process is shown in Figure 9.1.

9.1 Process Description

After the preparation step the purified paper mixture is transferred to the screen.
In the screen it is important that the mixture has a correct concentration of paper
fibers and does not exceed a critical pressure. The process starts with recycled
paper and water. The recycled paper has a high concentration of paper fibers. The
two fluids are mixed in the pulper tank to a correct concentration. Looking in the
right part of Figure 9.1, the cyclone purifies the paper mixture. This is done by
spinning the fluid in the cyclone. The result is that large particles are collected
at the bottom of the cyclone and clean paper mixture is collected at the top. A
drawback to this method is that the purified mixture obtains a high pressure. To
limit the outflow pressure from this part of the process, there is a pipe going back
to a tank. When this pipe opens the pressure in the outflow mixture decreases.
The return of the fluid increases the concentration of fibers in the tank. Therefore
the mixture is diluted with water before entering the cyclone. For a more detailed
description, see (Biteus 2001).

159
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Figure 9.1 A stock preparation and broke treatment system of a paper
mill.

9.2 Model Description

Most parts of the model are non-linear. It is only the tank and the pulper that are
considered to be dynamic. The model has 4 states: the volumes x1 and x3 and the
concentrations x2 and x4 in the pulper and in the tank respectively. There are 6
sensors in the process. Sensor y1 and y3 measure the water levels of the pulper
and the tank respectively, y2 and y4 measure concentration, y5 and y6 measure
pressure. The flows into and out of this process are known, i.e F1, F2, F6, F7, and
F9 are known. Moreover the concentrations of the fluids flowing into the process
are constant and known, i.e. c1, c2, and c6 are known. There are 6 valves with
control signals ui, where i ∈ {1, 2, 3, 4, 5, 6} and two pumps which have actuator
signals zp1 and zp2.

There are 21 single-faults that are analyzed. All sensors can have a constant
offset fault fyi, i ∈ {1, 2, 3, 4, 5, 6}. All valves can have a constant offset in the
actuator signal fui, i ∈ {1, 2, 3, 4, 5, 6}. Clogging can occur in the pipes near the
valves fci, i ∈ {1, 2, 3, 4, 5, 6} and also directly after the tank fc6. Finally, the pumps
can have a constant offset on the actuator signal fp1 and fp2.

The model is described by 29 basic equations from which equations valid for
different behavioral modes are deduced. The basic model equations are shown in
Table 9.1. Equations e1, . . . , e4 describe the dynamics; e5, . . . , e14 are pressure
loops; e15 relates the concentration in the junction after the tank with the flows
F4 and F6; e16 and e17 describe the two pumps; e18, . . . , e23 are valve equations;
e24, e25, e26 are flow equations, and finally e27, e28, e29 are sensor equations for
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Table 9.1 The basic model equations for the process in Figure 9.1.

e1 ẋ1 − e1(F1 + F2 − F3) = 0

e2 ẋ2 −
e1(F1(c1+fy2−y2)+F2(c2+fy2−y2))

y1−fy1
= 0

e3 ẋ3 − e2(F3 + F10 − F4) = 0

e4 ẋ4 +
e2(F10(fy4+x4−y4)+F3(fy2+x4−y2))

y3−fy3
= 0

e5 g1 − a1F
2
1 = 0

e6 g3 − F22(a2 + a3 + b1(fc1 + zu1)) = 0

e7 k1(y1 − fy1) + d11 − 1 + f2p1zp1 − F23(bcv3 + a4 + a5
+a6 + a7 + b2fc2 + b2zu2) = 0

e8 p + k2(y3 − fy3) − b8fc7F
2
4 − a8F

2
4 − p = 0

e9 y5 + d12 − 1 + f2p2zp2 − a11F
2
5 − a10F

2
5 − fy5 − p = 0

e10 p + g27 − b4F
2
6(fc3 + zu3) − a9F

2
6 − p = 0

e11 y5 − b6F
2
7(fc5 + zu5) − fy5 − g21 − p = 0

e12 fy6 + y5 − b5F
2
8(fc4 + zu4) − y6 − fy5 = 0

e13 y6 − a13F
2
9 − fy6 − g23 − p = 0

e14 y6 − b7F
2
10(fc6 + zu6) − a14F

2
10 − a12F

2
10 − fy6 − p = 0

e15 fy4 + c6F6+F4x4
F4+F6

− y4 = 0

e16 −1 +
d21F

2
3

(−1+fp1)2 + z2p1 = 0

e17 −1 +
d22F

2
5

(−1+fp2)2 + z2p2 = 0

e18 −1 + fu1 + u21zu1 = 0

e19 −1 + fu2 + u22zu2 = 0

e20 −1 + fu3 + u23zu3 = 0

e21 −1 + fu4 + u24zu4 = 0

e22 −1 + fu5 + u25zu5 = 0

e23 −1 + fu6 + u26zu6 = 0

e24 F4 + F6 − F5 = 0

e25 F5 − F8 − F7 = 0

e26 F8 − F10 − F9 = 0

e27 fy1 + x1 − y1 = 0

e28 fy2 + x2 − y2 = 0

e29 fy3 + x3 − y3 = 0

sensor 1, 2, and 3. Furthermore there are 21 equations, one for each fault expressed
as ḟi = 0. Using the last equation e29 : fy3 + x3 − y3 = 0 as an example it will be
shown how the behavioral mode assumptions of the equations are obtained. Since
only single faults are considered in this example the process is not divided into
components. Let the behavioral mode, when fy3 6= 0, be denoted sys = Fy3. Now,
equation e29 can deduce two different equations in the following ways:

ass (x3 − y3 = 0) = B\{Fy3}
ass (fy3 + x3 − y3 = 0) = B

Considering only single faults each basic equation including n fault variables will
give rise to n + 1 equations. Writing the diagnostic model in the same form as
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Table 9.2 The type of each variable.

type of variable variable
Xu F3, F4, F5, F8, F10, x1, ẋ1, x2, ẋ2, x3, ẋ3, x4, ẋ4, zu1,

zu2, zu3, zu4, zu5, zu6, p

F fy1, fy2, fy3, fy4, fy5, fy6, fu1, fu2, fu3, fu4, fu5,

fu6, fc1, fc2, fc3, fc4, fc5, fc6, fc7, fp1, fp2
Z F1, F2, F6, F7, F9, y1, y2, y3, y4, y5, y6, zp1, zp2, u1,

u2, u3, u4, u5, u6

for example the water tank example in Table 2.2 the number of equations are
29 + 34 + 21 = 84. However, since it is easy to generate the diagnostic model using
this more compact form, the compact form will be used without loss of information.

The structural model for the model on the compact form in Table 9.1 can be
viewed in Figure 9.2. The circles denote that the corresponding variable is non-
linearly included. Three different types of variables are defined in the compact
form: the unknown variables Xu, the variables F describing faults, and the known
variables Z. The variables in the model shown in Table 9.1 are divided into three
types of variables as defined in Table 9.2.

9.3 Extracting the No-Fault Model

The extracted structural model MDSSM
NF has the structure shown in Figure 9.2

where the columns representing faults are deleted.

9.4 Differentiating the Model

The highest order of derivatives m(z) that is known for all known variables are
assumed to be one. Algorithm 8.4 is applied to the structural model in Figure 9.2.
The result is that all equations except equation e1, e2, e3, and e4 are differentiated.
This results in additionally 25 differentiated equations shown in Figure 9.3. Note
how the knowledge concerning linear dependence influences the structural model in
Figure 9.3 by comparing it with the original structural model in 9.2. For example,
x3 is linearly contained in e29, hence varXu ė29 = {ẋ3} and zu1 is non-linearly
contained in e6 and then follows that varXu ė6 = {zu1, żu1}.
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Figure 9.2 Structural model for the set of equations in Table 9.1. The
circles denote that the corresponding variable is non-linearly
included and the crosses denote linearly dependent variables.
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9.5 Simplifying the Model

In the first step of simplification applied to the model in Figure 9.3, the equations
{e27, e28, e29} are not included in the structurally overdetermined part.

The second part of the simplification finds that the variables Ḟ3, Ḟ10, x1, x2, x3,
x4, ẋ4, żu1, żu2, żu3, żu3, żu4, and żu5 can be eliminated. The equations that form
models are {ė7, ė16, ė19}, {ė14, ė23, ė26}, {e1, ė27}, {e2, ė28}, {e3, ė29}, {e4, e15, ė15},
{ė6, ė18}, {ė10, ė20}, {ė12, ė21}, and {ė11, ė22}. The simplified structural model is
showed in Figure 9.4. Note the simplification of the model by comparing Figure 9.3
and Figure 9.4. The simplification reduces the model from 54 equations to 38
equations and reduces the unknown variables from 32 to 16.

To give an example of the reduction of the computational complexity using this
merging step, Algorithm 8.6 is applied to the structural model in Figure 9.3 with
and without first using the merging step. The number of times the algorithm asks
for a row or a column in the structural model is computed. The result is that
the merging step requires 88 calls and Algorithm 8.6 requires 335,107 calls. When
Algorithm 8.6 was directly applied to the structural model in Figure 9.3 it used
1,872,753 calls. This result indicates that merging step is cheap and decreases the
computational complexity of Algorithm 8.6 considerably. The next step is to find
all MSS sets in the simplified model.

9.6 Finding MSS Sets

Algorithm 8.6 is applied to the simplified model. The algorithm returns 35770 MSS
sets which are contained in the simplified model. The five smallest MSS sets are
{e5}, {ė5}, {e13}, {ė13}, and {e2, ė28}. The largest MSS sets consist of 23 equations.
In step (g) in Algorithm 8.2 the isolability of the MSS sets found is analyzed.

9.7 Evaluating Isolability

The structural isolability of the MSS sets found can be seen in the isolability matrix
in Figure 9.5. All faults are detectable with the MSS sets found in the previous
step. The fault mode Fui is not isolable from Fci where i ∈ {1, 2, 3, 4, 5, 6}, i.e. a
constant offset in the actuator signal to valve i can always be explained as clogging
in valve i. Moreover Fy4 is not isolable from Fy2 and Fy3. Finally Fu2 and Fc2
are not isolable from Fp1.

9.8 Extracting and Analyzing Fault Models

Since we are interested in computing the maximum isolability considering only
single faults the desired isolability is chosen to be

Id = {(bi, bj)|bi ∈ B1, bj 6= bi, bj ∈ B1 ∪ {NF}}
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Figure 9.3 The resulting structural model when the differentiation step is
applied to the structural model in Figure 9.2. The variables
F and Y are not shown. Differentiated equations are denoted
with a dot after the number.
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m
od

el

unknown variable
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Figure 9.5 The isolability matrix of the MSS sets corresponding to Fig-
ure 9.4

where B1 denotes the single-fault modes. In the isolability matrix IM
s (mssMDSSM

NF ),
shown in Figure 9.5, the fault models corresponding to columns that have non-
diagonal entries, i.e.

{bj|(bi, bj) ∈ Id\I∆s }

are one by one analyzed. This set contains the fault modes Fy2, Fy3, Fc1, Fc2,
Fc3, Fc4, Fc5, Fc6, and Fp1. To see if a fault model contains MSS sets the fault
is decoupled, i.e. considered as an unknown variable. Algorithm 8.1 step (a) is
first applied to the behavioral model MFy2

. The goal is to find an MSS set that
decouples, i.e. is insensitive for, fy2 and is sensitive to fault fy4. An MSS set
with this property increases the isolability because it gives the possibility to isolate
fault mode Fy4 from Fy2. This implies that the cross in the row corresponding to
Fy4 and the column corresponding to Fy2 in the structural isolability matrix in
Figure 9.5 is removed. The result of decoupling fault fy2 is that 26,959 new MSS
sets are found. The smallest MSS set of these new MSS sets, isolating fault mode
Fy4 from Fy2 is {e2, e3, e4, e15, ė15, e16, e17, ė17, e24, ė24, ė28, ė29}.
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Table 9.3 The smallest MSS set with the structural isolability defined by
the two first columns.
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smallest MSS set with desired property

fy2 fy4 {e2 , e3 , e4 , e15 , ė15 , e16 , e17 , ė17 , e24 , ė24 , ė28 , ė29}

fy3 fy4 {e4 , e8 , e9 , e14 , e15 , ė15 , e16 , e17 , ė17 , e23 , e24 , ė24}

fc1 fu1 {e6 , ė6 , e18 , ė18}

fc2 fu2 {e7 , ė7 , e16 , ė16 , e19 , ė19}

fc3 fu3 {e9 , ė9 , e10 , ė10 , e17 , ė17 , e20 , ė20}

fc4 fu4 {e12 , ė12 , e17 , ė17 , e21 , ė21 , e25 , ė25}

fc5 fu5 {e11 , ė11 , e22 , ė22}

fc6 fu6 {e12 , ė12 , e14 , ė14 , e21 , ė21 , e23 , ė23 , e26 , ė26}

fp1 fu2 {e1 , e7 , e16 , e19 , ė27}

Table 9.4 The first 6 MSS sets in the reordered list.

MSS

1 e5
2 ė5
3 e13
4 ė13
5 e2 ė28
6 e6 e18

Next also the fault modes Fy3, Fc1, Fc2, Fc3, Fc4, Fc5, Fc6, and Fp1 are used
as inputs to Algorithm 8.1 step (a). To show some results the smallest MSS set for
each desired isolability property is shown in Table 9.3. With those additional MSS
sets all faults are detectable and isolable. The next step is to select a small subset
of all found MSS sets that have maximum isolability.

9.9 Selecting a Small Subset of MSS Sets

The number nm defined in Section 8.7 is here chosen as the number of the 29 basic
equations included in MSS number m. Note that the additional equations ḟi = 0

are not counted in nm. First the MSS sets are reordered in increasing size of nm.
The first 6 MSS sets in the reordered list are shown in Table 9.4

Then the algorithm selects those MSS sets that increase the isolability starting
from the MSS sets with smallest nm in Table 9.4. According to Figure 9.2 neither
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Table 9.5 The 36 selected MSS sets with full structural isolability consid-
ering only single-faults.

MSS sets
1 e13
2 e2 ė28
3 e6 e18
4 e11 e22
5 e1 e16 ė27
6 e6 ė6 ė18
7 e11 ė11 ė22
8 e11 e22 ė22
9 e7 e16 e19
10 e8 e9 e17 e24
11 e9 e10 e17 e20
12 e12 e17 e21 e25
13 e6 ė6 e18 ė18
14 e11 ė11 e22 ė22
15 e7 ė7 e16 ė16 ė19
16 ė7 e16 ė16 e19 ė19
17 e8 e10 e17 e20 e24
18 e12 e14 e21 e23 e26
19 e14 e17 e23 e25 e26
20 e1 e7 e16 e19 ė27
21 ė8 ė9 e17 ė17 e24 ė24
22 e7 ė7 e16 ė16 e19 ė19
23 e9 ė9 e10 ė10 e17 ė17 ė20
24 e12 ė12 e17 ė17 ė21 e25 ė25
25 e8 e10 e12 e20 e21 e24 e25
26 ė12 e17 ė17 e21 ė21 e25 ė25
27 e9 ė9 e10 ė10 e17 ė17 e20 ė20
28 e12 ė12 e17 ė17 e21 ė21 e25 ė25
29 e12 ė12 e14 ė14 e21 ė21 ė23 e26 ė26
30 e14 e17 ė17 e23 ė23 e25 ė25 e26 ė26
31 e3 e4 e15 ė15 e16 e17 e24 ė24 ė29
32 e12 ė12 e14 ė14 e21 ė21 e23 ė23 e26 ė26
33 e1 e3 e4 e15 ė15 e17 ė17 e24 ė24 ė27 ė29
34 e3 e4 e8 ė8 e10 ė10 e15 ė15 e16 e20 ė20 ė29
35 e4 e8 e9 e14 e15 ė15 e16 e17 ė17 e23 e24 ė24
36 e2 e3 e4 e15 ė15 e16 e17 ė17 e24 ė24 ė28 ė29

the first {e5} nor the second MSS set {ė5} is sensitive to any fault and is therefore
not selected. The third MSS set {e13} is sensitive only to fy6, i.e. Fy6 can be
detected and isolated. The isolability is improved with this MSS set and therefore
it is selected. The fourth MSS set is not sensitive for any fault and is therefore not
selected. The 5th MSS set can be sensitive for fy1 and fy2 and therefore isolates
Fy1 and Fy2 from all other fault modes. This MSS set is selected. When all MSS
sets have been analyzed, 36 MSS sets, shown in Table 9.5, are selected.

The first three MSS sets can be recognized from Table 9.4. The equations de-
scribing fault models are not explicitly written in Table 9.5. In Figure 9.6 the
sequence of isolability matrices, defined by adding one MSS at a time from Ta-
ble 9.5, is shown. In Figure 9.7 it is shown how the desired isolability fulfillment
increases adding the selected MSS sets once at a time. In Figure 9.7 the desired
isolability fulfillment is instead plotted against the number nm of the selected MSS
sets. Note that most of the desired isolability is obtained when only the MSS sets
with nm ≤ 5 are used.

From the 36 MSS sets the incidence matrix in Figure 9.9 is obtained. An empty
entry in position (i, j) in the incidence matrix denotes that fault j cannot invalidate
the model corresponding to MSS set i. The influence matrix therefore defines Φi
as the set of behavioral modes that correspond to columns with empty entries in
row i. Note that NF is included in all Φi in this example. Hence it is impossible
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nz = 421

nz = 179

nz = 383 nz = 345 nz = 291

nz = 271 nz = 270 nz = 268 nz = 266

nz = 231 nz = 143 nz = 111

nz = 110 nz = 109 nz = 108 nz = 106

Figure 9.6 The sequence of the first 16 isolability matrices defined by
adding one MSS at a time from Table 9.5. The numbers denote
the number of crosses in each fault matrix.
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Figure 9.7 The labels on the x-axis indicate how many of the first selected
MSS sets in Table 9.5 that are used. The y-axis shows desired
isolability fulfillment with those MSS sets.
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Figure 9.8 The number nm plotted against the desired isolability fulfill-
ment.

to conclude that the process is working normally.

9.10 Generating Consistency Relations

In this example consistency relations are used to validate the MSS sets. However,
other methods have been presented that can be used to validate the MSS sets, e.g.
observers. The consistency relations corresponding to the MSS sets are calculated,
by using the function Eliminate in Mathematica. Most of the equations in the
model are polynomial equations. For polynomial equation-systems, the function
Eliminate uses Gröbner Basis for elimination.

All MSS sets with 7 or less equations were easily eliminated and consistency
relation were obtained. The consistency relations from the MSS set 23, 24, 25 and
26 were obtained from the elimination function, but were not useful because of bad
numerical properties. However, small MSS sets make the largest contribution to the
isolability. To see this, Figure 9.8 shows the percentage of the desired isolability
fulfillment when only the first n selected MSS sets in Table 9.5 are used. The
number n is plotted on the x-axis. It is clear that the structural isolability reduces
slightly, without using large MSS sets, difficult to calculate.



172 Chapter 9 Industrial Example: A Part of a Paper Mill

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

se
le

ct
ed

 M
S

S
 s

et

N
F

F
y

1

F
y

2

F
y

3

F
y

4

F
y

5

F
y

6

F
u

1

F
u

2

F
u

3

F
u

4

F
u

5

F
u

6

F
c

1

F
c

2

F
c

3

F
c

4

F
c

5

F
c

6

F
c

7

F
p

1

F
p

2

Figure 9.9 The incidence matrix of the selected MSS sets corresponding
to Figure 9.4

Finally a few examples of consistency relations derived by Mathematica are

MSS consistency relations with faults

1 y6 − a1 − a2F9
2 = fy6

2 F1(−a3 + a4y2) + F2(−a5 + a4y2) + a6y1ẏ2 =

= a6fy1ẏ2 + a4F1fy2 + a4F2fy2
5 fp1 6= 1∧

a7 + a9F1ẏ1 + a9F2ẏ1 − a10F1
2 − a11F1F2 − a10F2

2 − a7zp1
2 − a12ẏ

2
1 =

= −a7fp1
2 − a8fp1zp1

2 + a8fp1 + +a7fp1
2zp1

2

6 u1
`
F2(a13 − a15F2

2)u̇1 − (a13 + a14F2
2)u1 Ḟ2

´
=

= fu1
2(−a13 − a14 F2

2) Ḟ2+

fu1
`
(−2a13 − 2a14F2

2)u1 Ḟ2 + F2(a13 + (−a15 − a16fc1)F2
2)u̇1

´

The computational form of these consistency relations are

MSS computational form of some consistency relations

1 y6 − a1 − a2F9
2 = 0

2 F1(−a3 + a4y2) + F2(−a5 + a4y2) + a6y1ẏ2 = 0

5 a7 + a9F1ẏ1 + a9F2ẏ1 − a10F1
2 − a11F1F2 − a10F2

2 − a7zp1
2 − a12ẏ

2
1 = 0

6 u1
`
F2(a13 − a15F2

2)u̇1 − (a13 + a14F2
2)u1 Ḟ2

´
= 0



9.10 Generating Consistency Relations 173

For some simulation results, utilizing consistency relations in this industrial
example, see (Biteus 2001). Finally, a future work is to apply all design ideas and
algorithms presented in this thesis to a large industrial process, e.g. by continuing
the work on the paper mill.
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10
Conclusions

Today many technical processes are complex and highly integrated, and it is a
demanding and time-consuming task to design a diagnostic system. Different al-
gorithms and analysis methods that help and automate the design of diagnostic
systems are therefore presented in this thesis.

In a diagnostic system a number of diagnostic tests validate different testable
models, i.e. different parts of the diagnostic model, with respect to observations
of the process. A diagnostic system is defined as sound and complete by the re-
quirement that for any observation exactly the same possible behavioral modes are
given from the diagnostic system as the behavioral modes that together with the
observations are consistent with the diagnostic model. The presented theory and
algorithms for supporting the design of diagnostic systems can be divided into three
parts: computing which testable models that must be used to design sound and
complete diagnostic systems, finding MSS sets, and computing isolability limita-
tions of diagnostic models. The structural algorithm for finding MSS sets is applied
to a large non-linear example, a part of a paper mill. In spite of the complexity of
this process, a small set of tests with the high isolability is successfully derived.

Computing which Testable Models to Use in Diagnostic Systems

A key result of designing diagnostic systems is Theorem 5.6 where a necessary and
sufficient condition for which set of models that results in a sound and complete
diagnostic system if a strong test is designed for each model. Three algorithms
are proposed to find a set γ of models to check for consistency, i.e. Algorithm 7.1,
Algorithm 7.2, and Algorithm 7.3.

Algorithm 7.1 is the algorithm that presumes that Assumption 7.1 holds. In
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Theorem 7.7 it is proven that linear static models fulfill Assumption 7.1. In Exam-
ple 7.8, a specialized version of Algorithm 7.1 for linear static models is applied to
a linear static model. When the models to check for consistency are computed, an
additional step computes the test quantities. Hence in Example 7.8 an algorithm is
developed based on Algorithm 7.1 that computes a sound and complete diagnostic
system for any linear static diagnostic model.

Algorithm 7.2, computes a set γ that corresponds to sound and complete di-
agnostic system for any diagnostic model, i.e. without requiring Assumption 7.1.
However this algorithm has disadvantages compared to Algorithm 7.1. In Algo-
rithm 7.2 two extra steps need to be performed, i.e. the additional analytical test
in step (c) and the extra structural computation in step (d) .

The last of the three algorithms, Algorithm 7.3, is the only purely structural
algorithm that finds a set γ that corresponds to a sound and complete diagnostic
system if Assumption 7.1 holds for the diagnostic model and if (6.109) where M̂ =
M+
b holds for all b ∈ B.

Algorithm for Finding MSS Sets

In all these three proposed algorithms for finding a γ that corresponds to a sound
and complete diagnostic system, there is a common step that finds all MSS sets of
equations. Algorithm 8.1 finds all MSS sets in a model described by differential-
algebraic equations. Step (b) in Algorithm 8.1 handles derivatives in two different
ways, of which one is a new way of handling derivatives.

Algorithms for Computing Isolability Limitations of Diagnostic Models

Another property that can be used to compare diagnostic models and diagnos-
tic systems is their capability of distinguish behavioral modes pairwise, i.e. their
isolability. Diagnostic systems applied in industry are often subject to isolability
criteria.

There are two main methods to compute an upper limit of the isolability using
mainly structural properties, i.e. to compute a structural isolability. The first
method is to use (6.122) where Cb = Mb. This method is purely structural and
requires no assumptions. The second method is to calculate (6.122) where Cb is
chosen as described in Section 6.4.3. This method can be done if Assumption 6.1
holds.

Using these two algorithms, shortages of diagnostic models can be detected and
the isolability improvements obtained from for example introducing fault models
and extra sensors can easily be analyzed.
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of consistency relations, Technical Report LiTH-ISY-EX-3237, Department of
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University.
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MSS, 33, 129
multiple faults, 13

null hypothesis, 20

on-line, 19
overdetermined, 31

Pantelides’ algorithm, 133
paper mill, 159
partial assignment, 18
partial order, 42, 96
path

alternating , 31
augmented, 31

reachable, 134
rejectable model, 58
rejection region, 19
relation, 41

antisymmetric, 42
incidence matrix, 41
reflexive, 42
transitive, 42

robustness, 155

select MSS sets, 130
single fault, 13
sound, 22
sound diagnostic system, 63
spanning tree, 105, 107, 108
statistical hypothesis test, 19
strong diagnostic test, 59
structural model

differentiated lumped, 129, 132
differentiated separated, 129, 132

structural differentiation, 130, 132
structural model, 7, 25

differentiated-lumped (DLSM), 26
differentiated-separated (DSSM),

26
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structural rank, 119
structurally just-determined, 31
structurally overdetermined, 31, 141
structurally overdetermined model, 91
structurally singular, 32
structurally underdetermined part, 31
structured hypothesis test, 20
subgraph, 110
system behavioral model, 90
system of distinct representatives, 33

test quantity, 19

weaker, 46


