
Linköping Studies in Science and Technology
Thesis No. 1176

DISTRIBUTED DIAGNOSIS

AND SIMULATION BASED RESIDUAL

GENERATORS

Jonas Biteus

Vehicular Systems
Department of Electrical Engineering

Linköpings universitet, SE – 581 83 Linköping, Sweden
E-mail: biteus@isy.liu.se

Linköping 2005

DISTRIBUTED DIAGNOSIS

AND SIMULATION BASED RESIDUAL

GENERATORS

c© 2005 Jonas Biteus

Department of Electrical Engineering
Linköpings Universitet
SE – 581 83 Linköping

Sweden

ISBN 91-85299-73-1
ISSN 0280-7971

LIU-TEK-LIC-2005:31

ABSTRACT

Fault diagnosis is becoming increasingly important for many technical
systems. This is for example true in automotive vehicles where fault
diagnosis is needed due to economic reasons such as efficient repair
and fault prevention, and legislations that mainly deal with safety and
pollution. The objective for a diagnostic system is to detect and isolate
faults in the system. A diagnostic system consists of several special-
ized parts, for example residual generators, diagnoses calculation, and
communication with other systems.

In embedded systems with dozens of electronic control units that
individually states local diagnoses, it can be computationally expen-
sive to find which combination of local diagnoses that points at the
correct set of faulty components. A distributed method is proposed
where local diagnoses are extended using networked information. The
extension is done thru the sharing of local conflicts or local diagnoses
between the electronic control units. The number of global diagnoses
grows with the number of local diagnoses. Therefore, an algorithm
is presented that from the local diagnoses calculates the more likely
global diagnoses. This restriction to the more likely diagnoses is some-
times appropriate since there are limitations in processing power, mem-
ory, and network capacity.

A common approach to design diagnostic systems is to use resid-
ual generators, where each residual generator is sensitive to some faults.
A method is presented that constructs residual generators from sets of
overdetermined model equations, such that simulation can be used
to determine if the residual is zero or not. The method thus avoids
the need to analytically transform the set of equations into some spe-
cific residual generator form. It can also utilize smaller sub sets of
equations like minimally overdetermined sets, and it can further take
advantage of object-oriented simulation tools.

Keywords: Diagnosis; Distributed diagnosis; Fault isolation; Resid-
ual generator; Simulation.

iii

ACKNOWLEDGMENT

This work was performed at the department of Electrical Engineer-
ing, division of Vehicular Systems, Linköpings universitet in Sweden.
I would like to thank my professor and supervisor, Lars Nielsen for
letting me perform this work at the division.

Thanks goes to Mattias Nyberg who lead me into the research area
of diagnosis, and whom I have performed collaborative work with. To
Erik Frisk for many fruitful discussions about the topics in the thesis,
and for spending many hours proofreading the thesis. To Jan Åslund
for proofreading the thesis. To Mattias Krysander for discussions about
diagnosis.

I would also like to thank the staff at Vehicular Systems for creating
a nice working atmosphere.

To Scania AB for collaborative projects. To Mathias Jensen for dis-
cussions about distributed diagnosis. To Magnus Adolfson and David
Elfvik for general discussions about diagnosis in automotive engines.

This work has been supported by The Swedish Foundation for
Strategic Research thru the graduate school ECSEL (The Excellence Cen-
ter in Computer Science and Systems Engineering in Linköping) and
the project VISIMOD (visualization, modeling, simulation and system
identification).

Jonas Biteus
Linköping, June 2005

v

CONTENTS

Thesis Introduction 1
Outline of the Thesis . 2
Contributions of the Thesis 4
Publications . 4
Introduction to Fault Diagnosis 5

Part I. Distributed Diagnosis 9

1 Introduction Part I 11
1.1 A Typical Distributed System 12
1.2 Outline of Part I . 14
1.3 Related Work . 16
1.4 Publications . 17

2 Background to Consistency Based Diagnosis 19
2.1 Consistency Based Diagnosis 19
2.2 Behavioral Modes . 20
2.3 Diagnoses . 21
2.4 Conflicts . 23
2.5 Relations between Conflicts and Diagnoses 23
2.6 Diagnostic Tests and Conflicts 25

3 Distributed Diagnostic Systems 27
3.1 System Description in a Distributed Environment . . . 28

3.1.1 Object Diagnoses 28
3.1.2 Object conflicts 29
3.1.3 Minimality operator 29
3.1.4 System Description for an Agent 30

vii

3.1.5 The Structural Description 33
3.2 Diagnostic Tests . 34
3.3 Fault Propagation . 35
3.4 Distributed Diagnosis 37
3.5 Relation between Local and Global Diagnoses 37
3.6 Complete Component Representation 39
3.7 Probabilistic reasoning 43

3.7.1 Global Diagnoses represented as Module Diag-
noses . 44

3.7.2 Probabilistic Reasoning 45
3.7.3 Minimal Cardinality Diagnoses 46
3.7.4 Minimal Cardinality Module Diagnoses 47
3.7.5 When are the Minimal Cardinality Diagnoses the

most Probable Diagnoses? 48
3.7.6 Extended Cardinality 52

3.8 Scania Equivalence . 54

4 Extending Local Diagnoses 57
4.1 Distribution of Diagnostic Information 58

4.1.1 From Conflicts to Diagnoses 58
4.1.2 Extending Local Conflicts and Local Diagnoses 59

4.2 Sharing Local Conflicts 59
4.2.1 Different Approaches to Decide which Conflicts

to Share Between the Agents 60
4.2.2 Reducing the Size of Each Transmitted Conflict 63

4.3 Sharing Local Diagnoses 66
4.3.1 How to Transmit Local Diagnoses 68
4.3.2 Reducing the Size of Transmitted Diagnoses . . 70

5 Algorithms for Extending Local Diagnoses 71
5.1 Conflicts in Different Representations 71
5.2 Extending Diagnoses thru Sharing of Conflicts 72
5.3 Extending Diagnoses thru Sharing of Diagnoses 74

5.3.1 Update Extended Diagnoses 74
5.4 Simulations . 78

5.4.1 Simulation Model 78
5.4.2 Transfer Times 80
5.4.3 Detection Degree 80
5.4.4 Hardware . 80
5.4.5 Limitations . 81
5.4.6 Simulations . 81
5.4.7 Result . 81

6 Minimal Cardinality Global Diagnoses 85
6.1 Finding all Module Minimal Cardinality Diagnoses . . 85

viii

6.2 Main Algorithm . 86
6.2.1 Outline of The Algorithm 87

6.3 Find Sub Graph G – Algorithm 5 90
6.4 Finding the Merge Order R – Algorithm 6 91
6.5 Update Agent – Algorithm 7 92
6.6 Correctness of the Algorithms 94
6.7 Simulations . 99

6.7.1 Simulation Model 99
6.7.2 Limitations . 99
6.7.3 Simulations . 99
6.7.4 Result . 100

7 Conclusions Part I 103

Part II. Simulation Based Residual Generators 105

8 Introduction Part II 107
8.1 Outline of Part II . 109
8.2 Related Work . 109
8.3 Publications . 110

9 Simulation Based Residual Generators 111
9.1 Simulation Tools . 111
9.2 System Model . 112
9.3 MSS sets of Equations . 113
9.4 Residual Generators . 114
9.5 Redundant Equations . 116

9.5.1 Bipartite Matching 116
9.5.2 Structurally and Analytically Redundant Equa-

tions . 116
9.5.3 Finding Structurally Redundant Equations . . . 117
9.5.4 Finding Analytically Redundant Equations . . . 118

9.6 Approaches to Extract MSO Sets 119
9.6.1 Finding MSO Sets given a Structural Model . . . 119
9.6.2 Direct Approach 120
9.6.3 Using Derivative Approximations 120
9.6.4 Static Approach 121
9.6.5 Partially Static Approach 122

9.7 Some Comments on Redundancy 122
9.8 Some Comments on Stability 122

10 Residual Generators for a Satellite 123
10.1 Introduction . 123
10.2 Physical Model . 124

ix

10.3 Structural Model . 124
10.4 Direct Approach . 125

10.4.1 Structurally Redundant Equations 125
10.4.2 Analytically Redundant Equations 126
10.4.3 Design of Γ for set MSO1 126

10.5 Static Approach . 127
10.5.1 Structurally Redundant Equations 127
10.5.2 Analytically Redundant Equations 127

10.6 Partially Static Approach 128
10.6.1 Analytically Redundant Equations 128

10.6.2 Design of Γ for set MSO2̂ 129
10.7 Simulations . 129

10.7.1 Residual Generators 129
10.7.2 Simulation . 130
10.7.3 Result . 131

11 Simulations using Modelica 133
11.1 Modelica . 133
11.2 Model Background . 135
11.3 Stock Preparation and Broke Treatment Model 135

11.3.1 Limitations . 135
11.3.2 Variable Definitions 135
11.3.3 Model . 136
11.3.4 Simulation Problems with the Model 138
11.3.5 Noise . 139

11.4 Residual Generators . 139
11.4.1 Sets of MSO Sets 139
11.4.2 Residual Generator One 141
11.4.3 Residual Generator Two 142
11.4.4 Residual Generator Three 144
11.4.5 Residual Generator Four 144
11.4.6 Thresholds . 144

11.5 Simulations . 145

12 Conclusions Part II 151

Notation 159

x

THESIS INTRODUCTION

There are an increasing number of technical systems that use multiple
agents to achieve control objectives. One such example is found in the
vehicle industry, where new vehicles might include several dozens of
electronic control units (ECUs), which are used to control different parts
of the vehicle. With an increasing complexity of the systems comes a
higher demand for fault diagnosis, i.e. to detect and localize faults in
the system. The systems therefore include diagnostic systems which
are responsible for the detection and isolation of faults. One of the ob-
jectives for the diagnostic system is to calculate the diagnoses, where
each diagnosis points at some set of possibly faulty components. The
diagnoses can be used in for example fault tolerant control, for repair,
or to notify the driver as an alarm.

Due to the increasing number of connections between the agents,
new demands are put on the diagnostic systems. One such demand
is that the agents should be able to communicate with each other to
compute diagnoses that are consistent with the knowledge stored in
all agents. Part I of this thesis deals with fault isolation in systems that
are distributed.

To detect faults, diagnostic systems often include diagnostic tests,
where each test is sensitive to some faults. These diagnostic tests can
for example be constructed from residual generators, which are based
on a model of the system. Part II of this thesis deals with the construc-
tion of residual generators.

1

2

OUTLINE OF THE THESIS

Outline of Part I.

Chapter 1 Introduction Part I.

Chapter 2 A background to consistency based diagnosis and to distri-
buted diagnosis is presented.

Chapter 3 A framework for distributed diagnosis is presented. The
framework starts with a definition of diagnoses suitable to use
when considering distributed systems. The diagnoses can in-
clude both components and inputs, which are input signals from
other agents. A system description for distributed systems is
then defined. Since the diagnoses can include inputs that de-
pends on other components and inputs, there is a possibility that
a fault in one component propagates thru inputs to many other
diagnoses. The effects of these propagations are studied.

In a distributed system, there are local conflicts and local diag-
noses, i.e. conflicts and diagnoses in one agent, and global con-
flicts and global diagnoses, i.e. conflicts and diagnoses for the
complete system. The relations between local conflicts, local di-
agnoses, global conflicts, and global diagnoses are described.

The relation between more likely diagnoses and the number of
components included in the diagnoses is presented for distri-
buted diagnoses. It is described how the global diagnoses can
be divided into disjoint parts of diagnoses, denoted module di-
agnoses. Since these parts are smaller than the global diagnoses,
they are more easily understood for a technician.

Chapter 4 It is shown how local conflicts and local diagnoses can be
shared between the agents. The primary gain from this sharing
of information is that an agent can state more complete diag-
noses about the components used in the agent, than it could do
if it only used its own local conflicts. Thus, the local diagnoses
can be extended as a result of the sharing of information.

The decision of which conflicts to send is based either on the lo-
cal conflicts or the local diagnoses. To reduce the complexity of
the extended diagnoses, it is shown how the size of the conflicts
and the diagnoses can be reduced while preserving the consis-
tency of the local conflicts and local diagnoses.

Chapter 5 The chapter presents algorithms that use the methods de-
scribed in Chapter 4. Algorithms for extending local diagnoses
by sharing conflicts and diagnoses are presented. The algorithms

3

can base their choice of which conflicts to transmit on all local di-
agnoses, or only on the more likely local diagnoses.

The feasibility for the different algorithms are shown for some
simulations. The simulations are based on a hypothetical model
of an embedded system that is inspired by an existing system.
In the model, components, inputs, outputs, diagnostic tests, and
faults are picked by random.

Chapter 6 An algorithm is presented that from local diagnoses calcu-
lates all global diagnoses with minimal cardinality, i.e. the global
diagnoses with the least number of components. The computa-
tion can be performed centralized or it can be distributed over
the agents. The algorithm partitions the diagnoses into sets of
disjoint diagnoses, thereby further limiting the complexity. The
algorithm is efficient and it only needs a small number of trans-
missions over the network to calculate the diagnoses.

A similar model to the one used in the preceding chapter is used
for simulations. The feasibility and calculation times for the al-
gorithm are shown for some simulations.

Chapter 7 Conclusions Part I.

Outline of Part II.

Chapter 8 Introduction Part II.

Chapter 9 In this chapter, a method for the construction of residual
generators is described. The residual generators are constructed
from smaller sub sets of model equations. These sets are overde-
termined such that there exist exactly one more equation than
unknown variables in the set of equations.

By adding a residual variable to the set of equations, an exactly
determined set of equations is constructed. It is shown how the
residual variable can be added such that the set of equations can
be simulated. The method avoids the need to analytically trans-
form the sets of equations into some specific residual generator
form.

It is shown how it is possible to choose between either a more
complex residual generator or the need to perform derivative
approximations of sensor values.

Chapter 10 The method presented in the preceding chapter is exem-
plified on a model for a non-linear point-mass satellite. It is
shown how the addition of approximations of derivatives of sen-
sor values results in different residual generators.

4

Chapter 11 It is shown how the method can take advantage of the
simulation tool Dymola which use the simulation language Mod-
elica to extract and simulate the set of equations.

Chapter 12 Conclusions Part II.

CONTRIBUTIONS OF THE THESIS

The main contributions of the thesis are:

• The framework useful for consistency based distributed diag-
nosis, including for example module diagnoses. Introduced in
Chapter 3.

• The description of how local diagnoses can be extended thru the
sharing of conflicts or local diagnoses, where the choice of which
conflicts to share could be based either on the conflicts or the
local diagnoses. Introduced in Chapter 4.

• The algorithms for the sharing of conflicts and diagnoses. Intro-
duced in Chapter 5.

• The algorithm that calculates all minimal cardinality module di-
agnoses. Introduced in Chapter 6.

• The description of how residual generators can be designed such
that simulation is used to calculate the value of the residual, and
thereby avoiding the need to analytically transform the resid-
ual generators into some specific residual generator form. Intro-
duced in Chapter 9.

• The description of how DAE simulators like Dymola, which use
the modeling language Modelica, could be utilized to simulate
residual generators. Introduced in Chapter 11.

PUBLICATIONS

Some of the material presented in this thesis has been published in the
following papers.

• [BJN04] – In this paper, a first approach that could be used for
finding minimal cardinality diagnoses in a distributed environ-
ment was presented. The material is here presented in Chapter 6.

• [BJN05] – In this paper, the result in [BJN04] was improved.

5

• [BN02] – This paper presented ideas about how residual gener-
ators could be constructed and evaluated with simulation tools.

• [BN03] – A continuation and improvement of the methods pre-
sented in [BN02].

Material by the same author that relates to diagnosis but has not
been included in this thesis.

• [Bit02] – A mean value model of a heavy-duty engine was pre-
sented. The model could for example be used for diagnosis or
control.

• [BCF+04] – How aircraft safety could be increased by the intro-
duction of FDI methods was discussed in this report.

• [ÅBF+05] – This paper described a systematic inclusion of diag-
nosis performance in fault tree analysis.

INTRODUCTION TO FAULT DIAGNOSIS

This introduction is an extraction from [NF05]. It has been used at the
division of Vehicular System to introduce fault diagnosis.

What is Diagnosis?

From a general perspective, including both the medical and technical
case, diagnosis can be explained as follows. For a process, there are ob-
served variables or behaviors for which there is knowledge of what is
expected or normal. The task of diagnosis is to, from the observations
and the knowledge, generate a diagnosis, i.e. to decide whether there
is a fault or not and also to identify the fault. Thus, the basic prob-
lems in the area of diagnosis are how the procedure for generating
diagnoses should look like, what variables or behaviors that are rele-
vant to study, and how to derive the knowledge of what is expected
or normal.

This introduction focuses on diagnosis of technical systems and the
goal is to find malfunctions in for example sensors and actuators. The
observations are mainly signals obtained from the sensors, but can
also be observations made by a human. Examples of such human ob-
servations are for example level of noise or vibrations. The diagnosis
is computed by observing inconsistencies between observed variables
and what is considered to be normal behavior. If the diagnosis is based
on an explicit model of the system, then the term model-based diagno-
sis is used. Diagnosis of technical systems can be performed off-line or

6

on-line. If on-line diagnosis is considered, then the diagnosis is usu-
ally automated so it is performed without involvement of humans.
Most concepts described in here are equally applicable to off-line and
on-line diagnosis.

The Use of Diagnosis

Diagnosis systems have found their way into many applications. In
the context of model-based diagnosis, some important areas that have
been discussed in the literature are:

• Nearly all subsystems of aircrafts, e.g. aircraft control systems,
navigation systems, and engines.

• Emission control systems in automotive vehicles.

• Nuclear plants.

• Chemical plants.

• Gas turbines.

• Industrial robots.

• Electrical motors.

For these systems and also for technical processes in general, the
main reasons to incorporate diagnostic systems are:

Safety In many technical systems a fault may cause serious personal
damage. This is especially obvious in safety critical processes
such as aircrafts and nuclear plants. For these systems, high re-
liability and security of the system is fundamental.

Environment Protection In for example emission control systems in
automotive vehicles, a fault may cause increased emissions. It
has been concluded that a major part of the total emissions from
cars originates from vehicles with malfunctioning emission con-
trol systems. Other important examples are nuclear plants and
chemical plants in which a fault may cause serious damage to
the environment.

Machine Protection A fault can often cause damage to the machine.
Therefore, it is important that faults are detected as quickly as
possible after they have occurred.

7

Availability For many technical systems it is critical that the systems
are running continuously. This is for example the case for gas
turbines in power plants and industrial robots. The reasons may
be economical as well as safety. With the help of a diagnostic sys-
tem, early warnings can be obtained before serious breakdown.
When the fault has been detected, the system can be stopped
until repair or rather be switched into a new mode. In the new
mode, the performance of the system may be degraded but at
least more serious breakdowns can be avoided.

Reparability Closely connected to availability is reparability. A good
diagnostic system will quickly identify the faulty component that
should be replaced. In this way, time-consuming fault localiza-
tion is reduced, which will decrease total repair time.

Flexible Maintenance Maintenance can be expensive since the ma-
chine or process often needs to be taken out of operation. There-
fore, it is desirable to make sure that the machine is not taken out
of operation for maintenance when there is no need for mainte-
nance. It is also desirable to be able to plan maintenance stops
in advance to be able to disturb the production as little as pos-
sible. A diagnostic system that detects faults early, desirably be-
fore more serious faults occur, can hopefully help both to avoid
unnecessary maintenance and to indicate far in advance when
maintenance is needed.

A Short History

Manual diagnosis has been performed as long as there have existed
technical systems, but automatic diagnosis started to appear first when
computers became available. In the beginning of the 70’s, the first re-
search reports on model-based diagnosis were published. Some of the
earliest areas that were investigated were chemical plants and aero-
space applications. The research on model-based diagnosis has since
then been intensified during both the 80’s and the 90’s. Today, this is
still an expansive research area. Up to now, numerous methods for do-
ing diagnosis have been published. Unfortunately, many approaches
are more ad hoc than systematic and it is fair to say that few general
theories exist and there is not yet a complete understanding of the re-
lations between different methods. This is reflected in the shortage of
books in the area and the fact that no general terminology has yet been
agreed upon. However, the importance of diagnosis is unquestioned.
This can be exemplified by the computerized management systems
for automotive engines, used to control the engine. For these systems,
more than 50 % of the software can nowadays be dedicated to diagno-
sis. The rest is for example for control.

I
DISTRIBUTED DIAGNOSIS

1
INTRODUCTION PART I

Most modern automotive vehicles include several ECUs which com-
municate over an electronic network. Each ECU is usually connected
to one or several components, e.g. sensors and actuators, and to make
sure that the components are operating correctly, they are monitored
by the ECUs. For a deeper discussion about distributed systems in
vehicle applications, see for example [HVL05, Chapter “Vehicle Ap-
plication of Controller Area Network”].

The ECUs connected to a network is one example of a distributed
system. In more general terms, each ECU can be denoted an agent
which is a more or less independent software entity. Distributed sys-
tems are characterized by being partitioned into several agents, where
each agent only have a partial knowledge of the system. For an intro-
duction to agents, see for example [Hay99].

Often diagnostic tests, which can be simple or complex, are used
to perform the monitoring. The use of the diagnostic tests results in
conflicts, i.e. a set of components that can not all be non-faulty. The
conflicts can be used in different ways. The most direct approach is to
collect all conflicts in a central unit and then use the results to calculate
the global diagnoses, where each global diagnosis states a diagnosis for
the complete system. Since each global diagnosis is a set of possibly
faulty components, they are easy to understand. Unfortunately, the
number of global diagnoses grows exponentially both with the num-
ber and the size of the conflicts.

11

12 1.1 A TYPICAL DISTRIBUTED SYSTEM

An alternative is to directly calculate local diagnoses from the con-
flicts in each agent. Since the local diagnoses from different agents
might include the same components, a combination of local diagnoses
must be used to correctly calculate each global diagnosis.

How to use these local diagnoses to calculate more complete local
diagnoses and how to calculate the more likely global diagnoses are
the main topics of this part of the thesis.

Extending Local Diagnoses

By transmitting conflicts or diagnoses between agents, it is possible to
extend the local diagnoses. The agent receiving the transmitted infor-
mation might therefore gain more complete local diagnoses.

The primary gain from this sharing of diagnostic information is
that an agent can state more complete diagnoses about its own diag-
nosable objects than it could do if it only used its own local conflicts.
Thus, the local diagnoses can be extended as a result of the sharing of
diagnostic information.

Local Diagnoses to More Likely Global Diagnoses

The global diagnoses can be found by merging all local diagnoses with
each other. This might however lead to an exponential growth of the
number of global diagnoses. To reduce the growth of this combinato-
rial explosion, it is sometimes useful to only consider the diagnoses
that are more likely to be correct. Which diagnoses that are more
likely could be decided in several different ways. In this thesis, the
diagnoses with the lowest cardinality, i.e. the lowest number of faulty
components, will be considered to be the most likely diagnosis.

An algorithm is presented that calculates the global diagnoses with
minimal cardinality from the local diagnoses. To reduce the complex-
ity, the global diagnoses are partitioned into smaller sets of diagnoses,
where each of these sets is guaranteed to be free of complex relations
to the others.

The algorithm can be run in a central diagnostic computer, or it
can distribute the computation intense tasks to the local agents. Of-
ten, there are limitations in both processing power, memory, and net-
work capacity, therefore, these possibilities makes the algorithm more
versatile.

1.1 A TYPICAL DISTRIBUTED SYSTEM

Many vehicles have a controller area network (CAN) which connects sev-
eral ECUs to each other. Figure 1.1 shows a configuration of the embed-

CHAPTER 1 INTRODUCTION PART I 13

7-
p

o
le

15
-p

o
le

Trailer

Red bus

Y
el

lo
w

b
u

s

G
reen

b
u

s

Diagnostic bus

IS
O

11
99

2/
2

IS
O

11
99

2/
3

AWD

Auxiliary heater

All wheel drive

ATA
system

Control

TCO

Exhaust Emission

Tachograph

EEC

system

system

system

Coordinator

BMS

COO

Brake management

system

system

Body work

GMS

BWS

Gear box manage-

system

ment system

Air processing

Engine management

APS

system

Visibility

VIS

system

Locking and alarm

LAS

Audio system

AUS

EMS

system

Body chassis

system

system

ICL
Instrument cluster

system

ACS

BCS

SMD
Suspension

management dolly

Articulation control

system air-to-air

SMD
Suspension

management dolly

system

ACC
Automatic climate

control

CSS
Crash safety

WTA
Auxiliary heater

system water-to-air

RTI
Road transport

informatics system

RTG
Road transport

informatics gateway

CTS
Clock and timer

Body Builder
Buss

Body Builder
Truck

FIGURE 1.1: Embedded system in current Scania heavy-duty vehicles.

ded system used in the current Scania heavy-duty vehicles. It includes
three separate CAN buses, red, yellow, and green, which are connected
to the coordinator ECU. The coordinator ECU acts as a router, making
sure that no message is forwarded to any other bus unless it is nec-
essary. Each of the ECUs is further connected to sensors and actua-
tors, and both sensor values and control signals can be shared with
the other ECUs over the network. An example of an ECU is the engine
management system, which is connected to sensors and actuators re-
lated to the engine.

There are between 20 and 30 ECUs in the system, depending on the
type and outfit of the truck, and between 4 and 110 components are
connected to each ECU. The ECUs’ CPUs have a clocking speed of 8
to 64 MHz, and a memory capacity of 4 to 150 kB. The current Scania
diagnostic system consists of precompiled diagnostic tests and there

14 1.2 OUTLINE OF PART I

A D

Agent A1 Agent A2

output
CAN

Test

input

ECB

Test

FIGURE 1.2: A typical ECU, component and test layout.

are between 10 and 1000 tests in each ECU.

EXAMPLE 1.1: Figure 1.2 shows a typical layout of ECUs and compo-
nents. The system consists of two agents, five components, and a CAN

network. The test in agent A2 involve the components D and E, which
are connected with dashed lines. The test in A2 involve components
A to D. Some calculated value used in a test in agent A1 that involves
component C and D is transmitted over the network from agent A1

to A2. Component C and D might for example be sensors that are
physically connected to agent A2. ⋄

1.2 OUTLINE OF PART I

The outline was given in the thesis introduction and are repeated here
for completeness.

Chapter 1 Introduction Part I.

Chapter 2 A background to consistency based diagnosis and to distri-
buted diagnosis is presented.

Chapter 3 A framework for distributed diagnosis is presented. The
framework starts with a definition of diagnoses suitable to use
when considering distributed systems. The diagnoses can in-
clude both components and inputs, which are input signals from
other agents. A system description for distributed systems is
then defined. Since the diagnoses can include inputs that de-
pends on other components and inputs, there is a possibility that
a fault in one component propagates thru inputs to many other
diagnoses. The effects of these propagations are studied.

In a distributed system, there are local conflicts and local diag-
noses, i.e. conflicts and diagnoses in one agent, and global con-

CHAPTER 1 INTRODUCTION PART I 15

flicts and global diagnoses, i.e. conflicts and diagnoses for the
complete system. The relations between local conflicts, local di-
agnoses, global conflicts, and global diagnoses are described.

The relation between more likely diagnoses and the number of
components included in the diagnoses is presented for distri-
buted diagnoses. It is described how the global diagnoses can
be divided into disjoint parts of diagnoses, denoted module di-
agnoses. Since these parts are smaller than the global diagnoses,
they are more easily understood for a technician.

Chapter 4 It is shown how local conflicts and local diagnoses can be
shared between the agents. The primary gain from this sharing
of information is that an agent can state more complete diag-
noses about the components used in the agent, than it could do
if it only used its own local conflicts. Thus, the local diagnoses
can be extended as a result of the sharing of information.

The decision of which conflicts to send is based either on the lo-
cal conflicts or the local diagnoses. To reduce the complexity of
the extended diagnoses, it is shown how the size of the conflicts
and the diagnoses can be reduced while preserving the consis-
tency of the local conflicts and local diagnoses.

Chapter 5 The chapter presents algorithms that use the methods de-
scribed in Chapter 4. Algorithms for extending local diagnoses
by sharing conflicts and diagnoses are presented. The algorithms
can base their choice of which conflicts to transmit on all local di-
agnoses, or only on the more likely local diagnoses.

The feasibility for the different algorithms are shown for some
simulations. The simulations are based on a hypothetical model
of an embedded system that is inspired by an existing system.
In the model, components, inputs, outputs, diagnostic tests, and
faults are picked by random.

Chapter 6 An algorithm is presented that from local diagnoses calcu-
lates all global diagnoses with minimal cardinality, i.e. the global
diagnoses with the least number of components. The computa-
tion can be performed centralized or it can be distributed over
the agents. The algorithm partitions the diagnoses into sets of
disjoint diagnoses, thereby further limiting the complexity. The
algorithm is efficient and it only needs a small number of trans-
missions over the network to calculate the diagnoses.

A similar model to the one used in the preceding chapter is used
for simulations. The feasibility and calculation times for the al-
gorithm are shown for some simulations.

16 1.3 RELATED WORK

Chapter 7 Conclusions Part I.

1.3 RELATED WORK

The concept of Agents have been studied in the academic area for
quite some time, and has also started to emerge in the industry. An
overview of how software agents can be used in industry is given
in [Par98].

Diagnosis for embedded systems can be centralized or distributed.
Most research has been aimed at the centralized problem, where a sin-
gle process collects relevant data from the system and calculates global
diagnoses. The fundamental paper [Rei87] studies the problem of gen-
erating consistent diagnoses from a set of conflicts. In contrast to the
centralized system there is no central process in a fully distributed sys-
tem. The distributed processes instead communicate with each other
to form the global diagnoses.

Distributed diagnosis has mostly been discussed for discrete event
dynamic systems, see for example [LS01]. One paper that discusses
distributed consistency based diagnosis is [RTW03], where an algo-
rithm is presented which can be used for distributed diagnosis. The al-
gorithm uses both consistency and abduction based diagnosis, which
is another type of diagnosis. The algorithm stipulates how conflicts
should be exchanged so that each agent can state global diagnoses.

The standard formulation in model-based diagnosis, as used in the
artificial intelligence (AI) community, is used in for example [RTW03] to
describe a distributed diagnostic system. Also in [KKZ02] a distri-
buted diagnosis framework is presented. The paper discusses both
global and local diagnoses.

The paper [Pro02] presents a distributed model-based diagnostics
architecture for embedded diagnostics. The traditional model-based
definitions of diagnosis, as used in the AI community, is extended to
a distributed environment. Each component, in a set of components,
can obtain a single diagnosis, the algorithms then combines these di-
agnosis to obtain the global diagnoses.

A diagnostic system does not work independently from the rest of
the system. The complete system includes protocols for network com-
munication, control algorithms, and much more. In this thesis only the
algorithms used in the diagnostic systems are primarily considered.
Communication protocols and storage handling are for example not
discussed in detail. However, the overall network architecture used
for communication, storage, etc, in a distributed system is important.

The EU funded project Multi-Agents-based Diagnostic Data Ac-
quisition and Management in Complex Systems (MAGIC) develops
such an architecture useful for distributed diagnosis. The project is

CHAPTER 1 INTRODUCTION PART I 17

presented in for example [KS03]. The aim for their project is to de-
velop a general purpose architecture for diagnosis in complex sys-
tems. MAGIC is partially a continuation of the project Distributed
Architecture for Monitoring and Diagnosis (DIAMOND). It was intro-
duced in for example [ATL02]. The paper [ALW+03] discusses the
concept of an agent as used in the MAGIC project. Such an agent used
for diagnosis is presented in [RTF03]. This particular diagnosis agent
is based on a hidden Markov model to perform diagnosis.

1.4 PUBLICATIONS

Some of the materials in this part have been published in two confer-
ence articles.

• [BJN04] – This paper presented how a merge of local diagnoses
could be done so that the result was the minimal cardinality
global diagnoses.

• [BJN05] – The above publication was extended in this paper where
the partition of the diagnoses was done in a better way. The
merge order was also analyzed in more detail.

2

BACKGROUND TO CONSISTENCY

BASED DIAGNOSIS

This chapter will briefly introduce the concept of consistency-based
diagnosis. The motivation is not to give a complete introduction to
diagnosis, but to introduce the formalism that will be used in the rest
of the thesis. A more thorough introduction to consistency based di-
agnosis can be found in for example the collection [HCK92].

2.1 CONSISTENCY BASED DIAGNOSIS

A system consists of a set of components, which should be supervised
by the diagnostic system. The objective of the diagnostic system is to
detect and isolate the components that are behaving abnormal.

Model based diagnosis compares a model of a system with available
observations. Deviations between the model and the observations can
then be used to obtain diagnoses for the system’s behavior. Model
based diagnosis can be used in conjunction with consistency based di-
agnosis. The objective in consistency based diagnosis is to derive a set
of assignments to the components in the model, so that the model, the
observations, and the assignments are consistent with each other.

Each component can be in some mode, e.g. the normal, the abnor-
mal, or some specific fault mode. The model itself is said to be in a spe-
cific system mode if all components have been assigned some mode.
If the model, the observations, and a system mode are inconsistent, it

19

20 2.2 BEHAVIORAL MODES

is concluded that the system mode is in-correct, i.e. the system mode
represents a conflict. From a set of such conflicts, it is possible to draw
the logical implications, which are the diagnoses. In other terms, a di-
agnosis states a possible mode for the system that is consistent with
the conflicts.

The model is described by its system description SD, which is a set
of logical rules describing the behavior of the system. These rules can
for example be a set of equations, such as a state-space model. The
observations are denoted by OBS, which for example can be a set of
sensor and actuator values.

A component is something that can be diagnosed. This not only
includes physical things such as pipes, actuators, etc., but it also in-
cludes more diffuse things such as the connection between a sensor
and a cable.

2.2 BEHAVIORAL MODES

Each component c ∈ C has a fault mode AB (abnormal), which does
not have a model, a normal mode ¬AB, and one or several specific
fault modes. If a component c ∈ C is in the abnormal mode, then
mode(AB, c) is true. The notation

mode(AB, c) , AB(c)

will be used.
To reduce the complexity of the diagnostic system, it is sometimes

preferable to only consider the AB and the ¬AB mode. Further, since
it is possible to represent the fault modes with virtual components
and preference lattices as shown in [Bre96, Chapter 8], the diagnostic
system can be represented in only the fault modes AB and ¬AB with
the addition of a “fault-mode lattice”. Therefore, from now on the
following assumption is made.

ASSUMPTION 2.1 (Minimal diagnosis hypothesis): A component c ∈ C

can only be in the AB and the ¬AB mode, where the AB mode does not have
a model.

The assumption is, in a different notation, stated in for example
the paper [dKMR92]. With this assumption, the notation in for exam-
ple GDE can be employed [HCK92]. This notation replaces the logical
expressions with sets, where the sets are used to represent both con-
flicts and diagnoses. The following example shows how the notation
is used.

CHAPTER 2 BACKGROUND TO CONSISTENCY BASED DIAGNOSIS 21

EXAMPLE 2.1: If two components A and B are in the faulty mode, this
is written in logic form as

AB(A) ∧ AB(B)

which can be represented by

{A,B}

in the set notation. ⋄

2.3 DIAGNOSES

The following definition of diagnosis is often used in consistency based
diagnosis

DEFINITION 2.1 (Diagnosis [dKMR92]): A diagnosis is a set of compo-
nents D ⊆ C so that

SD ∪ OBS ∪ {
∧

c∈D

AB(c) ∧
∧

c∈C\D

¬AB(c)}

is consistent.

A diagnosis states a mode assignment to the components included
in the system consistent with the system description and the observa-
tions. The following corollary shows an important concept often used
in diagnosis.

THEOREM 2.1 (Minimal diagnosis hypothesis [dKMR92]): If Assump-
tion 2.1 is true and D is a diagnosis, then all supersets of D are also diagnoses.

Proof. Since AB has no model

SD ∪ OBS ∪ {
∧

c∈D̄

AB(c) ∧
∧

c∈C\D̄

¬AB(c)}

is satisfied for any superset D̄ ⊇ D.

Thus, with Assumption 2.1, a superset of a diagnosis is also a di-
agnosis. This leads to minimal diagnoses.

DEFINITION 2.2 (Minimal diagnosis [dKMR92]): A diagnosis D ′ is a
minimal diagnosis if there is no proper subset

D (D ′

where D is a diagnosis.

22 2.3 DIAGNOSES

The set of minimal diagnoses completely characterizes all possible
diagnoses, i.e. if the set of minimal diagnoses is known, then the set of
all diagnoses is known. As a result of this, the non-minimal diagnoses
can safely be removed.

Sometimes it is preferable to only state the exact modes for some
parts of the components. For this partial diagnoses can be used.

DEFINITION 2.3 (Partial diagnosis [dKMR92]): A partial diagnosis is a
set of components D ⊆ C so that

SD ∪ OBS ∪ {
∧

c∈D

AB(c) ∧
∧

c∈C\D

A(c)}

is consistent either when A(c) is AB(c) or when it is ¬AB(c).

The minimal partial diagnoses are denoted kernel diagnoses.

DEFINITION 2.4 (Kernel diagnosis [dKMR92]): A partial diagnosis D ′ is
a kernel diagnosis if there is no proper subset

D (D ′

where D is a partial diagnosis.

The minimal diagnoses and the kernel diagnoses have a strong re-
lationship. If Assumption 2.1 is fulfilled, then the minimal diagnoses
have a one-to-one relation with the kernel diagnoses [dKMR92]. This
is used in the set notation where both type of diagnoses are repre-
sented by the same set. Notice however that they are not equal.

EXAMPLE 2.2: Consider the diagnoses

(AB(A) ∧ ¬AB(B) ∧ ¬AB(C)) ∨ (AB(A) ∧ AB(B) ∧ ¬AB(C))

and the partial diagnoses

(AB(A) ∧ A(B) ∧ A(C)) ∨ (AB(A) ∧ AB(B) ∧ A(C)).

Both these sets are represented by the set

{{A}, {A,B}}.

The minimal diagnosis is

AB(A) ∧ ¬AB(B) ∧ ¬AB(C)

and the kernel diagnosis is

AB(A) ∧ A(B) ∧ A(C)

Both these sets are represented by the set

{{A}}.

⋄

CHAPTER 2 BACKGROUND TO CONSISTENCY BASED DIAGNOSIS 23

2.4 CONFLICTS

In most diagnostic systems, the diagnoses are not obtained directly
from the model and the observations. The commonly used approach
is instead to first find conflicts and then from these conflicts indirectly
derive the diagnoses.

DEFINITION 2.5 (Conflict [dKMR92]): A conflict is a set of components
π ⊆ C so that

SD ∪ OBS ∪ {
∧

c∈π

¬AB(c)}

is inconsistent.

A conflict states a possible mode assignment for some set of com-
ponents, which is inconsistent with the observations and the model.
A set of conflicts is denoted Π. From the conflicts follows the minimal
conflicts.

DEFINITION 2.6 (Minimal conflicts [dKMR92]): A conflict π ′ is a mini-
mal conflict if there is no proper subset

π (π ′

where π is a conflict.

The set of minimal conflicts completely characterizes all possible
conflicts.

2.5 RELATIONS BETWEEN CONFLICTS AND

DIAGNOSES

A conflict states that not all components in a set can be in the non-
abnormal mode, while a diagnosis states a set of components that are
in the abnormal mode. The diagnoses can be seen as the logical im-
plication of the set of conflicts. A useful relation between diagnoses
and conflicts is given in the following theorem. It is stated in [dK92,
Theorem 1] in a different notation.

THEOREM 2.2 (Conflicts to diagnoses): Let Π be a set of conflicts. The set
D ⊆ C is a diagnosis if

D ∩ π 6= ∅

for all π ∈ Π.

When using set notation, it is sometimes useful to represent a set
of diagnoses with a lattice. Such a lattice representing the diagnoses
for five components is shown in Figure 2.1. The bottom node is the

24 2.5 RELATIONS BETWEEN CONFLICTS AND DIAGNOSES

{A, B,C, D, E}

{}

{A, C} {A, D} {B,C} {A, E} {B,D} {C, D} {D, E}

{A, B, C} {A, B, D} {A, B, E} {A, C, D} {A, C, E} {B, C, D} {A, D, E} {B,C, E} {B, D, E} {C, D, E}

{A, B,D, E}{A, B,C, D} {B,C, D, E}{A, B,C, E} {A,C, D, E}

{A, B}

{C} {D} {E}{B}{A}

π1 = {A,B,D}

π2 = {A,C,D, E}

{B, E} {C, E}

FIGURE 2.1: A lattice representing the diagnoses consistent with the
two conflicts π1 and π2. The diagnoses are the sets above the line
while the minimal diagnoses are circled.

empty diagnosis, i.e. {{}}, which means that all components are in the
non-abnormal mode, while the top node is the diagnosis representing
that every component are in the abnormal mode, i.e. {{A,B,C,D, E}}.

The following example illustrates the relation between conflicts,
diagnoses, minimal diagnoses, and the lattice.

EXAMPLE 2.3: In Figure 2.1, a lattice representing diagnoses for a sys-
tem with 5 components is shown. Two conflicts π1 and π2 have been
introduced and the diagnoses should be found that are consistent with
the conflicts.

The first conflict π1 = {A,B,D} states that there is a conflict that
A, B, and D are in the non-abnormal mode. Therefore, since at least
one of the components A, B, and D must be included in a diagnosis,
the empty diagnosis, the single diagnoses {C} and {E}, and the diagno-
sis {C, E} are removed, because each of these diagnoses has an empty
intersection with the conflict. In the lattice the dashed line represents
this. The diagnoses below the line are inconsistent, i.e. they are in fact
not diagnoses at all. The second conflict is π2 = {A,C,D, E} and the
single diagnosis {B} is inconsistent with this new conflict. Left are the
diagnoses above the line in the figure where the minimal diagnoses
are circled. ⋄

CHAPTER 2 BACKGROUND TO CONSISTENCY BASED DIAGNOSIS 25

Hitting sets

Theorem 2.2 is commonly used within diagnosis. Efficient algorithms
for calculating the diagnoses given a set of diagnoses are therefore
needed. The theorem can be seen as a special case of hitting sets, which
also is denoted vertex cover.

DEFINITION 2.7 (Hitting set [Wot01]): Let F be a set of sets. The set S ⊆
⋃

F∈F F is a hitting set for the set F if

S ∩ F 6= ∅

for all F ∈ F.

DEFINITION 2.8 (Minimal hitting set [Wot01]): A hitting set S ′ for the
set F is a minimal hitting set if there is no proper subset

S (S ′

where S is a hitting set for the set F.

From the definitions can be seen that the diagnoses are the hitting
sets for the set of conflicts. It is also the case that the minimal diag-
noses are the minimal hitting sets for the set of minimal conflicts. No-
tice that Assumption 2.1 has to be true for these relationships to hold.
In [dKMR92] is a proof for these relations given.

2.6 DIAGNOSTIC TESTS AND CONFLICTS

The evaluations of diagnostic tests are a common approach used to
detect and isolate faults in a system. These tests might for example
compare a sensor’s value with some prediction of the sensor’s value,
and if these values fundamentally deviate from each other, it is con-
cluded that some fault or faults are present in the system. In consis-
tency based diagnosis, the result from the tests are stated as conflicts.
The two examples below illustrate the relation between tests and con-
flicts.

EXAMPLE 2.4: Consider a system including the two sensors A and B,
which in some way measure the same temperature. If the values of
sensor A and sensor B fundamentally deviate, then a conflict is that
both these sensors are behaving non-abnormal. In set notation the
conflict π = {{A,B}}. The example is schematically seen in Figure 2.2
where y1 and y2 are the values from the sensors. ⋄

EXAMPLE 2.5: Consider now a system including a component A con-
trolled by the actuator signal u and a sensor B with value y. A model

26 2.6 DIAGNOSTIC TESTS AND CONFLICTS

exists for the component and the sensor when they are in the non-
abnormal modes

¬AB(A) → x = f(u)

¬AB(B) → y = x.

A test could be to check if y − f(u) has a small value, i.e. if the model
and the observations are consistent. If these are not consistent, then a
conflict π = {A,B} exists in the system. ⋄

BA

y1 y2

y1 = y2

Test

(a) Test used in Example.

BA

y u

y − f(u) = 0
Test

(b) Test used in Example.

FIGURE 2.2: Two different tests that show how components can be
tested.

The design of tests demands expert domain knowledge and a good
insight into diagnostic systems. See for example [PFC00, CP99, Nyb99,
Fri01].

3

DISTRIBUTED DIAGNOSTIC

SYSTEMS

Consistency based diagnosis was introduced in Chapter 2. This type
of diagnosis is extended in Section 3.1 with a theoretical framework
that will be used later in the thesis. The framework aims at defining
a system description that is useful considering distributed diagnosis.
The framework is extended with diagnostic tests in Section 3.2.

Since distributed systems are considered, there is a possibility that
a fault in one part of the system indirectly affects another part of the
system. This could for example be thru faulty outputs. Fault propaga-
tion is discussed in Section 3.3. The relation between local and global
diagnoses is discussed in Section 3.5.

The number of global diagnoses grows both with the number and
the size of the local diagnoses; therefore it is sometimes necessary to
only consider the more likely global diagnoses. One way to decide
which diagnoses that are most likely is to use the cardinality of the
diagnoses. In Section 3.7 it is discussed how the number of global
diagnoses can be reduced and under which assumptions that the set of
minimal cardinality diagnoses are the same as the set of most probable
diagnoses.

The chapter is ended with a discussion of how the system descrip-
tion relates to an implemented system, notably a Scania heavy-duty
vehicle.

27

28 3.1 SYSTEM DESCRIPTION IN A DISTRIBUTED ENVIRONMENT

3.1 SYSTEM DESCRIPTION IN A DISTRIBUTED

ENVIRONMENT

The diagnostic system involves a set of agents A and a set of objects
Θ which is the set of objects that can be diagnosed, by one or sev-
eral agents, for abnormal behavior. Since an agent should be able to
state the behavioral in one of its inputs, the components have to be
extended to the set of objects.

DEFINITION 3.1 (Objects): The set of objects is

Θ = C ∪ IN

where C is a set of components and IN is a set of inputs.

An input can be in the abnormal or non-abnormal mode. The set
of objects for agent A is CA, and these sets of objects do not need to
be disjoint. If all of the sets where disjoint then each of the agents
is an isolated system and there would be no need for a distributed
diagnostic system.

The agents are connected to each other via a network, where an
output signal in an agent is linked to input signals in one or several
other agents. In a vehicle, the agents are the software programs that
are implemented in the ECUs. The objects are the sensors, actuators,
pipes, inputs, etc., which can be diagnosed by the agents. The output
signals, which are values from sensors, to actuators, or from calcula-
tions, are made available to the other agents over the network. The set
of all inputs and outputs are IN and OUT respectively. The model is
described by the system description.

DEFINITION 3.2 (System description): Given a system consisting of a set
of agents A. The system description is

SD =
⋃

A∈A

SDA ∪ STRU

where SDA is the system description of agent A and STRU describes which
outputs that are connected to which inputs.

The definition of the agents’ system descriptions and the structural
description will follow in the upcoming sections.

3.1.1 Object Diagnoses

Since a local agent should be able to state a diagnosis that includes
both components and inputs, the diagnoses defined in Chapter 2 can
not be used directly.

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 29

DEFINITION 3.3 (Object diagnosis): An object diagnosis D ⊆ Θ is a par-
tial diagnosis

D =
∧

θ∈D

AB(θ) ∧
∧

c∈Θ\D

A(c).

The same notation will be used to represent both diagnoses, as de-
fined in Chapter 2, and object diagnoses. Further, both of these will be
denoted diagnoses when no misunderstanding is imminent.

3.1.2 Object conflicts

As with diagnoses, conflicts can also be extended to objects. The cor-
responding definition of object conflict is as follows.

DEFINITION 3.4 (Object conflict): An object conflict π ⊆ Θ is a conflict

D =
∧

θ∈D

¬AB(θ).

An object conflict is a conflict defined over the set of objects.

3.1.3 Minimality operator

To extract the minimal sets of diagnoses, conflicts, or hitting sets, the
minimal set representation operator is defined.

DEFINITION 3.5 (Minimal set representation): Let X be a set of sets, then
the minimal set representation of X is

minS(X) = {x|∄x ′, x ′ ⊆ x, x ∈ X, x ′ ∈ X}.

If sets of diagnoses are considered, the equivalence of two sets of
diagnoses states the relationship between minimal and non-minimal
diagnoses.

DEFINITION 3.6 (Equivalence of sets of diagnoses): Let D1 and D2 be
two sets of diagnoses. If

minS(D1) = minS(D2)

then the two sets of diagnoses are equivalent

D1 ≃ D2.

This equivalence relation will be used where two sets of diagnoses
should be compared to each other.

EXAMPLE 3.1: Consider the sets of diagnoses {{A,B,C}, {A,C}} and
{A,C}. Both these sets are characterized by the minimal diagnosis

30 3.1 SYSTEM DESCRIPTION IN A DISTRIBUTED ENVIRONMENT

{A,C} and therefore is

{{A,B,C}, {A,C}} ≃ {A,C}.

⋄

3.1.4 System Description for an Agent

Each agent is described by a local system description. In this thesis, it
is assumed that the model consists of equations, describing the non-
abnormal behavior, and some assumptions, stating the demands for
these equations to be correct. This means that no fault models are
used.

DEFINITION 3.7 (Equation assumption): Let eq be an equation, under the
assumptions

ass(eq) ⊆ ΘA

the model behave as described by the equation.

Each assumption c ∈ ass(eq) is a representation in set notation of
the mode assignment ¬AB(c).

DEFINITION 3.8 (System description for agent A): The system descrip-
tion for agent A is

SDA =< SE,CR >

where SE is a set of equations and assumptions

ass(eq) → eq

and CR is a set of computation requirements

E → output(A, i)

which defines which set of equations E that is needed to compute a value for
the given output. The set of equations E is a sub-set of the equations included
in SE.

The definition states that each SDA is a tuple including equations
with assumptions, and computation requirements for the outputs. Each
computation requirement, in the set CR, describes which of the equa-
tions that are needed to calculate a specific output. In most cases,
the computation requirements will be given directly by the equations.

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 31

However, this is not always the case, for example when there exist
multiple ways to calculate an output.

EXAMPLE 3.2: If an agent is described by the following equations and
assumptions

ass(E1) → x = sensor1

ass(E2) → x = sensor2

ass(E3) → output(A, 1) = x

then there are multiple ways to calculate the value of the output. For
example from the first, the second, or from a mean value of the two
sensor values. ⋄

The computation requirements will be used later when looking at
which objects whose abnormal behavior might affect the outputs. It is
therefore essential that the computation requirements are given in the
system description.

The following three-agent system will be used throughout the chap-
ter to illustrate the different concepts introduced

EXAMPLE 3.3: The system is a simplification and modification of the
intake system in a vehicle engine. The system includes five compo-
nents, four inputs, three ECUs, and a network bus; see Figure 3.1. Each
of the ECUs is modeled as one agent. The first agent deals with the in-
take, the second deals with the operation of the heat exchanger, while
the third deals with the intake manifold of the engine.

The first agent A1 uses a sensor to measure the environment tem-
perature and makes this value available on the network. Agent A2

measures the temperature in the cooler intake and the drop in tem-
perature due to the heat exchanger. Finally, agent A3 measures the
temperature in the inlet manifold.

The component c1 is the temperature sensor connected to A1, c2

is the intake pipes, c3 is the heat exchanger, c4 is a temperature sen-
sor in the heat exchanger’s cooler intake, and c5 is the inlet manifold
temperature sensor. The second agent has one input, while the third
has three inputs. Together these components and inputs are the set of
objects.

The system description for A1 is

SDA1 =< {{c1, c2} → EA1

1 : output(A1, 1) = value(c1)},

{{EA1

1 } → output(A1, 1)} >

The assumptions {c1, c2} means that if ¬AB(c1)∧¬AB(c2) is true, then

equation EA1

1 correctly models the system. It is not obvious that c2

should be included in the assumptions. To decide this, expert knowl-
edge of the system is needed. One reason to include c2 would be if hot

32 3.1 SYSTEM DESCRIPTION IN A DISTRIBUTED ENVIRONMENT

c
5

T
em

p
er

at
u

re
se

n
so

r

c
4

T
em

p
er

at
u

re
se

n
so

r

c
3

H
ea

t
ex

ch
an

g
er

c2 Intake pipes

Compressor

Network

o
u
tp

u
t(

A
1
,1

)

o
u
tp

u
t(

A
2
,1

)

o
u
tp

u
t(

A
2
,2

)

in
p
u
t(

A
2
,1

)

in
p
u
t(

A
3
,1

)

in
p
u
t(

A
3
,2

)

in
p
u
t(

A
3
,3

)

Agent A1 Agent A2 Agent A3
Heat exchanger Intake manifoldEnvironment

Air c
1

T
em

p
er

at
u

re
se

n
so

r

Test

FIGURE 3.1: A system including three agents. The objects consist of
five components and 4 inputs.

air could leak from the engine room into the intake pipes and thereby
disturbing the temperature measuring.

Agent A2 is modeled with four equations and it makes two outputs
available on the network. The system description is

SDA2 =< {{c2, c3, c4} → EA2

1 : T∆ = µ(Ts − value(c4)),

{input(A2, 1)} → EA2

2 : Ts = k · input(A2, 1),

∅ → EA2

3 : T∆ = output(A2, 1),

{c4} → EA2

4 : output(A2, 2) = value(c4)},

{{EA2

1 , EA2

2 , EA2

3 } → output(A2, 1),

{EA2

4 } → output(A2, 2)} >

where µ and k are known constants.

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 33

Finally, the system description for agent A3 is

SDA3 =< {{c5} → EA3

1 : Tinlet = value(c5),

{input(A3, 1)} → EA3

2 : Tair,1 = input(A3, 1),

{input(A3, 2)} → EA3

3 : Tair,2 = input(A3, 2),

{input(A3, 3)} → EA3

4 : T∆ = input(A3, 3)},

∅ > .

The example will be continued later in the chapter. ⋄

3.1.5 The Structural Description

The topology of the system, i.e. the connections between the inputs
and outputs of the agents, is described by the structural description.

DEFINITION 3.9 (Structural description): The structural description STRU

is a set of equations

input(Ak, i) = output(Al, j)

where each equation defines a connection between the i:th input in agent Ak

and the j:th output in agent Al.

It will be shown later that it is sometimes useful to be able to ex-
tract which inputs that an output is connected to and vice versa. The
following function is used to find the connections between inputs and
outputs. Defined is also an extension that can be used to extract the
agents that the inputs and outputs are connected to.

DEFINITION 3.10: Given X ⊆ OUT or X ⊆ IN. The connection function is

con(X) =

{

{input(A, i) | ‘input(A, i) = x ′ ∈ STRU, x ∈ X} if X ⊆ OUT

{output(A, i) | ‘x = output(A, i) ′ ∈ STRU, x ∈ X} if X ⊆ IN.

The connection to agent function is

conA(X) =

{

{A | ‘input(A, i) ′ ∈ con(X)} if X ⊆ OUT

{A | ‘output(A, i) ′ ∈ con(X)} if X ⊆ IN.

The functions will also be used when the input is a scalar value
and not a set. For example, con(input(Ak, i)) = output(Al, j). The
structural description is exemplified in the following continuation of
Example 3.3.

EXAMPLE 3.4: The structural description for the system is

STRU = {input(A2, 1) = output(A1, 1),

input(A3, 1) = output(A1, 1),

input(A3, 2) = output(A2, 2),

input(A3, 3) = output(A2, 1)}.

34 3.2 DIAGNOSTIC TESTS

The connection function can be used to find the connections, for
example

con(input(A2, 1)) = output(A1, 1).

If the connection to agent function is used, then

conA(input(A2, 1)) = A1.

⋄

3.2 DIAGNOSTIC TESTS

Only pre-compiled tests are considered in this thesis, i.e. the tests are
defined before the diagnostic system is employed. No local propaga-
tion, such as used in for example GDE [HCK92], is used.

DEFINITION 3.11 (Test): Each agent A includes a set of tests TESTA. Each
test is a tuple

t =< TC, π >

where TC is a test condition such that if

TC(OBS) = ⊤

then a local conflict π exist in the agent.

The test condition can for example be designed as a residual that
is compared with a threshold [Nyb99]. The set of tests in agent A is
denoted TESTA. If a set of equations E in the system description is
tested for correctness by the test condition, then a reasonable conflict
is

π =
⋃

eq∈E

ass(eq).

EXAMPLE 3.5: Agent three is equipped with two pre-compiled tests

TESTA3 = {< TC1, π1 >,< TC2, π2 >}

where the test conditions are

|Tinlet − k · Tair,1 + T∆| > J

|Tinlet − k · Tair,2 + T∆| > J

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 35

for some threshold J. In the agent, the equations tested for correctness
by the test conditions are

E1 = {EA3

1 , EA3

2 , EA3

4 }

E2 = {EA3

1 , EA3

3 , EA3

4 }.

This results in the conflicts

π1 =
⋃

eq∈E1

ass(eq) = {c5, input(A3, 1), input(A3, 3)}

π2 =
⋃

eq∈E2

ass(eq) = {c5, input(A3, 2), input(A3, 3)}.

Assume that both test conditions are true, then the set of local con-
flicts is Π = {π1, π2}. From these conflicts, the local minimal diagnoses

DA3 = {{c5}, {input(A3, 3)}, {input(A3, 1), input(A3, 2)}}

can be calculated. The set of diagnoses states that either are c5, input(A3, 3),
or both input(A3, 1) and input(A3, 2) behaving abnormal. If all diag-
noses are considered, and not only the minimal diagnoses, then there
are many more diagnoses, e.g. that both c5 and input(A3, 3) are be-
having abnormal at the same time. ⋄

3.3 FAULT PROPAGATION

To calculate an output’s value, it is sometimes needed to use several
of the equations included in the system description. The correctness
of an output does therefore not only depend on the assumption used
in the equation defining the output, but also on assumptions in other
equations that are needed to calculate the output.

DEFINITION 3.12 (Output assumption): Let σ ∈ OUTA be an output in
agent A, then the output assumption is

ass(σ) =
⋃

eq∈E

ass(eq)

where E is the equations in ′E → σ ′ ∈ CRA.

Notice that ass(σ) ⊆ ΘA. An output is said to be in the abnor-
mal mode if any object included in its assumption is in the abnormal
mode. Now a continuation of Example 3.3 is used to illustrate output
assumptions.

36 3.3 FAULT PROPAGATION

EXAMPLE 3.6: Consider output(A2, 1) in agent A2 whose defining

equation is EA2

3 . Included in CR is

{EA2

1 , EA2

2 , EA2

3 } → output(A2, 1).

The output assumption is therefore

ass(output(A2, 1)) =
⋃

eq∈{E
A2
1 ,E

A2
2 ,E

A2
3 }

ass(eq)

= {c2, c3, c4, input(A2, 1)}.

If any of c2, c3, c4, or input(A2, 1) is behaving abnormal, then this
could result in the abnormal behavior of output(A2, 1). Since input-
(A3, 3) in agent A3 is connected to this output, the abnormal behavior
could be propagated from A2 to A3. ⋄

If an input is included in an output assumption, then the output’s
behavior is dependent on the behavior of objects included in this in-
put’s assumption, i.e., the assumption for the output that the input is
connected to. This means that an outputs behavior is indirectly de-
pendent on the behavior of objects included in other agents.

It is sometimes useful to know exactly which components whose
abnormal behavior could cause an output to behave abnormal. There-
fore, the dependency function is defined. The function is used to find
the components whose abnormal behavior could result in the abnor-
mal behavior of an output. Defined is also a version for inputs.

DEFINITION 3.13 (Dependency): Let σ ∈ OUT be an output in agent A,
then the dependency for σ is

dep(σ) = ass(σ) ∩ C ∪
⋃

i∈ass(σ)∩IN

dep(con(i)).

Let i ∈ IN be an input, then the dependency for i is

dep(i) = dep(con(i)).

Since the function is defined implicit, the possibility of loops has to
be considered in an implementation. The example is now extended to
include output dependencies. A dependency dep(i) ⊆ C.

EXAMPLE 3.7: The dependency of input(A3, 3) is

dep(input(A3, 3)) = dep(output(A2, 1))

= ass(output(A2, 1)) ∩ C ∪
⋃

i∈ass(output(A2,1))∩IN

dep(con(i))

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 37

where

ass(output(A2, 1)) = {c2, c3, c4, input(A2, 1)}.

This results in the dependency

dep(input(A3, 3)) = {c2, c3, c4} ∪ dep(con(input(A2, 1)))

= {c2, c3, c4} ∪ dep(output(A1, 1)) = {c1, c2, c3, c4}

where dep(output(A1, 1) = c1, c2 is taken directly from SDA1 . The
dependency will be used in the example in the following section. ⋄

3.4 DISTRIBUTED DIAGNOSIS

In contrast to a centralized system where there exist one set of conflicts
and one set of diagnoses, there can in a distributed environment exist
several sets of conflicts and diagnoses. These sets of distributed con-
flicts and diagnoses are here denoted local conflicts and local diagnoses.
The sets might be disjoint, i.e. independent, or not disjoint, i.e. include
shared components.

A global diagnosis has the ability to state the mode of all com-
ponents in the system. The global diagnoses can be formed directly
from the local conflicts, where all conflicts are merged to a set of global
conflicts and thereafter, the global diagnoses are generated from these
global conflicts. An alternative is to first generate the local diagnoses
from the local conflicts, then all local diagnoses are merged to obtain
the set of global diagnoses. These approaches are schematically shown
in Figure 3.2.

The computationally most expensive operation is the generation of
local diagnoses and the merge of local diagnoses. Therefore, the first
approach might be seen as a more centralized diagnostic system, while
the second approach is more like a distributed diagnostic system.

When merging local diagnoses, the combinatorial explosion that
this results in must be considered. In Chapter 6 a focused search will
be presented that reduces the number of global diagnoses.

3.5 RELATION BETWEEN LOCAL AND GLOBAL

DIAGNOSES

As described in the preceding section, distributed diagnosis aims at
finding correct global diagnoses in a distributed environment.

The sets of local conflicts and diagnoses in agent A are denoted
ΠA and DA respectively. A global diagnosis is a diagnosis consistent

38 3.5 RELATION BETWEEN LOCAL AND GLOBAL DIAGNOSES

Πagent 1

... Πglobal Dglobal

Πagent n

(a) Local conflict to global conflict to
global diagnoses.

Πagent 1 Dagent 1

...
... Dglobal

Πagent n Dagent n

(b) Local conflict to local diagnoses to
global diagnoses.

FIGURE 3.2: Two different approaches to generate global diagnoses.

with the complete system description. A global diagnosis might be
represented as an object diagnosis. The ϕC operator can be used to
transfer the global diagnosis to complete component representation.

The global diagnoses can be calculated from all the local conflicts
as described in Theorem 2.2. A set of global diagnoses is denoted D.
The local diagnoses can be merged to form the global diagnoses. If the
diagnoses are represented in boolean algebra, then the merge is a sim-
ple conjunction followed by the removal of non-minimal diagnoses. If
set notation is used, then the merging of two sets of diagnoses is de-
fined as follows.

DEFINITION 3.14 (Merge): Let D1 and D2 be two sets of diagnoses, then a
merge of these diagnoses is the set of minimal sets

D1 ×∪ D2 = minS({D1 ∪ D2 |D1 ∈ D1, D2 ∈ D2}).

The merge of local diagnoses is primary used to calculate global
diagnoses from local diagnoses, which is an alternative to directly cal-
culate the global diagnoses from the local conflicts. Theorem 3.1 states
that the merge of local diagnoses gives the global diagnoses.

THEOREM 3.1 (From local diagnoses to global diagnoses): For each A ∈
A let DA be a set of local diagnoses consistent with the diagnoses ΠA. The
minimal global diagnoses is

D = ×∪
A∈A

DA.

Proof. A diagnosis D ∈ D is

D =
⋃

A∈A

DA

where DA ∈ DA. For each conflict π ∈
⋃

A∈A ΠA

D ∩ π 6= ∅

since each DA is a diagnosis, and from Theorem 2.2 follows that D

is a global diagnosis. A merge only includes the minimal sets, and
therefore the global diagnoses are minimal global diagnoses.

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 39

EXAMPLE 3.8: Consider an example with two agents including the
conflicts ΠA1 = {{A,C}, {B,C}} and ΠA2 = {{B, E}} respectively. The
local minimal diagnoses consistent with these conflicts are DA1 =

{{A,B}, {C}} and DA2 = {{B}, {E}}. The set of merged local diagnoses
is

DA1 ×∪ DA2 = {{A,B}, {B,C}, {C, E}}

The diagnosis {A,B}∪{E} = {A,B, E} is not minimal and is therefore not
included in the merged set. Notice that every diagnosis is consistent
with every conflict, i.e. every merged diagnosis is a global diagnosis.

⋄

3.6 COMPLETE COMPONENT

REPRESENTATION

When computing and merging object diagnoses, it is possible to re-
place the inputs in the object diagnoses with the corresponding de-
pendencies. This can lead to both larger and smaller sets of object
diagnoses depending on the structure of the system. The object diag-
noses will be said to be completely component represented if D ⊆ C, i.e.
all inputs have been replaced with the corresponding dependencies.

The ϕC operator for a set of object diagnoses is used to translate
object diagnoses to complete component representation.

DEFINITION 3.15 (Object diagnosis in complete component represen-
tation): Let D be an object diagnosis, then the diagnosis’ complete compo-
nent representation is

ϕC(D) = P

where P is the minimal hitting sets for the set of sets

{{c} | c ∈ D ∩ C} ∪
⋃

i∈D∩IN

{{dep(i)}}.

For a set of object diagnoses D, the diagnoses’ complete component represen-
tation is

ϕC(D) = minS(
⋃

D∈D

ϕC(D)).

Notice that a diagnosis is D = {c1, . . . , cn,dep(I1), . . . ,dep(Im)},
and the set of sets that a hitting set should be found for is

{{c1}, . . . , {cn}, {dep(i1)}, . . . , {dep(im)}}.

40 3.6 COMPLETE COMPONENT REPRESENTATION

For each set P ⊆ P, P ⊆ C. All hitting sets are represented by the set

{D ∩ C} ×∪
i∈D∩IN

{{c} | c ∈ dep(i)}.

The minimal diagnoses representing this set are therefore the minimal
diagnoses, which are represented by the minimal hitting sets. The two
formulations are equivalent.

EXAMPLE 3.9: Consider the diagnosis

D = {A,B, i}

where dep(i) = {B,C}. The diagnosis complete component represen-
tation is the minimal hitting sets for the set of sets

{{A}, {B}, {B,C}}

which is the set of diagnoses

ϕC(D) = {{A,B}}.

⋄

The behavior of an input depends on the components included in
the input’s dependency. The following assumption, commonly known
as exoneration, will be used in the thesis.

ASSUMPTION 3.1 (Exoneration): Let σ be an output, then

AB(i) ↔
∨

c∈dep(i)

AB(c).

Notice that the right implication always hold. The exoneration is
the implication of the left arrow. This means that the abnormal behav-
ior of a component included in an output’s dependency results in the
abnormal behavior of the output. This assumption will be discussed
further in Section 3.7.5 page 50.

PROPOSITION 3.2: Let D be a set of object diagnoses, then

ϕC(D)

is a set of kernel diagnoses.

Proof. An object diagnosis D ∈ D is an expression

D =
∧

θ∈D

AB(c) ∧
∧

c∈Θ\D

A(c)

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 41

such that SD∪OBS∪ {D} is consistent. Partitioning D into inputs and
components, and using exoneration give

D =
∧

c∈D∩C

AB(c) ∧
∧

i∈D∩IN

AB(i) ∧
∧

c∈Θ\D

A(c)

=
∧

c∈D∩C

AB(c) ∧
∧

i∈D∩IN

∨

c∈dep(i)

AB(c) ∧
∧

c∈Θ\D

A(c).

Extracting the disjunction give

D =
∨

S∈S̄

∧

c∈S

AB(c) ∧
∧

c∈Θ\D

A(c).

where S̄ are the minimal hitting sets for the sets

{{c} | c ∈ D ∩ C} ∪
⋃

i∈D∩IN

{dep(i)}.

Noticing that for c ∈ S, AB(c) ∧ A(c) = AB(c), and that D∩ C ⊆ S,
give

D =
∨

S∈S̄

∧

c∈S

AB(c) ∧
∧

c∈Θ\S

A(c).

Now, each S ⊆ C and

SD ∪ OBS ∪ {
∧

c∈S

AB(c) ∧
∧

c∈Θ\S

A(c)}

is consistent which means that each S is a partial diagnosis. The min-
imal hitting set represents the kernel diagnoses, and the kernel diag-
noses characterizes all partial diagnoses, therefore is ϕC(D) a set of
kernel diagnoses. From Definition 3.15 follows that ϕC(D) is a set of
kernel diagnoses.

The corresponding definition and proposition for conflicts are stated
below.

DEFINITION 3.16 (Object conflict in complete component representa-
tion): Let π be an object conflict, then the conflict’s complete component rep-
resentation is

ϕC(π) =C ∩ π ∪
⋃

i∈π∩IN

dep(i).

For a set of object conflicts Π, the conflicts’ complete component representa-
tion is the set

ϕC(Π) = minS(
⋃

π∈Π

ϕC(π)).

42 3.6 COMPLETE COMPONENT REPRESENTATION

PROPOSITION 3.3: Let Π be a set of object conflicts where π ⊆ Θ for each
π ∈ Π, then

ϕC(Π)

is a set of minimal conflicts.

Proof. For π ∈ Π

SD ∪ OBS ∪ {
∧

c∈π

¬AB(c)}

is inconsistent. Partition the conflict and using a negation of Assump-
tion 3.1 give

SD ∪ OBS ∪ {
∧

c∈π∩C

¬AB(c) ∧
∧

i∈π∩IN

∧

c∈dep(i)

¬AB(c)}

=SD ∪ OBS ∪ {
∧

c∈C∩π∪
⋃

i∈π∩IN dep(i)

¬AB(c)}

where

C ∩ π ∪
⋃

i∈π∩IN

dep(i) ⊆ C,

and by definition follows that

SD ∪ OBS ∪ {
∧

c∈ϕC(π)

¬AB(c)}

is inconsistent. The set ϕC(π) is therefore a conflict, and from the def-
inition follows that the set ϕC(Π) is minimal conflicts.

One of the cases where the operator is useful is when it should
be verified that two sets of diagnoses are representing the same set of
minimal diagnoses. The following relation will be used when verify-
ing that two different sets of diagnoses are equal when all inputs have
been replaced with the corresponding dependencies.

DEFINITION 3.17 (ϕC equivalence): Let X and Z be two sets of diagnoses
or conflicts. If

ϕC(X) = ϕC(Z)

then the sets are ϕC equivalent

X
ϕC

= Z.

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 43

EXAMPLE 3.10: Consider the diagnoses in Example 3.5

DA3 = {{c5}, {input(A3, 3)}, {input(A3, 1), input(A3, 2)}}.

It would be interesting to exactly find which components whose ab-
normal behavior could give these diagnoses. The ϕC operator can be
used for this.

To find ϕC(DA3), the dependency of all the inputs will first be cal-
culated

dep(input(A3), 1) = {c1, c2}

dep(input(A3), 2) = {c2, c4}

dep(input(A3), 3) = {c1, c2, c3, c4}.

The last dependency was calculated in Example 3.7. Now, the diag-
noses can directly be transformed.

ϕC({c5}) = {c5}

ϕC({input(A3, 3)}) = {{}} ×∪ {{c} | c ∈ dep(input(A3, 3))}}

= {{c1}, {c2}, {c3}, {c4}}

ϕC({input(A3, 1), input(A3, 2)}) = minS({{}} ×∪ {{c1}, {c2}} ×∪ {{c2}, {c4}})

= {{c2}, {c1, c4}}

which give the minimal diagnoses

ϕC(DA3) = {{c1}, {c2}, {c3}, {c4}, {c5}}.

This states that at least one of the objects included in the diagnoses
must behave abnormal.

It is also possible to first calculate the conflicts in flat form

ϕC(Π) = {{c1, c2, c3, c4, c5}} ∪ {{c1, c2, c3, c4, c5}})

= {{c1, c2, c3, c4, c5}}})

The conflict can then be used to calculate the diagnoses stated above.
⋄

3.7 PROBABILISTIC REASONING AND

AVOIDANCE OF COMBINATORIAL EXPLOSION

When the diagnoses are calculated in a system, the number of possi-
ble diagnoses grows exponentially with both the number of local di-
agnoses and the size of the local diagnoses. This means that a combi-
natorial explosion is likely to occur when the number of objects in the

44 3.7 PROBABILISTIC REASONING

system grows. The problem is similar to the combinatorial problem of
finding minimal diagnoses given a set of conflicts [dK92].

A first step to reduce the growth of the combinatorial explosion is
to partition the global diagnoses into independent sub-sets of global
diagnoses. How this can be done without losing too much of the
global diagnoses properties will be discussed in Section 3.7.1.

To further reduce the growth of the combinatorial explosion, it is
sometimes necessary to settle for the diagnoses that are the most in-
teresting, and thereby reducing the number of diagnoses that have
to be considered. A common approach to do this is to only consider
the sub-set of diagnoses that more probably describes the current sys-
tem behavior. One method to find the more probable diagnoses, is
to use a-priori probabilities and probabilistic reasoning, such as used
in [dK92]. There are however a number of problems with this ap-
proach which will be discussed in Section 3.7.2.

Due to the problems of deciding the probabilities for a diagnosis, a
more coarse and simpler method can be used. Instead of using prob-
abilities to prioritize between diagnoses, the size of the diagnoses can
be used. This leads to the concept of minimal cardinality (mc) diag-
noses, which will be discussed further in Section 3.7.3. The minimal
cardinality concept is used together with the sub-sets of global diag-
noses in Section 3.7.4.

The section is ended in Section 3.7.5 with a discussion about un-
der which assumptions that the minimal cardinality diagnoses are the
same as the most probable diagnoses.

3.7.1 Global Diagnoses represented as Module Diagnoses

For the diagnoses to be easily understandable for a technician, they
should be as small as possible and being free of complex relations to
other diagnoses. One such type of diagnoses that are free of complex
relations are the global diagnoses, since each global diagnosis states
a complete set of mode assignments. These might however become
quite large due to the inclusion of all local diagnoses.

EXAMPLE 3.11: Consider two agents with local minimal diagnoses

DA1 = {{A,B}, {C, F}}

DA2 = {{B,C}, {C,D}, {F}}.

To repair the system, both sets of diagnoses have to be considered.
This means that six combinations must be checked. However, the set
of minimal global diagnoses is

D = {{A,B,C}, {A,B, F}, {C, F}}

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 45

which is a simpler set of diagnoses to check. In a system with dozens
of agents and many more diagnoses, the relations between the local
diagnoses might become much more complex. ⋄

One way to reduce the size of the global diagnoses is to represent
them as a conjunction of smaller disjoint parts of diagnoses. Since
these smaller parts are disjoint, the global diagnoses will simply be
a merge of all these smaller parts, i.e. a simple relation would exist
between the parts of diagnoses. When considering systems, such as
a vehicle, the diagnoses will often be used for reparations. From a
technician’s point of view, the smaller diagnoses are more easily un-
derstandable than the complete set of global diagnoses.

One approach to extract these parts is to merge the local diagnoses
from a sub-set of agents, into a sub-set of global diagnoses, so that
each such sub-set is disjoint from the other. Such a set of agents is here
denoted a module.

DEFINITION 3.18 (Module): Let DA be a set of diagnoses for agent A and
partition the set of agents A into sub-sets Āi. Each set Āi is said to be a
module if for all sub-sets of agents

Āi ∩ Āj = ∅

and for all minimal diagnoses DĀi ∈ ×∪A∈Āi
DA, DĀj ∈ ×∪A∈Āj

DA

DĀi ∩ DĀj = ∅.

The modules are defined with respect to some set of diagnoses DA.
Therefore, the modules will be different when different sets of diag-
noses are considered. This will for example be used in Chapter 6 to
make the size of the modules smaller by only considering sub-sets of
the local diagnoses.

For each module, the set of module diagnoses is defined.

DEFINITION 3.19 (Module diagnoses): Let Ā be a module, and DA a set
of local diagnoses for agent A, then the set of module diagnoses is

Dmod
Ā

= ×∪
A∈Ā

DA.

The global diagnoses can be calculated from all module diagnoses,

D = ×∪
Ā

Dmod
Ā

.

This follows directly from Theorem 3.1. An example is used to illus-
trate the relation between module diagnoses and global diagnoses.

EXAMPLE 3.12: If DA1 = {{A,B}, {C}}, DA2 = {{B, E}, {C}}, and DA3 =

{{F}}, then the modules are Ā1 = {A1, A2} and Ā2 = {A3} since F is

46 3.7 PROBABILISTIC REASONING

����
����
����
����
����

����
����
����
����
����

��
��
��
��

��
��
��
��

Dmod,mc
1

A

F

E

Dmod,mc
2

C
B

A3

A1

A2

FIGURE 3.3: A schematic picture of a system consisting of three
Agents. The agents includes local diagnoses (circled).

included in DA3 but not in DA1 or DA3 ,. The sets of module diagnoses
are

Dmod
1 = minS({{A,B, E}, {A,B,C}, {C,B, E}, {C}}) = {{C}, {A,B, E}}

Dmod
2 = {{F}}.

The diagnoses are shown schematically in Figure 3.3 where the local
diagnoses are represented by circles.

A merge of the module diagnoses results in

Dmod
1

×∪ Dmod
2 = {{C, F}, {A,B, E, F}}

which also is the set of global diagnoses. ⋄

3.7.2 Probabilistic Reasoning

There are a number of problems associated with the use of a-priori
probabilities to prioritize between diagnoses. In a vehicle, such as a
Scania truck, the probabilistic reasoning is difficult due to the difficul-
ties in finding the a-priori probabilities. It is for a newly produced
vehicle possible to find quite good estimates of the probabilities, how-
ever, after a couple of years, when for example some objects have been
replaced or repaired, the estimates will probably be bad or completely
faulty.

Due to the problem of deciding the probabilities for a diagnosis, a
more coarse and simpler method can be used. Instead of using prob-
abilities to prioritize between diagnoses, the size of the diagnoses can
be used. This leads to the concept of minimal cardinality diagnoses.

3.7.3 Minimal Cardinality Diagnoses

The cardinality of a set is the number of elements in the set. The mini-
mal cardinality diagnoses are a subset of all diagnoses.

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 47

DEFINITION 3.20 (Minimal cardinality diagnoses): Let D be a set of di-
agnoses, then the set of minimal cardinality diagnoses is

Dmc = {D
∣

∣ |D| = min
D∈D

|D|, D ∈ D}.

The set of minimal cardinality local diagnoses for agent A is de-
noted Dmc

A , and the set of minimal cardinality global diagnoses is de-
noted Dmc. The minimal cardinality diagnoses are a sub-set of the
minimal diagnoses, which also means that they do not represent all
local diagnoses.

For a given set of diagnoses, the number of minimal cardinality di-
agnoses is often (but not always) less than the number of minimal di-
agnoses. These diagnoses can therefore be used to reduce the growth
of the combinatorial explosion that arises when several sets of diag-
noses should be merged together.

Merging all local diagnoses can according to Theorem 3.1, form the
set of global diagnoses. Unfortunately, the relation between minimal
cardinality local diagnoses and minimal cardinality diagnoses are not
so simple. A merge of the minimal cardinality local diagnoses does
not result in the minimal cardinality global diagnoses, i.e.

Dmc 6≃ ×∪
A∈A

Dmc
A .

They are in general not even a sub-set of the merged diagnoses, i.e.

Dmc 6⊂ ×∪
A∈A

Dmc
A .

The following example proves this.

EXAMPLE 3.13: Consider Example 3.8 where Dmc
A1

= {{C}} and Dmc
A2

=

{{B}, {E}}. The merge gives

Dmc
A1

×∪ Dmc
A2

= {{C,B}, {C, E}}

while

Dmc = {{A,B}, {B,C}, {C, E}}

The minimal cardinality global diagnosis {A,B} was not included in
the merge of the minimal cardinality local diagnoses due to the com-
mon objects in the set of local diagnoses. ⋄

3.7.4 Minimal Cardinality Module Diagnoses

In contrast to the case with merged minimal cardinality local diag-
noses, a merge of the minimal cardinality module diagnoses (MCMD) does
give the minimal cardinality global diagnoses. This is the main moti-
vation for the use of the module diagnoses.

48 3.7 PROBABILISTIC REASONING

THEOREM 3.4: Let Dmod,mc
i be the i:th set of MCMDs. The minimal car-

dinality global diagnoses

Dmc = ×∪
i

Dmod,mc
i .

Proof. The set of global diagnoses is

D = ×∪
i

Dmod
i .

The minimal cardinality global diagnoses is the set

Dmc = {D
∣

∣ |D| = min
D∈D

|D|, D ∈ D}

= {D
∣

∣ |D| = min
D∈D

|D|,D = ×∪
i

Dmod
i }.

The cardinality of the merge of two disjoint diagnoses is the sum of
cardinality of the merged diagnoses. Since the different MCMDs are
disjoint, the set

Dmc = ×∪
i
{D

∣

∣ |D| = min
D∈Dmod

i

|D|, D ∈ Dmod
i }

= ×∪
i

Dmod,mc
i .

where the last equality follows from the definition of minimal cardi-
nality module diagnoses.

EXAMPLE 3.14: Consider Example 3.12 where the modules are Ā1 =

{A1, A2} and Ā2 = {A3}. The sets of minimal cardinality module diag-
noses are

Dmod,mc
1 = {{C}}

Dmod,mc
2 = {{F}}.

A merge of the minimal cardinality module diagnoses results in

Dmod,mc
1

×∪ Dmod,mc
2 = {{C, F}}

which also is the set of minimal cardinality global diagnoses. ⋄

3.7.5 When are the Minimal Cardinality Diagnoses the most
Probable Diagnoses?

For a diagnosis that only includes components, the set of minimal car-
dinality diagnoses are, under some specific assumptions, the same as
the set of most probable diagnoses. However, this is not the case for
general diagnoses. The minimal cardinality concept is therefore ex-
tended in the end of this section.

The motivation to the work presented in this section is to find out
under which assumptions that the set of minimal cardinality diag-
noses is the same as the set of most probable diagnosis.

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 49

The Probability for a Diagnosis

The a-priori probability for an object c ∈ Θ to be in the abnormal mode
is

P(AB(c)).

The stochastic variable is that object c is in the abnormal mode, i.e.
that object c is behaving abnormal. If all the objects are in the abnor-
mal mode independently from each other, then the probability for the
system to be in the mode where the objects D ⊆ Θ are in the abnormal
mode is

P(D) =
∏

c∈D

P(AB(c))
∏

c∈Θ\D

(1 − P(AB(c))).(3.1)

Diagnoses Including Only Components

It will be assumed that the number of objects are limited in such a way
that

|Θ| ≪ p−1.

This means that the effect on the probability due to the number of
objects is much lower than the effect of the removal or addition of an
abnormal object.

LEMMA 3.5 (Minimal cardinality and most probable diagnoses): Let D
be a set of diagnoses, where D ⊆ C for each diagnosis D ∈ D. If P(AB(c)) =

p for each c ∈ C where p < 1
2

is some probability, then

Dmost probable = Dmc

where

Dmost probable = {D | P(D) = max
D∈D

P(D), D ∈ D}.

Proof. The probability for the most probable diagnoses is

max
D∈D

P(D) = max
D∈D

p|D|(1 − p)|C\D| = pminD∈D |D|(1 − p)|Θ\minD∈D D|

since p < 1
2

. The set of most probable diagnoses is

Dmost probable = {D |P(D) = pminD∈D |D|(1 − p)|Θ\minD∈D D|, D ∈ D}

= {D
∣

∣ |D| = min
D∈D

|D|, D ∈ D} = Dmc

where the last equality follows from the definition of minimal cardi-
nality.

50 3.7 PROBABILISTIC REASONING

A simple example will illustrate the result of the lemma.

EXAMPLE 3.15: Consider the global diagnoses {{C, F}, {A,B, E, F}} from
Example 3.12. Assume that all objects fail with the same small prob-
ability p. From Lemma 3.5 follows that the most probable diagnosis
is

Dmost probable = Dmc = {{C, F}}

and its probability

P({C, F}) = O(p2).

⋄

The Probability for a General Diagnosis

When diagnoses including both components and inputs are consid-
ered, the probabilities for the diagnoses are more difficult to approxi-
mate.

If only components are included in the diagnoses, then (3.1) holds
for minimal diagnoses. However, when inputs are included in the
diagnoses, it have to be considered that the probability for abnormal
behavior of an input is

P(AB(i) |
∨

c∈dep(i)

AB(c)) 6 1

since it is not certain that an abnormal behavior in an object will lead
to the abnormal behavior in a depending input. However, under As-
sumption 3.1 the probability is

P(AB(i) |
∨

c∈dep(i)

AB(c)) = 1.

If the assumption is very far from true for some input, it should be
considered if the components that break the assumption really should
be included in the input’s dependency. Consider now the following
example.

EXAMPLE 3.16: The set of diagnoses in Example 3.5 is

{{c5}, {input(A3, 3)}, {input(A3, 1), input(A3, 2)}}.

The cardinality of the diagnoses are

|{c5}| = 1

|{input(A3, 3)}| = 1

|{input(A3, 1), input(A3, 2)}| = 2.

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 51

Under the assumptions that the components fails with the same
small probability and exoneration, are the minimal cardinality diag-
noses the same set as the most probable, as was the case in Lemma 3.5?
Unfortunately not. The first diagnosis only includes component c5

and its probability to fail is

P({c5}) = O(p).

The second diagnosis is {input(A3, 3)}, whose probability

P({input(A3, 3)}) ≈ |dep(input(A3, 3))| · p = 4 · p = O(p).

The probability is approximately the number of dependent compo-
nents times the probability p which is approximated by p.

The third diagnosis is {input(A3, 1), input(A3, 2)} with cardinality
two. A direct assumption would be that the probability for this diag-
nosis is lower than the other two, i.e. p2. Expand the diagnosis with
the input dependencies

P({dep(input(A3, 1)),dep(input(A3, 2))})

= P((AB(c1) ∨ AB(c2)) ∧ (AB(c2) ∨ AB(c4))) = O(p)

since c2 is included in both dependencies. For simplicity, the non-
abnormal components have been left out of the calculation. Notice
that P({input(A3, 1), input(A3, 2)}) 6= O(p2), which might have been
expected from a brief study of the diagnoses.

To conclude, only the two first diagnoses are included in the set of
minimal cardinality diagnoses, but all three fails with approximately
the same probability. ⋄

From this example it is concluded that it is not sufficient to only use
the cardinality to find the more likely diagnoses. To be more useful,
the cardinality concept must be modified. This will be done in the
next section where the following theorem is needed. Theorem 3.6 is a
generalization of Lemma 3.5 to general diagnoses.

THEOREM 3.6 (Probability for a general diagnosis): Let D ⊆ Θ be an
object diagnosis. If P(AB(c)) = p for each c ∈ C where p is some small
probability, and Assumption 3.1 is true, then the probability for the diagnosis
is

P(D) = O(p|S|)

where S is a minimal hitting set for the set of sets

{{c} | c ∈ D ∩ C} ∪
⋃

i∈D∩IN

{dep(i)}.

52 3.7 PROBABILISTIC REASONING

Proof. Following the proof in Proposition 3.2 give that the object diag-
nosis D is

D =
∨

S∈S

∧

c∈S

AB(c) ∧
∧

c∈Θ\S

A(c)

where S is the set of all hitting sets. The object diagnosis D is a set of
diagnoses. From Lemma 3.5 follows that the most probable diagnoses
are the diagnoses with all A(c) = ¬AB(c), which are represented by
the minimal hitting sets. The probability for each such diagnosis is
O(p|S|) where S is a minimal hitting set, and p is small. The probability
for the diagnosis is therefore

P(D) = O(p|S|).

An alternative way to describe the probability is that the probabil-
ity is

P(D) = O(p|D∩C|+|S′|)

where S ′ = S\(D ∩ C) for some minimal hitting set S. The set S ′ is the
set of components that are only included in the input dependencies.
The term |D ∩ C| + |S ′| can be refereed to as the extended cardinality,
compare with Lemma 3.5 where |D| is the cardinality. The probability
for the diagnoses in Example 3.16 is calculated in the following exam-
ple.

EXAMPLE 3.17: The probability for the first conflict is simply

P({c5}) = O(p1+0) = O(p).

The probability for the second diagnosis is

P({input(A3, 3)}) = O(p0+|S′|).

Since D ∩ C = ∅, a minimal hitting set only includes one component,
|S ′| = 1 which results in the probability P({input(A3, 3)}) = O(p).

The probability for the third diagnosis is

P({input(A3, 1), input(A3, 2)}) = O(p0+|S′|).

The input dependencies are

dep(input(A3, 2)) = {c2, c4}

dep(input(A3, 1)) = {c1, c2}

and since D ∩ C = ∅, a minimal hitting set is {c2}. This results in the
probability

P({input(A3, 1), input(A3, 2)}) = O(p).

⋄

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 53

3.7.6 Extended Cardinality

In the preceding section was the probability for a general diagnosis
calculated. As stated in Theorem 3.6 and exemplified in Example 3.16,
it is not possible to use the cardinality of a diagnosis to decide which
diagnoses that are most probable. Therefore, some extension to the
cardinality concept is needed. Inspired by Theorem 3.6, the extended
cardinality is defined.

DEFINITION 3.21 (Extended cardinality): Let D ⊆ Θ be an object diag-
nosis, then the extended cardinality of the diagnosis is

ec(D) = |S|

where S is a minimal hitting set for the sets

{{c} | c ∈ D ∩ C} ∪
⋃

i∈D∩IN

{dep(i)}.

From the extended cardinality follows the minimal extended car-
dinality diagnoses.

DEFINITION 3.22 (Minimal extended cardinality diagnoses): Let D be a
set of object diagnoses. The minimal extended cardinality diagnoses are the
set

Dmec = {D | ec(D) = min
D∈D

ec(D), D ∈ D}.

Now, given that Assumption 3.1 and the assumptions in Theo-
rem 3.6 is true, the minimal extended cardinality diagnoses are the
same as the most probable diagnoses. This motivates the use of the
extended cardinality.

THEOREM 3.7: Let D be a set of object diagnoses. If Assumption 3.1 and the
assumptions in Theorem 3.6 is true, then the set of most probable diagnoses
is the same as the set of minimal extended cardinality diagnoses,

Dmost probable = Dmec

where

Dmost probable = {D |P(D) = max
D∈D

O(P(D)), D ∈ D}.

Proof. From Theorem 3.6 follows that

P(D) = O(p|S|)

where S is a minimal hitting set for the same set of sets as in the defini-
tion of extended cardinality. Using this in the most probable diagnoses

54 3.8 SCANIA EQUIVALENCE

results in

Dmost probable = {D | O(p|S(D)|) = max
D∈D

O(p|S(D)|), D ∈ D}

= {D
∣

∣ |S(D)| = min
D∈D

|S(D)|, D ∈ D}

where S(D) is a minimal hitting set for diagnosis D, and it has been
used that p < 1

2
. From the definition of extended cardinality and min-

imal extended cardinality follows that the most probable diagnoses is

Dmost probable = {D | ec(D) = min
D∈D

ec(D), D ∈ D} = Dmec

where the last equality follows from the definition of minimal extended
cardinality diagnoses.

Now Example 3.16 is concluded with extended cardinalities.

EXAMPLE 3.18: The extended cardinalities of the diagnoses are

ec({c5}) = 1

ec({input(A3, 3)}) = 1

ec({input(A3, 1), input(A3, 2)}) = 1

which follows from the calculations in Example 3.17. For comparison,
the cardinalities of the diagnoses are

|{c5}| = 1

|{input(A3, 3)}| = 1

|{input(A3, 1), input(A3, 2)}| = 2.

The minimal extended cardinality diagnoses are the complete set of
diagnoses while the minimal cardinality diagnoses are only the two
first. The probabilities for the diagnoses are approximately

P({c5}) = O(p)

P({input(A3, 3)}) = O(p)

P({input(A3, 1), input(A3, 2)}) = O(p)

i.e. the probability is approximately the same for all three diagnoses.
To conclude, the set of minimal extended cardinality diagnoses is

the same as the set of most probable diagnoses. ⋄

3.8 SCANIA EQUIVALENCE

The system described in this chapter is a theoretical framework for
distributed diagnostic systems. In a vehicle, the agents are the soft-
ware programs that are implemented in the ECUs and the components

CHAPTER 3 DISTRIBUTED DIAGNOSTIC SYSTEMS 55

are the sensors, actuators, pipes, etc., which are monitored by the di-
agnostic system. The output signals are mostly values from sensors,
actuator signals, or calculated values, that are made available to the
other agents over the network. The output signals are collected by
other agents and are primarily used for control and diagnosis.

In the current diagnostic system implemented in the Scania vehi-
cles, there are two main types of tests implemented, electric tests and
plausibility tests. Both of these are pre-compiled and are executed dur-
ing the operation of the vehicle.

Electric tests are robust and simple to implement. The tests use
simple models to supervise single components for correct behavior,
and only with regards to static reference values for that component.
They can usually not detect smaller errors, e.g. bias errors, unless the
error offsets the signal such that it is outside the valid range.

Plausibility tests uses models, or relationships between compo-
nents, to simultaneously supervise multiple components. They can
detect smaller errors like bias errors, but is also more sensitive to noise.
The conflicts are generated from tests that are local or, local with addi-
tional information gathered from other ECUs over the network. Both
these types of tests falls nicely into the framework described above.

4

EXTENDING LOCAL DIAGNOSES

A local diagnosis states the status of local components and local in-
puts, while the status of the rest of the distributed system is unknown.
An agent is not directly interested in the status of the rest of the sys-
tem; it is however interested in information about components and
inputs that are included in its own set of objects. To improve the local
diagnoses, agents could share conflicts and diagnoses with each other.

The primary gain from this sharing of information is that an agent
can state more complete diagnoses about its own objects, than it could
do if it only used its own local conflicts. Thus, the local diagnoses can
be extended as a result of the sharing of diagnostic information.

The sharing of information can primarily be done in two ways;
either conflicts or diagnoses are shared, see Section 4.2 and 4.3 respec-
tively. The extreme is to share all conflicts or diagnoses with all other
agents, which however in most cases are both inefficient and unnec-
essary. Instead only the subset of conflicts or diagnoses that are of a
direct interest to the specific agent should be transmitted.

The work presented in this and the next chapter was motivated by
questions that aroused when considering which conflicts or diagnoses
that should be transmitted, and when a conflict or diagnosis is trans-
mitted, if it have to be transmitted in its completeness. If it would be
possible to minimize the information that is transmitted then the size
of the local diagnoses could be kept to a minimum, and the load on
both the processing units and the network could be reduced.

57

58 4.1 DISTRIBUTION OF DIAGNOSTIC INFORMATION

②

to local diagnoses
Local conflicts①

conflicts
Global

to local conflicts

Diagnoses

Local conflictsagent A1

ConflictsConflicts

Diagnoses
agent A2

agent A2

based on the local diagnoses
Local conflicts to local conflicts

agent A1

⑤

G
lo

b
al

co
n

fl
icts

④ su
p

p
o

rt
D

ecisio
n

to
g

lo
b

al
d

iag
n

o
ses

Global

⑥ Local diagnoses

diagnoses

③

Merge local diagnoses
to global diagnoses

to local diagnoses

FIGURE 4.1: An overview of the different methods available for calcu-
lating and extending diagnoses.

4.1 DISTRIBUTION OF DIAGNOSTIC

INFORMATION

Figure 4.1 shows the concepts that are involved in the generation and
transmitting of both local and global conflicts and diagnoses. Two
main concepts are shown in the figure; the calculation of diagnoses
from conflicts and the distribution of conflicts and diagnoses from one
agent to another. The two concepts are further described below.

4.1.1 From Conflicts to Diagnoses

The common approach to perform diagnosis is to first generate or
detect conflicts and then computes the diagnoses based on the con-
flicts. In a distributed environment, where the goal is to compute
the global diagnoses, this can be done in principally two different
ways. From local conflicts generate local diagnoses, i.e. the standard
approach within consistency based diagnosis, number ① in the figure.
After this, merge the local diagnoses to obtain the global diagnoses

CHAPTER 4 EXTENDING LOCAL DIAGNOSES 59

②. Alternatively, collect all the local conflicts to form a set of global
conflicts, which can then be used to generate the global diagnoses
③. These approaches were briefly described in Section 3.4 where they
were denoted local conflicts to local diagnoses to global diagnoses and lo-
cal conflicts to global conflicts to global diagnoses respectively. Due to the
combinatorial explosion it might be preferable to only calculate the
MCMDs(minimal cardinality module diagnoses), and thereby reduc-
ing the number of diagnoses that have to be considered. An algorithm
that finds all MCMDs is presented in Chapter 6.

4.1.2 Extending Local Conflicts and Local Diagnoses

As mentioned in the introduction to this chapter, two principally dif-
ferent ways can be found that results in extended local diagnoses.

First, it is possible to transfer a subset of local conflicts from one
agent to another ④. This extends the local diagnoses in the receiving.
Not all conflicts need to be transmitted. For example, only those con-
flicts that includes objects that is also included in the objects in agent
A1 could be transmitted. An alternative is to use the local diagnoses
to decide which conflicts to transmit ⑤. These approaches will be de-
noted local conflict to local conflict and is discussed in more detail in
Section 4.2

Second, a subset of local diagnoses can be transferred from one
agent to another ⑥. The receiving agent can merge these diagnoses
with its local diagnoses to obtain a more complete set of local diag-
noses. This approach is denoted local diagnoses to local diagnoses and is
discussed in Section 4.3.

4.2 SHARING LOCAL CONFLICTS

This section first discusses which conflicts that should be transmitted,
and then how the size of the conflicts themselves can be reduced. But
first, the following example is used to show how local conflicts can be
shared between agents.

EXAMPLE 4.1: Consider a system consisting of two agents, with

ΠA1 = {{A,B}}} ΠA2 = {{i, F,G}}

ass(σ) = {B} STRU = {i = σ}

where i = input(A2, 1), σ = output(A1, 1), and ΠAi the set of local
conflicts in agent Ai, see Figure 4.2. The local diagnoses consistent
with the conflicts are

DA1 = {{A}, {B}} DA2 = {{i}, {F}, {G}}.

60 4.2 SHARING LOCAL CONFLICTS

Network

A1 A2

σ i

FIGURE 4.2: A two agent example.

Notice that A1 has two diagnoses that are equally likely when the car-
dinality is considered. Agent A2 detects that input i is possibly in-
correct and therefore transmits this conflict to A1. The transmitted
conflict is

πtx = con(i) ∪ {F,G} = {σ, F,G}

where tx is used to denote a transmitted conflict. The conflict is re-
ceived, and the conflict’s output is replaced with its dependency re-
sulting in

πrx = ass(σ) ∪ {F,G} = {B, F,G}

where rx is used to denote a received conflict. The received conflict
results in the extended diagnoses for agent one

D̄A1 = {{A,B}, {A, F}, {A,G}, {B}, {B, F}, {B,G}} ≃ {{A, F}, {A,G}, {B}}.

Notice that the diagnosis {B} is now the most likely diagnosis. By
sharing information between the diagnoses, agent A1 obtained a more
complete set of local diagnoses. ⋄

4.2.1 Different Approaches to Decide which Conflicts to Share
Between the Agents

The choice of which conflicts to distribute between agents can primar-
ily be based on the local conflicts or on the local diagnoses. Figure 4.3
shows two schematic pictures illustrating how conflicts that should be
transmitted are created from local conflicts.

In the second approach 4.3(b), the local diagnoses must be avail-
able, which however is not the case in the first approach 4.3(a). The
gain from the second approach is that it is possible to only choose
those conflicts that are more likely to include information that is of
interest for the receiving agent. The downside is that the local diag-
noses have to be calculated, and that the extended diagnoses will be
less complete.

CHAPTER 4 EXTENDING LOCAL DIAGNOSES 61

Π̄A1

ΠA2

Agent A1

ΠA1

N
etw

o
rk

Agent A2

Πtx ⊆ ΠA2

⋃

(a) Πtx is transmitted to agent
A1 and joined into its con-
flicts to obtain the extended
conflicts Π̄A1 .

ΠA1

⋃

Π̄A1

ΠA2

DA2

Agent A1 Agent A2

Decision
support

Πtx ⊆ ΠA2

N
etw

o
rk

(b) Based on the information in D
A2 , a set

of conflicts to be transmitted is chosen
to be transmitted to the first agent.

FIGURE 4.3: Which conflicts to transmit from one agent to another can
be decided in several different ways.

Based on Conflicts

To be able to decide which conflicts to transmit, it is necessary to es-
timate which conflicts that will give a desired increase in information
in the receiving agent. A first step in choosing a set of conflicts is to
only transmit the conflicts that include objects included in the receiv-
ing agent’s objects.

A stricter limitation is to only transmit the conflicts that include in-
puts from the other agent. This is a natural idea since the exact knowl-
edge about the objects might not be available.

The following example uses this stricter limit to decide which con-
flicts that should be transmitted to another agent.

EXAMPLE 4.2: Consider a system consisting two agents, where the first
agent’s conflicts are

Π = {{i1, A}, {i2, B}, {B,C}}

where both inputs are outputs from the same agent, i.e. conA(i1) =

conA(i2). It would at least be interesting for the second agent to re-
ceive the two first conflicts {i1, A} and {i2, B}, since these includes in-
formation about outputs and thereby about the objects included in
that agent. It might also be interesting to transmit the third conflict
since component B is included in both the second and the third diag-
nosis. ⋄

62 4.2 SHARING LOCAL CONFLICTS

Based on the More Probable Diagnoses

To further limit the number of transmitted conflicts, it would be good
to be able to quantify the amount of useful information that is included
in the different conflicts. If the local diagnoses are available, this could
be to only transmit conflicts that correspond to diagnoses that have a
high probability to be correct.

One might for example only consider the conflicts that include in-
puts that are also included in the minimal cardinality local diagnoses.
In general, a conflict π ∈ ΠA should be transmitted if

(π ∩ INA) ∩ D 6= ∅.

for some diagnosis D ∈ DA where

|D| 6 min
D∈DA

|D| + lim.

The limit lim could be used to decide which of the diagnoses that
should be considered. If for example lim = 0 then only the minimal
cardinality diagnoses are considered.

The following example uses the diagnoses to reduce the number of
transmitted conflicts.

EXAMPLE 4.3: Consider Example 4.2 with the conflicts

Π = {{i1, A}, {i2, B}, {B,C}}.

The minimal diagnoses for the agent consistent with the conflicts are

D ≃ {{i1, B}, {A,B}, {i1, i2, C}, {A, i2, C}}.

If the cardinality is used to decide which diagnoses that are most
likely, then the first two are most likely. Based on this information,
it seems more likely that i1 is faulty than that i2 is faulty; therefore
to only transmit the first of the three conflicts seems reasonable. The
number of transmitted conflicts has thereby been reduced compared
to the number of transmitted conflicts in Example 4.2. ⋄

A question that arises is if the same extended diagnoses will be
found if the choice is based on the conflicts and when it is based on
the diagnoses. The answer is that if the complete set of local diag-
noses is considered, then the set of extended diagnoses will be the
same. This follows from the fact that the conflicts completely char-
acterize the diagnoses, which means that every object included in a
conflict is included in a diagnosis. If only the more probable diag-
noses is used, then the set of transmitted conflicts will be a sub-set of
the conflicts transmitted if the choice was based on conflicts, and the
set of extended diagnoses will therefore be reduced.

CHAPTER 4 EXTENDING LOCAL DIAGNOSES 63

4.2.2 Reducing the Size of Each Transmitted Conflict

When transmitting a conflict from one agent to another, it is not cer-
tain that all the information in the conflict is of interest for the receiv-
ing agent. For example, the objects that are included in a conflict and
whose behavior does not affect the receiving agent are not of any direct
interest. Therefore, a reduction in the size of the extended diagnoses
could be achieved if it was possible to only transmit the interesting
part of the conflicts. Another gain is that the load on the network
could be further reduced.

EXAMPLE 4.4: Consider once again Example 4.1. The extended local
diagnoses in A2 are

D̄A1 ≃ {{A, F}, {A,G}, {B}}.

If the agent’s objects are {A,B}, then it is from this agent’s perspective
quite unnecessary to have both F and G included in the diagnoses. The
diagnoses {{A,Ω}, {B}} where Ω represents F or G would be sufficient.

⋄

Is it possible to send only parts of the conflicts? In general, the an-
swer is no, since only if the transmitted conflicts are super-sets of old
conflicts then the diagnoses will be correct. This follows quite directly
from the definitions of consistency based diagnosis. The following ex-
ample illustrates why a transmitted conflict must be a super-set of an
old conflict.

EXAMPLE 4.5: Continuation of example 4.1. Let the conflict transmit-
ted from A2 to A1 be

πtx = {i}

which is not a superset of any conflict in agent neither A2 or A1. The
conflict is received and transformed to πrx = {B} in agent A1. The ex-
tended diagnoses consistent with the old conflicts and this new con-
flict are

D̄A1 = {{A,B}, {B}} ≃ {{B}}.

Is this a correct diagnosis? No, consider the merge of the extended
local diagnoses which results in

D̄A1 ×∪ DA2 = {{B}}

while the merge of the local diagnoses is the set

DA1 ×∪ DA2 = {{A, F}, {A,G}, {B}}

As expected, the merged global diagnoses are incorrect. ⋄

64 4.2 SHARING LOCAL CONFLICTS

Bundling the Non-Interesting Objects in the Transmitted Conflicts

The problem is that the complete conflict must be transmitted, while it
is desired that its size is reduced. To solve this problem, it is here sug-
gested that the non-interesting part of the conflict is bundled into one
virtual object, denoted Ω. This object represents several other objects
but has the same size as only one object.

When considering the system defined in Chapter 3, and basing the
choice of which conflicts to transmit on the input-parts of the conflicts,
then the relation between Ω and the rest of the objects can be described
as follows. Partition the conflict π that should be transmitted from A2

to A1 into an input specific part I and the virtual object ΩA2 so that

πtx = I ∪ {ΩA2 }

where I = π ∩ con(OUTA1). The inputs con(OUTA1) specifies which
inputs in INA2 that is of interest for A1, and ΩA2 represents the infor-
mation that is not of interest for A1.

The size of the transmitted conflict is thereby reduced to |I| + 1,
which often is smaller than the size of the original conflict. Notice that
all ΩA in the conflicts from agent A have been merged into one agent-
specific ΩA used in all conflicts transmitted from this agent. This re-
sults in diagnoses in the receiving agent that considers each agent as
one abnormal object, i.e. there are not different objects of the agents
that could be abnormal, but the agents as a single unit. An alternative
that can be used to reduce the diagnoses even further is to merge all
ΩA into only one Ω. This results in diagnoses that consider all other
agents as one abnormal object.

The following example exemplifies how the size of the receiving
agent’s diagnoses is reduced.

EXAMPLE 4.6: Consider Example 4.1 where the transmitted conflict
with a virtual object is

πtx = {i} ∪ {ΩA2 }

which is received and transformed to

πrx = ass(σ) ∪ {ΩA2 } = {B,ΩA2 }.

Resulting in the extended diagnoses

D̄A1 = {{A,B}, {A,ΩA2 }, {B}, {B,ΩA2 }} ≃ {{A,ΩA2 }, {B}}.

The minimal diagnoses means that either is B abnormal or A and at
least one object in agent A2. The diagnosis {B} is still the more likely
diagnosis, while the number of diagnoses has been reduced from three
to two. ⋄

CHAPTER 4 EXTENDING LOCAL DIAGNOSES 65

Merge of Diagnoses Including Virtual Objects

When the global diagnoses are calculated, the virtual objects have to
be replaced with the original objects include in the conflicts. However,
since the original information no longer is available, the virtual objects
have to be replaced with some other set of objects. As long as this set is
a super set of the objects that the virtual objects represent, the resulting
diagnoses will be correct.

One such set is the objects supervised in the transmitting agent, i.e.
the set ΘA, another more pessimistic set is the set of all components,
i.e. C. Since these are super-sets of the original conflicts, they are also
supersets of the objects represented by the virtual object, the resulting
diagnoses are therefore correct.

When Ω is replaced in a diagnosis such as in Example 4.6, the fol-
lowing operator has to be used.

DEFINITION 4.1: Let D be a set of diagnoses and Λ the set of virtual objects.
If Ω ∈ Λ should be replaced with the objects Ξ ⊆ Θ, then

ΨΩ(D) = minS(
⋃

D∈D

ΨΩ(D))

where the diagnoses ΨΩ(D) are the minimal hitting sets for the set of sets

{{c} | c ∈ D\Λ} ∪
⋃

Ω∈Λ

{Ω̄}.

An alternative notation is that the sets ΨΩ(D) is the minimal diag-
noses in the set of diagnoses

{D\Λ} ∪ ×∪
Ω∈Λ

{{ω} | ω ∈ Ω̄}.

EXAMPLE 4.7: Consider the diagnosis

D = {A,B,ΩA2 }.

If ΩA2 should be replaced by the set ΞA2 = {C,D}, then ΨΩ(D) are the
minimal hitting sets for the sets

{{A}, {B}, {C,D}.

which results in the sets

ΨΩ(D) = {{A,B,C}, {A,B,D}}.

⋄

Definition 4.1 is used in the following proposition.

66 4.3 SHARING LOCAL DIAGNOSES

PROPOSITION 4.1: Let Π be a set of conflicts, and Π̄ the set of corresponding
conflicts where some components have been replaced with a virtual compo-
nent in the set Λ. If D̄ is the set of diagnoses calculated from Π̄, and D are
calculated from Π, then

ΨΩ(D̄) ≃ D.

Proof. Noticing that the ΨΩ operator resembles the ϕC operator if D\Λ

is replaced with D ∩ C, Ω ∈ Λ is replaced with i ∈ D ∩ IN, and Ω̄

with dep(i). The proof then follows from the proof in Proposition 3.2
Meaning that the virtual components are seen as inputs and theirs re-
placements are seen as the inputs dependencies.

EXAMPLE 4.8: Consider Example 4.6. Merge the local diagnoses,

ϕC(D̄A1 ×∪ DA2) = {{B}, {A, F,ΩA2 }, {A,G,ΩA2 }}

which are the diagnoses calculated from the conflicts

ϕC(Π̄) = {{B,ΩA2 }, {A,B}} ∪ {{B, F,G}}

If ΩA2 is replaced with the pessimistic C, then this give the diagnoses

ΨΩ(ϕC(D̄A1 ×∪ DA2))

= minS({{B}, {A, F,A}, {A, F, B}, {A, F, F}, . . . , {A,G,A}, . . .})

= {{B}, {A, F}, {A,G}}}.

The set of minimal diagnoses calculated from the conflicts

{{B, F,G}, {A,B}} ∪ {{i, F,G}}

is the set

ϕC(D1 ×∪ D2) = {{B}, {A, F}{A,G}}

i.e. ΨΩ(ϕC(D̄1 ×∪ D2)) = ϕC(D1 ×∪ D2) In contrast to the result in Exam-
ple 4.5, the diagnoses are here correct.

Notice that in an implementation, the replacement of ΩA2 would
have skipped the middle step, i.e. {{B}, {A, F}, {A,G}} would have been
computed in a more direct way. ⋄

4.3 SHARING LOCAL DIAGNOSES

Instead of transmitting local conflicts, it is possible to first calculate
the local diagnoses and instead transmit a sub-set of the diagnoses.

CHAPTER 4 EXTENDING LOCAL DIAGNOSES 67

Dtx ⊆ DA2

DA1

N
etw

o
rk

Agent A1 Agent A2

ΠA1

×∪

DA2

ΠA2

D̄A1

FIGURE 4.4: Local diagnoses to transmitted diagnoses.

A schematic picture of the local diagnoses to transmitted diagnoses
approach is seen in Figure 4.4.

It might not be interesting for an agent to receive all diagnoses, for
example might the diagnoses that have a low probability to be correct
be uninteresting. It is therefore preferable to transmit the diagnoses
that have a high probability to be correct. In a corresponding way as
was done when conflicts was transmitted, only those diagnoses that
include inputs from a second agent are transmitted to the correspond-
ing agent.

When conflicts were transmitted, it was possible to choose the in-
teresting conflicts and then directly transmit these to the receiver. This
is however not the case when it comes to diagnoses, as will be exem-
plified in Example 4.9.

EXAMPLE 4.9: Consider the local diagnoses in Example 4.2,

DA1 = {{A}, {B}} DA2 = {{i}, {F}, {G}}.

If the local diagnosis {i} is transmitted to agent A1 that transforms the
diagnosis to {B} and merges it with its own local diagnoses, then the
extended local diagnoses become

D̄A1 ≃ {{B}}.

This is however not a correct set of diagnoses. Notice for example that

D̄A1 ×∪ DA2 = {{B}} 6= DA1 ×∪ DA2 .

⋄

68 4.3 SHARING LOCAL DIAGNOSES

The reason why the simple approach in the example failed, is that it
was not considered that there could exist other diagnoses in the trans-
mitting agent, i.e. diagnoses that was not transmitted.

4.3.1 How to Transmit Local Diagnoses

When transmitting a sub-set of diagnoses, the information that these
are only a sub-set of the diagnoses in the transmitting agent must be
included when adding the diagnoses to the local diagnoses. This can
be done with the addition of a supporting information, which is de-
noted SA for the support from agent A. If a supporting information
is included in a diagnosis, this means that there is, in addition to the
objects in this specific diagnosis, something that is abnormal in the
supporting agent A.

The following steps results in correct local extended diagnoses when
transmitting diagnoses.

Let DA1 be a set of diagnoses in A1 and DA2 a set of diagnoses
in A2. The set of transmitted diagnoses from A2 to A1 is D̄tx where
each Dtx ∈ Dtx is based on a diagnosis D ∈ DA2 . Each transmitted
diagnosis is transformed into

Dtx = con(I) ∪ (D\I) = P ∪ D̄

where I = D ∩ con(OUTA1). The set of transmitted diagnoses is ex-
panded into

Dtx = D̄tx ∪ {SA2 }

where SA2 is the supporting information. The set is received and each
received diagnosis is transformed into

Drx = ×∪
σ∈P

{{c} | c ∈ ass(σ)} ×∪ D̄.

If the received diagnoses are merged with the local diagnoses, then a
set of extended local diagnoses is formed where

D̄A1 = DA1 ×∪ Drx

are the expanded local diagnoses.
If S is replaced in a set of diagnoses then the following operator

has to be used.

DEFINITION 4.2: Let D be a set of diagnoses and S the set of supporting
informations. The set of diagnoses

ΨS(D) = minS(D
∣

∣

S=∅,S∈S
).

CHAPTER 4 EXTENDING LOCAL DIAGNOSES 69

The definition states that the supporting informations should be
replaced with the empty set. Definition 4.2 is used in the following
proposition.

PROPOSITION 4.2: A the merge of the extended local diagnoses results in
the same set as the merge of the local diagnoses,

ΨS(D̄A1 ×∪ DA2)
ϕC

≃ DA1 ×∪ DA2 .

Proof. Consider a diagnosis that has received diagnoses including only
one supporting information. The set of extended diagnoses is

D̄A1 = DA1 ×∪ Drx = DA1 ×∪ D̄rx ∪ DA1 ×∪ {SA2 }.

The merged set is therefore

ΨS(D̄A1 ×∪ DA2) = ΨS(DA1 ×∪ {SA2 } ×∪ DA2 ∪ DA1 ×∪ D̄rx ×∪ DA2).

The set of received diagnoses are a subset of the set DA2 if the inputs
in the second set are replaced with the dependencies. The merged set
in complete component representation is

ϕC(ΨS(D̄A1 ×∪ DA2)) = ϕC(minS(D̄A1 ×∪ DA2))

≃ D̄A1 ×∪ DA2)

and by definition of
ϕC

≃ follows that

ΨS(D̄A1 ×∪ DA2)
ϕC

≃ DA1 ×∪ DA2 .

The general case follows by iterative use of the proof for the system
with two agents.

Notice that SA2 should be replaced with the empty set after the
merge. If the replacement is done directly in the local extended di-
agnoses, then since the empty set is a minimal diagnosis, all other
diagnoses are removed, which is incorrect. The following example
exemplifies the steps outlined above.

EXAMPLE 4.10: Consider Example 4.1 where the diagnoses are

DA1 = {{A}, {B}} DA2 = {{i}, {F}, {G}}.

Agent A2 has thus concluded that i is possibly incorrect and there-
fore transmit this diagnosis to A1. Following the method outlined in
Section 4.3.1, the transmitted diagnoses are

Dtx = {{i}, SA2 }

70 4.3 SHARING LOCAL DIAGNOSES

which is received and transformed into

Drx = {{B}, SA2 }

A merge of the received and local diagnoses results in the extended
diagnoses

D̄A1 = {{A,B}, {A} ∪ SA2 , {B}, {B} ∪ SA2 } ≃ {{B}, {A} ∪ SA2 }.

It can be seen that the diagnosis {B} is most likely when the cardinality
is considered. The merge of the extended local diagnoses results in

D̄A1 ×∪ DA2 |S=∅

ϕC

≃ {{B}, {B, F}, {B,G}, {A,B} ∪ SA2 ,

{A, F} ∪ SA2 , {A,G} ∪ SA2 }|S=∅ ≃ {{B}, {A, F}, {A,G}}

which is the represented by the same set of minimal diagnoses as in

DA1 ×∪ DA2 = {{B}, {A, F}, {A,G}}.

The merge results in the same set as the merge of the local diagnoses.
⋄

4.3.2 Reducing the Size of Transmitted Diagnoses

When transmitting conflicts, a virtual object was added such that the
size of the conflicts could be reduced. Both the size of the local ex-
tended diagnoses, and the load on the network could therefore be re-
duced. A corresponding approach could be used when transmitting
diagnoses.

A diagnosis is partitioned such that

Dtx = I ∪ Ω

where I = D∩ con(OUTAl). When transmitting diagnoses, the virtual
object can for example be replaced with the empty set, the original set
or some super-set of objects. The global diagnoses will be correct in
all three variations, since the supporting information is replaced with
the empty set after the merge. Notice that this is not the same as when
conflicts were transmitted, where the virtual object had to be replaced
with a super-set of objects.

The downside when replacing Ω with the empty set is that infor-
mation about the cardinality of the original diagnosis is lost. A direct
extension would therefore be to include the cardinality information in
the transmission.

5

ALGORITHMS FOR EXTENDING

LOCAL DIAGNOSES

In this chapter, some algorithms are presented that can be used to form
local diagnoses according to the approaches described in Chapter 4.
Firstly it is discussed how conflicts can be represented in different
equivalent ways, see Section 5.1.

Two main approaches were discussed in the previous chapter, where
the first was to extend the diagnoses thru the transmission of conflicts
to other agents; this will be discussed in Section 5.2. The second was
to transmit local diagnoses to the other agents, more about this in sec-
tion 5.3. The chapter is concluded with a simulation study where these
approaches have been evaluated.

5.1 CONFLICTS IN DIFFERENT

REPRESENTATIONS

The same conflict can be represented in several different ways. When
transmitting conflicts or diagnoses, then the components that are in-
puts in the transmitting agent should be replaced with the correspond-
ing output in the receiving agent. Further each of the outputs in the
receiving agent should be replaced with its assumptions.

71

72 5.2 EXTENDING DIAGNOSES THRU SHARING OF CONFLICTS

This means that a conflict π transmitted to agent A1 should, when
it is transmitted, be replaced with

πtx = con(I) ∪ π\I

where

I = π ∩ INA1 .

The conflict is received and should then be replaced with

πrx = ass(P) ∪ πtx\P

where P = con(I). The conflict will then be a part of the objects in the
receiving agent, i.e. πrx ⊆ ΘA1 . The replacement of the inputs I with
its connected outputs con(I) can be done either in the transmitting or
in the receiving agent. The replacement of the outputs con(I) with its
assumptions ass(con(I)) is preferable done in the receiving agent. For
diagnoses, an equivalent replacement should be performed.

5.2 EXTENDING DIAGNOSES THRU SHARING

OF CONFLICTS

In Algorithm 1, the pseudo code for a general algorithm that extends
diagnoses thru the transmission of conflicts is presented. In the algo-
rithm, the informed variable includes information about which con-
flicts that has been transmitted to which agent. This is done to avoid
re-transmission of the same information. In an implementation this
should be used in a wider meaning where also minimal conflicts are
considered, i.e. a set should not be transmitted if a set that is a sub-set
of this conflict has already been transmitted.

The InterestingInput function defines which inputs that are of in-
terest for other agents and is used to decide which conflicts that should
be transmitted to the other agents. How to decide which inputs that
are interesting was discussed in Section 4.2.1. If the set of interesting
inputs is based on the set of local conflicts then

InterestingInput(ΠA) , INA ∩
⋃

π∈ΠA

π.

If it instead is based on the set of more probable local diagnoses then

InterestingInput(DA) , INA ∩
⋃

D∈D̄A

D

CHAPTER 5 ALGORITHMS FOR EXTENDING LOCAL DIAGNOSES 73

Algorithm 1 Extended diagnoses for agent A.

Require: The conflicts ΠA in agent A ∈ A.
Ensure: The extended diagnoses DA in agent A.

1: informed := ∅
2: repeat [Transmit and receive repetitious.]
3: for all conflicts πrx = P ∪ ΩAt received in agent A do
4: ΠA := minS(ΠA ∪ {

⋃

σ∈P ass(σ) ∪ {ΩAt }})

[Replace the outputs with their assumptions.]
5: end for
6: If ΠA has been expanded then update DA to be consistent with

ΠA

7: P := InterestingInput(ΠA)

[Based on which information should conflicts be transmitted?]
8: T = {(π, conA(i)) | i ∈ P, π ∈ ΠA}

[Choose appropriate conflicts based on P.]
9: T := T\ informed

10: for all (π,Ar) ∈ T do
11: transmit πtx := (con(π ∩ INA) ∩ OUTAr) ∪ {ΩA} to agent Ar

[Replace inputs with the connected outputs.]
12: end for
13: informed := informed∪T

14: until The coordinator agent sends a break
[End when no agent have transmit conflicts.]

15: DA := diagnoses consistent with ΠA [Find the extended diagnoses.]

where D̄A is a subset of DA,

D̄A = {D |D ∈ DA, card(D) 6 min
D∈DA

(card(D)) + lim}

where card(D) is the cardinality of D. The limit lim is used to de-
cide which local diagnoses that should be considered when deciding
the interesting inputs. The algorithm uses the cardinality to focus the
diagnoses. When the cardinality of ΩA is calculated, then ΩA will be
seen as 1 component. An alternative way to calculate the cardinality
of the diagnoses would be to use the extended cardinality, which was
defined in Section 3.7.5.

The correctness of the result from the algorithm follows from Propo-
sition 4.1. Notably is

×∪
A∈A

DA = ×∪
A∈A

D̄A

where D is a set of local diagnoses, and D̄ is sets of extended local
diagnoses.

74 5.3 EXTENDING DIAGNOSES THRU SHARING OF DIAGNOSES

The algorithm terminates when all T = ∅. The set T is limited since
both the included π and A are limited. The set informed increases
when T 6= ∅ and therefore, at some time, T = ∅ in all agents, i.e. the
algorithm terminates.

5.3 EXTENDING DIAGNOSES THRU SHARING

OF DIAGNOSES

In Algorithm 2, a general algorithm that extends the local diagnoses
thru transmitted diagnoses is presented. The virtual component Ω is
defined according in Section 4.3.2, and once again, the informed vari-
able is included to avoid re-transmission of the same information.

In the algorithm, the function UpdateExtendedDiagnoses is used
to update the local diagnoses with the received diagnoses. This func-
tion is important and will therefore be discussed in deeper detail in
Section 5.2.

If all different SA are replaced with the empty set, the different
ΩA by sets of components as described in Section 4.3.2, and Update-
ExtendedDiagnoses is correct, then Algorithm 2 is correct and termi-
nates. The correctness of the algorithm is straightforward if func-
tion UpdateExtendedDiagnoses is correct. Termination is proved in
the same way as termination is proved for Algorithm 1.

5.3.1 Update Extended Diagnoses

If a maximum of one set of diagnoses is transmitted from each agent,
then a simple merge can be used as function UpdateExtendedDiagnoses,
i.e.

UpdateExtendedDiagnoses(DA, Drx) := DA ×∪ Drx

where Drx is the set of received diagnoses. However, if several sets
of transmitted diagnoses can be received then this simple merge will
become very inefficient. The following example illustrates the ineffi-
ciency.

EXAMPLE 5.1: Consider an agent with DA2 = {{A}, {B}}, if the first diag-
nosis is transmitted to an agent with an empty set of diagnoses DA1 =

{{}}, then the extended set of diagnoses is DA1 := DA1 ×∪ {{A}, SA2 } =

{{A}, SA2 }. If after some time it is found that the second diagnosis
should be transmitted, then

DA1 := DA1 ×∪ {{B}} = {{A,B}, {B} ∪ SA2 }.

This shows that correct diagnoses was calculated but it was done
in a quite inefficient way. Notice for example that the non-minimal

CHAPTER 5 ALGORITHMS FOR EXTENDING LOCAL DIAGNOSES 75

Algorithm 2 Extended diagnoses thru transmitted diagnoses

Require: The diagnoses DA for agent A ∈ A.
Ensure: The extended diagnoses D̄A.

1: informed := ∅
2: repeat [Transmit and receive repetitious.]
3: for all diagnoses Drx ∈ Drx received from agent Al where

Drx = P ∪ ΩAt do
4: Dtx := {

⋃

σ∈P ass(σ) ∪ {ΩAt } | D ∈ DAl }

[Replace the outputs with its assumptions.]
5: DA := UpdateExtendedDiagnoses(DA, Drx)

[Update the diagnoses with the transmitted diagnoses.]
6: end for
7: P := InterestingInput(DA)

[On what information should diagnoses be transmitted?]
8: T = {(D, conA(i)) | i ∈ P,D ∈ DA}

[Choose appropriate diagnoses based on P.]
9: T := T\ informed

10: for all At ∈ A do
11: Dtx := {(con(D ∩ INA) ∩ OUTAt) ∪ ΩA |(D,At) ∈ T }

[Replace inputs with the connected outputs.]
12: transmit Dtx ∪ SA to At if it is the first set transmitted to At,

otherwise only transmit Dtx

13: end for
14: informed := informed∪T

15: until All agents have T = ∅.
[End when no agent have transmitted new diagnoses.]

diagnosis {A,B} is unnecessary calculated. The problem grows expo-
nentially with the number of diagnoses. ⋄

The problem is that the previously transmitted diagnoses are merged
with the diagnoses that are transmitted in the upcoming transmis-
sions. When accepting multiple sets of transmitted diagnoses from the
same agent, a more efficient approach would be to remember which
diagnoses that have already been received. An efficient approach for
the above example would be to do as shown in the following example.

EXAMPLE 5.2: Store original diagnoses T0 := DA1 . The first update
gives DA1 = T0

×∪ {{A}, SA2 } = {{A}, SA2 }. The second update first cal-
culates the transmitted diagnoses M = T0

×∪ {{B}} and add these to the
first update,

DA1 = DA1 ∪ M = {{A}, {B}, SA2 }.

This gives correct global diagnoses in a more efficient way. ⋄

76 5.3 EXTENDING DIAGNOSES THRU SHARING OF DIAGNOSES

Algorithm 3 Update extended diagnoses.

Require: The i:th set of transmitted diagnoses from Al, Dl
i. The start-

ing diagnoses DA in the updating agent. Starting set T0 := DA.
Ensure: The updated extended diagnoses DA.

[Given that diagnoses have been received from A1, . . . , Ak.]
1: if An agent denoted Ak+1 have transmitted its first set of diag-

noses, Dk+1
1 then

2: Tk+1 := Tk
×∪ Dk+1

1 [Merge all previous diagnoses with the new.]
3: Dk+1 := Dk+1

1 [Store for later updates.]
4: end if
5: if An old agent Al have transmitted a set of diagnoses Dl

i then
6: Ml := Tl−1

×∪ Dl
i [Merge all previous with the new.]

7: Tl := Tl ∪ Ml

[Update the merged diagnoses up to this agent.]
8: for all Al+1, . . . , Aj, . . . , Ak do [Update the diagnoses received

from later agents.]
9: Mj := Mj−1

×∪ Dj

10: Tj := Tj ∪ Mj

11: end for
12: Dl := Dl ∪ Dl

i [Store for later use.]
13: end if
14: DA := Tk or Tk+1 if it exists, i.e. the last T . [The extended diagnoses.]

The inefficiency becomes even more tedious when multiple agents
send multiple sets of diagnoses.

In Algorithm 3, function UpdateExtendedDiagnoses is implemen-
ted in the efficient way that was exemplified in Example 5.2. When
receiving a set of diagnoses, two different cases can occur. If an agent
is transmitting its first set of diagnoses, then all the old updated diag-
noses are merged with this transmitted set, denoted Tk+1 in the algo-
rithm. The received diagnoses are also stored for later use in Dk+1.

Otherwise, an agent that has already transmitted at least one set of
diagnoses has transmitted a new set. If it was the last agent that trans-
mitted diagnoses then the new set of diagnoses are simply calculated
from the preceding set T and the transmitted diagnoses. However, if
it was one of the earlier agents, then the rest of the agent’s calculated
diagnoses T must be updated. This is performed in the loop.

LEMMA 5.1: (Correctness of Algorithm 3) Given a set of diagnoses DA in
agent A, and that a set of agents have transmitted one or several sets of di-
agnoses. Then the result of Algorithm 3 is a set of diagnoses consistent with
DA and all received diagnoses.

CHAPTER 5 ALGORITHMS FOR EXTENDING LOCAL DIAGNOSES 77

Proof. The updated DA is correct if it can be shown that

Tk = DA
k
×∪

i=1
DAi

rx

where DA is the original set of diagnoses in A, and DAi
rx is the union of

all received sets from Ai.
Firstly, if no diagnoses have been received from any agent, then

To = DA. This is immediately a correct set of diagnoses. In previous
runs, several sets of diagnoses could have been received from multi-
ple agents. Let k be the number of agents that have sent diagnoses.
If the old set DA is assumed correct, then this set is consistent with
all the original non-extended local diagnoses and with all transmitted
diagnoses. The correctness of the last update will now be shown by
induction to be correct. Let Al be the last agent that transmitted a set,

and let D̂l denote this set.
Assume that the all old Tj = DA ×∪ j

i=1 DAi
rx for all j for 1 to k, i.e.

they are correct. If agent Al has not transmitted any diagnoses to this
agent before, then

Tk+1 = Tk
×∪ Dk+1

1 = DA
k+1
×∪

i=1
DAi

rx

which is a correct set of diagnoses. Otherwise, the agent has transmit-
ted diagnoses before. It should be shown that the updated Tk, which

here is denoted T̂k, is

T̂k = DA
l−1
×∪

i=1
DAi

rx
×∪

(

DAl
rx ∪ D̂Al

rx

) k
×∪

i=l+1
DAi

rx .

It can be rewritten as

T̂k = Tk ∪ DA
l−1
×∪

i=1
DAi

rx
×∪ D̂Al

rx

k
×∪

i=l+1
DAi

rx .

The algorithm gives that

T̂k = Tk ∪ Mk

where Mk can be expanded to

Mk = Mk−1
×∪ DAk

rx = . . . = Ml

k
×∪

i=l+1
DAi

rx .

Since

Ml = Tl−1
×∪ D̂Al

rx

78 5.4 SIMULATIONS

it follows that

Mk = Tl−1
×∪ D̂Al

rx

k
×∪

i=l+1
DAi .

Inserting Mk in T̂k, and noticing that Tl−1 = DA ×∪ l−1
i=1 DAi

rx give that

T̂k = Tk ∪ DA
l−1
×∪

i=1
DAi

rx
×∪ D̂Al

rx

k
×∪

i=l+1
DAi

rx

which is what should be shown. The correctness of the update follows
now by induction.

5.4 SIMULATIONS

To test the algorithms, a hypothetical model of an embedded system
has been constructed. It is inspired by the existing system described
in Section 1.1.

5.4.1 Simulation Model

The model consists of components partitioned over four network-buses
and including 20 ECUs. Components, connections, and the compo-
nents supervised by the tests are chosen by random. Between 1 and 5
random faults have been inserted into the model.

A schematic picture of the model is shown in Figure 5.1. The num-
ber of components is between 200 and 2000 in the simulations per-
formed here. The components are partitioned into three different lev-
els, non-shared local components, components shared between the
agents within only one bus, and components shared over the com-
plete system. The number of components is given in percent of the
total number of components. The number of outputs is about 5 % of
the number of components, i.e. for 2000 components, there is about
100 outputs. The majority of the outputs are distributed within each
net where each output is assigned to one agent and connected as in-
put to other agents within the same net. The number of inputs is about
50 % higher than the number of outputs. The remaining outputs are
assigned to any agent in the complete system and connected to any
other agent in the complete system.

A single agent now consists of components, inputs, and outputs.
Each agent is assigned tests that can detect faults in its components,
which consist of the inputs and the local components. The number
of tests is between 0.5 % to 5 % of the number of components, i.e. for
2000 components about 10 to 100 tests per agent. Due to the fact that
most parts of the system is chosen by random, both the number and
the complexity of the tests can wary substantially from agent to agent.

CHAPTER 5 ALGORITHMS FOR EXTENDING LOCAL DIAGNOSES 79

.

.

4
.5

%

1
.5

·
o

u
t.

1
.5

·
o

u
t.

1
.5

·
o

u
t.

in
p

u
t

4
.5

%

in
p

u
t

1
.5
·

o
u

t.

o
u

tp
u

t
2
.5

%

1
.5
·

o
u

t.

in
p

u
t

o
u

tp
u

t

2
.5

%

o
u

tp
u

t
2
.5

%

1
.5
·

o
u

t.
in

p
u

t

2
.5

%
o

u
tp

u
t

1
.5
·

o
u

t.
in

p
u

t

Net 1 Net 2

Net 4Net 3

Agent 1

3%comp.

4
.5

%

1
.5

·
o

u
t.

o
u

tp
u

t

in
p

u
t

8%comp.

Agent 1

3%comp.

o
u

tp
u

t

Agent 5

3%comp.

in
p

u
t

o
u

tp
u

t

8%comp.

Communication

Agent 1 Agent 5

3%comp. 3%comp.

within nets

4
.5

%

Communication

o
u

tp
u

t

in
p

u
t

in
p

u
t

o
u

tp
u

t

4
.5

%

8%comp.

Agent 1

between nets

3%comp.

4
.5

%

1
.5

·
o

u
t.

o
u

tp
u

t

Communication

in
p

u
t

8%comp.

Agent 5

within nets

3%comp.

4
.5

%

1
.5

·
o

u
t.

o
u

tp
u

t

in
p

u
t

2%comp.

Agent 5

3%comp.

4
.5

%

Communication

1
.5

·
o

u
t.

o
u

tp
u

t

in
p

u
t

within nets

Communication
within nets

1
.5

·
o

u
t.

FIGURE 5.1: Simulation environment consisting of local components,
components shared within a bus, and components shared over the
complete system.

80 5.4 SIMULATIONS

Now the model consists of components and diagnostic tests. Be-
tween 1 and 5 faults are inserted into the system and the tests have
been given a 10 % detection probability. Conflicts are generated and
the algorithms described in this chapter have been used to obtain the
extended local diagnoses.

5.4.2 Transfer Times

There are several parts of the algorithms that take time to calculate.
These are the time to choose which conflicts to transmit, the transmis-
sion of the conflicts, and the calculation of the extended diagnoses.
The model is simulated in a computer and the time to transmit the
conflicts is therefore negligible. To be able to correctly compare the
methods, a transfer-time has been introduced in the model.

To simulate the transfer-time in the network, delays have been in-
troduced whenever information is transferred over a bus. The delay is
proportional to the cardinality of the conflicts and diagnoses, i.e. for a
diagnosis D the delay is k|D|, where the constant k = 0.005.

5.4.3 Detection Degree

To compare the different algorithms, the detection degree for an agent
is defined. If f is the set of faulty components, then for agent A the
detection degree is

{

∅ if ∄fi ∈ CA ∪ dep(INA)
|(f∩(CA∪dep(INA)))∩

⋃

D∈DA D|

|f∩(CA∪dep(INA))|
otherwise.

The detection degree returns ∅, if none of the faults is included in the
local components or affects the local inputs by being included in the
inputs dependencies. Otherwise, |f ∩ (CA ∪ dep(INA))| is the num-
ber of faults that could affect the agent, and

⋃

D∈DA D are the set of
components that have been detected by the minimal diagnoses. The
number is normalized with the maximum number of detectable com-
ponents and the detection degree is therefore a number between 1 and
0, where detection degree 1 means that all faults have been detected
and 0 that none have been detected.

5.4.4 Hardware

The simulations have been performed on a 2.4 GHz personal computer
running Linux Red hat [Red03] and Matlab [Mat05]. The simulation
times are the processing time using Matlab’s clocking capability.

CHAPTER 5 ALGORITHMS FOR EXTENDING LOCAL DIAGNOSES 81

Since the simulations have been performed on a single CPU, the
parallel computing capabilities of the distributed system is not uti-
lized. An approximation of the simulation time including transfer
times for each agent is to divide the simulation time with the num-
ber of agents.

5.4.5 Limitations

Since most of the model is chosen by random, there is a possibility
that a system is generated that is very complex. This could for exam-
ple be that a very high number of inputs and outputs are included,
or that the assumptions for some outputs are very large. Due to this
complexity, it is sometimes not possible to simulate the system within
reasonable times. These simulations are therefore removed from the
simulations if the time to perform the simulation exceeds a time limit.
The time limit is set to 2000 s. Notice that other limits, such as an limit
proportional to the number of components, could be considered.

5.4.6 Simulations

Four different setups have been simulated. The first and the second
are sharing of conflicts based on conflicts. The third and the fourth are
sharing of conflicts based on the more likely diagnoses, where only the
minimal cardinality diagnoses have been considered when choosing
which conflicts to transmit.

In the first and the third have the complete conflicts been trans-
mitted. In the second and the fourth have a virtual components been
used. It has here been chosen to use only one virtual component to
represent all the components in all the other agents. This to reduce the
size of the diagnoses as much as possible. For reference, the calcula-
tion of the local diagnoses have been included in the plots.

The four setups have been simulated with 200 to 2000 components,
with steps of 200 components. The mean values after 100 simulations
are shown in Figure 5.2 to 5.5. In the figures, the new conflict to new
conflict approaches are denoted by C2NC and C2NC, with Ω, respec-
tively. The probable diagnoses to new conflict approaches are denoted
by PD2NC, lim = 0 and PD2NC, lim = 0 with Ω, respectively.

5.4.7 Result

The simulation times are shown in Figure 5.2. Notice the exponential
growth of the simulation times. It is clearly seen how the simulation
time decreases when both the more probable diagnoses are used to
chose which conflicts to share and when the virtual components are
used.

82 5.4 SIMULATIONS

200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

Number of components

T
im

e
[−

]

Simulation time, 75 repetitions

C2NC
C2NC, with Ω
PD2NC,lim=0
PD2NC, lim=0, with Ω
Local diagnoses

FIGURE 5.2: Simulation times.

The detection degree is shown in Figure 5.3. It is difficult to dis-
tinguish the two conflict to conflict approaches from each other. The
same holds true for the two probable diagnoses to new conflicts ap-
proaches. At 1000 components and 2000 components it can be seen
that the detection degree is slightly lower for the approach that use
virtual components. There is a decrease in the detection degree when
the probable diagnoses are used compared to when the conflicts are
used to decide which conflicts to share. The plot also includes the de-
tection degree for the union of all local diagnoses. This means that
to each agent’s local diagnoses, all other local diagnoses have been
added. This gives an approximation of the upper limit of the detection
degree. Together with the detection degree when only the original lo-
cal diagnoses was included, this results in lower and upper limits. The
plot shows that the detection degree is increased about halfway to the
upper limit.

The mean number of diagnoses in each agent is shown in Fig-
ure 5.4. Notice how the approaches using virtual components have
fewer diagnoses but, as was seen in Figure 5.3, this did not result in
any major lowering in the detection degree. At 1200 and 1400 compo-
nents, the conflict to conflict approach that use virtual component has
a higher mean number of diagnoses.

Finally, the mean value of the cardinality for each diagnosis is shown

CHAPTER 5 ALGORITHMS FOR EXTENDING LOCAL DIAGNOSES 83

200 400 600 800 1000 1200 1400 1600 1800 2000

0.4

0.5

0.6

0.7

0.8

0.9

Number of components

D
et

ec
tio

n
de

gr
ee

Detection degree, 75 repetitions

C2NC
C2NC, with Ω
PD2NC,lim=0
PD2NC, lim=0, with Ω
Local diagnoses
Union of all local diagnoses

FIGURE 5.3: Detection degree.

in Figure 5.5. In mean, the cardinality of the algorithms including vir-
tual components are larger. In these simulations, the mean size of the
diagnoses is quite low, between 1.1 and 2.1 components.

To conclude: For these simulations, the simulation times decreases
when the diagnoses are used to chose which conflicts to transmit, and
when virtual components are used. The mean number of diagnoses
in each agent also decreases, but not with any large degree. The de-
tection degree decreases when the diagnoses is used to chose which
conflicts to transmit, but with only a small degree when virtual com-
ponents are used. The mean cardinality of each diagnosis increases
when the virtual components are used, and when the diagnoses are
used to decide which conflicts to transmit.

84 5.4 SIMULATIONS

200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

Number of components

C
ar

di
na

lit
y

of
 d

ia
gn

os
es

Mean of the number of diagnoses in each agent.

C2NC
C2NC, with Ω
PD2NC,lim=0
PD2NC, lim=0, with Ω
Local diagnoses

FIGURE 5.4: Mean number of diagnoses in each agent.

200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of components

C
ar

di
na

lit
y

of
 d

ia
gn

os
es

Mean of the cardinality of the diagnoses in each agent.

C2NC
C2NC, with Ω
PD2NC,lim=0
PD2NC, lim=0, with Ω
Local diagnoses

FIGURE 5.5: Mean of the cardinality of each diagnosis in each agent.

6

MINIMAL CARDINALITY

GLOBAL DIAGNOSES

Due to the combinatorial growth of the number of global diagnoses
when merging local diagnoses, it might be necessary to only calculate
the more likely global diagnoses, i.e. the global diagnoses that more
likely describe the current system behavior.

In this chapter, an algorithm is presented that calculates the mini-
mal cardinality module diagnoses (MCMD). The algorithm can be run in
a central diagnostic computer, or as presented here, it can distribute
the computation intense tasks to the local ECUs. Often, there are limi-
tations in processing power, memory, and network capacity, therefore,
this possibility makes the algorithm more versatile. The MCMD prop-
erty was discussed in Section 3.7.4.

The algorithm assumes that each agent has computed local diag-
noses. The algorithm is limited to the case where the diagnoses are
completely component represented, i.e. each diagnosis D ⊆ C.

6.1 FINDING ALL MODULE MINIMAL

CARDINALITY DIAGNOSES

After each agent has created local diagnoses, these could be merged to
MCMDs. The MCMDs could be calculated in the following way: Divide
the agents into modules such that the merge of the corresponding local
diagnoses will become MCMDs; In each module, sort the agents into an

85

86 6.2 MAIN ALGORITHM

order such that the complexity of the upcoming merge is reduced, and
then merge the local diagnoses according to this order.

A direct and simple approach to partition the agents into modules
would be to first calculate

D̄A =
⋃

D∈DA

D

for each agent, and then choose the minimal module Ā such that

⋃

A∈Ā

D̄A

is disjoint from all other such sets. A simple ordering is to choose the
agent with largest minimal cardinality diagnosis to be first and then
the rest follows in decreasing cardinality.

A direct and simple merge can be done by firstly finding a low
lower limit on the size of the MCMDs and then merge those of the local
diagnoses that are smaller or equal to this limit. Notice that those
that are larger cannot be a part of a MCMD. If no MCMDs was found,
then the limit is increased and the merge is started again from the first
agent.

However, the computation time of this approach can be greatly
improved by further reducing the size of the modules, sorting them
into a better order, and finally merging the diagnoses such that the
total number of merges is minimized. These improvements have been
implemented in the algorithm described in this section.

6.2 MAIN ALGORITHM

The improved algorithm is shown on page 89 and consists of the same
three main parts as the approach described above. Firstly, algorithm
FindSubGraph is used to find a graph G whose sub graphs represent
the modules. Algorithm FindR is then used to sort the agents in a sub
graph into a merge order R. The agents in the module are ordered in
such a way that the complexity of the remaining algorithm is reduced.
Finally, the local diagnoses are with algorithm UpdateAgent iteratively
merged into sets of MCMDs.

The improvements over the first approach are that the modules are
partitioned into smaller sets, the merge orders are chosen in a better
way, and that the merge algorithm is much more efficient because it
both keeps track and uses what have been done in previous runs.

Notice that the efficiency of the merge is highly dependent on the
diagnoses, meaning that sometimes the new ordering is not better
than the first, and sometimes it might actually be worse. Over a period

CHAPTER 6 MINIMAL CARDINALITY GLOBAL DIAGNOSES 87

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

Agent

|D|

G
lo

b
al

L2

L1

A1 A2

L
o

ca
l

G
lo

b
al

First considered local diagnoses

First considered global diagnoses

Store for later consideration

L
o

ca
l

FIGURE 6.1: Schematic merge of the local diagnoses in two agents. The
first iteration.

of times, it is however likely that this approach is more efficient. The
module division and the merge are always more efficient, not counting
the computation time for the more complex algorithm.

The algorithm can be distributed in such a way that Algorithm 4,
FindSubGraph, and FindR are evaluated in some coordinating agent,
while the computation and memory intensive UpdateAgent is evalu-
ated in the corresponding agent.

6.2.1 Outline of The Algorithm

The following example will be used to introduce the outline of the
algorithm.

EXAMPLE 6.1: The ideas behind the algorithm are shown schemat-
ically in Figure 6.1 and 6.1 for a two agent system. The rectangles
represent local and global diagnoses with increasing cardinality.

The algorithm starts with a lower limit L1. In 6.1, the local diag-
noses with cardinality lower than the limit in A1 and A2 are consid-
ered when computing global diagnoses. The local diagnoses in A1 are
transferred to global diagnoses in A1 and then merged with the local
diagnoses in A2. Since the cardinality of the global diagnoses in A2

are greater than the limit, the limit is increased and the computation is
started again from agent A1.

The limit has been increased in Figure 6.2. The local diagnoses
in A1 that were not considered in the previous computation are now
transferred to global diagnoses in A1. The new global diagnoses in

88 6.2 MAIN ALGORITHM

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

Agent

|D|

G
lo

b
al

L
o

ca
l

L1

A2A1

L
o

ca
l

G
lo

b
al

L2

Second considered global diagnoses

Stored for later consideration

Second considered local diagnoses

FIGURE 6.2: Schematic merge of the local diagnoses in two agents. The
second iteration.

A1 are merged with all considered local diagnoses in A2. There might
also exist global diagnoses that comes from the old global diagnoses in
A1 merged with the newly considered local diagnoses in A2, therefore
these are also merged.

Since some global diagnoses have been found with cardinality lower
than the limit, the algorithm is terminated. The global diagnoses are
the minimal cardinality diagnoses. ⋄

Now consider the main Algorithm 4 where an ordered set is rep-
resented by (·) and an unordered set by {·}. Firstly, the graph is found
and a merge order R is calculated from each sub graph. The algorithm
starts with a low lower limit L on the cardinality of the MCMDs. The
first approximation of L is that the MCMDs must be at least as large as
the largest minimal cardinality local diagnosis, considering all agents
in R. After the limit has been found, an evaluation of UpdateAgent is
performed in each agent or until an agent returns a new value on L.

Algorithm UpdateAgent calculates those diagnoses with cardinal-
ity less than or equal to L that would be formed if the local diagnoses
in agents A1 to Ak, which also have a cardinality less than or equal to
L, was merged. The set is denoted N in the algorithm. If no diagnoses
could be found with cardinality less than or equal to L, a new larger
L = Lnew is calculated and a new search begins from A1. This new
L is chosen so that new merged diagnoses will be found at the next
iteration. When the last agent calculates a non-empty N, this set of

CHAPTER 6 MINIMAL CARDINALITY GLOBAL DIAGNOSES 89

A3

U
p

d
a

t
e
−

Coordinator Agent

DA2
DA4

NA3

U
p
d
a
t
e
A

g
e
n

t(A
2
,
.
.
.)

NA4

A
g
e
n

t
(A

4
,
.
.
.)

Dmod,mc

DA3

A4 A2

U
pd

at
eA

ge
nt(

A3
, .

. .)

FIGURE 6.3: The information flow in Example 6.2.

Algorithm 4 Minimal cardinality module diagnoses

Require: All local diagnoses DA for all agents A.
Ensure: All MCMDs Dmod,mc

m .
1: G := FindSubGraph(A) [Graph of sub graphs.]
2: for all G ∈ G do
3: R := FindR(G) [Merge order R = (A1, . . . , An).]
4: L := a lower bound on the cardinality for the MCMDs in R.
5: k := 0, A0 := ∅
6: repeat
7: k := k + 1

8: Lnew := UpdateAgent(Ak, Ak−1,L)

[N stored in Ak includes the new diagnoses.]
9: if Lnew > L then

10: k := 0, L := Lnew [Increase and restart.]
11: end if
12: until k = n [An is the last in R.]

[Dmod,mc
m = N stored in An, for the m:th R.]

13: end for

diagnoses is the MCMDs for this module.

EXAMPLE 6.2: Consider Figure 6.3 where the MCMDs should be found
for the merge order (A3, A4, A2). Algorithm 4 sends the UpdateAgent

command with input (A3, ∅,L) to agent A3, which extracts the diag-
noses with cardinality lower than or equal to L, denoted NA3 . There-
after, the UpdateAgent command is sent to A4, which collects NA3

over the network and merge it with its own local diagnoses with car-
dinality less than or equal to L; those of the merged diagnoses with
cardinality less than or equal to L is stored in NA4 . After some itera-
tions, the end result is the MCMDs Dmod,mc.

⋄

90 6.3 FIND SUB GRAPH G – ALGORITHM 5

6.3 FIND SUB GRAPH G – ALGORITHM 5

In the direct approach the agents was partitioned with respect to all
components in all diagnoses. This is however a pessimistic approach
since some of the diagnoses might have cardinality higher than the
cardinality of the MCMDs, which means that it is unnecessary to con-
sider them when deciding the modules.

The main idea in Algorithm 5, see page 92, is to find an upper limit
U of the cardinality of the MCMDs, and use this to reduce the size of
the modules.

A first value of the upper limit can be chosen as

U :=
∑

A∈Ā

minD∈DA |D|

which is the sum of the minimal cardinality local diagnoses. A lower
upper limit is found by making a pre-merge of all minimal cardinality
diagnoses. To reduce the complexity it is possible to only consider the
minimal cardinality diagnoses after each merge, which would give

U := min
D∈D̄

|D|

where

D̄ := (. . . ((Dmc
A1

×∪ Dmc
A2

)mc ×∪ Dmc
A3

)mc . . .).

This later limit would however require more computations than the
first. The first limit, i.e. the sum of the minimal cardinalities, will be
used in the examples and in the simulations described last in the chap-
ter.

For each sub graph found, Algorithm 5 is called recursively so that
each sub graph is, if it is possible, partitioned into even smaller sub
graphs.

EXAMPLE 6.3: Consider a system with five agents including the local
diagnoses

D1 = {{A}} D2 = {{B,C}, {D}}

D3 = {{B}, {C,D, E, F}} D4 = {{C}, {D}}

D5 = {{F}}

When using Algorithm 5, D̄ = {{A,D,B, F}} and therefore the upper
limit is U = 4. The graph shown in Figure 6.4(a) is created. It is par-
titioned into two sub graphs which corresponding sets of agents are
used in the next iteration. The first sub graph only includes agent A1.

For the second sub graph, the limit is U = 3 and the diagnosis
{C,D, E, F} can therefore be emitted, since it can not be included in an

CHAPTER 6 MINIMAL CARDINALITY GLOBAL DIAGNOSES 91

A1 A2 A3 A4 A5

A B C D E F
(a) Original graph.

A2 A3 A4 A5

B C D F
(b) Updated graph.

A2 A4,3

B C D
(c) Graph for Merge order.

FIGURE 6.4: The graph representing a system with five agents and six
components.

MCMD. The result is the graph shown in Figure 6.4(b) that is further
partitioned into two sub graphs. The final result is that the agents
are partitioned into three sub graphs including {A1}, {A2, A3, A4}, and
{A5}. ⋄

6.4 FINDING THE MERGE ORDER R –
ALGORITHM 6

The calculation of a merge order R is an interesting problem that can
be solved with Algorithm 6, see page 93. By changing the merge order,
the complexity of Algorithm 7 might change dramatically. The input
is one of the sub graphs that were found with Algorithm 5. The output
is an ordered set R ⊆ A, where each R represents a module.

When calculating R, the main idea is that the lower bound L in
Algorithm 4 should be raised as soon as possibly towards its final
value. This to reduce the complexity when the local diagnoses finally
are merged. To raise L as fast as possible, the sets of local diagnoses
should have few components in common and the minimal cardinality
local diagnoses should be large. To compromise between the num-
ber of common components c and the cardinality r of the diagnoses is
function α(c, r) used. Based on simulation results, the function

α(c, r) = (c + 5)/r2

is used in the simulations in the end of the chapter.
The number of common components is decided by looking at the

number of connections between the agents and the components in the

92 6.5 UPDATE AGENT – ALGORITHM 7

Algorithm 5 FindSubGraph

Input: Set of agents VA ⊆ A. Require the local diagnoses DA stored
in the local agents.

Output: The graph G consisting of sub graphs G, where a sub graph
G = (V̄A, V̄C, Ē).

1: U := a upper bound on the cardinality for the MCMDs.
2: D̄A := {D | D ∈ DA, |D| 6 U} for each agent
3: VA := {VA | D̄A 6= ∅}
4: VC :=

⋃

A∈VA

⋃

D∈D̄A D

5: E := {(A, c) | A ∈ VA, c ∈
⋃

D∈D̄A D}

6: G := (VA, VC, E) [Graph.]
7: Find sub graphs G ∈ G.
8: if |G| > 1 then [More than 1 sub graph.]
9: G := {FindSubGraph(V̄A) | V̄A ∈ G,G ∈ G} [Recursive.]

10: end if

graph. Function Γ is used for this; the function gives the number of
components that are shared between two agents

Γ(A1, A2) = |{c |(A1, c) ∈ E, (A2, c) ∈ E}|.

After two sets of local diagnoses have been merged, the merged set
might include components from both sets of local diagnoses. There-
fore, the agents and the corresponding components should be joined
in the graph. A join of A2 to A1 in graph G = (VA, VC, E)

join(G,A1, A2) = (VA\A2, VC, Ē)

where

Ē = E\{(A2, c) | ∀c} ∪ {(A1, c) |(A2, c) ∈ E}.

EXAMPLE 6.4: Consider the first sub graph in Example 6.3 and Fig-
ure 6.4(b). Using the algorithm with the sub graph as input, finds that
A3 and A4 have the least number of components in common, i.e. zero
components which give α(A3, A4) = 1; since this is the lowest weight,
R = (A3, A4). After this A3 is merged to A4 which gives the graph in
Figure 6.4(c). Agent A2 has three components in common with A4,3

and is added to R, which give R = (A3, A4, A2). ⋄

6.5 UPDATE AGENT – ALGORITHM 7

Function UpdateAgent is computed with Algorithm 7, see page 94.
When the main algorithm should evaluate UpdateAgent with input

CHAPTER 6 MINIMAL CARDINALITY GLOBAL DIAGNOSES 93

Algorithm 6 FindR

Input: sub graph G(VA, VC, E).
Output: A merge order R which is an ordering of VA.

1: if |VA| = 1 then
2: R := (VA) [The vertex VA ∈ A.]
3: else
4: (Ai, Aj) ∈ arg minAi,Aj

α(Γ(Ai, Aj),minD∈D
Ai |D|)

5: R := (Ai, Aj) [First ordered set.]
6: G := join(G,Aj, Ai) [Ai merged Aj.]
7: while |R| < |VA| where R = {A1, . . . , Aend} do
8: A ∈ arg minA α(Γ(A,Aend),minD∈DA |D|)

9: G := join(G,A,Aend) [Aend joined A.]
10: R := R ∪ A [Ordered set. New An = A.]
11: end while [All A ∈ VA is included in R.]
12: end if

(Ak, Ak−1,L), it sends this command to agent Ak. The agent that re-
ceives this command should find the diagnoses with cardinality less

than or equal to L in the set ×∪Ak

A=A1
DA. Since agent Ak−1 has already

calculated the diagnoses with cardinality less than or equal to L from
×∪Ak−1

A=A1
DA, the desired diagnoses can be calculated from the result in

Ak−1 merged with DAk .

In the direct approach, this is repeated each time that L is raised.
Algorithm 7 is more efficient, since it only calculates those diagnoses
that have not been considered in previous runs, i.e. those with cardi-
nality between the old and the new L.

The main parts of the algorithm are the merge of the old and new
global diagnoses for {A1, . . . , Ak−1} with the new local diagnoses (TE),
and the merge of the new global diagnoses for {A1, . . . , Ak−1} with the
old local diagnoses (TF). The merged diagnoses with cardinality greater
than L are stored in M for later consideration, i.e. if L is later raised
then parts of M might be included in the new N. Variable l is the
number of times that the current agent has been called with command
UpdateAgent(·).

The new global diagnoses N is saved for use by agent Ak+1. If Ak

is the last agent and N 6= ∅ then N is the set of MCMDs, i.e. the wanted
result.

EXAMPLE 6.5: Consider the second set of agents found in Example 6.4,
with the sort order R = (A3, A4, A2). The local diagnoses for these

94 6.6 CORRECTNESS OF THE ALGORITHMS

Algorithm 7 UpdateAgent

Input: Ak, Ak−1 and L. Require DAk stored in agent Ak and N stored
in agent Ak−1.

Output: New sub-set of Dmod for agents {A1, . . . , Ak} with cardinal-
ity 6 L stored as NAk in agent Ak. L as output.

1: E := {D
∣

∣ |D| 6 L, D ∈ D}

2: D := D\E

3: if i = 1 then [The first A in R.]
4: N := E [New diagnoses from Ak.]
5: else if i > 1 then
6: Tl := N in Ak−1 [New diagnoses from Ak−1.]

7: ET :=
⋃l

j=1 E ×∪ Tj [Old and new merged with new.]
8: FT := F ×∪ Tl [New merged with old.]
9: Dnew := ET ∪ FT ∪ M

10: N := {D
∣

∣ |D| 6 L, D ∈ Dnew} [New from Ak.]
11: M := Dnew\N [Store for later consideration.]
12: if N = ∅ and N has not been non-empty then
13: L := min(minm∈M |m|,minD∈D |D|) [New lower limit.]
14: end if
15: F := F ∪ E

16: end if

agents are

D2 = {{B,C}, {D}} D3 = {{B}, {C,D, E, F}}

D4 = {{C}, {D}}

With L = 1, the first agent A3 finds the new diagnoses with cardinality
less than or equal to L which give NA3 = {{B}}. Agent A4 collects
NA3 over the network and calculates WA4 := {{B,C}, {B,D}}, but since
L = 1, the new set of diagnoses NA4 := ∅. Since NA4 = ∅ and NA4

has not been non-empty, a new L is Lnew = 2. Since a new L was
returned, the algorithm starts over from the first agent. A3 has already
stated diagnosis {B} and since there are no other diagnoses with low
cardinality, the new diagnoses are NA3 := {{}}. Agent A4 collects the
new diagnoses and finds the new diagnoses NA4 := {{B,C}, {B,D}}. A2

takes over and calculates the new diagnoses NA2 := {{B,C}, {B,D}}.
Since NAn = NA2 6= ∅, the iterations ends and the set of MCMDs is
Dmod,mc = NA2 , which is stored in agent A2. ⋄

6.6 CORRECTNESS OF THE ALGORITHMS

The result of Algorithm 4 is given by Proposition 6.1.

CHAPTER 6 MINIMAL CARDINALITY GLOBAL DIAGNOSES 95

PROPOSITION 6.1 (Correctness of the algorithm): The result of Algo-
rithm 4 is all sets of MCMDs

Dmod,mc
k

considering the local diagnoses DA for all agents A ∈ A.

The proposition needs some lemmas to be proven. The first lemma
states that the different sub graphs from Algorithm 4 will truly repre-
sent modules.

LEMMA 6.2 (Modules): Let G = FindSubGraph(A), where each Gk ∈ G
is a sub graph Gk = (VA

k , VC
k , Ek), and let

D̄A = {D
∣

∣ |D| 6 U, D ∈ DA}

for the last U that partitioned Gk into a sub graph. Then VA
k is a module

considering the diagnoses D̄A.

Note that the modules are defined considering the sets D̄A. The
modules cold thereby be smaller than the modules that could be found
when considering the complete set of diagnoses DA.

Proof. From Algorithm 5 and the definition of sub graphs follows di-
rectly that D1 ∩ D2 = ∅ and VA

1 ∩ VA
2 = ∅, for two sets of VA

k , where
Dk ∈ ×∪A∈VA

k
D̄A.

LEMMA 6.3 (MCMDs): Same set-up as in Lemma 6.2. Let VA
k be a module,

then the minimal cardinality module diagnoses

D̄mod,mc
k = Dmod,mc

k

where

D̄mod,mc
k = {D

∣

∣ |D| = min
D∈D

|D|, D ∈ D,D = ×∪
A∈VA

k

D̄A}

Dmod,mc
k = {D

∣

∣ |D| = min
D∈D

|D|, D ∈ D,D = ×∪
A∈VA

k

DA}.

Proof. Each diagnosis D ∈ ×∪A∈VA
k

DA is a set D =
⋃

A∈VA
k

DA where

each DA ∈ DA. The cardinality of each such diagnosis is

|D| > max
A∈VA

k ,DA∈DA
|DA|.

The upper limit is defined so that for D ∈ Dmod,mc
k , the cardinality is

|D| 6 U.

If the cardinality of a diagnosis is |D| > U then D /∈ Dmod,mc
k . To-

gether, this means that the set D̄mod,mc
k ⊇ Dmod,mc

k . Since D̄mod,mc
k ⊆

Dmod,mc
k , it follows that D̄mod,mc

k = Dmod,mc
k .

96 6.6 CORRECTNESS OF THE ALGORITHMS

The next lemma states that diagnoses of a certain cardinality are
found and if no diagnoses were found then Lnew will have a specific
value.

LEMMA 6.4 (Cardinality of diagnoses): Given R = {A1, . . . , Ak} and
Ln. Let the set of different L be L̄ = {Linit,L1, . . . ,Ln−1,Ln}, where the
present L is Ln. After evaluating Lnew = UpdateAgent(Ak, Ak−1,Ln),
then N in agent Ak is

NAk = {D
∣

∣ Ln−1 < |D| 6 Ln, D ∈ D}

where D = ×∪A∈R DA.

Proof. The lemma will be proven by induction. If k = 1, i.e. R = A1,
then by direct use of the algorithm follows that A1 will include

NA1 :=E = {D | Ln−1 < |D| 6 Ln, D ∈ D}

where D = DA1 .
Let

D̄A
i = {D

∣

∣ |D| 6 Li, D ∈ DA}

i.e. the set of local diagnoses with cardinality less than or equal Li.
For k > 1 and n > 1, let R̄ = {A1, . . . , Ak−1} and consider agent Ak.

Suppose that NAk−1 is correct, i.e.

NAk−1 = {D | Ln−1 < |D| 6 Ln, D ∈ ×∪
A∈R̄

DA},

and that UpdateExtendedDiagnoses(Ak, Ak−1,Ln) is evaluated for the
first time for agent Ak, i.e. l = 1. Since it is the first evaluation, the
algorithm gives the new set

E = D̄Ak
n .

Received from Ak−1 is the set Tl = NAk−1 . From the algorithm follows
that

Dnew = E ×∪ T1

since F = ∅ and M = ∅. Therefore, the set NAk is

NAk = {D | Ln−1 < |D| 6 Ln, D ∈ ×∪
A∈R

DA}.

By induction follows now that the first NAk , i.e. l = 1, is correct for all
k and n.

For k > 1, n > 1, and l > 1. Suppose that NAk−1 for agent
Ak−1 is the correct diagnoses consistent with all diagnoses from the

CHAPTER 6 MINIMAL CARDINALITY GLOBAL DIAGNOSES 97

agents in R̄. Further suppose that the previous evaluations of Update-
ExtendedDiagnoses(Ak, Ak−1,Li) for Ak are correct. Consider now
UpdateExtendedDiagnoses(Ak, Ak−1,Ln) for evaluation l.

The above means that T1, . . . , Tl−1, M, F, and D in Ak are correct.
The following information is stored in agent Ak from previous runs

Ti = {D | Ln+i−l−1 < |D| 6 Ln+i−l, D ∈ ×∪
A∈R̄

D̄A
n+i−l}

for i ∈ {1, . . . , l − 1},

M = {D
∣

∣ |D| > Ln−1, D ∈ ×∪
A∈R

D̄A
n−1}

F = DAk

n−1

D = DAk\F.

The algorithm gives the new

E := {D | Ln−1 < |D| 6 Ln, D ∈ D}

Since only those diagnoses with cardinality greater than Ln−1 have
been merged in the previous agents, the diagnoses received from Ak−1

is

Tl := {D | Ln−1 < |D| 6 Ln, D ∈ ×∪
A∈R̄

D̄A
n }.

The sets included in Dnew are M, FT , and ET , where

M := {D
∣

∣ |D| > Ln−1, D ∈ ×∪
A∈R

D̄A
n−1}

FT := DAk

n−1
×∪ {D

∣

∣ Ln−1 < |D| 6 Ln, D ∈ ×∪
A∈R̄

D̄A
n }

ET := {D
∣

∣|D|6 Ln, D ∈ ×∪
A∈R̄

D̄A
n } ×∪ {D

∣

∣Ln−1< |D| 6Ln, D ∈ DAk\Dk
n−1}.

Set ET is calculated from E and the union of the Ti:s, where

l
⋃

j=1

Tj := {D
∣

∣ |D| 6 Ln, D ∈ ×∪
A∈R̄

D̄A
n }.

The diagnoses D = ×∪A∈R DA can be partitioned into different sets
with respect to the cardinality of the diagnoses from agent Ak and R̄

respectively. Such a partition of the set if

D = M ∪ ET ∪ FT ∪ H

where

H = {D
∣

∣ |D| > Ln, D ∈ ×∪
A∈R̄

D̄A
n } ×∪ {D

∣

∣ |D| > Ln, D ∈ DAk }.

98 6.6 CORRECTNESS OF THE ALGORITHMS

TABLE 6.1: Sets of diagnoses. To the left and on the top are two differ-
ent sets of diagnoses partitioned over different cardinalities.

D ∈ ×∪A∈R̄ DA

×∪ |D| 6 Ln−1 Ln−1 < |D| 6 Ln |D| > Ln

|D| 6 Ln−1 M FT H
Ln−1 < |D| 6 Ln ET ET H

D
∈

D
A

k

|D| > Ln H H H

Table 6.1 shows which parts of the diagnoses that are found in vari-
ables M, ET , FT , and H respectively.

From the algorithm is given that the set NAk is

NAk = {D | Ln−1 < |D| 6 Ln, D ∈ Dnew}

= {D | Ln−1 < |D| 6 Ln, D ∈ M ∪ ET ∪ FT ∪ H}

since |D| > Ln for D ∈ H. Therefore

NAk = {D | Ln−1 < |D| 6 Ln, D ∈ D}.

By induction follows now that NAk is as stated in the proposition
for all n, all l, and all k.

The next lemma states the result after the final call from Algo-
rithm 4 to Algorithm 7 for a set of agents R.

LEMMA 6.5 (Result of UpdateAgent): If NAn 6= ∅ in agent An after eval-
uation of UpdateAgent(An, An−1,L), where R = {A1, . . . , An}, then

NAn = Dmc

where D = ×∪A∈R DA.

Proof. After an update with NAn 6= ∅, the lower limit could have been
decided by An or a preceding agent Ap in R. If An has decided the
limit, then |D| > Ln for D ∈ ×∪A∈R DA. If an earlier agent has decided,
then |D| > L for D ∈ ×∪A∈{A1,...,Ap} DA. This later limit also results

also means that |D| > Ln for D ∈ ×∪A∈R DA.
From Lemma 6.4 follows that

NAk = {D | Ln−1 < |D| 6 Ln, D ∈ D}

where D = ×∪A∈R DA. Since |D| > Ln, and L = minD∈×∪A∈R DA |D|, it
follows that

NAk = {D
∣

∣ |D| = min
D∈D

|D|, D ∈ D,D = ×∪
A∈R

DA}

CHAPTER 6 MINIMAL CARDINALITY GLOBAL DIAGNOSES 99

and by definition of minimal cardinality follows that

NAn = Dmc.

Finally, the proof of Theorem 6.1.

Proof. Lemma 6.2 showed that VA
k from Algorithm 4 is a module, and

Lemma 6.3 showed that Dmod,mc
k is a set of minimal cardinality mod-

ule diagnoses considering the set of diagnoses D̄A. The sort algo-
rithm FindR does not affect the agents included in the set given from
FindSubGraph. Finally, Lemma 6.5 showed that the result from Algo-
rithm 7 is a set of minimal cardinality diagnoses. Thereby is the set of
all Dmod,mc

k the MCMDs.

6.7 SIMULATIONS

To test the algorithms, a variant of the model in Chapter 5 has been
used.

6.7.1 Simulation Model

The simulation environment was described in Section 5.4. There are
some differences between the model described there and the one used
here. The main part is that the model used here only includes three
nets and 21 agents. The number of inputs are only slightly higher than
the number of inputs, and the transfer time is 0.01 times the cardinality
compared to the model used in Section 5.4 where the transfer time was
0.005 times the cardinality.

6.7.2 Limitations

In Section 5.4 was described how the too complex models where re-
moved. To be of any use, the algorithms in this chapter need at least
two sets of local diagnoses. Therefore, the models where only one
agent has found local diagnoses have been removed in the simula-
tions.

6.7.3 Simulations

The algorithm in this Chapter starts when all local diagnose have been
generated. For comparison, four different variations of the algorithm
have been implemented. The first is the complete Algorithm 4 while
the others are variations on this.

100 6.7 SIMULATIONS

The second has replaced FindSubGraph with the more crude par-
tition of the agents that was described in the beginning of Section 6.1.
The third has replaced FindR with an ordering so that the agent with
largest smallest diagnosis is first, and then the rest follows in descend-
ing order. The last uses the direct method described in the beginning
of Section 6.1. This method does not keep any information in mem-
ory, instead all diagnoses with size lower than L is merged at each
repetition.

6.7.4 Result

Mean values of the computation times can be seen in Figure 6.5. With
this model, the number of modules found by FindSubGraph and the
more simple partition are mostly the same. Therefore, only a small
difference can be seen in the mean times, most notably at 900 and 1000
components.

The direct variant is slower than the other three for the simula-
tions with 500 or more components. For 900 components, the max-first
variant is faster, but the complete algorithm and the crude module-
differentiation algorithm is faster in the other cases. The knee in the
simulation times seen for 900 components is probably due to the fact
that the system is chosen by random. To conclude, the complete algo-
rithm is mostly faster than the other three variants.

CHAPTER 6 MINIMAL CARDINALITY GLOBAL DIAGNOSES 101

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Number of components

T
im

e
[−

]

Mean values after 250 evaluations

Complete Algorithm 1.
Alg. 1 with crude module−diffrentiation.
Alg. 1 with max−first ordering.
The direct method.

FIGURE 6.5: Computation times for the algorithms with increasing
number of components.

7

CONCLUSIONS PART I

A framework for distributed diagnosis has been presented. The frame-
work extends consistency based diagnosis to distributed systems. The
system consists of agents that are connected to each other via a net-
work. Each agent can state diagnoses for the local objects, which con-
sists of both components and input signals. It was possible to use the
framework to describe how faulty components affects other parts of
the system.

The set of global diagnoses includes all diagnostic knowledge in
the system. It would therefore be advantageous if these where avail-
able to the local agents. The simplest approach to do this is to merge all
local diagnoses to obtain the global diagnoses. This approach might
however be very computer intensive, therefore, this part of the thesis
described how it was possible to use these local diagnoses to calculate
more complete local diagnoses. After this, it was described how the
more likely global diagnoses could be calculated.

To extend the diagnoses, conflicts could be transmitted between
the agents. The choice of which conflicts to transmit was based on the
conflicts themselves. Alternatively the local diagnoses could be used
to make the choice. The gain when diagnoses were used was that only
those conflicts that more probably would give better extended local
diagnoses could be transmitted.

Simulations were used to show how algorithm for the sharing of
conflicts behaved. Four different variants was simulated, the trans-

103

104

mission of conflicts where the choice of which conflicts to transmit
was based on conflicts, and one where it was based on the local di-
agnoses. These two variants was then simulated with and without
virtual components. Without loss of fault detection degree, it was pos-
sible to reduce both the simulation time and the number of extended
local diagnoses.

Another way to extend the local diagnoses was to transmit local
diagnoses. It was directly possible to only transmit those diagnoses
with a higher probability to be correct.

A problem when transmitting diagnoses is that the size and the
number of the diagnoses grow. One way to reduce this growth was
as stated above to minimize the number of transmitted diagnoses. To
further reduce the growth, it was shown how the size of the conflicts
could be reduced while keeping the integrity of the diagnoses.

It has been shown how an algorithm that uses the agents’ local di-
agnoses to calculate the minimal cardinality module diagnoses could
be designed. The algorithm is distributed in such a manner that it
could use the agents’ own processing power, this reduces the need
for a central diagnostic agent. Simulations was used to show how the
complexity was reduced when different parts of the algorithm was
used.

II
SIMULATION BASED RESIDUAL

GENERATORS

8
INTRODUCTION PART II

When designing model-based fault-diagnostic systems, residual gen-
erators are often used. Each residual generator is designed such that
the residual is different from zero when some fault is included in the
supervised system. Different residual generators are sensitive to dif-
ferent sub sets of faults, and thereby isolation can be achieved. One
approach to construct residual generators is to first find smaller sub
sets of the model equations, such that each sub set is overdetermined.
Since the sets are overdetermined, they can be used to construct resid-
ual generators.

This part of the thesis presents a new method for constructing resid-
ual generators for minimally overdetermined sets of equations, which
means that there is exactly one more equation than unknown vari-
ables. The main idea is that by adding an extra variable, denoted the
residual variable, an exactly determined system of equations is de-
signed. The method is to simulate this set of equations, and thereby
determine if the residual variable is zero or not. The method avoids
the need to analytically transform the sets of differential algebraic equa-
tions (DAEs) into some specific residual generator form.

The set of equations with a residual variable could be used as a
residual generator if the residual variable has been added to the set
of equations such that the set of equations, in a practical sense, is sim-
ulatable. More specifically, this means that there are requirements on
uniqueness, index, and stability. The general framework will be pre-
sented in Chapter 9.

107

108

Compared to using the whole model, there are at least two ad-
vantages to start with a minimally overdetermined set of equations.
The first is that this set is typically small, which follows from the fact
that it is minimal. A small model is normally easier to handle than a
large model. The second advantage is that some decoupling of faults
and disturbances has already been achieved, since only the equations
that are necessary for the minimally overdetermined set are included
in the set. The result is that the amount of decoupling that has to
be done is reduced. Given a set of model equations, one approach
to find the minimally overdetermined sets of equations is to find all
minimal structurally overdetermined (MSO) sets of equations. The reason
for using MSO sets is that these sets are the smallest sets of equations
that can be used to form residual generators. Further on, it has been
shown in [Kry03, KN02] that these sets characterize all the diagnos-
ability properties of the system.

When extracting MSO sets, different assumptions about the struc-
tural relationship between the unknown variables and about deriva-
tives of sensor values, will result in different sets of MSO sets. From
these assumptions two main approaches are found, the direct and the
static approach. The direct approach results in a set of equations that
includes dynamic state variables, and in the general case the MSO set
is a set of DAEs. The static approach results in a set of equations with
only instantaneous state variables, which therefore results in a static
system of equations. It is also possible to make a combination of the
two approaches; this will be called the partially static approach.

An advantage of the direct approach is that no approximations of
sensor derivatives have to be calculated. A disadvantage is that, some-
times, solution stability and complexity of the DAEs can be a problem.
The benefit with the static approach is simplicity when constructing
the residual generator, and the disadvantage is that derivatives of sen-
sor values have to be approximated.

In Chapter 10, the method is demonstrated on a non-linear point-
mass satellite system taken from [PI01]. The satellite system is non-
linear and includes an unknown variable that has to be decoupled.
The system consists of 7 equations and the residual generators typi-
cally consists of 3 to 4 equations. The example is used to illustrate how
different residual generators could be designed depending on which
derivatives of sensor values that are approximated.

Additionally, it is in Chapter 11 demonstrated how the method
can take advantage of the modeling language Modelica. To demon-
strate the method, a non-trivial part of a paper mill consisting of over
20 equations is used. The implemented residual generators typically
consists of 7 to 9 equations. It is demonstrated how to extract the equa-
tions from the model, how to add a residual variable, and how to sim-
ulate the resulting residual generator.

CHAPTER 8 INTRODUCTION PART II 109

8.1 OUTLINE OF PART II

The outline was given in the thesis introduction and are repeated here
for completeness.

Chapter 8 Introduction Part II.

Chapter 9 In this chapter, a method for the construction of residual
generators is described. The residual generators are constructed
from smaller sub sets of model equations. These sets are overde-
termined such that there exist exactly one more equation than
unknown variables in the set of equations.

By adding a residual variable to the set of equations, an exactly
determined set of equations is constructed. It is shown how the
residual variable can be added such that the set of equations can
be simulated. The method avoids the need to analytically trans-
form the sets of equations into some specific residual generator
form.

It is shown how it is possible to choose between either a more
complex residual generator or the need to perform derivative
approximations of sensor values.

Chapter 10 The method presented in the preceding chapter is exem-
plified on a model for a non-linear point-mass satellite. It is
shown how the addition of approximations of derivatives of sen-
sor values results in different residual generators.

Chapter 11 It is shown how the method can take advantage of the
simulation tool Dymola which use the simulation language Mod-
elica to extract and simulate the set of equations.

Chapter 12 Conclusions Part II.

8.2 RELATED WORK

The MSO property is discussed in [Kry03] and the shorter [KÅN05].
Structural analysis for diagnosis of a valve is used in [FDKC03]. All
of these publications includes discussions about how the MSO sets can
be extracted from a model and be used for predicting the structural
diagnosability.

The paper [FÅ05] considers design of observers for sets of DAEs or
descriptor models. The observers can be used as residual generators
and is formulated as sets of DAEs.

The example in Chapter 10 is taken from [Rug96]. It is used in
[PI01] for a solution of the same problem using geometric methods.

110 8.3 PUBLICATIONS

In Chapter 11, the simulation language Modelica and the simula-
tion tool Dymola are used to perform simulations. The integration
methods that can be used to simulate models in Dymola are presented
in for example [Elm02] and [Fri04].

8.3 PUBLICATIONS

The results in chapter 9 and 10 have been presented in the following
publications.

• [BN02] – This paper presented a first formulation of the material
in Chapter 9.

• [BN03] – This is and extended and revived paper of the above
publication. The paper presents the material in Chapter 9 and 10.

9

SIMULATION BASED RESIDUAL

GENERATORS

In the preceding chapter a method for the design of residual gener-
ators was introduced. The method will be further described in this
chapter. First, however, some properties for simulation tools will be
described. This will be followed by a model description and a deeper
discussion about the MSO property. How to calculate the MSO sets
from a model is also discussed. The chapter further describes the con-
straints that need to be fulfilled when the residual variable is added to
the MSO set of equations.

9.1 SIMULATION TOOLS

Numerous simulation tools exist for computing numerical approxi-
mations to the solution of a wide variety of differential equation sys-
tems. With a simulation tool is meant a graphical or text-based tool,
such as Simulink, Dymola, gPROMS, MATLAB, etc. These are a user in-
terfaces to the actual solvers, which are the software that simulates the
model. Solvers primarily include standard ODE-solvers such as ODE15
in Simulink, and DAE-solvers such as DASSL [AP98] that is implemen-
ted in most simulation tools that handles DAEs.

When models are considered, an important property is the index
of the model. For a set of equations, the index is often defined as the
number of times a set of equations must be analytically differentiated

111

112 9.2 SYSTEM MODEL

with respect to time, such that an explicit ODE can be formed. For a
more exact definition see for example [CG95, AP98].

A limitation for most solvers is that they can only handle problems
with index less than or equal to one. Even though there exist solvers
such as RADAU5 that can solve some problem of index higher than
one, these solvers can only solve some specific classes of problems
with higher index. The method presented in this chapter will only use
solvers for models with index less than or equal to one, because these
solvers are the only one that can solve general non-linear DAEs.

9.2 SYSTEM MODEL

The following definition of model will be used both to describe the
system that residual generators should be constructed for, and to de-
scribe the residual generators.

DEFINITION 9.1 (Model): A model is a set of equations in differential alge-
braic form

0 = G(Ẋ,X,Z,U,F)

where X is the set of unknown dynamic state variables, Z is the set of un-
known instantaneous state variables, U is the set of known inputs and out-
puts, and F is the set of unknown faults. The set of sensor variables Y are
included in U, i.e. Y ⊆ U.

Each equation e ∈ G(Ẋ,X,Z,U,F) is associated with assumptions

ass(e)

which includes limitations for the variables included in the equation.

The faults are assumed to be zero in the fault free case. All known
variables have been included in the set U which includes actuator sig-
nals, sensor signals, and constant variables. The higher derivatives of
the known signals are assumed known, with the exception of the sen-
sor variables. The reason for this is that the derivatives of the sensor
variables might be difficult to obtain.

EXAMPLE 9.1: An example of a model is

e1 : 0 = −ρ̇ + u1

ρ
+ f + σ, ass(e1) = {ρ > 0}

e2 : 0 = σ + u2

e3 : 0 = −y1 + ρ + σ

e4 : 0 = −y2 + ρ

where f is an additive fault. For this model, G = {e1, e2, e3, e4}, X =

{ρ}, Z = {σ}, U = {u1, u2, y1, y2}, and F = {f}. Equations e3 and e4

include sensor variables, i.e. Y = {y1, y2}. ⋄

CHAPTER 9 SIMULATION BASED RESIDUAL GENERATORS 113

9.3 MSS SETS OF EQUATIONS

The main property of an MSO set is that there is exactly one more equa-
tion than unknown variables included in the equations. Another im-
portant property is that no proper subset of the MSO set is an MSO set.
The definitions from [KÅN05], in a slightly different notation, are cited
below.

DEFINITION 9.2 (Structurally overdetermined): A finite set of equations
E is structurally overdetermined with respect to the set of variables X in E

if |E| > |X|.

DEFINITION 9.3 (Minimal Structurally overdetermined): A structurally
singular set is a minimal structurally overdetermined (MSO) set if none
of its proper subsets are structurally overdetermined.

For more information see [Kry03, FDKC03, KÅN05]. From the
equations in Definition 9.1 can an MSO set for the model be described.

A set of equations

g(·) ⊆ G(·)

is an MSO set for the model G if the set g is minimal structural overde-
termined with respect to the variables Ẋ, X, and Z, where Ẋ and X are
considered to be the same variable.

Each MSO set is in itself a model in the form

0 = g(Ẋ,X,Z,U,F).

From the model, a set of MSO sets {MSO1, . . . , MSOk} can be found.
How these are found will be discussed later in Section 9.6. The prob-
lem now is to construct a residual generator for each MSO set of equa-
tions. This residual generator should be simulatable and preferable be
sensitive to the faults included in the MSO set of equations.

EXAMPLE 9.2: Consider Example 9.1. An MSO set for the model de-
fined in the example is the set of equations {e1, e2, e4}. Notice that
the MSO set includes three equations and two unknown variables, i.e.
ρ̇ and ρ, which are considered as one and the same variable, and σ.
This MSO set includes information about the fault f. With a correctly
added residual variable, the information about the faults size can be
extracted.

Another MSO set for the model is the set of equations {e2, e3, e4}.
Notice that the MSO set includes three equations and two unknown
variables, i.e. ρ and σ. ⋄

114 9.4 RESIDUAL GENERATORS

9.4 RESIDUAL GENERATORS

For each MSO set found from the model, it is assumed that there exists
initial values Ẋo, Xo, and Zo such that

0 = g(Ẋ0,Xo,Z0,U, 0)

is satisfied.
The state variable and input data space is limited by the assump-

tions stated when the model is defined. These assumptions might in-
clude physical information, e.g. pressure is always greater than zero,
but also information about when the equations are valid, e.g. control
signals over some given value. For a given MSO set, the assumptions
define a variable space.

DEFINITION 9.4 (Variable space): Let g be a set of equations where each
equation e ∈ g includes some assumptions ass(e). The variable space is

Ω(g) = {{Ẋ,X,Z,U} |{Ẋ,X,Z,U} ∈ ass(e), e ∈ g}.

The variable space includes knowledge about the system that can
be used when constructing residual generators.

EXAMPLE 9.3: (Variable space) Consider Example 9.1, where e1 in-
cludes the assumption ρ > 0. If this is the only assumptions then

Ω(g) = {ρ > 0, ρ̇, σ, u1}

The unconstrained variables will be dropped when no misunderstand-
ing is likely to occur, i.e.

Ω(g) = {ρ > 0}

will be used. ⋄

The main idea when constructing a residual generator in this ap-
proach is to add a scalar residual variable, r ∈ R1 and possibly some of
its derivatives, to the MSO set. The residual should be added such that
the MSO set with the additional residual variable can be simulated.

EXAMPLE 9.4: Consider the model

e1 : 0 = ẋ − x

e2 : 0 = y1 − x + f

e3 : 0 = y2 − x.

Two MSO sets that includes the fault f are the set {e1, e2} and the set
{e2, e3}. These sets can be used to form residual generators. To the
first can for example r be added such that

0 = ẋ − x + α1r

0 = y1 − x + ṙ + α2r.

CHAPTER 9 SIMULATION BASED RESIDUAL GENERATORS 115

In this residual generator the first derivative of the residual has been
added. The parameters α1 and α2 can be used to stabilize the model.

The second MSO set can be used to form the residual generator

0 = y1 − x + r

0 = y2 − x.

This residual generator is static in contrast to the first that was dy-
namic. ⋄

The MSO set with the additional residual variable is denoted an
MSO model (slight misuse of the acronym MSO).

DEFINITION 9.5 (MSO model): Given an MSO set of equations g. If the
highest derivative of the residual variable r is n and the parameter matrix
Γ ∈ R|g|×(n+1), then an MSO model for the set g is a model where the set of
equations is

0 = g(Ẋ,X,Z,U) + ΓR(9.1)

and R = [r, ṙ, . . . , r(n)]T .

How the residual variable and its derivatives are added is a free-
dom that can be used when designing the MSO model. Notice that the

variables Ẋ, X, Z, and U are not the same as in the model that the MSO

set was extracted from. The following example illustrates the defini-
tion of MSO model.

EXAMPLE 9.5: Consider the model in Example 9.1. An MSO set is
{e1, e2, e4}, and an MSO model for this set with n = 1 is

0 =





ρ̇ − u1 − σ

σ + u2

y2 − ρ



 + Γ

[

r

ṙ

]

where Γ ∈ R3×2. The dynamic variable is X = ρ, the instantaneous
variable is Z = σ, and the known variables are U = [u1, u2, y2]T . If
fault f is sufficiently large and Γ is correctly designed, then simulations
of this MSO model can be used to extract the residual r that is sensitive
to fault f.

The other MSO set in Example 9.1 was the set of equations {e2, e3, e4}.
The MSO model for this set with n = 1 is

0 =





σ + u2

y1 + ρ + σ

y2 − ρ



 + Γ

[

r

ṙ

]

where Γ ∈ R3×2. The dynamic variable is X = ∅, the instantaneous
variable is Z = {σ, ρ}, and the known variables are U = [u2, y1, y2]T . ⋄

116 9.5 REDUNDANT EQUATIONS

e1 e2 e4

v1 v2 v3
(a) Bipartite graph.

e1 e2 e4

v1 v2 v3
(b) A complete matching.

FIGURE 9.1: Bipartite graph and a complete matching of the bipartite
graph.

When simulating an MSO model, the highest derivative of the resid-
ual variable r(n) is unknown, while the lower derivatives are known
from integration of r(n). If this MSO model is simulatable then it can
be used as a residual generator.

The residual variable can not be added to the MSO set arbitrary.
Due to structural and analytical properties for the set, there are con-
straints that Γ must fulfill. The highest derivative must at least be
added to one of the analytically redundant equations, this will be dis-
cussed more in the next section.

9.5 REDUNDANT EQUATIONS

First will a brief introduction to graphs be given, this is followed by a
discussion about redundant equations.

9.5.1 Bipartite Matching

A graph G consists of vertices V (sometimes called nodes) and edges
E, where each edge connects two vertices. A bipartite graph is a graph
where the vertices are partitioned into two disjoint sets V1 and V2. A
complete bipartite matching exists if there is some subset Ē ⊆ E that
connects each v1 ∈ V1 to one unique v2 ∈ V2. For more information
see for example [Har69].

EXAMPLE 9.6: Figure 9.1(a) shows a bipartite graph consisting of three
equations and three variables, i.e. two sets of vertices, and edges con-
necting these vertices. A complete matching of the graph is shown in
Figure 9.1(b). Equation e1 is for example matched to variable v3. ⋄

9.5.2 Structurally and Analytically Redundant Equations

Two different types of equation redundancy is used here.

CHAPTER 9 SIMULATION BASED RESIDUAL GENERATORS 117

DEFINITION 9.6 (Structurally redundant): Given a set of equations g. An
equation e ∈ g is structurally redundant if for a set of unknown variables

X ⊆ {Ẋ,X,Z,U},

there exist a complete bipartite matching between the unknown variables in
g\e and the equations g\e.

DEFINITION 9.7 (Analytically redundant): An equation e ∈ g is analyt-
ically redundant if e is structurally redundant for all

X ∈ Ω(g)

where X is the unknown variables in g and Ω is the variable space.

An equation is analytically redundant if it is structurally redundant
for all operating points in Ω. Note that an equation is structurally
redundant if it is analytically redundant.

When adding r to an MSO set, the constraints are that, firstly, r(n)

must be added to at least one of the analytically redundant equations.
Secondly, if it is added to several analytically redundant equations
then Γ must fulfill some additional constraints, which are discussed
later in Section 9.5.4.

In this section methods to find all structurally and analytically re-
dundant equations will be presented. The structurally redundant equa-
tions can be found with structural or analytical methods, while the ana-
lytically redundant equations can only be guaranteed to be found with
analytical methods.

9.5.3 Finding Structurally Redundant Equations

To find the structurally redundant equations, structural analysis can
be used. The structural analysis finds a bipartite matching between
equations and unknown variables [KN02, Har69].

In Figure 9.2, a graph representing equation (9.1) is shown. If a
complete matching exists for (9.1), between g and the unknown vari-
ables in g, then the equation that matches r(n) is structurally redun-
dant. To find another structurally redundant equation, let Γ̄j = 0 and
find a new complete matching. Suitable repetition gives all struc-
turally redundant equations.

EXAMPLE 9.7: Consider Example 9.1 and Example 9.2. The MSO set
can be represented by the structural graph shown in the left part of
Figure 9.3. The first row includes the equations and the second the
unknown variables. The structural relationships are shown with lines.
In the right part of the figure, a bipartite matching algorithm has been
used to find a bipartite matching. The matching shows that e4 is a
structurally redundant equation.

118 9.5 REDUNDANT EQUATIONS

g1 g2 . . . gj . . .

ẋ1 ẋ2 . . . z1 z2 . . . r(n)

FIGURE 9.2: Bipartite graph representing (9.1). In the upper row are
the equations, and in the lower row are all unknown variables in-
cluded in the equations.

e1 e2 e4

ρ̇ σ r(n)

(a) Structural graph.

e1 e2 e4

ρ̇ σ r(n)

(b) A complete matching.

e1 e2 e4

ρ̇ σ r(n)

(c) New structural graph.

FIGURE 9.3: Structural model, complete matching of the model, and
the model with the relation between the matched equation and r(n)

removed.

Remove the relationship and find a new matching. In this example
it is not possible to find any new bipartite matching, and the conclu-
sion is that only equation e4 is structurally redundant. ⋄

9.5.4 Finding Analytically Redundant Equations

If some equations have been found to be structurally redundant, it
should be checked if they are also analytically redundant.

To find the analytically redundant equations, the implicit function
theorem will be used. To investigate if an equation is analytically re-
dundant, it should fulfill the conditions in the theorem in all opera-
tion points, as defined by Ω. To test if a set of equations fulfills the
conditions in the theorem, a common approach is to test if the Jacobian
is non-singular [V+95, MS92]. Equation (9.1) will only fulfill the the-
orem in all operation points if r(n) has been added to an analytically
redundant equation.

This means that the Jacobian determinant

|J| =
∣

∣

∣

∂(g(Ẋ,X,Z,U,0)+ΓR)

∂[Ẋ,Z,r(n)]T

∣

∣

∣ 6= 0

where {Ẋ,Z, r(n)} are the unknown variables. Due to the special con-
struction of (9.1), the Jacobian determinant is

|J| = ξT (Ẋ,X,Z,U)Γ̄(9.2)

CHAPTER 9 SIMULATION BASED RESIDUAL GENERATORS 119

where ξ(·) is a vector and Γ = [Γ1, . . . , Γ̄], i.e. Γ̄ is the column corre-
sponding to r(n). The sum ξT (·)Γ̄ arises from the definition of deter-
minant, i.e. sum of vector variable times co-factor.

The models used in this part are quite specific since the objective is
to find the analytically redundant equations. It is therefore possible to
consider only those Γ̄ that only include one equation that is nonzero.
Let Γ̄ = [0, . . . , Γ̄j, . . . , 0]

T , where Γ̄j 6= 0. If |J| 6= 0 then the j:th equation
is structurally redundant. To decide if the j:th equation is analytically
redundant, the variable space Ω has to be considered.

PROPOSITION 9.1: Given an MSO model which includes the equations g

and the parameter matrix Γ . If there does not exist

(Ẋ,X,Z,U) ∈ Ω(g)

such that

ξj(Ẋ,X,Z,U) ∈ 0

where ξ(·) is given by (9.2), then the j:th equation is guaranteed to be ana-
lytically redundant.

The meaning is that, if it is not theoretically possible for ξj to equal
zero, then the j:th equation is analytically redundant.

9.6 APPROACHES TO EXTRACT MSO SETS

When the MSO sets are extracted, different assumptions about which
derivatives of sensor values that are available, will result in different
sets of MSO sets, and consequently in different residual generators.

9.6.1 Finding MSO Sets given a Structural Model

In [KN02] a systematic and automatic algorithm is presented, called
the MSO-algorithm. The algorithm finds the set of MSO sets for a given
structural model. This algorithm was further improved in [Axe04] and
it is this implementation that has been used in the examples to extract
the plots of the structural relationships.

The algorithm is based on graph theoretical reasoning about the
structure of the model, and is capable of handling non-linear differen-
tial algebraic non-causal equations. Further, the method is not limited
to any special type of fault model.

The input to the algorithm is a structural model and information
about which derivatives of sensor values that can be approximated. The
structural model includes information about the connection between
unknown variables and equations. By analyzing and manipulating

120 9.6 APPROACHES TO EXTRACT MSO SETS

this structural model, the algorithm finds all MSO sets. In the algo-

rithm, the variables Ẋ and X are considered to be one variable.
The output of the algorithm is a set of MSO sets where each MSO set

might include differentiated and non-differentiated equations from the
original model.

9.6.2 Direct Approach

The direct approach to extract MSO sets is to directly find the MSO sets
without considering derivatives of sensor equations. This means that no
derivatives of sensor values are included in the MSO sets, e.g. sensor
value y1 is known while its derivative ẏ1 is unknown. Note that dif-
ferentiated non-sensor equations might be included in the MSO sets.

EXAMPLE 9.8: To continue Example 9.1 above. The MSO set {e1, e2, e4}

is found with the direct approach. In this set, the dynamic state vari-
able X = {ρ}, the instantaneous state variable Z = {σ} and the known
variables U = {u1, u2, y2}. ⋄

The MSO-algorithm is given the structural model, where X and Z

are considered unknown. The output is a set of MSO sets. The sets can
include both differentiated and non-differentiated equations. Further,
since the MSO model sometimes is a non-linear DAE, a non-linear DAE

solver is preferably used to simulate the MSO model.
A disadvantage with this approach is that, sometimes, solution sta-

bility and complexity due to models with index higher than zero can
be a problem.

9.6.3 Using Derivative Approximations

In some cases, the direct approach does not generate a set of MSO sets
with acceptable detection and isolation properties, or it is difficult to
construct stable and fault-sensitive residual generators. In these cases,
it might be useful to find more MSO sets by adding approximations of
sensor derivatives to the model, e.g.

ynew = ẏ.(9.3)

One set of such MSO sets, that in the general case can not be imple-
ment, are those that have an index higher than one. In this case, it is
often possible to include derivative approximations of sensor signals
to the model, so that a new search, with the derivative sensor equation
added, will find a corresponding MSO set with index zero or one. The
new MSO set will be based on the same equations as the original MSO

set, but it will in addition include differentiated sensor equations.

CHAPTER 9 SIMULATION BASED RESIDUAL GENERATORS 121

If all derivatives, i.e. {ẏ, ÿ, . . .}, of the sensor-equations included in
the original MSO set are included in the new model, then an MSO set
with index zero will be found.

If adding equations such as (9.3), then the structural relationship
between a state variable and its derivative will from a simulation per-
spective not always exist. To reduce the risk of confusion, let xD , ẋ

when the structural relationship between x and ẋ has been removed
in an MSO set. The following example illustrates this.

EXAMPLE 9.9: Consider the system

e1 : 0 = −ρ̇ + σ

e2 : 0 = −ω̇ + σ

e3 : 0 = −y1 + ρ

e4 : 0 = −y2 + ω + f

e5 : ynew = ẏ1 → 0 = −ynew + ρ̇.

Two of the MSO sets that can be found for this system are {e1, e2, e3, e4}

and {e1, e2, e4, e5}, where the unknown variables are X = {ρ,ω} and
Z = {σ}.

The first MSO set is

e1 : 0 = −ρ̇ + σ

e2 : 0 = −ω̇ + σ

e3 : 0 = −y1 + ρ

e4 : 0 = −y2 + ω

An MSO model constructed from this set will have the dynamic vari-
ables X = {ρ,ω} and instantaneous variables Z = {σ}.

The second MSO set is

e1 : 0 = −ρD + σ

e2 : 0 = −ω̇ + σ

e4 : 0 = −y2 + ω

e5 : ynew = ẏ1 → 0 = −ynew + ρD.

When this system is simulated, ρ is decided from y1 and ρ̇ is decided
from ẏ1. Therefore, ρD = ρ̇ and the model’s dynamic variable is X =

{ω} and instantaneous variables are Z = {ρD, σ}. ⋄

9.6.4 Static Approach

If all derivatives of dynamic state variables in an MSO model are ap-
proximated by some old or new sensor equation, then the MSO model
is static. This means that no dynamic state variables are included in
the model, only instantaneous. If the MSO model is static then the set
of equations can be solved with a general equation solver.

122 9.7 SOME COMMENTS ON REDUNDANCY

The benefit with the static approach is simplicity when construct-
ing the residual generator. It also reduces the need for a dynamic
solver. The disadvantage is that, often, derivatives of sensor values
have to be approximated. In the cases where it is easy to obtain cor-
rect values of the derivatives, this approach is preferable used.

EXAMPLE 9.10: To continue the example above. With the static ap-
proach the MSO set {e1, e2, e4, ė4} is found, where equation ė4 is the
time derivative of equation e4. In this set, the dynamic state variable
X = ∅, the instantaneous state variables Z = {σ, ρD, ρ}, and the known
inputs U = {u1, u2, y2, yD

2 }. ⋄

9.6.5 Partially Static Approach

The direct and static approaches are two extremes. It is possible to
make a combination of the two approaches. If a subset of derivatives
of sensor values can be approximated then the MSO models will be
dynamic models with some dynamic states removed.

The main benefit is when the MSO models have a high index. By
careful selection of which sensor values to approximate, a new MSO

set with the same sets of equations but including some derivatives of
the equations can be found, and thereby the index can be reduced.

9.7 SOME COMMENTS ON REDUNDANCY

It is possible that an equation is redundant for some variable sub-
space while being non-redundant for the remaining sub-space. The
redundant equation vector Γ̄ such that the Jacobian is guaranteed to
be non-singular during the complete simulation. It is possible that for

some (Ẋ,X,Z,U) the Jacobian is singular. This singularity is induced

because ξT (Ẋ,X,Z,U)Γ̄ = 0 for some space (Ẋ,X,Z,U). The vector Γ̄

should be designed such that this space is avoided.

9.8 SOME COMMENTS ON STABILITY

From Section 9.5 some constraints on Γ have been stated. The prob-
lem is to find the additional constraints on Γ that guarantees stability
and give the residual good fault sensitivity. Depending on if the MSO

model is linear, bilinear, non-linear, etc., different methods can be used
to find the constraints. Note that the order of the highest derivative of
r can be chosen to simplify the stability analysis. For a deeper study
of the stability problem, see for example [FÅ05]. The stability problem
will not be further studied in this thesis.

10

RESIDUAL GENERATORS FOR A

SATELLITE MODEL

Two examples will be studied in this and the following chapter. The
first is an example of a non-linear point-mass satellite; while the sec-
ond is a part of a paper mill.

The first example is mainly used to illustrate the method described
in Chapter 9, for example how approximations of derivatives of sen-
sor values results in different sets of residual generators. The second
example’s main point is to demonstrate how the method can take ad-
vantage of the modeling language Modelica and the simulation tool
Dymola to extract and simulate the residual generators.

10.1 INTRODUCTION

This example is an ideal model of a non-linear point-mass satellite sys-
tem. It is taken from [Rug96, PI01]. Firstly the model is presented
in Section 10.2. After this, the direct, static, and partially static ap-
proachs are considered in Section 10.4, 10.5, and 10.6 respectively. Fi-
nally, some simulation results are presented in Section 10.7.

123

124 10.2 PHYSICAL MODEL

10.2 PHYSICAL MODEL

The equations G describing the model are

e1 : ρ̇ = υ

e2 : υ̇ = ρω2 − θ1
1

ρ2 + θ2u1 + d

e3 : ϕ̇ = ω

e4 : ω̇ = −2υω
ρ

+ θ2

(

u2

ρ
+

fu2

ρ

)

e5 : 0 = −y1 + ρ

e6 : 0 = −y2 + ϕ + fϕ

e7 : 0 = −y3 + ω

where ρ and υ are radius and radial speed, ϕ and ω are angle and
angular speed, u1 is radial and u2 tangential thrust, y1, y2, and y3

are sensor signals, d unknown disturbance, fu2
and fϕ bias fault in u2

and y2 respectively, and θ1 and θ2 are known constants. Equations
{e1, e2, e3, e4} defines the physical model and {e5, e6, e7} the sensor re-
lations.

The equations includes the following assumptions

ass(e2) = {ρ > 0,ω > 0, |u1| 6 1}

ass(e3) = {ω > 0}

ass(e4) = {ρ > 0,ω > 0, |u2| 6 1}

ass(e5) = {ρ > 0}

ass(e7) = {ω > 0}.

The variable space is therefore

Ω(G) = {ρ > 0,ω > 0, υ,ϕ, |u1| 6 1, |u2| 6 1, y1, y3, y2}.

The variable space limits the values for the state variables to positive
radius and positive angular speed, etc. The actuator fault is limited to
|fu2

| 6 1. Notice that sensor values y1, y2, and y3 are included in U,
since these are input data to the MSO models. There are no simulation
problems with the model.

10.3 STRUCTURAL MODEL

The structural description of the model is shown in Figure 10.1. The
variables are on the x-axis, and the equations are on the y-axis. A
circle ◦ means that the corresponding variable is included linearly, and
a cross × means that it is included non-linearly. Time derivative is

represented by ′, e.g. ρ ′ = dρ
dt

.

CHAPTER 10 RESIDUAL GENERATORS FOR A SATELLITE 125

rho rho´ v v´ omegaomega´ phi phi´ d fu2 fphi y1 y2 y3

{eq.1} − 1

{eq.2} − 2

{eq.3} − 3

{eq.4} − 4

{eq.5} − 5

{eq.6} − 6

{eq.7} − 7

nz = 6

FIGURE 10.1: Structural model for the satellite example.

10.4 DIRECT APPROACH

In the direct approach, the MSO-algorithm is given the structural model
and the information that no derivatives of sensor values can be ap-
proximated; see Section 9.6.2.

The MSO sets found by the MSO-algorithm are

MSO Equation set fu2
fϕ d

MSO1 {e3, e6, e7} 0 X 0

MSO2 {e1, e4, e5, e7} X 0 0

MSO3 {e1, e3, e4, e5, e6} X X 0

An X in position i, j in the incidence matrix, which is the rightmost part
of the table, means that set MSOi might be sensitive to fault j. From the
incidence matrix it can be concluded that it is ideally possible to detect
and isolate both faults.

10.4.1 Structurally Redundant Equations

A structural analysis shows that in the set MSO1, the equation e6 is
structurally redundant. The complete matching is shown in Figure 10.2.

It is, however, not possible to find a bipartite matching for the set
MSO2 and the set MSO3. A result of this is that it is not possible to trans-
form the MSO models to index zero without differentiation of sensor
equations. The reason for the high index is that it is not possible to
calculate υ from the equations. One solution to reduce the index is to
use an MSO model that includes equation e2, if this was the case, then
υ could be integrated from υ̇.

126 10.4 DIRECT APPROACH

e3 e6 e7

ϕ̇ ω r(n)

(a) Complete matching.

e3 e6 e7

ϕ̇ ω r(n)

(b) New structural graph.

FIGURE 10.2: Complete matching and a new structural graph.

10.4.2 Analytically Redundant Equations

The set of dynamic state variables ẋ is for set MSO1, ẋ1 = {ϕ̇}. The set
of instantaneous state variables z is z1 = {ω}.

The Jacobian for the set MSO1 is

J1 =





−1 1

0 0

0 1

∣

∣

∣

∣

∣

∣

Γ̄1



 .

The Jacobian determinant is

|J1| = ξΓ̄ = [0, 1, 0] Γ̄

and since ξ2 = 1, with Proposition 9.1 it is concluded that equation 2

is analytically redundant.

10.4.3 Design of Γ for set MSO1

A design example for Γ in set MSO1 will here be presented. A first
design choice is to add the residual and its first derivative to the MSO set.
A second design choice is to let the parameters Γ12 = Γ31 = Γ32 = 0.
This give the MSO model

0 =





−ϕ̇ + ω

−y2 + ϕ

−y3 + ω



 +





Γ11 0

Γ21 Γ22

0 0





[

r

ṙ

]

.(10.1)

In this case the model is linear and therefore, linear analysis will be
used to find the constraints for Γ11, Γ21, and Γ22. Transforming (10.1)
to the frequency domain results in

r =
y2s − y3

s2Γ22 + sΓ21 + Γ11

which is stable if for example Γ11 > 0, Γ21 > 0, and Γ22 > 0. The model
is stable with this design choice.

Notice that even though linear theory was used to find the con-
straints on Γ , the methods presented in Chapter 9 can not only be used
for the linear case. In the general non-linear case other methods for
stability analysis, for example Lyaponov theory, have to be used.

CHAPTER 10 RESIDUAL GENERATORS FOR A SATELLITE 127

10.5 STATIC APPROACH

In the static approach the derivatives, up to some order, of all sensor
values have to be approximated. The values are approximated using
some software algorithm. Here only the first derivative will be used.
The MSO-algorithm is given the information that all sensor derivatives
can be approximated and finds three different MSO sets. The set of MSO

sets found is

MSO Equation set fu2
fϕ d

MSO1̃ {e3, ė6, e7} 0 X 0

MSO2̃ {e1, e4, e5, ė5, e7, ė7} X 0 0

MSO3̃ {e1, e3, e4, e5, ė5, ė6, ė7} X X 0

Time differentiation of an equation, e.g. ė6, is performed analyti-
cally. For example, the MSO1̃ set of equations is the set {ϕD = ω, 0 =

−y2D + ϕD, 0 = −y3 + ω}.

10.5.1 Structurally Redundant Equations

For the three MSO models, the existence of bipartite matchings show
that all equations in all MSO sets are structurally redundant.

10.5.2 Analytically Redundant Equations

For the three MSO models, the dynamic state variables ẋ = ∅ and x = ∅.

The set of unknown instantaneous variables is z1̃ = {ϕD,ω}, z2̃ =

{ρD,ωD, ρ,ω, υ}, and z3̃ = {ρD, ϕD, ωD, ρ,ω, υ}. The Jacobians for
the three MSO models are

J1̃ =





−1 1

1 0

0 1

∣

∣

∣

∣

∣

∣

Γ̄ 1̃



 J2̃ =

















−1 0 0 0 1

0 −1 α −β λ

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ̄ 2̃

















J3̃ =





















−1 0 0 0 0 1

0 −1 0 0 1 0

0 0 −1 α −β λ

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ̄ 3̃





















where α = (2υω − θ2u2)) /ρ2, β = 2υ/ρ and λ = 2ω/ρ.

128 10.6 PARTIALLY STATIC APPROACH

The Jacobian determinants are for the three MSO models deter-
mined by ξ, where ξ for the three models are

ξ1̃ = [1, 1,−1]T

ξ2̃ = [−λ,−1, 1, α,−λ,−β,−1]T

ξ3̃ = [λ, β, 1, α, λ, β, 1]T .

Proposition 9.1 can be used to find out which equations that are
analytically redundant in the MSO models. A closer examination of the
set MSO3̃ shows that equations 3 and 7 are analytically redundant. To
check if the remaining equations are analytically redundant, calculate
the sets and check if they are empty,

{(ρ,ω, υ,ϕ)|ξ3̃
1 = ξ3̃

5 =
2ω

ρ
∈ 0, (ρ,ω, υ,ϕ) ∈ Ω(G)} = ∅

{(ρ,ω, υ,ϕ)|ξ3̃
2 = ξ3̃

6 =
2υ

ρ
∈ 0, (ρ,ω, υ,ϕ) ∈ Ω(G)} 6= ∅

{(ρ,ω, υ,ϕ)|ξ3̃
4 =

2υω − θ2u2

ρ2
∈ 0, (ρ,ω, υ,ϕ) ∈ Ω(G)}) 6= ∅.

From this it can be concluded that equation 2, 4, and 6 are not ana-
lytically redundant, while 1 and 5 are analytically redundant. Corre-
sponding calculations can be carried out for the other MSO models.

10.6 PARTIALLY STATIC APPROACH

In Section 10.4 it was concluded that the MSO2 model and the MSO3

model does not include any redundant equations. The problem is that
it is not possible to directly calculate υ from the set of equations. A
solution is to assume that it is possible to approximate the derivatives
for some the sensors.

It is in this section assumed that ẏ1 can be approximated. The two
MSO sets that corresponds to MSO2 and MSO3 in Section 10.4 are shown
below.

MSO Equation set fu2
fϕ d

MSO2̂ {e1, e4, e5, ė5, e7} X 0 0

MSO3̂ {e1, e3, e4, e5, ė5, e6} X X 0

The difference is that the differentiated equation ė5 is now included in
the MSO models.

10.6.1 Analytically Redundant Equations

For the set MSO2̂ the dynamic state variable ẋ2̂ = {ω̇}, and the instan-

taneous state variable z2̂ = {ρ, ρD, υ}. For the set MSO3̂ are ẋ3̂ = {ϕ̇, ω̇}

and z3̂ = {ρ, ρD, υ}.

CHAPTER 10 RESIDUAL GENERATORS FOR A SATELLITE 129

The Jacobian determinants are

|J2̂| = [0, 0, 0, 0, 1] Γ̄ 2̂

|J3̂| = [0, 0, 0, 0, 0, 1] Γ̄ 3̂.

This means that for MSO2̂ model and MSO3̂ model, equations 5 and 6
are analytically redundant, respectively.

10.6.2 Design of Γ for set MSO2̂

In Section 10.6.1 it was concluded that equation e7 in the MSO model
is analytically redundant. A residual generator can be designed with
the highest derivative n = 0, and parameters Γ11 = Γ31 = Γ41 = 0 and
Γ51 = 1. This results in

0 =













−ρD + υ

−ω̇ − 2υω/ρ + θ2u2/ρ

−y1 + ρ

−yD
1 + ρD

−y3 + ω













+













0 0

Γ21 Γ22

0 0

0 0

Γ51 Γ52













[

ṙ

r

]

.

Let Γ21 = KΓ51 and Γ22 = KΓ52. After some manipulation of the model
it can be seen that

ω̇ = −(
2yD

1

y1

+ K)ω +
θ2

y1

u2 + Ky3

Γ51ṙ + Γ52r = y3 − ω.

The model is locally stable if for example Γ51 > 0, Γ52 > 0, and
2yD

1 /y1 + K > 0. A design choice is K = −2yD
1 /y1 + K1 where K1 > 0.

10.7 SIMULATIONS

To test the functionality of the MSO models that was analyzed in this
chapter, two MSO models have been implemented.

10.7.1 Residual Generators

The MSO1 model is chosen from Section 10.4 and the MSO2̂ model is
chosen from Section 10.6. These MSO models are chosen because they
illustrate two different approaches. The sensor derivative needed in
MSO2̂ model is approximated with a discrete filter. MSO1 model is sen-
sitive to fault fϕ and MSO2̂ model to fault fu2

. The influence structure

130 10.7 SIMULATIONS

 1

 2

 3

30

210

60

240

90

270

120

300

150

330

180 0

FIGURE 10.3: The satellite’s movement in the polar plane. Start posi-
tion is marked with ◦, start of fault fϕ is marked with ⋆, fault fu2

is
marked with ⋄, and end position is marked with �.

is shown below.
MSO fu2

fϕ d

MSO1 0 X 0

MSO2̂ X 0 0

Full detectability and isolability are achieved.
The chosen MSO models are stable. MSO1 model has parameters

Γ11 = 0.2, Γ21 = 1 and Γ22 = 1. MSO2̂ model has parameters K1 = 0.1,
Γ51 = 1/2, and Γ52 = 1/4. The residuals have been scaled such that the
probability for false alarm is 0.04 % in the fault-free case. The threshold
is thereby set to ±1.

10.7.2 Simulation

The model and the two MSO models have been implemented in Simulink
[Mat05]. The disturbance d is implemented as band limited white
noise. Figure 10.3 shows the satellite’s movement in the polar plane.
The Start position is marked with a circle (◦), the start of fault fϕ with
a star (⋆), the start of fault fu2

with a diamond (⋄), and the end posi-
tion with a square (�). The satellite first moves in approximately the
same track, and then when the engines are used the satellite increases
its altitude.

CHAPTER 10 RESIDUAL GENERATORS FOR A SATELLITE 131

0 50 100 150
0

1

2

3
y

1

y
3

0 50 100 150
0

200

400

y 2 [d
eg

]

0 50 100 150
−1

0

1

C
on

tr
ol

 s
ig

na
l

Time [s]

u
1

u
2

FIGURE 10.4: Sensor values and control signals.

Figure 10.4 shows the sensor values and the control signals. Radial
thrust is applied at time 68 s to 98 s, and tangential thrust is applied
at time 85 s to 125 s. Figure 10.5 shows the applied faults. Fault fϕ

is applied at time 60 s with a size of 7.5◦ and removed at time 70 s.
Fault fu2

is introduced at time 90 s with a size of -0.4 and removed at
time 125 s. The actuator fault represents a complete loss of tangential
thrust.

10.7.3 Result

Figure 10.6 shows the residual values and the corresponding logic de-
cision. Fault fϕ is detected at time 60.1 s and fu2

at 98.3 s. As predicted,
the residual generator based on MSO1 reacts to the introduction of fault
fϕ and the residual generator based on MSO2̂ reacts to fault fu2

. The
first residual generator reacts weakly on the sensor fault, this can be
seen in the initial growth of the residual, and then the gradual return
to zero. Considering the satellite model, this result is not surprising.
Notice also that the residual detects the removal of the sensor fault.
The second residual generator reacts strongly to the actuator fault.

The conclusion is that both MSO models react to correct fault and
that detection and isolation are performed correct. The simulation results
show that the two MSO models that have been implemented react cor-
rectly to the introduced faults.

132 10.7 SIMULATIONS

0 50 100 150
0

2

4

6

8
f φ [d

eg
]

0 50 100 150

−0.4

−0.2

0

f u2

Time [s]

FIGURE 10.5: Fault signals.

0 50 100 150
−10

0

10

M
S

O
1

0 50 100 150
−2

−1

0

1

M
S

O
2^

0 50 100 150
 NF

f_phi

 f_u2

Time [s]

D
ia

gn
os

es

FIGURE 10.6: Residual values. The dashed lines are the thresholds. In
the bottom is the logical conclusion from the residuals’ values shown.

11
SIMULATIONS USING MODELICA

Residual generators are constructed and evaluated with the help of the
modeling language Modelica and the simulation tool Dymola. As an
experimental system, a part of the stock preparation and broke treat-
ment system in a paper mill is used. Four different residual genera-
tors are implemented and analyzed in this chapter. The objective is
to demonstrate how the method can take advantage of the modeling
language Modelica and the simulation tool Dymola to extract and sim-
ulate the residual generators.

11.1 MODELICA

Modelica is an object-oriented language for modeling of physical sys-
tems for simulation purposes [Fri04]. The language is non-causal in
its implementation and these non-causal properties are used in this
chapter. The simulation tool Dymola [Elm02] is used to perform the
actual simulations. The tool handles models defined in the Modelica
standard. Several solvers are implemented in Dymola, of which the
DASSL solver will be used in all the simulations in this chapter.

133

134 11.1 MODELICA

y2

y3

y5

y4

y1

W
a
te

r

To sedimentation

Pump2Tank

Pulper

u6

u1 u2

u3

To screen

Pipe1

F1 F2

Pipe2

Pipe9

F9

Pipe8

F8

u5

F10

Pipe10Pipe3

F3

Pipe4

F4

Pipe5

F5 Pipe6

F6

Pipe7

F7

u4

Pump1

M
ix

tu
re

W
a
te

r

C
y
c
lo

n
e

FIGURE 11.1: Schematic picture of the stock preparation and broke
treatment system. Flows are denoted by F, control signals by u, and
sensors by y.

CHAPTER 11 SIMULATIONS USING MODELICA 135

11.2 MODEL BACKGROUND

A first model of the system was developed by ABB Corporate Research.
One of the objectives was to use the model for model-based diag-
nosis. The original model was however not suitable for this objec-
tive, and it was therefore greatly simplified and presented in its new
form in [Bit01]. The model was analyzed with structural methods
in [Kry03, KN02].

11.3 STOCK PREPARATION AND BROKE

TREATMENT MODEL

The system used for the stock preparation and broke treatment part
of the paper mill is schematically shown in Figure 11.1. The system
is used to prepare paper mixture for use in the paper machines. The
system starts with recycled paper and water. The recycled paper is
simulated as a fluid with a high concentration of paper fibers; it is the
mixture flow in the figure. The two parts are mixed in the pulper tank
and when the concentration is right, the fluid is moved thru pipes to
a tank by using a pump. From this tank, the mixture is pumped to
a cyclone. The cyclone cleans the mixture, which is then sent to the
screening process. The model is described by a non-linear DAE that
will be described in this section.

11.3.1 Limitations

The intention with this project was not to construct a complete diag-
nostic system for the model. Therefore, only a part of the system was
thoroughly analyzed.

The system studied here is limited to the pulper, the tank, pipe one
to four, pump one, and five sensors. The sensors measure the level
and the concentration in the pulper, the outflow from the pulper, and
further the level and change of the level in the tank.

11.3.2 Variable Definitions

The variable definitions are shown in Table 11.1 and the type defini-
tions used in the model are shown in Table 11.2. Note that many of the
types are derived from the standard Modelica library Modelica.-
SIunits.

The specific constraints on the variables are also shown in the table.
Notable is that the concentration is limited to [0, 1]. These constraints

136 11.3 STOCK PREPARATION AND BROKE TREATMENT MODEL

TABLE 11.1: Variable definitions.

Description Variable Note
Dynamic state Li, χ i ∈ {1, 2}

Instantaneous state δcvi
, δfrici

, δpump, p,
Fi, Fair

3 , Ffluid
3

i ∈ {1, 2, 3}

Constant patm, pj, ai, bi, dj, g,
ρ, Aj, χj, F4

i ∈ {1, 2, 3}, j ∈ {1, 2}

Control signal ui i ∈ {1, 2, 3}

Sensor signal yi i ∈ {1, 2, 3, 4, 5}

Fault fyi
i ∈ {1, 2, 3, 4, 5}

define the variable space Ω(G), where G is the complete system. The
variable space is

Ω(G) = {Li > 0, Fi > 0, ui > 0, 0 6 χ 6 1}

where each Li is a level in a tank, Fi is a flow, ui is control signal, and
χ is concentration.

11.3.3 Model

The different sub-models are described below.

Pulper and Tank Equations

The fluid in the pulper consists of two parts. The state χ is the concen-
tration of paper mixture, i.e. when χ = 1 there is only paper mixture
in the tank, and when χ = 0 there is only water in the tank. The pres-
sure p is the pressure at the bottom of the tank where pipe three is
connected. The pulper model is

L̇1 =
1

A1

(F1 + F2 − F3)(11.1a)

χ̇ =
1

A1L1

(F1(χ1 − χ) + F2(χ2 − χ))(11.1b)

p = patm + gρL1.(11.1c)

As was mentioned in Section 11.3.1 only a part of the system is
analyzed in this project. Due to this, the concentration and bottom
pressure in the tank is not modeled. The tank model is therefore

L̇2 =
1

A2

(F3 − F4).(11.1d)

CHAPTER 11 SIMULATIONS USING MODELICA 137

TABLE 11.2: Type definitions.

Type Inherited type Add. constraint Variables
Control Real (min=0) ui

Sensor Real yi

Fault Real fi

Flow SIunits.Volume-
FlowRate

(min=0) Fi, Fair
3 ,

Ffluid
3 , F4

Height SIunits.Height (min=0) Li

Concentration Real (min=0, max=1) χ, χi

Pressure SIunits.Pressure (min= 0) p, patm, pi

Density SIunits.Density ρ

Area SIunits.Area Aj

Acceleration SIunits.-
Acceleration

g

SIunits Modelica.SIunits

Pipe One and Two

The pipe equations are modeled as pressure losses due to friction δfric

and control valves δcv. The pressure in the inlet to pipe one and two
are here assumed to be constant. The pipe models are

patm − pi = δcvi
+ δfrici

(11.2a)

δcvi
= −bi

F2
i

u2
i

(11.2b)

δfrici
= −aiF

2
i(11.2c)

where i ∈ {1, 2}.

Pipe Three

Pipe three is equipped with a constant speed pump that give a pres-
sure increase δpump. The model is

patm − p = δcv3
+ δfric3

+ δpump(11.3a)

δcv3
= −b3

F2
3

u2
3

(11.3b)

δfric3
= −a3F2

3(11.3c)

δpump = d1

√

1 −

(

F3

d2

)2

.(11.3d)

When the level in the tank reduces to zero, there will be a flow of air
going true the pipe instead of fluid. For simulation purposes, pipe 3’s

138 11.3 STOCK PREPARATION AND BROKE TREATMENT MODEL

flow is therefore partitioned into two parts, air Fair
3 and fluid Ffluid

3 .
Model equations (11.3a-11.3d) are used to extract the total flow thru
the pipe, while the following equations are used to partition the flow
into correct parts,

Ffluid
3 =

{

F3 if L > ǫ or F3 < F1 + F2

F1 + F2 otherwise
(11.3e)

Fair
3 + Ffluid

3 = F3(11.3f)

where ǫ = 2 · 10−6 is chosen to be above the tolerance level of 10−6.

Pipe Four

Pipe four is modeled as a constant flow. One can mention that the
actual process is controlled so that the flow to the cyclone and the con-
centration in the pulper is constant. The flow thru pipe four is there-
fore relatively constant, since the flow in pipe ten is small in normal
operation.

Sensor Equations

The system is equipped with five sensors. All of the sensors can be
affected by unknown sensor faults and are affected by sensor noise.

y1 = L1 + fy1
+ v1(11.4a)

y2 = χ + fy2
+ v2(11.4b)

y3 = F3 + fy3
+ v3(11.4c)

y4 = L2 + fy4
+ v4(11.4d)

y5 = L̇2 + fy5
+ v5.(11.4e)

The sensor-faults should be detected by the residual generators.

11.3.4 Simulation Problems with the Model

When the control signal is small, it is not possible to use the model
of the pipes. The problem is that the simulation software runs into
a division with zero problem when some control signal ui tends to
zero. A small positive number is therefore added to the control signals.
Equation (11.2b) and (11.3b) are thereby changed to

δcvi
= −bi

F2
i

u2
i + ǫ

CHAPTER 11 SIMULATIONS USING MODELICA 139

F1 F2 F3 F3 F4 L1 L1´ Xi Xi´ p L2 L2´ fy1 fy2 fy3 fy4 fy5 y1 y2 y3 y4 y5

{Pulper.1} − 1
{Pulper.2} − 2
{Pulper.3} − 3

{Pipe1} − 4
{Pipe2} − 5
{Pipe3} − 6
{Tank} − 7

{Pipe4} − 8
{Sensor1} − 9

{Sensor2} − 10
{Sensor3} − 11
{Sensor4} − 12
{Sensor5} − 13

nz = 8

FIGURE 11.2: Structural model for the tank system.

where ǫ = 2 · 10−6 for i ∈ {1, 2, 3}. This effectively limits the flows to
positive values. The variable space is therefore

(11.5) Ω(G) = {Li > 0, Fi > 0, ui > 0, 0 6 χ 6 1}.

11.3.5 Noise

The noise is band-limited white noise with mean value of zero. The
standard deviation is different for the different outputs. The standard
deviations are set to

σy1
= 0.06 σy2

= 0.02

σy3
= 0.004 σy4

= 0.04

σy3
= 0.004,

which results in a signal-to-noise ratio, SNR≈ 5. The noise is generated
in MATLAB and added to the outputs.

11.4 RESIDUAL GENERATORS

Four different residual generators are implemented in this section.
The complete analysis of the first two are presented, while for the last
two, only the final results are presented.

11.4.1 Sets of MSO Sets

The algorithm described in Section 9.3 is given the structural model
shown in Figure 11.2 as input. The notation in the figure was described
in Section 10.3.

For convenience, the equations have been merged into sets of equa-
tions corresponding to the different parts of the model. Consider for

140 11.4 RESIDUAL GENERATORS

example the three equations (11.2) belonging to pipe one; these equa-
tions have been merged to one structural equation, Pipe1. Notice that
this does not change the set of sets that are found, because the equa-
tions must be solved together. In for example Pipe1, the set of equa-
tions (11.2) must be solved together since the two variables δcv1

and
δcv2

are included in all three equations, while not being included in
any other equation. Therefore, the two last equations must be used
to solve for these two variables, while the first equation cannot be
included in an MSO set, without the two other also being included.
Only the equations that structurally must be used together have been
merged.

The MSO sets that were found are shown in Figure 11.3. In the
figure, a circle ◦ in row j and column i means that the equations in
row i includes the fault in column j, i.e. ideally a residual generator
using this equation will be sensitive to these faults. The four MSO sets
that are chosen to be implemented are number 2, 6, 12, and 13 in the
figure. These are chosen such that all faults are detectable and that
fault fy1

is isolatable, while the rest of the faults are isolatable from all
faults with exception to fy1

.

For example, the sixth MSO set in the figure use the relationship
between the flow in pipe one and two, the concentration in the pulper
(Pulper.2), and sensor one and two. The MSO set includes the dynamic
state χ and will be denoted MSO2.

The influence matrix for the chosen MSO sets is given in Table 11.3.
Notice that all faults are detectable and that fault fy1

is completely
isolatable. Faults fy2

, fy3
, fy4

, and fy5
are isolatable from each other

but not from fault fy1
.

TABLE 11.3: Influence matrix.

MSO set fy1
fy2

fy3
fy4

fy5
Equation set

MSO1(2) X 0 X 0 0 {S.1, S.3, Pipe3, Pulper.3}

MSO2(6) X X 0 0 0 {S.1, Pipe1, Pipe2, S.2, Pulper.2}

MSO3(12) X 0 0 X 0 {S.1, S.4, Pulper.3, Pipe3, Tank, Pipe4}

MSO4(13) X 0 0 0 X {S.1, S.5, Pulper.3, Pipe3, Tank, Pipe4}

CHAPTER 11 SIMULATIONS USING MODELICA 141

fy1 fy2 fy3 fy4 fy5 y1 y2 y3 y4 y5

{Sensor4,Sensor5} − 1
{Pulper.3,Pipe3,Sensor1,Sensor3} − 2

{Tank,Pipe4,Sensor3,Sensor4} − 3
{Tank,Pipe4,Sensor3,Sensor5} − 4

{Pulper.1,Pipe1,Pipe2,Sensor1,Sensor3} − 5
{Pulper.2,Pipe1,Pipe2,Sensor1,Sensor2} − 6

{Pulper.1,Pulper.2,Pipe1,Pipe2,Sensor2,Sensor3} − 7
{Pulper.1,Pulper.2,Pipe1,Sensor1,Sensor2,Sensor3} − 8
{Pulper.1,Pulper.2,Pipe2,Sensor1,Sensor2,Sensor3} − 9

{Pulper.1,Pulper.3,Pipe1,Pipe2,Pipe3,Sensor1} − 10
{Pulper.1,Pulper.3,Pipe1,Pipe2,Pipe3,Sensor3} − 11
{Pulper.3,Pipe3,Tank,Pipe4,Sensor1,Sensor4} − 12
{Pulper.3,Pipe3,Tank,Pipe4,Sensor1,Sensor5} − 13

{Pulper.1,Pulper.2,Pulper.3,Pipe1,Pipe2,Pipe3,Sensor2} − 14
{Pulper.1,Pulper.2,Pulper.3,Pipe1,Pipe3,Sensor1,Sensor2} − 15
{Pulper.1,Pulper.2,Pulper.3,Pipe1,Pipe3,Sensor2,Sensor3} − 16
{Pulper.1,Pulper.2,Pulper.3,Pipe2,Pipe3,Sensor1,Sensor2} − 17
{Pulper.1,Pulper.2,Pulper.3,Pipe2,Pipe3,Sensor2,Sensor3} − 18

{Pulper.1,Pipe1,Pipe2,Tank,Pipe4,Sensor1,Sensor4} − 19
{Pulper.1,Pipe1,Pipe2,Tank,Pipe4,Sensor1,Sensor5} − 20

{Pulper.2,Pulper.3,Pipe1,Pipe2,Pipe3,Sensor2,Sensor3} − 21
{Pulper.1,Pulper.2,Pipe1,Pipe2,Tank,Pipe4,Sensor2,Sensor4} − 22
{Pulper.1,Pulper.2,Pipe1,Pipe2,Tank,Pipe4,Sensor2,Sensor5} − 23

{Pulper.1,Pulper.2,Pipe1,Tank,Pipe4,Sensor1,Sensor2,Sensor4} − 24
{Pulper.1,Pulper.2,Pipe1,Tank,Pipe4,Sensor1,Sensor2,Sensor5} − 25
{Pulper.1,Pulper.2,Pipe2,Tank,Pipe4,Sensor1,Sensor2,Sensor4} − 26
{Pulper.1,Pulper.2,Pipe2,Tank,Pipe4,Sensor1,Sensor2,Sensor5} − 27

{Pulper.1,Pulper.3,Pipe1,Pipe2,Pipe3,Tank,Pipe4,Sensor4} − 28
{Pulper.1,Pulper.3,Pipe1,Pipe2,Pipe3,Tank,Pipe4,Sensor5} − 29

{Pulper.1,Pulper.2,Pulper.3,Pipe1,Pipe3,Tank,Pipe4,Sensor2,Sensor4} − 30
{Pulper.1,Pulper.2,Pulper.3,Pipe1,Pipe3,Tank,Pipe4,Sensor2,Sensor5} − 31
{Pulper.1,Pulper.2,Pulper.3,Pipe2,Pipe3,Tank,Pipe4,Sensor2,Sensor4} − 32
{Pulper.1,Pulper.2,Pulper.3,Pipe2,Pipe3,Tank,Pipe4,Sensor2,Sensor5} − 33

{Pulper.2,Pulper.3,Pipe1,Pipe2,Pipe3,Tank,Pipe4,Sensor2,Sensor4} − 34
{Pulper.2,Pulper.3,Pipe1,Pipe2,Pipe3,Tank,Pipe4,Sensor2,Sensor5} − 35

nz = 0

FIGURE 11.3: MSO sets found from the structural model.

11.4.2 Residual Generator One

The MSO model for the first MSO set is

g =



























p − patm − gρL1

patm − p − δcv3
− δfric3

− δpump

δcv3
+ b3

F2
3

u2
3

δfric3
+ a3F2

3

δpump − d1

√

1 −
(

F3

d2

)2

y1 − L1

y3 − F3



























+ ΓR = 0.

142 11.4 RESIDUAL GENERATORS

All equations are structurally redundant. To check if they are analyti-
cally redundant, the Jacobian is calculated

J =
∂g

∂[p, F3, L1, δcv3
, δfric3

, δpump, r(n)]T

=

























1 0 −(g ρ) 0 0 0

−1 0 0 −1 −1 −1

0 2 b3 F3

u3
2 0 1 0 0

0 2a3 F3 0 0 1 0

0 d1 F3

d2
2

√

1−
F3

2

d2
2

0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ̄

























and the Jacobian determinant is

|J| = ξ(·)Γ̄ =









1, 1, 1, 1, 1,−gρ,









2a3F3 +
d1F3

d2
2

√

1 −
F2

3

d2
2

+
2b3F3

u2
3

















Γ̄ .

Since the variable space was limited to positive flows (11.5), all equa-
tions are analytically redundant.

The system is static and is therefore stable. A design choice is to
use the first equation to define the residual variable. With Γ11 = 105,
Γ12 = αΓ11, and α = 2 a stable residual generator is formed.

Simulations showed that the equations are sensitive to noise when
L1 is small. Therefore an if-case is added to the residual generator. The
if-case is similar to the one used for pipe 3 in (11.3e). The implemen-
tation is

if (y1 >= beta_y1 and u3 >= beta_u3) then;
p = patm + g*rho*L1 + 1e5*der(res) + 1e5*alpha*res;

else;
0 = 1e5*der(res) + 1e5*alpha*res;

end if;

i.e. the residual tends to zero when the level in the tank or the flow out
of the tank is to low according to sensor y1 and actuator signal u3. In
the simulations the constants βy1

= 0.2 and βu3 = 0.005 are used.

CHAPTER 11 SIMULATIONS USING MODELICA 143

g1 g2 g3 g4 g5 g6 g7 g8 g9

χ̇ F1 F2 L1 δcv1
δcv2

δfric1
δfric2

r(n)

FIGURE 11.4: Perfect matching for the second MSO model.

11.4.3 Residual Generator Two

The model formed from the second MSO set is

g =

































χ̇ − 1
AL1

(F1(χ1 − χ) + F2(χ2 − χ))

patm − p1 − δcv1
− δfric1

δcv1
+ b1

F2
1

u2
1

δfric1
+ a1F2

1

patm − p2 − δcv2
− δfric2

δcv2
+ b2

F2
1

u2
2

δfric2
+ a2F2

2

y1 − L1

y2 − χ

































+ ΓR = 0.

A perfect matching is shown in Figure 11.4. It can be seen that the
last equation is structurally redundant and that no other equations are
structurally redundant. To see if it is analytically redundant, calculate
the Jacobian

J =
∂g

∂[χ̇, F1, F2, L1, δcv1
, δcv2

, δfric1
, δfric2

, r(n)]T
=































1 −−χ+χ1

A1L1
−−χ+χ2

A1L1

F1(χ1−χ)+F2(χ2−χ)

A1L2
1

0 0 0 0

0 0 0 0 −1 0 −1 0

0 2 b1 F1

u1
2 0 0 1 0 0 0

0 2a1 F1 0 0 0 0 1 0

0 0 0 0 0 −1 0 −1

0 0 2 b2 F2

u2
2 0 0 1 0 0

0 0 2a2 F2 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ̄































and the Jacobian determinant is

|J| =

[

0, . . . , 0,

(

−4a1a2F1F2 −
4a2b1F1F2

u2
1

−
4 a1 b2 F1 F2

u2
2

−
4 b1 b2 F1 F2

u1
2 u2

2

)

Γ̄9

]

.

144 11.4 RESIDUAL GENERATORS

Also here, the equation is analytically redundant since the variable
space was limited to positive flows.

A design choice is to let Γ11 = KΓ91 and Γ12 = KΓ92, where K is
some constant. Transformation of the dynamic and the analytically
redundant equation to frequency domain give

χ =

1
A1L1

(F1χ1 + F2χ2)

s + F1+F2

A1L1
+ K

.

The residual generator is stable if K > 0. The parameters Γ91 = 1,
Γ92 = 2, and K = 0.1 have been used in the simulations.

Similar to the first residual generator, this generator is also sensi-
tive to noise when L1 is small. The residual variable is therefore de-
fined by

if L1 >= beta then;
y2 = Xi + der(res) + alpha*res;

else;
0 = der(res) + alpha*res;

end if;

where the residual tends to zero when the level in the tank is greater
or equal to β = 0.2.

11.4.4 Residual Generator Three

Residual generator three uses an estimation of the flow thru pipe three
and relates this to the height in the tank. The dynamic state is L2 and
sensor equation (11.4d) is analytically redundant.

11.4.5 Residual Generator Four

Residual generator four is similar to generator three, with the differ-
ence that it uses sensor equation (11.4e). The MSO model is static and
all equations are analytically redundant.

11.4.6 Thresholds

If a residual’s value exceeds some stated threshold then an alarm is
generated. The threshold should be sufficiently high to reduce the
probability for false alarms, while being sufficiently low so that the
probability for missed detections are low.

The thresholds are here set such that the probability for false alarm
is 0.02 %. The noise is considered to be band limited white noise when
the thresholds are determined. A fault-free simulation is performed

CHAPTER 11 SIMULATIONS USING MODELICA 145

−0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
0

5000

10000

histogram of residual 1

−4 −3 −2 −1 0 1 2 3 4

x 10
−3

0

2000

4000

histogram of residual 2

−8 −6 −4 −2 0 2 4 6 8

x 10
−3

0

2000

4000

histogram of residual 3

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

5000

10000

histogram of residual 4

FIGURE 11.5: Histogram of the residuals from fault-free simulations.

and used to calculate the thresholds. Figure 11.5 shows histograms of
the four residuals in the fault-free case. It can be seen that the noises
are approximately normal distributed for all residuals.

The probability is determined from the cumulative normal dis-
tribution F(x) for the normal distribution N(0, σ). The probability
P(Alarm|NF) = 2·10−4, where NF means no-fault, therefore the thresh-
old T should be chosen such that

F(T) = 1 −
2 · 10−4

2
.

The standard deviations for the noises are determined from the fault-
free simulations. The thresholds are used to normalize the residuals
such that the thresholds are set to ±1.

11.5 SIMULATIONS

In the following pages, plots from different simulations are shown.
The figures show, sensor-values, control-signals, faults, and residual
values. Included are also the logic implications of the residuals’ val-
ues, i.e. the diagnoses.

146 11.5 SIMULATIONS

High Excitation Simulation

0 20 40 60 80 100
0

1

2

y1

0 20 40 60 80 100
0

0.5

1

y2

0 20 40 60 80 100
0

0.2

0.4

y3

0 20 40 60 80 100
1

2

3

y4

0 20 40 60 80 100
−0.2

0

0.2

y5

0 20 40 60 80 100
0

0.2

0.4

time [s]

C
on

tr
ol u1

u2
u3

0 20 40 60 80 100
−1

0

1

F
au

lt fy1
fy2
fy3
fy4
fy5

0 20 40 60 80 100
−1

0

1

re
s

1

0 20 40 60 80 100
−2

0

2

re
s

2

0 20 40 60 80 100
−10

0

10

re
s

3

0 20 40 60 80 100
−1

0

1

re
s

4

0 20 40 60 80 100
 NF
fy1
fy2
fy3
fy4
fy5

D
ia

gn
os

is

time [s]

FIGURE 11.6: High excitation of the states and no faults.

A simulation with high excitation of the state variables is performed
to test the model. The result is shown in Figure 11.6. Notice that the
tank is emptied around time 10 s. In the plot of sensor y2 it can be
seen how the concentration is changed between 0 and 1. The control
signals are shown in the lowest left plot and the fault signals in the
upper right plot.

Since the level in the tank is low in the time interval 10 to 60 s,
residual one, two, and four tends to zero during this time. As can be
seen in the plot of residual three, the results from this residual genera-
tor is faulty during this test. Therefore, it is necessary to either change
the residual’s definition, or to use an adaptive threshold that compen-
sates for the bad behavior of the residual. This has however not been
done in these simulations. All residual generators except the third are
below the threshold during the simulation.

The diagnoses are shown in the lowest right plot. At for example
time 0 s is the diagnosis NF (no fault), and at time 15 s it the diagnoses
fy4

or fy1
.

CHAPTER 11 SIMULATIONS USING MODELICA 147

Fault-Free Simulation

The results from a fault-free simulation are shown in Figure 11.7. The
rest of the simulations will use the same control signals as is used in
this simulation. As should be, the residuals’ values are mostly be-
low the thresholds during the simulation. There are some minor false
alarms, notably in the later part of the simulation. The false alarms
should be approximately 0.02 % of the samples, see Section 11.4.6.

Fault fy1

The result from a simulation where fy1
has been added is shown in

Figure 11.8. In the Figure, it can be seen that residual one and four do
not react until FFluid

3 deviates significantly from zero; compare sensor
y3 with the residuals at time 60 s.

Not all residuals react strongly enough, with the result that fy1
can

not be completely isolated. This can for example be seen in the plot of
residual three that is lowered when the fault is induced, but it is not
lowered such that it goes below the threshold. Residual two can be
seen to only weakly detect the fault.

Fault fy2

Fault fy2
has been induced in the simulation shown in Figure 11.9.

Residual two should react which is also the case. One can notice that
it reacts weakly on the induced fault. Since fault fy2

can not be isolated
from fault fy1

, the diagnosis is that fy1
or fy2

are faulty. This can be
seen in the right lowest plot.

Fault fy3

Fault fy3
has been induced in the simulation shown in Figure 11.10. As

it should be, residual one reacts to the fault. Notice that the residual
reacts strongly to the fault.

Fault fy4

Fault fy4
has been induced in the simulation shown in Figure 11.11.

As it should be, residual three reacts to the fault. The residual reacts
weakly on the induced fault.

Fault fy5

Fault fy5
has been induced in the simulation shown in Figure 11.12.

As it should be, residual four reacts to the fault. The residual reacts
strongly to the fault.

148 11.5 SIMULATIONS

0 20 40 60 80 100
0

2

4

y1

0 20 40 60 80 100
0

0.5

1

y2

0 20 40 60 80 100
0

0.1

0.2

y3

0 20 40 60 80 100
0

2

4

y4

0 20 40 60 80 100
−0.1

0

0.1

y5

0 20 40 60 80 100
0

0.5

1

time [s]

C
on

tr
ol u1

u2
u3

0 20 40 60 80 100
−1

0

1

F
au

lt fy1
fy2
fy3
fy4
fy5

0 20 40 60 80 100
−2

0

2

re
s

1

0 20 40 60 80 100
−1

0

1

re
s

2

0 20 40 60 80 100
−1

0

1

re
s

3
0 20 40 60 80 100

−2

0

2

re
s

4

0 20 40 60 80 100
 NF
fy1
fy2
fy3
fy4
fy5

D
ia

gn
os

is

time [s]

FIGURE 11.7: Result when no fault has been induced in the system.

0 20 40 60 80 100
0

2

4

y1

0 20 40 60 80 100
0

0.5

1

y2

0 20 40 60 80 100
0

0.1

0.2

y3

0 20 40 60 80 100
0

2

4

y4

0 20 40 60 80 100
−0.1

0

0.1

y5

0 20 40 60 80 100
0

0.5

1

time [s]

C
on

tr
ol u1

u2
u3

0 20 40 60 80 100
0

0.5

1

F
au

lt fy1
fy2
fy3
fy4
fy5

0 20 40 60 80 100
−5

0

5

re
s

1

0 20 40 60 80 100
−5

0

5

re
s

2

0 20 40 60 80 100
−2

0

2

re
s

3

0 20 40 60 80 100
−2

0

2

re
s

4

0 20 40 60 80 100
 NF
fy1
fy2
fy3
fy4
fy5

D
ia

gn
os

is

time [s]

FIGURE 11.8: Result when fault fy1
has been induced.

CHAPTER 11 SIMULATIONS USING MODELICA 149

0 20 40 60 80 100
0

2

4

y1

0 20 40 60 80 100
0

0.5

1

y2

0 20 40 60 80 100
0

0.1

0.2

y3

0 20 40 60 80 100
0

2

4

y4

0 20 40 60 80 100
−0.1

0

0.1

y5

0 20 40 60 80 100
0

0.5

1

time [s]

C
on

tr
ol u1

u2
u3

0 20 40 60 80 100
0

0.1

0.2

F
au

lt fy1
fy2
fy3
fy4
fy5

0 20 40 60 80 100
−1

0

1

re
s

1

0 20 40 60 80 100
−20

0

20

re
s

2

0 20 40 60 80 100
−1

0

1

re
s

3

0 20 40 60 80 100
−2

0

2

re
s

4

0 20 40 60 80 100
 NF
fy1
fy2
fy3
fy4
fy5

D
ia

gn
os

is

time [s]

FIGURE 11.9: Result when fault fy2
has been induced.

0 20 40 60 80 100
0

2

4

y1

0 20 40 60 80 100
0

0.5

1

y2

0 20 40 60 80 100
0

0.1

0.2

y3

0 20 40 60 80 100
0

2

4

y4

0 20 40 60 80 100
−0.1

0

0.1

y5

0 20 40 60 80 100
0

0.5

1

time [s]

C
on

tr
ol u1

u2
u3

0 20 40 60 80 100
0

5
x 10

−3

F
au

lt fy1
fy2
fy3
fy4
fy5

0 20 40 60 80 100
−10

0

10

re
s

1

0 20 40 60 80 100
−2

0

2

re
s

2

0 20 40 60 80 100
−1

0

1

re
s

3

0 20 40 60 80 100
−2

0

2

re
s

4

0 20 40 60 80 100
 NF
fy1
fy2
fy3
fy4
fy5

D
ia

gn
os

is

time [s]

FIGURE 11.10: Result when fault fy3
has been induced.

150 11.5 SIMULATIONS

0 20 40 60 80 100
0

2

4

y1

0 20 40 60 80 100
0

0.5

1

y2

0 20 40 60 80 100
0

0.1

0.2

y3

0 20 40 60 80 100
0

2

4

y4

0 20 40 60 80 100
−0.1

0

0.1

y5

0 20 40 60 80 100
0

0.5

1

time [s]

C
on

tr
ol u1

u2
u3

0 20 40 60 80 100
0

0.1

0.2

F
au

lt fy1
fy2
fy3
fy4
fy5

0 20 40 60 80 100
−1

0

1

re
s

1

0 20 40 60 80 100
−1

0

1

re
s

2

0 20 40 60 80 100
−5

0

5

re
s

3
0 20 40 60 80 100

−2

0

2

re
s

4

0 20 40 60 80 100
 NF
fy1
fy2
fy3
fy4
fy5

D
ia

gn
os

is

time [s]

FIGURE 11.11: Result when fault fy4
has been induced.

0 20 40 60 80 100
0

2

4

y1

0 20 40 60 80 100
0

0.5

1

y2

0 20 40 60 80 100
0

0.1

0.2

y3

0 20 40 60 80 100
0

2

4

y4

0 20 40 60 80 100
−0.1

0

0.1

y5

0 20 40 60 80 100
0

0.5

1

time [s]

C
on

tr
ol u1

u2
u3

0 20 40 60 80 100
0

5
x 10

−3

F
au

lt fy1
fy2
fy3
fy4
fy5

0 20 40 60 80 100
−1

0

1

re
s

1

0 20 40 60 80 100
−1

0

1

re
s

2

0 20 40 60 80 100
−1

0

1

re
s

3

0 20 40 60 80 100
−10

0

10

re
s

4

0 20 40 60 80 100
 NF
fy1
fy2
fy3
fy4
fy5

D
ia

gn
os

is

time [s]

FIGURE 11.12: Result when fault fy5
has been induced.

12
CONCLUSIONS PART II

Residual generators have been designed from minimally structurally
overdetermined sets of equations with an extra residual variable, de-
noted MSO models. Instead of analytically transforming the MSO mod-
els from DAEs into some specific residual generator form, simulation
was used. The result is simulation based residual generators. Since
it is not possible to add the residual variable arbitrary, constraints on
how the residual variable could be added have been stated. The con-
straints can be partitioned into two parts. Firstly, the residual variable
must be added to an analytically redundant equation. Secondly, it
must be added in such a way that the MSO model is stable.

The relationship between approximations of derivatives of sensor
values and evaluation complexity has been studied. It has been shown
that it is possible to obtain simplifications of the MSO models, at the
expense of approximations of derivatives of sensor values. If approx-
imations of derivatives are allowed, then high index MSO models can
often be relaxed to lower index MSO models.

In Chapter 10, the method was demonstrated on a satellite sys-
tem. It was exemplified how different residual generators could be
designed depending on which derivatives of sensor values that were
approximated. It was in Chapter 11 demonstrated how the method
can take advantage of a DAE simulator like Dymola, which uses the
modeling language Modelica. In this non-trivial example from a pa-
per mill, it was demonstrated how to extract the equations from the
implemented model, how to add a residual variable, and how to sim-
ulate the resulting residual generator.

151

REFERENCES

[ALW+03] M. Albert, T. Längle, H. Wörn, M. Capobianco, and
A. Brighenti, Multi-agent systems for industrial diagnostics,
Proceedings of IFAC Safeprocess’03 (Washington, USA),
2003.

[AP98] U. M Ascher and L. R Petzold, Computer methods for ordi-
nary differential equations and differential-algebraic equations,
siam, 1998.

[ATL02] Martin Albert and Heinz Wörn Thomas Längle, Develop-
ment tool for distributed monitoring and diagnosis systems,
13th Workshop on Principles of Diagnosis, DX’02 (Sem-
mering, Austria), 2002.

[Axe04] Tobias Axelsson, Diagnosis system conceptual design utilizing
structural methods - applied on a UAV’s fuel system, Master’s
thesis, Linköpings Universitet, SE-581 83 Linköping, 2004.

[BCF+04] Jonas Biteus, Gunnar Cedersund, Erik Frisk, Mattias
Krysander, and Lars Nielsen, Improving airplane safety by
incorporating diagnosis into existing safety practice, Tech.
Report LiTH-R-2648, Dept. of Electrical Engineering,
Linköpings universitet, Sweden, 2004.

153

154 REFERENCES

[Bit01] Jonas Biteus, Diagnosis of fluid systems utilizing gröbner
bases and filtering of consistency relations, Master’s thesis,
Linköpings Universitet, SE-581 83 Linköping, 2001.

[Bit02] , Mean value engine model of a heavy duty diesel en-
gine, Tech. Report LiTH-ISY-R-2666, Dept. of Electrical En-
gineering, Linköpings universitet, Sweden, 2002.

[BJN04] Jonas Biteus, Mathias Jensen, and Mattias Nyberg, Decen-
tralized diagnosis in heavy duty vehicles, CCSSE (Norrköping,
Sweden), 2004.

[BJN05] , Distributed diagnosis for embedded systems in automo-
tive vehicles, IFAC World Congress (Praha, Czech Repub-
lic), 2005.

[BN02] Jonas Biteus and Mattias Nyberg, Dynamic evaluation of
minimal structurally singular sets, CCSSE (Norrköping,
Sweden), 2002.

[BN03] , Residual generators for DAE systems utilizing min-
imal subsets of model equations, 5th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Pro-
cesses, SAFEPROCESS (Washington, D.C., U.S.A.), June
2003.

[Bre96] Gerhard Brewka (ed.), Reasoning in description logics, Stud-
ies in Logic, Language and Information, CSLI Publica-
tions, 1996.

[CG95] Stephen L. Campell and C. William Gear, The index of
general nonlinear DAEs, Numerische Mathematik (1995),
no. 72, 173–196.

[CP99] Jie Chen and R.J. Patton, Robust model-based fault diagnosis
for dynamic systems, Kluwer Academic Publishers, 1999.

[dK92] John de Kleer, Focusing on probable diagnoses, Readings in
Model-Based Diagnosis (W. Hamscher, L. Console, and
John de Kleer, eds.), Morgan Kaufmann Publishers, 1992.

[dKMR92] Johan de Kleer, Alan K. Mackworth, and Raymond Reiter,
Characterizing diagnoses and systems, Artificial Intelligence
56 (1992), no. 2-3.

[Elm02] Hilding Elmqvist, Dymola, user’s manual, Dynasim AB,
Lund, Sweden, 4.2b ed., 2002.

REFERENCES 155

[FÅ05] Erik Frisk and Jan Åslund, An observer for semi-explicit
differential-algebraic systems, Proceedings of IFAC World
Congress (Prague, Czech Republic), July 2005.

[FDKC03] Erik Frisk, Dilek Düştegör, Mattias Krysander, and Vin-
cent Cocquempot, Improving fault isolability properties by
structural analysis of faulty behavior models: application to the
DAMADICS benchmark problem, Proceedings of IFAC Safe-
process’03 (Washington, USA), 2003.

[Fri01] Erik Frisk, Residual generation for fault diagnosis, Ph.D. the-
sis, Linköpings Universitet, November 2001.

[Fri04] Peter Fritzson, Principles of object oriented modeling and sim-
ulation with modelica 2.1, Wiley, 2004.

[Har69] Frank Harary, Graph theory, Addison-Wesley Publishing
Co., Boston, U.S.A., 1969.

[Hay99] C.C. Hayes, Agents in a nutshell-a very brief introduction,
Knowledge and Data Engineering, IEEE Transactions on
11 (1999), no. 1, 127–132.

[HCK92] W. Hamscher, L. Console, and John Kleer, de (eds.), Read-
ings in model-based diagnosis, Morgan Kaufmann Publish-
ers, 1992.

[HVL05] D. Hristu-Varsakelis and W. S. Levine, The handbook of net-
worked and embedded control systems, Springer Verlag, 2005,
Contributions by Lars Nielsen.

[KKZ02] J. Kurien, X. Koutsoukos, and F. Zhao, Distributed diagno-
sis of networked, embedded systems, Thirteenth International
Workshop on Principles of Diagnosis (Semmering, Aus-
tria), May 2002.

[KN02] Mattias Krysander and Mattias Nyberg, Structural analy-
sis utilizing MSS sets with application to a paper plant, 13th
International Workshop on Principles of Diagnosis (Sem-
mering, Austria), 2002.

[Kry03] Mattias Krysander, Design and analysis of diagnostic systems
utilizing structural methods, Tech. report, Vehicular Sys-
tems, Dept. of Electrical Engineering, 2003, LiU-TEK-LIC-
2003:37, Thesis No. 1038.

[KS03] et al. Köppen-Seliger, Magic: An integrated approach for di-
agnostic data management and operator support, Proceedings
of IFAC Safeprocess’03 (Washington, USA), 2003.

156 REFERENCES

[KÅN05] Mattias Krysander, Jan Åslund, and Mattias Nyberg, An
efficient algorithm for finding over-constrained sub-systems for
construction of diagnostic tests, 16th Workshop on Principles
of Diagnosis, DX’05 (California, USA), June 2005.

[LS01] J. Lunze and J. Schröder, State observation and diagnosis of
discrete-event systems described by stochastic automata, Dis-
crete Event Dynamic Systems 11 (2001), no. 4, 319–369.

[Mat05] The Mathworks Inc., Natick, Massachusetts, U.S.A., Mat-
lab, 7.0 ed., 2005.

[MS92] Sven Erik Mattsson and Gustaf Söderlind, A new tech-
nique for solving high-index DAE using dummy derivatives,
Computer-Aided Control System Design (Napa, USA),
IEEE, March 1992, pp. 218–224.

[NF05] Mattias Nyberg and Erik Frisk, Model based diagnosis of
tehcnical processes, Printed by the Institution of Electrical
Engineering, Linköpings universitet, 2005.

[Nyb99] Mattias Nyberg, Model based fault diagnosis: Methods, theory,
and automotive engine applications, Ph.D. thesis, Linköpings
Universitet, June 1999.

[Par98] Van Dyke Parunak, H., What can agents do in industry, and
why? an overview of industrially-oriented R&D at CEC, Lec-
ture Notes in Computer Science 1435 (1998).

[PFC00] Ron Patton, Paul Frank, and Robert Clark (eds.), Issues of
fault diagnosis for dynamic systems, Springer, 2000.

[PI01] Claudio De Persis and Alberto Isidori, A geometric approach
to nonlinear fault detection and isolation, IEEE Trans. on Au-
tomatic Control 46 (2001), no. 6, 853–865.

[Pro02] Gregory Provan, A model-based diagnosis framework for
distributed systems, Proc. of the Thirteenth International
Workshop on Principles of Diagnosis (Semmering, Aus-
tria), May 2002.

[Red03] Red hat, Inc., Raleigh, North Carolina, U.S.A., Red hat, 9
ed., 2003.

[Rei87] Raymond Reiter, A theory of diagnosis from first principles,
Artificial Intelligence 32 (1987), no. 1, 57–95.

[RTF03] X. Ren, H. A. Thompson, and P. J. Fleming, Intelligent
agents for distributed fault diagnosis, Proceedings of IFAC
Safeprocess’03 (Washington, USA), 2003.

REFERENCES 157

[RTW03] Nico Roos, ten Teije, Annette, and Cees Witteveen, A pro-
tocol for multi-agent diagnosis with spatially distributed knowl-
edge, 2nd Conference on Autonomous Agents and Mult-
Agent Systems (Australia), July 2003.

[Rug96] Wilson J. Rugh, Linear system theory, 2nd ed., Prentice Hall,
Upper Saddle River, USA, 1996.

[V+95] Vaithianathan Venkatasubramanian et al., Local bifurcations
and feasibility regions in differential-algebraic systems, IEEE
Transactions on Automatic Control AC-40 (1995), no. 12,
1992–2013.

[Wot01] Franz Wotawa, A variant of reiter’s hitting-set algorithm, In-
formation Processing Letters (2001), no. 79, 45–51.

[ÅBF+05] Jan Åslund, Jonas Biteus, Erik Frisk, Mattias Krysander,
and Lars Nielsen, A systematic inclusion of diagnosis perfor-
mance in fault tree analysis, IFAC World Congress (Praha,
Czech Republic), 2005.

NOTATION

Acronyms

Type Symbol Description
Acronyms ECU Electronic control unit

DTC Diagnostic trouble code
CAN Controller area network
MCMD Minimal cardinality module diagnoses
FDI Fault detection and isolation
ODE Ordinary differential equations
DAE Differential algebraic equations

Symbols

Type Symbol Description
Symbols O Ordo

(Proper subset
¬ Not
⊥ False
⊤ True
{} Unordered set
() Ordered set

159

160

Type Symbol Description
∃ Exists
∧ Conjunction (and)
∨ Disjunction (or)
| · | Cardinality (size)

Part I

Type Symbol Description
Acronyms mc Minimal cardinality

ec Extended cardinality
mec Minimal extended cardinality
mod Module
MCMD minimal cardinality module diagnoses

Sets X Sets, often calligraphic letters
x Elements, often lower case letters

Model A Agents
A Agent
C Components
c Component or object
IN Inputs
I Sub-set of inputs
i Input
OUT Outputs
P Sub-set of outputs
σ Output
Θ Objects
θ Object
A,B,C, . . . Components in examples

System STRU Structural descriptions
SD System description
OBS Observations
SE Assumptions and equations
E Equations
CR Computation requirements
TEST Tests
TC Test conditions

161

Type Symbol Description
Diagnoses D Global diagnoses

D Local diagnoses
D Diagnosis
Π Conflicts
π Conflict
S Hitting sets
S Hitting set

Modes mode(M,c) Object c is in mode M

AB(c) Abnormal, mode(AB, c)

A(c) AB(c) or ¬AB(c)

Functions minS(·) Minimal set representation
con(·) Connections
conA(·) Connection from agents
ass(·) Assumptions
dep(·) Dependency
ϕC(·) Complete component representation
≃ Equal considering minimal diagnoses
ϕC

= ϕC(·) equality
×∪ Merge
rx Received transmission
tx Transmitted transmission
ΩA Virtual component from agent A

SA Supporting information from agent A

ΨΩ(·) Replacement of all Ω

ΨS(·) Replacement of all S

MCMDs informed Informed variables
L Lower limit
U Upper limit

Part II

Type Symbol Description
Acronyms MSO Minimal structurally overdetermined

Model G Th model consisting of of DAEs
g Sub-set G

X Dynamic state variables
Z Instantaneous state variables
U Known variables

162

Type Symbol Description
Y Sensor variables
F Fault variables
x, z, u, y, f Subsets of X,Z,U,Y,F respectively

Other variables J Jacobian
Ω Variable space
ξ Vector in the Jacobian determinant
Γ Parameter matrix for R

r Residual variable
R [r, ṙ, . . . , r(n)]

Functions ass(·) Assumptions

	Thesis Introduction
	Outline of the Thesis
	Contributions of the Thesis
	Publications
	Introduction to Fault Diagnosis

	Part I. Distributed Diagnosis
	Introduction Part I
	A Typical Distributed System
	Outline of Part I
	Related Work
	Publications

	Background to Consistency Based Diagnosis
	Consistency Based Diagnosis
	Behavioral Modes
	Diagnoses
	Conflicts
	Relations between Conflicts and Diagnoses
	Diagnostic Tests and Conflicts

	Distributed Diagnostic Systems
	System Description in a Distributed Environment
	Object Diagnoses
	Object conflicts
	Minimality operator
	System Description for an Agent
	The Structural Description

	Diagnostic Tests
	Fault Propagation
	Distributed Diagnosis
	Relation between Local and Global Diagnoses
	Complete Component Representation
	Probabilistic reasoning
	Global Diagnoses represented as Module Diagnoses
	Probabilistic Reasoning
	Minimal Cardinality Diagnoses
	Minimal Cardinality Module Diagnoses
	When are the Minimal Cardinality Diagnoses the most Probable Diagnoses?
	Extended Cardinality

	Scania Equivalence

	Extending Local Diagnoses
	Distribution of Diagnostic Information
	From Conflicts to Diagnoses
	Extending Local Conflicts and Local Diagnoses

	Sharing Local Conflicts
	Different Approaches to Decide which Conflicts to Share Between the Agents
	Reducing the Size of Each Transmitted Conflict

	Sharing Local Diagnoses
	How to Transmit Local Diagnoses
	Reducing the Size of Transmitted Diagnoses

	Algorithms for Extending Local Diagnoses
	Conflicts in Different Representations
	Extending Diagnoses thru Sharing of Conflicts
	Extending Diagnoses thru Sharing of Diagnoses
	Update Extended Diagnoses

	Simulations
	Simulation Model
	Transfer Times
	Detection Degree
	Hardware
	Limitations
	Simulations
	Result

	Minimal Cardinality Global Diagnoses
	Finding all Module Minimal Cardinality Diagnoses
	Main Algorithm
	Outline of The Algorithm

	Find Sub Graph G -- Algorithm ??
	Finding the Merge Order R -- Algorithm ??
	Update Agent -- Algorithm ??
	Correctness of the Algorithms
	Simulations
	Simulation Model
	Limitations
	Simulations
	Result

	Conclusions Part I

	Part II. Simulation Based Residual Generators
	Introduction Part II
	Outline of Part II
	Related Work
	Publications

	Simulation Based Residual Generators
	Simulation Tools
	System Model
	Mss sets of Equations
	Residual Generators
	Redundant Equations
	Bipartite Matching
	Structurally and Analytically Redundant Equations
	Finding Structurally Redundant Equations
	Finding Analytically Redundant Equations

	Approaches to Extract mso Sets
	Finding mso Sets given a Structural Model
	Direct Approach
	Using Derivative Approximations
	Static Approach
	Partially Static Approach

	Some Comments on Redundancy
	Some Comments on Stability

	Residual Generators for a Satellite
	Introduction
	Physical Model
	Structural Model
	Direct Approach
	Structurally Redundant Equations
	Analytically Redundant Equations
	Design of for set mso1

	Static Approach
	Structurally Redundant Equations
	Analytically Redundant Equations

	Partially Static Approach
	Analytically Redundant Equations
	Design of for set mso

	Simulations
	Residual Generators
	Simulation
	Result

	Simulations using Modelica
	Modelica
	Model Background
	Stock Preparation and Broke Treatment Model
	Limitations
	Variable Definitions
	Model
	Simulation Problems with the Model
	Noise

	Residual Generators
	Sets of mso Sets
	Residual Generator One
	Residual Generator Two
	Residual Generator Three
	Residual Generator Four
	Thresholds

	Simulations

	Conclusions Part II
	Notation

