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Abstract

Control and diagnosis of complex systems demand accurate knowledge of cer-
tain quantities to be able to control the system efficiently and also to detect
small errors. Physical sensors are expensive and some quantities are hard or
even impossible to measure with physical sensors. This has made model-based
estimation an attractive alternative.

Model-based estimators are sensitive to errors in the model and since the
model complexity needs to be kept low, the accuracy of the models becomes
limited. Further, modeling is hard and time consuming and it is desirable to de-
sign robust estimators based on existing models. An experimental investigation
shows that the model deficiencies in engine applications often are stationary
errors while the dynamics of the engine is well described by the model equa-
tions. This together with fairly frequent appearance of sensor offsets have led
to a demand for systematic ways of handling stationary errors, also called bias,
in both models and sensors.

In the thesis systematic design methods for reducing bias in estimators are
developed. The methods utilize a default model and measurement data. In
the first method, a low order description of the model deficiencies is estimated
from the default model and measurement data, resulting in an automatic model
augmentation. The idea is then to use the augmented model for estimator
design, yielding reduced stationary estimation errors compared to an estimator
based on the default model. Three main results are: a characterization of
possible model augmentations from observability perspectives, an analysis of
what augmentations that are possible to estimate from measurement data, and
a robustness analysis with respect to noise and model uncertainty.

An important step is how the bias is modeled, and two ways of describing
the bias are introduced. The first is a random walk and the second is a pa-
rameterization of the bias. The latter can be viewed as an extension of the
first and utilizes a parameterized function that describes the bias as a func-
tion of the operating point of the system. The parameters, rather than the
bias, are now modeled as random walks, which eliminates the trade-off between
noise suppression in the parameter convergence and rapid change of the offset
in transients. This is achieved by storing information about the bias in dif-
ferent operating points. A direct application for the parameterized bias is the
adaptation algorithms that are commonly used in engine control systems.

The methods are applied to measurement data from a heavy duty diesel
engine. A first order model augmentation is found for a third order model and
by modeling the bias as a random walk, an estimation error reduction of 50 %
is achieved for a European transient cycle. By instead letting a parameter-
ized function describe the bias, simulation results indicate similar, or better,
improvements and increased robustness.
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Introduction

Stricter emission legislations and customer demands on low fuel consumption
drive the technical development of engines and force new solutions to be in-
troduced. On diesel engines are for example exhaust gas recirculation (EGR)
and variable geometry turbo (VGT) systems introduced, see Figure 1.1. The
technical development, with increased system complexity and tightened require-
ments from customers and legislators, increases the demands on the control and
diagnosis systems. Two examples of important quantities that significantly af-
fect the emissions of diesel engines are air to fuel ratio and EGR-fraction. As
a consequence of the increased demands on the control and diagnosis system,
the information quality of these quantities have to be increased, or new quan-
tities that are hard, or even impossible, to measure with physical sensors have
to be introduced. Furthermore, there is a desire to keep the costs down, that
is, it is desirable to have as few, cheap, and reliable sensors in the system as
possible. This has made estimation an important and active research area,
see (Lino et al., 2008; García-Nieto et al., 2008; Andersson and Eriksson, 2004)
for some examples.

To achieve cost-effective estimation with high accuracy, model based esti-
mators are often used. This has driven the development of new models that
are suitable for estimator design. These models have to be simple enough to be
evaluated in real time, in for example an engine control unit, and at the same
time describe the system behavior accurately enough for the estimation task.
Development of models like this is a delicate balance between computational
complexity of the model and how well it manages to describe the true system.
Typically a large engineering effort is spent on modeling, which often is based on

1



2 Chapter 1. Introduction

(a) Exhaust gas recirculation (EGR) system (b) Variable geometry turbo (VGT)

Figure 1.1: Technical solutions introduced on modern diesel engines to be able
to fulfill the stricter emission legislations.

first law physics. In spite of the significant amount of work devoted to modeling
there will always be errors in the model.

In all model-based control or diagnosis systems, the performance of the
system is directly dependent on the accuracy of the model. In addition, as
stated above, modeling is time consuming and even if much time is spent on
physical modeling, there will always be errors in the model. This is especially
true if there are constraints on the model complexity, as is the case in most
real time applications. Another scenario is that a model developed for some
purpose, for example control, exists but needs improvement before it can be
used for other purposes, for example diagnosis. That is, there exist a lot of
models, on which much modeling time is spent, that needs improvement before
they can be used in an application. Hereafter these already available models
will be called default models. There is a desire for a systematic method for
improving these default models without involving further system or component
modeling efforts.

In engine control and engine diagnosis it is crucial to have unbiased esti-
mates. In model-based diagnosis, the true system is often monitored by com-
paring measured signals to estimated signals. If the magnitude of the difference,
the residual, is above a certain limit a decision that something is wrong is made.
In engine control, one objective is to maximize torque output while keeping the
emissions below legislated levels and the fuel consumption as low as possible.
Here, stationary estimation errors are crucial since fuel consumption and emis-
sions often are in direct conflict with each other. If the stationary estimation
errors can be reduced then the control system can balance closer to the emission
limits without risking crossing them. For diesel engines this is especially hard
since the control system does not normally have any feedback information from
a λ- or NOx-sensor and have to rely on estimated signals instead (Wang, 2008).
In both cases, biased estimates impair the performance, and it is obvious that
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there is a desire for methods that reduce the stationary model errors.
During the development of engines and engine control systems a lot of test

are performed in engine test cells and measurement data are collected. This
means that there are a lot of measurements from the engine and that it is fairly
easy to gain new measurements.

1.1 Problem Statement and Solution

Based on the discussion above about model quality and the normally very good
availability to measurement data from the real system. The objective of this
thesis is to develop systematic methods for reducing stationary estimation errors
when a default model and measurement data is given, this without involving
further modeling efforts.

The starting point is a default model and measurement data from the true
system. From this it can be determined if the model describes the system
sufficiently well or if it has to be modified to be applicable to the current esti-
mation application. In this thesis only modifications with respect to stationary
estimation errors are considered.

If it is concluded that the model suffer from too large stationary errors and
cannot be used in its current state. Then the methods for reducing stationary
estimation errors developed in this thesis can be applied.

Basically, the ideas in the methods are to augment the default model with
bias states to compensate for operating point dependent stationary errors. Then
this augmented model can be used in any suitable estimator design to get an
estimator that has reduced stationary errors compared to using the default
model directly.

1.2 System Overview

This section serves as an overview of the system and the default model that are
used for evaluation of the developed methods throughout this thesis. It also in-
troduces the nomenclature used, and presents two important control quantities
used in the control of diesel engines. Even though the methods developed in this
thesis are not specially devoted to engine applications they are all applied and
evaluated on the gas flow system of a Scania heavy duty diesel engine presented
in Figure 1.2.

The default model used in the evaluations of the methods throughout this
thesis is developed in (Wahlström and Eriksson, 2006), and presented in Ap-
pendix A. A schematic of the model is presented in Figure 1.3, where most of
the modeled variables are presented. Control inputs to the model are injected
amount of fuel uδ, and EGR and VGT positions uegr and uvgt. Besides the
control inputs, the engine speed ne is used as a parameterization input, and
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Figure 1.2: Illustration of the Scania inline six cylinder engine with VGT and
EGR used for evaluation throughout the thesis.

thus the engine model can be expressed in state space form as

ẋ = f(x, u, ne).

That the engine speed is used as an input to the model is due to the fact that
the modeling is focused on the gas flows and does not include modeling of the
produced torque. States are intake and exhaust manifold pressures pim and
pem, and turbine speed ntrb. Also presented in Figure 1.3 are the, compressor
mass-flow Wc, EGR mass-flow Wegr, mass-flow into the engine Wei, mass-flow
out of the engine Weo, and turbine mass-flow Wt. Outputs from the model are
the states, pim, pem, and ntrb, and the compressor mass-flow Wc.

Besides these variables the air to fuel ratio

λ =
Wair

Wfuel (A/F )s

and EGR-fraction

EGRfrac =
Wegr

Wei

,

are used, where Wair and Wfuel are the mass-flow of fresh air and fuel into the
engine and (A/F )s is the stoichiometric mixture of air and fuel. The reasons for
using these are their impact on the emissions and that they both are dependent
on the air mass-flow into the cylinders.



1.3. Contributions 5

EGR cooler

Exhaust
manifold

CompressorIntercooler

Cylinders

Turbine

EGR valve
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Figure 1.3: The model structure of the diesel engine. It has three control
inputs, and three states related to the engine. In addition, it has one external
parameterization input, ne.

1.3 Contributions

The main contributions in the thesis are:

• An empirical analysis of model and sensor errors in heavy duty diesel
engines.

• The methods for estimating a bias reducing model augmentation using
a default model and measurements from the true system, summarized in
Section 3.4.5.

• A parametrization of all model augmentations that maintains system ob-
servability in Theorem 3.2.

• The parametrization of all model augmentations that are possible to find
with the proposed estimation algorithms in Theorem 3.3.

• A new algorithm for engine map adaptation with variable parameter up-
date rate, Chapter 4.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 is based on (Höckerdal et al.,
2008a) and it describes an important estimation problem from the automotive
industry. This particular example is used to analyze how the quality of a sensor
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can be improved as well as how the quality can be assessed. This example also
illustrates the effect a model with stationary errors has on the estimates when
used in estimator design.

Chapter 3 is based on (Höckerdal et al., 2008b) and (Höckerdal et al., 2008c)
and it presents a systematic method for bias reduction in model based estimator
design. The method applies the idea of introducing extra states, modeled as
random walk processes, for estimating the stationary errors. An automatized
method for estimating appropriate augmentations from measurement data is
developed.

In engine applications the bias is typically operating point dependent. If
such biases are modeled as random walks the information about the bias in
each operating point is discarded as soon as the system changes operating point.
Chapter 4 addresses this problem by modeling the bias as function of known
states and/or inputs instead of as a random walk. By introducing unknown
parameters in the function and apply joint parameter and state estimation, the
observer becomes adaptive and can handle operating point dependent biases
that change over time.

Chapter 5 contains the main conclusions and a discussion of possible future
work.

1.5 Publications

The thesis is based on the following publications where the author contributed
with the majority of the work.

• Erik Höckerdal, Lars Eriksson, and Erik Frisk. Air Mass-Flow Measure-
ment and Estimation in Diesel Engines Equipped with EGR and VGT.
SAE World Congress, Detroit, 2008.

• Erik Höckerdal, Erik Frisk, and Lars Eriksson. Observer Design and
Model Augmentation for Bias Compensation Applied to an Engine. IFAC
World Congress, Seoul, 2008.

• Erik Höckerdal, Erik Frisk, and Lars Eriksson. Observer Design and
Model Augmentation for Bias Compensation with a Truck Engine Ap-
plication. Control Engineering Practice, 2008,
http:dx.doi.org/10.1016/j.conengprac.2008.09.004.

http:dx.doi.org/10.1016/j.conengprac.2008.09.004


2

Air Mass-flow Estimation in

Heavy Duty Diesel Engines

A central quantity used in the engine control systems is the air mass-flow into
the intake system. It is used for many purposes and influences both the engine
performance and emissions and it is essential to have an air mass-flow measure-
ment of good quality. This sensor signal, on a diesel engine with EGR and VGT,
is studied in detail in this chapter and there are two issues that are addressed.
The first deals with variations in the sensor characteristics, i.e., how accurate
is the air mass-flow sensor, while the second studies how the quality of a sensor
can be improved, by for example an estimator, and also how the quality can be
assessed.

Air Mass-flow Sensor Variations

The first problem that is addressed is the air mass-flow sensor quality. One
important issue is the sensor’s long term stability and variation. Two questions
are asked: how does the sensor characteristic vary with time, and how does it
vary between engine configurations?

To answer these questions, systematic engine test cell measurements have
been conducted on a limited range of air mass-flow sensors over the span of
several weeks. A central piece of information is a calibration curve that has been
recorded and stored for all days and all tests. The data is stored and analyzed
with respect to day-to-day variations, aging, changes between configurations
etc, and all these changes are quantified using experimental data.

7



8 Chapter 2. Air Mass-flow Estimation in Heavy Duty Diesel Engines

Methods for Measuring and Improving Sensor Signals

The second issue that is addressed concerns methods for improving sensor sig-
nals, for example by applying an estimator. Due to factors like system aging
and different operating conditions caused by geographical location, for example
pressure, temperature, humidity etc. of the surrounding air, the air mass-flow
sensor signal is in need of continuous adaptation. Several approaches to cope
with this adaptation are investigated including ad hoc mapping and Kalman fil-
tering. The investigation analyzes the effect model quality has on the estimates
from a model based estimator. The quality of a physical sensor is determined
by, for example accuracy, drift and aging, while the determination of the quality
of an estimator is a more subtle task. An estimator is the result of a design
work and hence connected to factors like application, model, control error and
robustness.

The air mass-flow is used to estimate EGR-fraction and λ, two different
applications that, in some sense, demand different quality properties of the
signal. Therefore several quality measures are presented in Section 2.3, and
used in the evaluation of the methods used for improving air mass-flow sensor
signal. For example, if the signal is used to estimate the amount of EGR fed
through the engine it is suitable to use an absolute measure, but if it is used to
estimate a concentration, for example λ, it might be better to choose a relative
measure. In some applications a bias is not crucial and it is better to use a
signal noise based measure.

2.1 Air Mass-flow Sensor Variations

The air mass-flow signal is needed for computations of λ and EGR-fraction.
Both are important quantities that greatly affects the emissions. In a diesel
engine λ, defined as

λ =
Wair

Wfuel (A/F )s

,

can not be allowed below a certain limit, λsmoke lim, to avoid generating smoke.
Normally in a diesel engine, when λ is greater than λsmoke lim, Wfuel is decided by
the desired torque. However when the desired torque forces λ toward λsmoke lim,
and when λ reaches λsmoke lim, the control law enters a mode where Wfuel is
proportional to Ŵair, (Wahlström, 2006). This is particularly important during
transients where the torque demand is high, i.e., during acceleration. In these
cases, an error in the air mass-flow signal results in either creation of smoke or
reduced torque output. The other important quantity, the EGR-fraction

EGRfrac =
Wtot − Wair

Wtot

,

where Wtot is the total gas mass-flow into the engine and Wair is the air mass-
flow into the engine. The EGR-fraction is used to control the NOx emissions.
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Both λ and EGR-fraction are important for the emissions and they rely
heavily on the air mass-flow Wair. Hence, it is important to have a high quality
measurement or estimation of the air mass-flow. Note that the EGR-fraction
also depends on Wtot, which is computed using the volumetric efficiency of the
engine and is, by empirical experience, considered to be accurate.

A calibration curve,

Wref = (1 + r(Wraw))Wraw,

is used for the air mass-flow sensor variation analysis. The calibration curve
is found by comparing the production air mass-flow sensor Wraw to a reference
Wref from a long series of engine measurements. Wref is a sensor mounted in
the engine test cell for the purpose of accurately being able to measure the
air mass-flow into the engine. The difference between Wraw and Wref has been
stored in a calibration curve that is implemented as a lookup-table consisting of
12 grid points. These calibration curves have been recorded over several weeks
to enable the study of day-to-day variations. The calibration curve is computed
according to

r(Wraw) =
Wref

Wraw

− 1, (2.1)

and has the typical appearance presented in Figure 2.1.
The reference sensor is mounted on a straight pipe in the test cell, where the

air mass-flow over the cross section of the pipe is orthogonal to the sensor and
cylindrically symmetric, and is considered to give very accurate measurements
of the air mass-flow. More details concerning the reference sensor Wref is given
in Appendix B.

2.1.1 Calibration Curve Evaluation

Calibration curves from two diesel engines, one inline six cylinder and one V8,
are gathered from test runs in an engine test cell. 13 calibration curves are
collected over a total time of about two weeks for the six cylinder engine and
21 calibration curves over four weeks for the V8 engine. Figure 2.1 presents
the typical appearance of a calibration curve, the upper for a 6 cylinder engine
and the lower for a V8 engine. These calibration curves are used to analyze the
quality of the air mass-flow sensor.

The difference between engine configurations can be seen by comparing the
upper and lower plots in Figure 2.1 and Figure 2.2, where Figure 2.1 presents
the day-to-day variations and Figure 2.2 presents the trend of four grid points in
the calibration curve. These four grid points are spread out over the operating
region of the air mass-flow into the engine. Figure 2.1 shows that the day-to-
day variations are quite large, especially for the V8 engine where the standard
deviation varies between 2 – 3 %-units. For the 6 cylinder engine the variations
are smaller. Further, the difference between the minimum and maximum values
for each parameter in the calibration curve varies between approximately 1,5 –
4 %-units for the inline six cylinder engine and 3 – 12 %-units for the V8 engine.
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Another difference between the two engine configurations is the appearance of
the calibration curve. For the 6 cylinder engine the line starts at approximately
5 %, has a slightly positve slope, and ends at approximately 10 %. For the V8
engine the line is quite different, it starts at about 1 %, varies quite a bit, and
ends at -1 %.

The 6 cylinder engine data indicates that the air mass-flow into the engine
has to be continuously monitored. The following small example gives a rough
estimate of the consequence of an incorrect air mass-flow measurement.

Example 2.1

Assume that the engine control system controls the EGR-fraction to 30 % based
on the air mass-flow sensor and that the air mass-flow sensor signal is incor-
rect and reads Wair/1.1, which is approximately the worst case according to
Figure 2.1. That is,

EGRfrac =
Wtot − Wair/1.1

Wtot

= 30%.

Then the true fresh air-fraction would become

(1 − 0.3)Wtot =
Wair

1.1
⇒ Wair = 1.1(1 − 0.3)Wtot = 0.77Wtot,

and thereby the true EGR-fraction 23 %, which would have a significant effect
on the NOx emissions (Heywood, 1988), that is the control system controls the
engine to run with less EGR than needed to fulfill the legislated NOx levels.

An analogous analysis can be made for λ close to λsmoke lim which further sup-
ports the statement that the an accurate estimate of the air mass-flow is im-
portant.

The large spread among the calibration curves for the V8 engine plot indi-
cates that an ad hoc approach for compensating the sensor signal using only
a calibration curve might not be enough. The quality also has to be improved
in a way that the spread is reduced as well. These observations together with
the importance of the estimates of λ and EGR-fractions necessitate an accurate
estimate of the air mass-flow. This is one of the motives for the discussion in
Sections 2.2 to 2.4.

As Figure 2.2 shows there are no obvious trends in the data over time.
However, due to the relatively short time span, over which the data is collected,
it is hard to draw any conclusions regarding long term aging of the air mass-flow
sensors.

2.2 Estimators

To evaluate different methods for improving the air mass-flow sensor signal, four
different estimators are designed. The aim with this is to address issues regard-
ing what quality measure to use when designing and evaluating estimators, not
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Figure 2.1: Min, max, mean, and the standard deviation over all collected
calibration curves are presented for a 6 cylinder engine (upper plot) and a V8
engine (lower plot). It can be seen that the variation is quite large for both
engine configurations, especially for the V8 engine.
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Figure 2.2: In this figure the trend of 4 grid points are presented for a 6 cylinder
engine (upper plot) and a V8 engine (lower plot). It indicates that there is no
particular trend in neither of the engine configurations.

to design the best estimator for any particular air mass-flow application, for
example λ or EGR-fraction estimation.

2.2.1 Model Output

The first estimator is the model output of a forward Euler discretization of the
model presented in Appendix A,

x̂t+1 = xt + Tsf(x̂t, ut)

Ŵmodel, t =
(
0 0 0 1

)
h (x̂t) ,

where Ts is the sample time. It has the main purpose of enabling an analysis of
the model quality. This estimator is driven by the control and parameterization
inputs only, giving what would be called an open loop simulation of the system.

2.2.2 Air Mass-flow Sensor

Two estimators are based directly upon the measured air mass-flow. The first
is the raw air mass-flow measurement, Ŵraw. The second uses the calibration
curve, r, to correct a filtered sensor signal, Ŵfilt, where Ŵfilt is Ŵraw filtered
with a low pass filter with a cut off frequency of 6.8 Hz. The cut of frequency is
chosen to 6.8 Hz since this signal was available in the engine control unit. An
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example of a calibration curve is presented in Figure 2.1 and the adapted air
mass-flow is computed according to

Ŵadapt, t = Ŵfilt, t(1 + r(Ŵfilt, t)).

The idea of this estimator is to use the calibration curve from Section 2.1 to
correct the signal from the air mass-flow sensor.

2.2.3 Extended Kalman Filter - EKF

A natural choice of estimator design method for a nonlinear system is the ex-
tended Kalman filter (EKF) (Kailath et al., 2000). The designed EKF is based
on the model described in Appendix A and utilizes measurements from all model
states, that is the intake and exhaust manifold pressures and the turbine speed
for feedback. Further, the covariance matrices for the system and measurement
noise, Q and R, are used as tuning parameters, and since the main objective is
not to design an optimal estimator they are chosen in an ad hoc manner. The
model used in the EKF design is the continuous time model,

ẋ = f(x, u)

y = h(x),

presented in Appendix A. This model is then discretized with forward Euler
and a sampling time of Ts seconds,

xt+1 = xt + Tsf(xt, ut) (2.2a)

yt = h(xt). (2.2b)

Now a discrete time EKF is designed on Equation (2.2). The EKF equations
for a time discrete model looks as follows, starting with the internal variables

St = HtPt|t−1H
T
t + Rt

Kt = Pt|t−1H
T
t S−1

t

et = yt − h(x̂t|t−1),

that is the innovation covariance, the Kalman gain, and the estimation error
respectively. Continuing with the update equations

x̂t|t = x̂t|t−1 + Ktet

Pt|t = Pt|t−1 − Pt|t−1H
T
t S−1

t HtPt|t−1,

and the prediction equations

x̂t+1|t = x̂t|t + Tsf(x̂t|t, ut)

Pt+1|t =
(
I − TsAt

)
Pt|t

(
I − TsAt

)T
+ Qt
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where

At =
∂f

∂x

∣
∣
∣
∣
x=x̂t|t

, Ht =
∂h

∂x

∣
∣
∣
∣
x=x̂t|t−1

.

Finally the estimator can be written

ŴEKF, t = hW (x̂t),

where hW is a nonlinear function of the states describing the air mass-flow
through the compressor, see Appendix A.2.

2.3 Quality Measures

This section describes the different measures used for evaluating the quality
of the estimated signal. Different applications of estimators require different
properties. Therefore several different measures are used in the evaluation of the
estimators. For example, if the estimator is used to estimate the amount of EGR
fed through the engine it is suitable to use an absolute measure, while if it is
used to estimate a concentration it might be better to choose a relative measure.
In some applications, like for example if the estimated signal is differentiated
and used as input to another estimator, estimation bias is not crucial. In such
cases it may be better to use a signal noise based measure, for example by
estimating the variance of the estimated signal.

The measures used are grouped into two groups, reference signal based mea-
sures and a signal noise based measure. In all equations below, Ŵ (ti) is the
estimated signal, Wref(ti) is the measured reference signal and N is the number
of samples.

2.3.1 Reference Signal Based Measures

Different measures have different properties, for example, a maximum norm can
be used to capture robustness. Below the quality measures used in this chapter
are presented.

Absolute Measures

An absolute measure is often preferred in diagnosis applications where the es-
timator is used to create residuals. The residual, together with a threshold, is
then used to detect faults in the system. Here the following absolute measures
are used.

• Mean absolute error

ε =
1

N

N∑

i=1

∣
∣
∣Ŵ (ti) − Wref(ti)

∣
∣
∣
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• Maximum absolute error

ε = max
1≤i≤N

∣
∣
∣Ŵ (ti) − Wref(ti)

∣
∣
∣

• Root Mean Square Error (RMSE)

ε =

√

1

N

∑

i

(

Ŵ (ti) − Wref(ti)
)2

Relative Measures

Relative measures are preferred in applications where the absolute error varies
with the level of the underlying signal. An example of an application like this
is the air mass-flow where it is used to compute the air to fuel ratio, λ. The
discussion in Section 2.1 highlighted the importance of a correct λ estimation,
especially in transients where the torque demand is high. In these cases Wfuel ∝
Ŵair and the error in λ, ∆λ, becomes

λ =
Wair

Wfuel

=
[

Wfuel ∝ Ŵair

]

⇒

λ ∝ Ŵair + ∆W

Ŵair

⇒

∆λ ∝ ∆W

Ŵair

,

where ∆W is the air mass-flow estimation error. In these situations the emissions
are critical and it is important that the error in λ is small, hence a low relative
measure is preferable. The following relative measures are used.

• Mean relative error

ε =
1

N

N∑

i=1

∣
∣
∣Ŵ (ti) − Wref(ti)

∣
∣
∣

|Wref(ti)|

• Maximum relative error

ε = max
1≤i≤N

∣
∣
∣Ŵ (ti) − Wref(ti)

∣
∣
∣

|Wref(ti)|

2.3.2 Signal Noise Based Measure

Some control applications require smooth input signals. In such cases, quality
can be measured through signal noise.
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As a measure of signal noise, the variance on a dynamic sequence is used. It
is determined by estimating the variance of the difference between the original
sequence and a non-causal low pass filtered version of the same, that is

ε = var
(

Ŵ (ti) − W̄ (ti)
)

W̄ (ti) = HLP(z)Ŵ (ti).

To remove the underlying trend, a cut-off frequency of 2 Hz is chosen for the
filter since all system dynamics are slower than this. Because of this high pass
filtering this measure does not capture any low frequency error.

2.4 Experimental Evaluation

The results from the comparison between the estimators are presented in this
section using Figure 2.3 that compare the different estimators and Figure 2.4
that presents the results from the different measures. As previously stated, the
main objective in this chapter is to examine the use of different quality mea-
sures when evaluating estimators and the influence of model errors in estimator
design.

The experimental set-up and data used in the evaluation are presented in
Appendix B. The measured outputs are the model outputs complemented with
an extra air mass-flow sensor, Wref, used as a reference.

2.4.1 Model Errors

All model based estimators are highly dependent on the accuracy of the model
used, which is especially true if the assumptions made in the design method
do not hold. If for example an EKF is used, the measurement and model
error have to be described by zero mean white noise processes, i.e., biased
measurements is not handled. The upper plot in Figure 2.3 presents the air
mass-flow estimates from the estimators designed in Section 2.2 together with
the air mass-flow measured with the reference sensor and the lower plot presents
the corresponding estimation errors. One observation in Figure 2.3 is that
Ŵmodel does not follow Wref well, Ŵmodel has an obvious offset both for low and
high air mass-flows but manages to capture the system dynamics. From this
observation it is obvious that the model does not fully describe the engine and
these model errors violate the assumptions made when utilizing the model to
design an EKF, i.e., zero mean Gaussian system error. This will explain some
of the results for the model based estimator, discussed in Section 2.4.2.

The model itself is not a well performing estimator which is clear also in
Figure 2.4, where all reference signal based measures are higher than for the
other estimators. That the reference signal based measures are higher for Ŵmodel

is of course a consequence of the stationary errors in the model. However, the
variance measure is lower as a result of the absence of noisy feedback.
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2.4.2 Comparison of Estimators

Again looking at Figure 2.3, it can be seen that Ŵraw is poor, it has a negative
bias which is larger for high air mass-flows than it is for low air mass-flows but
still manages to capture the dynamics well. As far as it goes for Ŵadapt, it
can be noticed that by applying an correction based on the calibration curves
determined in Section 2.1.1, it manages to remove most of the measurement
bias in Ŵraw. However the estimate is a bit high at the stationary part in the
middle of the segment but besides that follows Wref well. Further, ŴEKF is less
noisy than Ŵraw and Ŵadap, and performs well with respect to offset for high air
mass-flows but not for low air mass-flows. The last observation in Figure 2.3,
i.e., that the offset error differs for low and high air mass-flows, can be explained
by a combination of model inaccuracies and feedback from the engine outputs.
In this particular case a closer look at the estimation errors shows that the
model and the raw sensor signal have different signs of the error for high flows
and when they are combined in the EKF the result comes close to the reference.
For low flows the raw signal is closer to the reference while the model still has a
positive offset giving a positive error for the EKF. That is, an operating point
dependent model error in the feedback loop, i.e., the EKF measurement update
step, would in this case give a larger correction for high air mass-flows than it
does for low air mass-flows.

From Figure 2.3 it is also obvious that the estimators Ŵadapt and Ŵraw, based
directly on the measured air mass-flow, have a significantly higher variance than
Ŵmodel and ŴEKF, which is even more evident in Figure 2.4.

The quality measures described in Section 2.3 are presented in Figure 2.4
for the different estimators, where the different measures have been normalized
with respect to the Ŵadapt measures. The figure not only verifies the observa-
tions made in Figure 2.3, but also further illuminates the differences between
the different estimators with respect to the quality measures. Especially the
maximum relative and absolute measures are presented that are hard to ex-
amine in a plot like Figure 2.3. These errors occur in transients, which is not
surprising. However, the fact that these measures point out different estimators
as the best is interesting. The reason for this is that the estimator responses dif-
fer in transients, i.e., Ŵadapt utilizes a filtered version of Ŵraw which introduces
some time delay.

To conclude, the Ŵadapt is the best estimator according to all reference
signal based measures, except those using maximum norm, where Ŵraw is the
best with respect to the maximum relative error and ŴEKF is the best according
to the maximum absolute error. With respect to noise Ŵmodel is the best closely
followed by ŴEKF.
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Figure 2.3: In the upper plot Ŵmodel, ŴEKF, Ŵadapt, Ŵraw and Wref are plotted
for a 100 s segment of an ETC, and in the lower plot the corresponding estima-
tion errors are plotted. It is obvious that the model has stationary errors and
that Ŵadapt follows Wref well.
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Figure 2.4: Presents the quality measures presented in Section 2.3 for the dif-
ferent estimators. The measures are normalized by division with Ŵadapt.

2.5 Conclusions

An analysis of experimental air mass-flow sensor data has been performed. It is
concluded that accuracy demands on the air mass-flow measurement necessitate
continuous monitoring and adaptation of the state of the mass-flow characteris-
tics. In particular an adaptive scheme should be used to properly account and
compensate for the time variations in the mass-flow characteristics both due to
operating point dependent sensor bias, and effects of aging and environmental
conditions on the system.

Further, the model quality is of great importance when designing model
based estimators. A model with stationary errors have the same effect on the
estimates as biased measurements and a way to handle, these common model
and measurement deficiencies, is desirable. When evaluating estimators de-
signed for a particular application the choice of quality measure is central. The
choice has to reflect the important properties in that particular application.

The objective of this thesis is to develop systematic approaches for handling
stationary measurement and model deficiencies.
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3

Model Augmentation for Bias

Compensation

The objective of this chapter is to develop a systematic method for reducing
estimation bias in estimators without involving further modeling efforts. Chap-
ter 2 considered an output estimation problem in a diesel engine while this
chapter focuses on state reconstruction, however the method developed here
applies also to output estimation.

The method utilizes an observable model and measurement data from the
true system. The given model, referred to as the default model, and the mea-
sured inputs and outputs from the true system are used to estimate a suitable
model augmentation. Then, the augmented model is used to design an observer
that is shown to give estimates with reduced bias compared to an observer
based on the default model. Three approaches for estimating a bias compen-
sating augmentation are developed and evaluated with respect to measurement
noise and model errors. Key results are a theoretical characterization of all pos-
sible augmentations from observability perspectives and a parametrization of
the estimated augmentations. Finally the method is evaluated on a non-linear
diesel engine model with experimental data from an engine test cell.

3.1 Problem Formulation

Chapter 2 revealed that designing an observer based on a model that captures
dynamic behavior reasonably well but suffers from stationary errors results in
biased estimates. How to reduce the bias in a systematic manner without in-
volving further modeling efforts is the topic of this chapter.

The starting point is an existing model, referred to as the default model,

21
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that is provided in state-space form

ẋ = f(x, u) (3.1a)

y = h(x), (3.1b)

where x is the state-vector, u the known control inputs, y the measurement
vector, and f and h are non-linear functions.

The objective is to find a systematic way to design an observer that gives
an unbiased estimate of either the complete state x or a function of the state
z = g(x). This should be done even though the default model is subject to
significant bias errors. A direct approach to compensate for constant, or slowly
varying, biases is to augment the default model with bias variables q as

ẋ = f̃(x, u, q) (3.2a)

q̇ = 0 (3.2b)

y = h̃(x, q), (3.2c)

and design the observer using this augmented model. If the augmentation cap-
tures the true modeling errors and the augmented system is observable, the
estimates will be unbiased. An obvious question is then how to introduce the
bias variable q in the model equations. One way could be through process
knowledge, which have been successfully applied in (Andersson and Eriksson,
2004; Tseng and Cheng, 1999). To automatize this an estimation procedure
based on available measurement data is proposed.

Besides the natural restriction, that the augmented model (3.2) is observ-
able, it is also desirable not to introduce more bias states than necessary. It is
therefore desirable to find a bias vector q with as low dimension as possible that
manages to reduce the bias. Another reason for finding a low-dimensional bias
is that, since the model often is a first-principles physical model, bias in mul-
tiple states may be explained by one underlying bias affecting all these states.
For example, bias in two modeled pressures can originate from a bias in the
modeled mass flow between the two volumes or an incorrect modeling of energy
conservation can give rise to bias in several states connected to the energy. Note
that, the bias is necessarily not the same in the entire operating region of the
system and may vary between operating points. This is part of the reason for
introducing the bias as new states, rather than just as a fixed parameter, which
allows the observer to have a tracking ability.

In model (3.1) there are two natural ways to introduce biases, in the dynamic
equation (3.1a) or in the measurement equation (3.1b). In the truck engine ap-
plication the sensors, intake and exhaust manifold pressures and turbine speed,
are considered more reliable than the model presented in Appendix A and the
bias augmentation is therefore introduced in the dynamic equations according
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to

ẋ = f(x − Aqq, u) (3.3a)

q̇ = 0 (3.3b)

y = h(x), (3.3c)

where a stationary point of the system is moved by Aqq. The matrix Aq is thus a
description of how the underlying bias variable q influences the stationary value
of the state variable x. The model (3.3) will be referred to as the augmented
model. It is worth mentioning that although the focus is on biases in the
dynamic equation, it is straightforward to modify the approach to also cover
sensor biases.

3.1.1 Problem and Chapter Outline

Based on the discussion above, the problem studied in the sections to follow
can now be stated as: Given an observable default model (3.1) and available
measurement data, find a low order bias augmented model (3.3) and design
an observer that estimates x with reduced bias compared to using the default
model.

To solve the problems, some issues need to be addressed. First, which ma-
trices Aq are possible at all? All are not possible since it is required that the
augmented system is observable and a characterization of possible augmenta-
tions is derived in Section 3.3. Among these possible bias augmentations, which
should be used? Section 3.4 describes three approaches for how to estimate a,
for bias compensation, suitable low order Aq based on measurement data.

Section 3.5 presents two examples of the proposed estimator design method-
ology applied to a Scania diesel engine using simulated and real measurement
data, respectively.

3.2 Discretization and Linearization

As a first step, the non-linear augmented model (3.3) is transformed into a
linearized time discrete model. A reason for the discretization is the demand
on the implementation, where sampled data with fixed sampling time is used.
Here, a simple forward Euler discretization with step size Ts seconds is used.
Note that observability does not depend on the choice of discretization method.
For example, as long as Ts is chosen small enough the observability results are
valid also for zero-order-hold (Kalman et al., 1963).

One objective of the chapter is to find a suitable Aq such that (3.3) is locally
observable and to be able to use simple observability conditions. The observ-
ability analysis is here performed on a linearization of the non-linear model
(3.3). Of course, non-linear observability is not guaranteed from observability
of the linearization. Nevertheless, observability of a linearization in a stationary
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point is a sufficient condition for local observability of the non-linear system,
see Theorem 6.4 in (Lee and Markus, 1968). Even though observability is not
strictly guaranteed, for example in transient mode when moving between oper-
ating points, the referred result gives theoretical support for using the linearized
system in the observability analysis. Thus, when analyzing (3.3) the following
model will be used

(
xt+1

qt+1

)

=

(
I + TsA −TsAAq

0 I

) (
xt

qt

)

+

(
TsB
0

)

ut (3.4a)

yt =
(
C 0

)
(

xt

qt

)

, (3.4b)

where

A =
∂f

∂x

∣
∣
∣
∣ x=x0

u=u0

, B =
∂f

∂u

∣
∣
∣
∣ x=x0

u=u0

, and C =
∂h

∂x

∣
∣
∣
∣ x=x0

u=u0

.

In the following, I + TsA is substituted for F to increase readability, and (3.4)
now becomes

(
xt+1

qt+1

)

=

(
F −(F − I)Aq

0 I

) (
xt

qt

)

+

(
TsB
0

)

ut (3.5a)

yt =
(
C 0

)
(

xt

qt

)

. (3.5b)

3.3 Possible Augmentations

Augmenting a model with more states may affect the observability of the model.
Since the purpose of the augmented model is to use it for estimation, observ-
ability has to be maintained also after the augmentation. An observability in-
vestigation of the augmented model is performed to find which augmentations
that are possible. The aim is to derive necessary and sufficient conditions on
Aq such that the augmented model is observable. Similar results can be found
in (Bembenek et al., 1998), which also includes a discussion regarding the ob-
servability results, similar to the short discussion in the end of this section. The
observability criterion used in the analysis is known as the Popov-Belevitch-
Hautus (PBH)-test (Kailath, 1980).

Theorem 3.1. A pair (C,F ) is observable if and only if

(
C

λI − F

)

has full column rank ∀λ ∈ C.

Now, using Theorem 3.1 and the assumption that the default model is ob-
servable the main result of this section can be formulated as
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Theorem 3.2. Assume that (C,F ) in (3.5) is an observable pair then the aug-
mented system (3.5) is observable if and only if

Ker (
(
F − I

) (
NC Aq

)
) = {0} ,

where the columns of NC span Ker C.

Proof. From Theorem 3.1 it follows that the augmented model (3.5) is observ-
able if and only if x = 0, q = 0 is the only solution to

Cx = 0 (3.6a)

(λI − F )x + (F − I)Aqq = 0 (3.6b)

(λI − I)q = 0 (3.6c)

for all λ ∈ C. For λ 6= 1 it is immediate from (3.6c) that q = 0. Then the
assumption that (C,F ) is an observable pair together with (3.6a), (3.6b), and
Theorem 3.1 gives that x = 0. Thus, only λ = 1 needs to be investigated
further.

For λ = 1 in (3.6) the augmented model is observable if and only if x = 0,
q = 0 is the only solution to

(F − I)(x − Aqq) = 0

Cx = 0.

Let the columns of NC be a basis for Ker C, then x = NCξ for some ξ and
observability is equivalent to q = 0, ξ = 0 being the only solution to the equation

(F − I)(NCξ − Aqq) = 0.

This is equivalent to that the matrix

(F − I)
(
NC Aq

)

has full column rank which ends the proof.

This means that the space spanned by the columns in Aq can lie neither
in Ker C nor in Ker (F − I) for the augmented model to be observable. These
interpretations of the rank condition can be understood by analyzing the two
requirements separately. First, the requirement that Aq can not lie in Ker C is
easily seen by studying the following linear example.

Example 3.1

Starting with a linear model with a stationary bias

xt+1 = Fxt − (F − I)Aqqt

qt+1 = qt

yt = Cxt
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and performing a change of variables, zt = xt − Aqqt, gives

zt+1 = Fxt − (F − I)Aqqt − Aqqt = Fzt

qt+1 = qt

yt = Czt + CAqqt,

which shows that columns of Aq in Ker C are not observable.

Second, a non-empty Ker (F − I) implies that the system contains pure
integrators, and a bias in Ker (F − I) is not distinguishable from an unknown
initialization of the integrator and is therefore not observable.

A closer look at the requirement that (F−I)(Aq NC) has to have full column
rank conveys some other interesting results. One is, assuming full column rank
of (F−I), that the number of augmented states nq can never exceed the number
of linearly independent measurement signals ny since

rank(F − I)(Aq NC) = rank(Aq NC)

≤ rankAq + rankNC = nq + nx − ny ≤ nx, (3.8)

i.e., nq ≤ ny. Another, assume once again that (F − I) has full rank which
means that the model does not have any pure integrators, then the full column
rank condition on (F − I)(Aq NC) reduces to requiring full column rank of
(Aq NC) or, equivalently, full column rank of the product CAq. Now if C has
one or several zero columns, then CAq will not contain any information from
those rows in Aq corresponding to zero columns in C. That is, those rows in Aq

that correspond to zero columns in C will not contribute to the observability.
This is illustrated in the following example.

Example 3.2

Illustration of possible augmentations for a default model without pure integra-
tors and

C =

(
1 0 0
0 1 0

)

.

Let ∗ denote a non-zero element, then some possible augmentations are

A1
q =





∗ 0
0 ∗
0 0



 , and A2
q =





0 ∗
∗ 0
0 0





since

CA1
q =

(
∗ 0
0 ∗

)

, and CA2
q =

(
0 ∗
∗ 0

)

,

which have full column rank. While an augmentation

A3
q =





∗ 0
0 0
0 ∗



 is not possible since CA3
q =

(
∗ 0
0 0

)

does not have full column rank.
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3.4 Augmentation Estimation

Now that all possible model augmentations have been characterized by Theo-
rem 3.2, the next question is how to find a suitable augmentation, using mea-
sured data from the real system, that fulfills the requirements derived in Sec-
tion 3.3. The proposed augmentation estimation procedure is divided into two
steps, i) from measured data estimate samples of the bias and ii) compute a
basis for the bias samples. Three approaches for how to conduct the first step
are developed. In the second step a low order augmentation is computed by
performing a Singular Value Decomposition (SVD) on selected samples of the
bias found in step one.

3.4.1 Bias Estimation

The first step in the estimation of a low order model augmentation deals with
estimating the bias, i.e., collect samples of the bias βt = Aqqt. The first ap-
proach is quite simple and its main purpose is to illustrate the basic ideas for
the estimation of bias samples, whereas the second and third approach are ap-
plicable to more general systems. Since the method aims at reducing bias in
stationary operating points only stationary behavior and data are studied.

Approach 1

The first approach utilizes the discretized linearization directly and the assump-
tions that all states are measured, i.e., Ct has full column rank, and that the
system does not have any pure integrators, i.e., (I − Ft) has full column rank.
The linearized and time discretized augmented model is

xt+1 = Ftxt + (I − Ft)Aqqt + TsBtut (3.9a)

yt = Ctxt. (3.9b)

Due to the full column rank assumptions on Ct and (I − Ft) it is possible to
invert the measurement equation and insert the resulting xt in the dynamic
equation. This gives that

βt = Aqqt = (I − Ft)
−1(C†

t+1yt+1 − FtC
†
t yt − TsBtut),

where † denotes the Moore-Penrose inverse (Lancaster and Tismenetsky, 1984).
This approach shows, in a direct way, that the estimation approaches are

about finding ways to solve Aqqt from (3.9). However, it requires a full column
rank Ct and (I − Ft) and, since no filtering of the measurements is involved, it
is sensitive to low signal to noise ratio (SNR).

Therefore two other approaches are proposed for estimating bias samples.
Common for both these approaches are that they utilize the residuals from an
observer and the assumption that the true bias enters the model according to
Equation (3.3). The fact that they are based on observers makes them less
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sensitive to low SNR and imply that they do not require full column rank Ct

to work. The first employ an observer based on the default model and the bias
samples are computed by inverting the observer system. The second employ
a fully augmented model fulfilling the observability requirements developed in
Section 3.3.

Approach 2

The second approach uses the residuals originating from an observer based on
the default model. Here, the observer is an extended Kalman filter (EKF)
(Kailath et al., 2000), where the noise covariance matrices Q and R are design
parameters tuned by the user. Of course, other observer designs are equally
possible, for example an Unscented Kalman Filter (UKF) (Julier and Uhlmann,
1997, 2004). Let Kt be the EKF feedback gain, then the estimation error
becomes,

et+1 = xt+1 − x̂t+1|t+1

= Ftxt + (I − Ft)Aqq + TsBtut−
(Ftx̂t|t + TsBtut + Kt(yt+1 − CtFtx̂t|t − CtTsBtut))

= {yt+1 = CtFtxt + Ct(I − Ft)Aqq + CtTsBtut}
= (Ft − KtCtFt)et + (I − KtCt)(I − Ft)Aqq. (3.10)

Equation (3.10) can not be used directly since the state estimation error is not
known. Therefore, the output error

rt = yt − ŷt|t = Ct(xt − x̂t|t) = Ctet, (3.11)

is used for estimating the bias.
As previously stated, solely stationary parts of the residuals are involved

in the bias estimation. It would be possible to use also dynamic parts of the
residuals and a dynamic inverse. The reason for not utilizing these here is to
prevent dynamic estimation errors from affecting the estimation of the constant
or slowly varying bias.

Now, utilizing that only stationary data is considered, (3.10) and (3.11) can
be combined resulting in

rstat = Cstatestat

= Cstat(I − Fstat + KstatCstatFstat)
−1×

(I − KstatCstat)(I − Fstat)Aqqstat

and the bias can be estimated as

βt = Aqqt = (Cstat(I − Fstat + KstatCstatFstat)
−1×

(I − KstatCstat)(I − Fstat))
†rt. (3.12)
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Approach 3

An alternative to Approach 2 for finding βt is to augment the default model with
as many extra states as possible. According to Theorem 3.2, the requirement on
Aq is that (F−I)(Aq NC) has to have full column rank. This means that Aq can
have a maximum of ny columns. These columns have to be linearly independent
of the columns of NC and can not lie in Ker (F − I). One way to construct such
an augmentation is to use C† and leave out those columns that become zero
when multiplied by (F − I) from the left. Then run the observer based on the
augmented model, estimating both x̂ and q̂, and assemble βt = C†q̂t.

An advantage with this approach is that no inversions as those in (3.12) are
needed. A disadvantage though is that since a fully augmented model is used
the order of the observer might be unnecessarily high.

3.4.2 Augmentation Computation

As stated in the problem formulation in Section 3.1, the bias is necessarily not
the same in the entire operating region of the system. This makes it important
to collect samples of the bias from stationary operating points selected such
that the entire operating region is covered. From the first step of the proposed
procedure, bias samples are collected according to this. Based on the discussion
of only a few underlying biases affecting several states in Section 3.1, the task
of step two is to find a low order basis spanning the space in which these bias
samples are located.

To start with bias samples from N stationary operating points are assembled

β̄nx×N =
(
β1 · · · βN

)
,

Then the SVD of β̄ is computed,

β̄ = UΣV ∗,

where U contains orthogonal vectors spanning the space in which the bias moves
and Σ are the corresponding singular values. The singular values in Σ are
ordered in non-increasing order which means that the far left columns of U ,
corresponding to large singular values, represent the most dominating directions
along which the bias moves. Therefore the dimension of q can be found by
comparing the singular values in Σ, and picking the most significant ones. Then
the corresponding columns of U are used to assemble Âq.

This way of computing an augmentation from bias samples is optimal with
respect to the Frobenius norm, i.e.,

Âq = arg min ||β̄ − Âq||F .

3.4.3 Properties of the Estimated Augmentation

According to the discussion in the end of Section 3.3, the properties of C place
restrictions on which Aq:s that are possible to find. The conclusion of that
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discussion is that rows in Aq corresponding to zero columns in C become zero
in the estimation step. However, a more thorough analysis shows that more can
be said.

Theorem 3.3. Assume that the observer in Approach 2 is strictly stable and
does not have any poles in the origin, then, in absence of noise, the bias samples
for all three approaches are spanned by the rows of C, that is

βt = CT Γ.

Proof. Since Approach 1 is applicable only if C has full column rank and due
to the augmentation, C†, used in Approach 3 the theorem automatically holds
for these cases. It is therefore sufficient to prove the result for Approach 2.

Now, starting with the output error and rewriting it

rt = C(

W
︷ ︸︸ ︷

I − F + KCF )−1(I − KC)(I − F )βt

= CW−1(W − KC)Aqq = (I − CW−1K)Cβt, (3.13)

where the assumption that K is chosen such that the observer system, (I −F +
KCF ), is strictly stable and does not have any eigenvalues equal to zero which
assures that W−1 exists, is used. Then, using the Moore-Penrose inverse, (3.13)
can be written as

Cβt = (I − CW−1K)†rt = r̄t. (3.14)

A unique solution to (3.14) is received by computing the minimum square so-
lution with least Euclidean norm. Writing

βt = βo
t + β⊥

t , (3.15)

where

βo
t ∈ (Ker C)⊥ = span{CT } (3.16)

and

β⊥
t ∈ Ker C, (3.17)

the solution with least Euclidean norm is the solution with β⊥
t = 0, i.e.,

βt = βo
t = CT Γ (3.18)

which concludes the proof.

Note that Theorem 3.3 holds for the Moore-Penrose inverse and is not gen-
erally true for an arbitrary left inverse.
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As a consequence of Theorem 3.3, the observer based on an estimated aug-
mentation may not be able to reduce the bias in the estimates to acceptable
levels. This problem can be circumvented in, for example one of the two fol-
lowing ways. The first is for an engineer to design an Aq not possible to find
through estimation, for example through knowledge of the underlying physics
and knowledge about the modeling errors. The second is to, during the design
phase, add extra sensors to the true system to acquire a full column rank C
which enables estimation of all rows in Aq. When utilizing this possibility one
must be cautious and check the observability of the augmented system that in
the end will not rely on the additional sensors used for estimating Âq. That is,
check the column rank of (F −I)(Âq NC), and in case of column rank deficiency
remove those columns in Âq causing rank deficiency. Since SVD is used, the
columns in Âq are arranged in non-increasing significance order which makes
it appropriate to remove the columns in Âq starting from the right to get an
augmentation that is observable.

The example below illustrates the remarks regarding the effects that prop-
erties of C have on the augmentation estimation.

Example 3.3

Consider a true system with

F =





1 1 −1
−1 0 1
1 1 −1



 , and C =

(
1 0 0
0 2 1

)

and a true bias,

Aqq =





1
2
3



 .

Then the estimate of Aq, according to Theorem 3.3, will be

Âq = CT Γ =
1

√

12 + (14/5)2 + (7/5)2





1
2 × 7/5
1 × 7/5



 ,

found by minimizing
∥
∥
∥
∥
Aqq − CT

(
Γ1

Γ2

)

q̂

∥
∥
∥
∥

2

= (1 − Γ1)
2 + (2 − 2Γ2)

2 + (3 − Γ2)
2

with respect to Γ1 and Γ2.
That is, because of the structure of C the estimated bias direction will be
incorrect resulting in a stationary estimation error

x − x̂ =Aqq − Âq q̂,
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which with

CAqq =CÂq q̂ ⇒ q̂ =
√

12 + (14/5)2 + (7/5)2

becomes

x − x̂ =Aqq − Âq

√

12 + (14/5)2 + (7/5)2 =





1
2
3



 −





1
14/5
7/5



 =





0
−4/5
8/5



 .

This example illustrates the result in Theorem 3.3, and shows that an incorrect
estimation of the bias direction result in stationary estimation error even though
the system output is estimated correctly. In this case the correct estimation
of system output result in correct estimation of x1 while x2 and x3 are not
estimated correctly, due to the structure of C.

3.4.4 Evaluation of Augmentation Estimation Approaches

Two main approaches, approaches 2 and 3, for estimating the bias have been
proposed. It is important to understand how these approaches perform under
varying operating conditions and model uncertainty. Therefore, the approaches
are evaluated with respect to robustness against model errors and robustness to
changes in noise levels. This is done by introducing noise and modeling errors in
a non-linear simulation model of a Scania diesel engine with exhaust gas recir-
culation (EGR) and variable geometry turbine (VGT), and performing Monte
Carlo simulations. In the simulations, a one-dimensional q is also introduced,
i.e., Aq is a vector with three elements.

Modeling errors can be introduced in many ways and it is difficult to obtain
a comprehensive evaluation of robustness properties of a non-linear method.
Therefore, a more pragmatic approach is adopted. First, model errors are
introduced by manipulating physical constants in the simulation model and
thus making the simulation model, that generates the observations, different
from the default model used for designing the observer. Another way model
errors are introduced is by pre-multiplying the vector field f in (3.1a) by a
slowly varying sinusoid, i.e., the simulation is done with f̄(x, u) defined as
f̄(x, u) = (1 + γ sin(Λt))f(x, u), where Λ is the model error frequency, and
γ is a small number varied between 0.1 and 0.5. Doing Monte Carlo simula-
tions with such model errors reveal that both approaches react similarly to the
model errors with respect to degraded performance in bias estimation and vari-
ance in the estimation. No certain conclusion can be drawn concerning which
approach is more robust against modeling errors and the overall picture is that
both approaches have similar graceful performance degradation with increased
modeling errors.

Examining the effect of measurement noise is done by introducing white
Gaussian noise with different noise levels in the simulation model and estimating
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Figure 3.1: Estimation variance for bias estimation approaches 2 and 3 with
different measurement noise – k · N (0, R).

the effect on the augmentation estimation by computing the variance in the βi:s.
In Figure 3.1 the effect of increased measurement-noise level on the variance in
the estimated βi:s is shown. It is seen that Approach 3 is significantly less
sensitive to measurement noise and therefore preferable when estimating an
augmentation.

3.4.5 Method Summary

The procedure can be summarized in three steps.

Step 1 - Linearize and discretize the model if necessary. Normally, the default
model is a non-linear time continuous model such as (3.1) and has to be
linearized and discretized.

Step 2 - Find an appropriate augmentation, Aq, and compile an augmented
model (3.4). Here the designer has three options, either to estimate an
augmentation from measured data, introduce an augmentation found in
some other way, or to combine an estimated augmentation with one found
through system knowledge.

The estimation procedure contains two steps, i) estimation of bias samples
utilizing one of the three approaches presented in Section 3.4.1, ii) compute
a basis for the bias samples using SVD.
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With good knowledge of the system, the designer might have some idea of
what is causing the bias in the estimates and can choose an appropriate
Aq.

To combine an augmentation found through process knowledge with one
found through estimation can be desirable if some model deficiencies are
known but does not manage to achieve satisfactory bias reduction. In
this case the estimation approach can be applied to the, by the engineer,
partly augmented model to find an additional augmentation that captures
the remaining dominating bias.

Step 3 - Design an observer based on the augmented model (3.3) and the Aq

found in Step 2. In this chapter, an EKF is used but any non-linear
observer design methodology is possible.

3.5 Experimental Evaluation

To evaluate the method experiments are performed using a non-linear model of
a heavy-duty truck engine. The experiments consist of both a simulation study
of the non-linear model, and an evaluation of the method on measurement data
from an engine test cell.

The non-linear model of the diesel engine has three states: pim, pem, and
ntrb, that represent intake and exhaust manifold pressures, and turbine speed,
respectively. See Appendix A for more information about the engine and engine
model. In the second experiment, real data from the engine is used together
with the engine model to illustrate the properties of the proposed approach in a
real application. In both experiments the stationary parts of the data, used in
the augmentation estimation, are separated out through visual inspection and
estimation Approach 3 is chosen to estimate the bias.

3.5.1 Evaluation Using Simulated Data

The objective of the first experiment is to illustrate how the approach, which
is based on linearization procedures, performs when fed with data from a non-
linear simulation model. Thus, synthetic data is created where known biases are
introduced in the simulation. The method is then applied to show how biases
in non-linear systems can be estimated.

The introduced bias is represented by a matrix

Aq =





1 −2
2 1
0 0.2



 ,

and two slowly varying biases q1 and q2. This Aq means that there are two inde-
pendent biases affecting the model states which varies between approximately
0 and 10 % of the state values. The default system has linear measurement
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equations where y1 = pim and y2 = ntrb. However, according to the discus-
sion in Section 3.4.3, an augmentation as the one introduced in this example
cannot be estimated without a direct connection between pem and y. There-
fore the measurement equation is extended with an extra sensor for pem for the
augmentation estimation. Note that this extra sensor is not used for feedback
neither in the observer based on the default model nor in the observer based
on the augmented model. This reflects the situation that a lab environment
or development system may be equipped with extra sensors to achieve a better
augmentation estimation.

The observer based on the default model is referred to as the default observer
while the observer based on the augmented model is referred to as the augmented
observer. Both observers only use the pim and pem measurements. To make the
simulation more realistic, white system and measurement noise are added in the
creation of the synthetic data.

Using the simulated data and the default model, the augmentation estima-
tion results in

Σ ≈





5.0259 0 0
0 4.8669 0
0 0 0.0024



 105,

and

U ≈





−0.8295 −0.5527 0.0800
0.5515 −0.8233 −0.0388
0.0881 0.0123 0.9960



 ,

where Σ indicates that there are two slowly varying biases present. Hence, Âq

is estimated using the first two columns of U .
At a first look Âq does not appear similar to Aq. However, the crucial fact is

that the columns of Âq and Aq span, approximately, the same space. A closer
look reveals that the elements in the bottom row is significantly smaller than the
other elements, and that the factor between row one and two are approximately
2. That is, the only thing that differs between Aq and Âq is a scaling. The
objective was not only to estimate the bias, but rather to obtain an observer
that compensated for the model bias.

In the third step, an observer is created using EKF methodology for a model
augmented according to the estimated Âq. The performance is compared to the
default observer. The state estimates are presented in Figure 3.2 together with
the true states. Note that the estimated states from the augmented observer
coincide with the true states. It is easily seen that the augmented observer
estimates pim and ntrb better than the default observer. To obtain a better
view of the observer performance, the estimation errors are plotted in Figure 3.3.
Here it is clear that all three state estimates become better with the augmented
observer than with the default observer.

The conclusion of this small simulation example is that the approach man-
aged to get a good enough estimate of a bias in a non-linear model to improve
the state estimates.
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Figure 3.2: True states and estimated states using default and augmented ob-
server in the simulation study. Note that the estimated states from the aug-
mented observer coincides with the true states.
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Figure 3.3: Estimation errors using default and augmented observer in the
simulation study.
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Figure 3.4: Measurements of pim, pem, and ntrb from the ETC used in the
experimental evaluation. Note that turbine speeds below approximately 2 100
rad/s are missing. This is due to the limited measurement range of the turbine
speed sensor.
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3.5.2 Two Experimental Evaluations

The experimental data described in Appendix A is used to evaluate the augmen-
tation estimation and observer performance. The true states are approximated
by non-causal, zero-phase, low-pass filtered measurements, where the filter has
a cut off frequency of 2 Hz, see Figure 3.4. In the measurements parts of the
turbine speed data is missing, which is due to the fact that the measuring range
of the turbine speed sensor is limited. Speeds below 20 000 rpm, or approxi-
mately 2 100 rad/s cannot be measured. Since the observers use feedback from
this sensor this issue has to be solved. Here it is solved by setting the elements
in the observer gain from the turbine speed equal to zero when the turbine
speed measurement is equal to zero.

Based on the measurement data, an augmentation is estimated using data
from two stationary operating points in the European transient cycle (ETC)
of about 1000 samples each. All states are measured and the augmentation
estimation results in

Σ ≈ 105





5.3230 0 0
0 0.3739 0
0 0 0.0044



 ,

and

U ≈





−0.2610 0.9650 −0.0249
−0.9648 −0.2671 −0.0274
−0.0329 0.0169 0.9993



 , (3.19)

where Σ indicates that there is one dominant slowly varying bias present. Hence,
Âq is selected to be only the first column of U .

Reduced Augmentation Order

In this system it is possible to augment the system with three extra states and
still have an observable system if all states are measured. One interesting ques-
tion is if the proposed method that estimates a lower dimension augmentation
can still capture most of the bias. Therefore, three observers are designed: the
default observer, a fully augmented observer, and a one-dimensional augmenta-
tion observer.

The aim of this comparison is thus to conclude whether the proposed method
works, and is performed by analyzing the estimation errors from the three ob-
servers. The resulting probability density functions (PDF) of the estimation
errors are shown in Figure 3.5 and the mean and maximum absolute errors
for the entire ETC are presented in Table 3.1. From the data it is clear that
the default observer has a bias and that the augmented observers reduce the
bias. Now comparing the two augmented observers it is seen that the observer
with only a one-dimensional augmentation delivers close to the same reduction
in bias as the fully augmented observer. This is a clear illustration that the
method succeeds in finding the dominant bias in the model.
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Figure 3.5: Probability density functions for three observers: None – default
observer, H† – observer augmented with three states, and Âq – observer aug-
mented with one state and the estimated Âq.

Table 3.1: Data from observers None – default observer, H† – fully augmented
observer, and Âq – observer using reduced dimension augmentation found using
augmentation estimation approach 3. All observers use feedback from all states.

Max abs. error Mean error
States

None H† Âq None H† Âq

pim[Pa] 5459 6840 6599 -985 11 37
pem[Pa] 14411 14277 14278 443 86 132

ntrb[rad/s] 0.8 0.7 0.6 0.005 -0.003 -0.007
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Table 3.2: Static data from observers None – default observer, Āq – observer
using augmentation estimated using only measurements of pim, and ntrb, and
Âq – observer using augmentation estimated using measurements of all states.
All observers use feedback from pim, and pem only.

Max abs. error Mean error
States

None Āq Âq None Āq Âq

pim[Pa] 4191 3650 3641 -622 -80 -176
pem[Pa] 58758 58197 51322 6810 6328 -678

ntrb[rad/s] 0.1 0.1 0.1 0.02 0.004 0.006

Table 3.3: Dynamic data from observers None – default observer, Āq – observer
using augmentation estimated using only measurements of pim, and ntrb, and
Âq – observer using augmentation estimated using measurements of all states.
All observers use feedback from pim, and pem only.

Max abs. error Mean error
States

None Āq Âq None Āq Âq

pim[Pa] 5748 6828 6316 -533 2 -34
pem[Pa] 180279 177982 174486 16604 16479 8922

ntrb[rad/s] 0.9 0.6 0.5 0.02 0.0007 -0.001

Benefits of Additional Sensor During Design

Another interesting question is what can be achieved by allowing extra sensors,
compared to what is used in the final observer, while estimating an augmenta-
tion. The application chosen is to estimate the exhaust manifold pressure with
reduced bias compared to a default observer without having a sensor measuring
it. That is, design an observer for pem using feedback from pim and ntrb. The
analysis is performed by comparing the estimates from two observers; one based
on the augmentation

Âq =
(
−0.2610 −0.9648 −0.0329

)T

estimated using measurements of pim, pem, and ntrb, i.e., column one in (3.19),
and another based on an augmentation

Āq =
(
−0.9864 0 −0.1644

)T

estimated using measurements of pim, and ntrb only.
The two augmented observers are compared to the default observer and the

results are shown in Figure 3.6 and Table 3.2 and 3.3. Figure 3.6 shows the
probability density function for the estimation errors for the default observer,
the observer based on the model augmented with Âq, and the observer based on
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the model augmented with Āq. It is seen that both augmented observers reduce
the mean of the bias for pim and ntrb compared to the default observer and
that the observer based on the model augmented with Âq significantly reduces
also the bias in pem. Table 3.2 and 3.3 show the mean and maximum absolute
estimation errors for selected stationary parts of an ETC and for the entire ETC
respectively. In both tables it is obvious that the observer based on a model
augmented with Âq significantly reduces the estimation bias. The mean error
is reduced by approximately 50 % during an entire ETC and by approximately
90 % for selected stationary parts, while the maximum absolute errors are almost
unaffected. These, quite large, differences in the different measures are all
explained by the fact that the suggested method reduces stationary bias and,
as can be seen in Figure 3.4 the ETC is a rather dynamic sequence and the
maximum absolute errors occur in transients.

3.6 Conclusions

A method for bias compensation in observers is developed. The idea is to, based
on measurement data, compute a low dimension augmentation of the model that
describes the most significant model biases. This augmented model is used to
design an augmented observer that results in a state estimate with reduced
bias. Three main results are a characterization of possible augmentations from
observability perspectives, a parameterization of the estimated augmentations,
and a robustness analysis of the proposed augmentation estimation method.

The method is successfully applied to a diesel engine with VGT and EGR,
using a non-linear default model and measurement data from an engine in a test
cell. It is shown that an augmentation according to the suggested augmentation
procedure reduces the mean estimation error, that is the bias, by approximately
50 % in an ETC.
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Figure 3.6: Probability density functions for default and augmented observers
applied to real measurement data using feedback from pim and ntrb. The two
augmented observers are Red. – augmentation estimated measuring pim and
ntrb and Full – augmentation estimated measuring pim, pem, and ntrb respec-
tively.
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4

Parameterizing the Bias

The observer designed in Chapter 3 handles bias by modeling it as a random
walk. In cases where the bias is operating point dependent, an observer designed
according to this is connected with some issues. One issue is that as soon
as the system changes operating point, all information about the bias in the
previous operating point is discarded. It would be desirable to have an observer
that remembers the system bias in each operating point. An observer with a
bias memory would have several advantages, for example the robustness can be
increased and it can be used in engine map adaptation algorithms, compared
to an observer that models the bias as a random walk, and how to design an
observer with a memory is the topic of this chapter.

4.1 Method Outline

Based on the method developed in Chapter 3, an information preserving ob-
server, like the one discussed above, can be obtained by exchanging the assump-
tion of a bias modeled as a slowly varying bias state

qt+1 = qt,

driven by white noise, for a parameterized function, or map, describing the bias

qt = qfcn(xt, yt, ut, θt)

θt+1 = θt.

Here, qfcn(xt, yt, ut, θt) is a parameterized function, or map, with unknown pa-
rameters θ that describe the bias dependence on the system states x, outputs

45
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y, and inputs u. Further, the parameter states are modeled as slowly varying
states in the same way as the bias state in Chapter 3.

If this is done with the augmented model developed in Chapter 3, the fol-
lowing system description is obtained,

xt+1 = xt + Tsf(xt − Aqqt, ut) (4.1a)

θt+1 = θt (4.1b)

qt = qfcn(xt, ut, θt) (4.1c)

yt = h(xt). (4.1d)

Note that the only difference with this formulation compared to the one used
in Chapter 3 is that the bias states have been exchanged for a parameterized
function and the function parameters are introduced as new states. Further
this is, if (4.1c) is inserted in (4.1a), a standard state space form which means
that any suitable observer design can be applied. For example, one way of esti-
mating states while at the same time handle unknown parameters is to apply a
joint parameter and state estimating extended Kalman filter (Kopp and Orford,
1963), or unscented Kalman filter (Wan et al., 2000). There the parameters are
introduced as new states with constant time derivatives and augmented to the
original states just as in a system described by Equation (4.1).

This formulation can be used in several different applications, for example
to reduce the lag in estimation during transients or as a new way of updating
engine maps (Wu, 2006; Peyton Jones and Muske, 2007). However, to develop
a model like (4.1) entails that some new questions have to be addressed:

i) –What inputs should be used in the parameterized function and how
should the function be parameterized with respect to these inputs?

ii) –How can the function parameters be updated in a controlled manner?

This chapter addresses the second of these problems and leaves the first for
future work. A short discussion regarding the parameterization and how to find
it is presented in Section 5.2. Further, the possibilities as well as the affinity of
these ideas to other research areas, such as for example simultaneous localization
and mapping (SLAM) (Durrant-Whyte, 1988; Smith et al., 1990), and switched
linear systems (Vidal et al., 2002), are discussed in Section 4.2.

Even though any suitable observer design can be applied to this system the
choice here is to use a stochastic filter, i.e., an EKF. An advantage of stochastic
filters, like for example EKF and UKF, compared to deterministic observers is
that, not only the state estimate, but also an estimate of the estimation error
distribution is computed. Further, the estimation error statistics is used in the
computation of the filter feedback gain, which gives the stochastic filters natural
tuning parameters that allow filter tailoring to handle unknown initialization of
states, time dependent model and measurement quality etc.
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4.2 Observability

In all estimation problems observability or, at least, detectability of the system
at hand is central. Since the system considered in this chapter is a further
extension of the augmented system addressed in Chapter 3 it is natural to
assume that the system

xt+1 = xt + Tsf(xt − Aqqt, ut) (4.2a)

qt+1 = qt (4.2b)

yt = h(xt) (4.2c)

addressed in Chapter 3 is observable and analyze how the replacement of (4.2b)
for a parameterized function, (4.1b – 4.1c), affects the observability. The ob-
servability is therefore directly dependent on the properties of the parameterized
function (4.1c) that describes the dependence of the bias qt on operating point.

If for example (4.1c) is an engine map, implemented as a look-up table with
the grid points as parameters, and with an interpolation function that computes
the output. Then the system will be neither locally, nor weakly observable, i.e.,
parameters that are not used in the interpolation are not locally observable. In
Figure 4.1 the local observability of the parameter states in linear interpolation
is illustrated using the air mass-flow correction map discussed in Chapter 2. If
the operating point, in this case the air mass-flow measurement, is in the shaded
region of the plot then only the two grid points, constituting the border of the
shaded region, are locally observable. This way of reasoning can be applied
also to other interpolation methods like for example cubic spline with the only
difference that more than the two closest parameter states, denoted θi and θi+1

with i = 8 in Figure 4.1, are locally observable in each interpolation.
Definitions of the terms weak and local observability can be found in for

example (Hermann and Krener, 1977). Weak observability refers to being able
to distinguish one state from its immediate neighbors at all times while local
observability means that it is possible to distinguish every state from each other
instantaneously.

In switched, or jump, linear systems (Vidal et al., 2002) observability is
studied for trajectories, and for a system to be observable there has to exist
a trajectory such that the switching sequence is uniquely defined. Based on
this, the observability of the systems studied here can be assessed by studying a
set of trajectories, where for each of these trajectories the default states x and
some of the parameter states θi are locally observable. Consider for example a
trajectory in the shaded region of Figure 4.1. For such a trajectory x, θ8, and θ9

are locally observable. Then, a system is observable if for all parameters there
exist an interval on the trajectory where the parameter is locally observable.

4.2.1 Relations to SLAM

To facilitate the discussion of affinity between SLAM and the estimation prob-
lem dealt with in this chapter, further discussed in this section and the section
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Figure 4.1: Air mass-flow correction map with the grid points marked with a
circle and denoted with the pair (wi, θi) corresponding to a correction factor
of θi at a mass-flow of wi. If the measurement is in the shaded area of the
plot only the two parameters on the border line are locally observable while the
other remain unobservable.

to come, some relations to SLAM are presented. The problem of introducing a
parameterized function describing the bias have several resemblances, and some
differences, with SLAM. Before discussing the relations to SLAM a short pre-
sentation of SLAM is conducted. SLAM refers to the problem of estimating a
position of for example a robot, and at the same time building a map over the
environment in which the robot moves. The map is constructed from so called
features, or landmarks, that are sensed by the robot.

Figure 4.2 illustrates SLAM by presenting the solution to a SLAM prob-
lem. Figure 4.2(a) presents the true map and trajectory of the robot, while
figures 4.2(b) – 4.2(e) shows the initialization and build up of the map.

In SLAM the term local observability used throughout this chapter would
refer to the fact that not all features are measured at every time sample, i.e.,
if the robot leaves a room the features in that room are not detected until the
robot returns to that room, which corresponds to only having the nearest grid
points active when interpolating in an engine map.

However, when it comes to observability in SLAM the only aspect analyzed
in the literature is that the position is only estimated relatively to the map which
gives a corresponding unobservable mode. In SLAM this is solved by for example
fixating one feature in the map. Further, the SLAM problem is marginally
stable, meaning that for the parameter estimation error to converge to zero, the
robot trajectory has to be a closed loop, illustrated in Figure 4.2. This loop
closing is not necessary for a stable system like the ones studied in this chapter.
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Figure 4.2: Example of a solution to a SLAM problem. The robot trajectory
is plotted together with the mapped features, indicated by crosses, and their
associated covariance, indicated by ellipses. Illustration: (Törnqvist, 2008).
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However, the problem of locally unobservable features that is of interest in this
chapter is not discussed. Instead the problem of local unobservable features is
discussed as a convergence issue and handled by having zero system noise on
the parameters describing the map features. In an engine map application this
is not an option since the whole idea is to be able to capture and track engine
aging and changed operating conditions. This force an introduction of system
noise also on the parameter states describing the parameterized function.

Another difference between SLAM and the estimation problem addressed
in this chapter is that in SLAM the number of map features, corresponding to
the number of unknown function parameters in Equation (4.1b), increase as the
robot moves. Which means that the number of features can become very large,
while in Equation (4.1) the number of parameters, θ, is constant and typically
not large, at least for the one- and two-dimensional engine maps used in modern
engine control systems today.

4.2.2 Growing Estimation Error Covariance

A problem that comes with a locally unobservable system is the propagation
of the estimation error covariance matrix in an EKF/UKF frame-work. In
regions where the system seldom operates the estimation error covariance matrix
coefficients, corresponding to locally unobservable parameter states, will grow
linearly without bound. This linear growth in covariance matrix elements can
convey numerical problems like overflow when considering the time span of an
engine.

Example 4.1

A model that contains a parameterized function describing a linearly interpo-
lated engine map is used to illustrate the linear growth in the covariance esti-
mate P in an EKF. Analyzing the equations describing the feedback gain and
estimation error covariance propagation give insight into the covariance growth.

Kt = Pp,t−1C
T
t

(
CtPp,t−1C

T
t + R

)−1
(4.3a)

Pu,t = Pp,t−1 − Pp,t−1C
T
t

(
CtPp,t−1C

T
t + R

)−1
CtPp,t−1 (4.3b)

= Pp,t−1 − KtCtPp,t−1 (4.3c)

Pp,t = AtPu,tA
T
t + Q (4.3d)

Here Kt is the Kalman gain, and Pu,t and Pp,t are the estimation error co-
variance estimates in the measurement update and prediction step of the EKF
respectively. The potential problem of locally unobservable parameter states is
demonstrated using diagonal P0, Q, R and a linear map interpolation in the
measurement equation. Here it can be concluded that the positions in the co-
variance matrix corresponding to areas in the system operating region where
the system seldom operates will increase linearly with time.
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Consider a state vector
x̄ =

(
xT θT

o θT
u

)T
,

where x is the state vector in the original model, θo are parameter states that
have been observed, and θu are the parameter states not yet observed. Start in
time step k with

Pp,k−1 =





∗nx×nx 0 0
0 ∗nθo×nθo 0
0 0 Dk



 , (4.4a)

Ck =
(
∗ny×nx ∗ 0

)
(4.4b)

Ak =

(
∗nx×nx 0

0 Inθ×nθ

)

, (4.4c)

where D on the diagonal of Pp,k is a diagonal matrix corresponding to parameter
states not yet observed and the zero column of Ck corresponds to parameters
not used in the interpolation in time step k, i.e., with

y = h(x) + qfcn(x, θ),

Ck =
(

∂h
∂x + ∂qfcn

∂x
∂qfcn

∂θo

∂qfcn

∂θu

)∣
∣
∣
x̄=x̄k

=
(
∗ ∗ 0

)

which can be compared to Figure 4.1. Hereafter, the dimensions of the matrix
sub-blocks are left out to increase readability.
Now (4.3a) becomes

Kk =





∗ 0 0
0 ∗ 0
0 0 Dk









∗
∗
0




(
∗
)

=





∗ 0 0
0 ∗ 0
0 0 Dk









∗
∗
0



 =





∗
∗
0



 , (4.5)

that is, due to the zero on row three in Kk, there is no update of the unobservable
states θu. Further, (4.3b) becomes

Pu,k =





∗ 0 0
0 ∗ 0
0 0 Dk



 −





∗
∗
0




(
∗ ∗ 0

)





∗ 0 0
0 ∗ 0
0 0 Dk





=





∗ 0 0
0 ∗ 0
0 0 Dk



 −





∗ 0 0
0 ∗ 0
0 0 0









∗ 0 0
0 ∗ 0
0 0 Dk





=





∗ 0 0
0 ∗ 0
0 0 Dk



 −





∗ 0 0
0 ∗ 0
0 0 0



 =





∗ 0 0
0 ∗ 0
0 0 Dk



 , (4.6)

i.e., no reduction of estimation error covariance for the unobserved parameter
states. Nevertheless, due to (4.3d) a linear increase in estimation error covari-
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ance is obtained

Pp,k =

(
∗ 0
0 I

)




∗ 0 0
0 ∗ 0
0 0 Dk





(
∗ 0
0 I

)T

+ Q =





∗ 0 0
0 ∗ 0
0 0 Dk



 + Q. (4.7)

This effect is also illustrated in Figure 4.3, where the variance of three param-
eter states are plotted, θ5, θ8, and θ10. They illustrate how the variance of
each parameter state develops with time for three cases. θ5 corresponds to a
parameter that is not observed at all for the particular trajectory, presented in
Figure 4.3(b). While the trajectory is such that the parameter corresponding
to θ8 is observable during the first half of the trajectory and is then becoming
unobservable where instead the parameter corresponding to θ10 becomes ob-
servable for the second half of the trajectory, which is seen in Figure 4.3(a).
Note that Figure 4.3(a) is constructed, and the purpose is to illustrate what
happens when the sets of locally observable and unobservable parameter states
are changed. This is similar to what will be shown later in Figure 4.9 where
the variance propagation is shown for an augmented observer that is run on
experimental data.

In SLAM this is, as stated above, not a problem since the map features are
considered to be fixed, which is achieved by setting the system noise of the map
features equal to zero. In this way the estimation error covariance for these
parameters will be limited on a stationary level decided by the measurement
noise and ordinary system noise only. In an engine application however it is
desirable to be able to track for example system aging, which is not possible if
there is no noise driving the engine map parameters.

One idea of how to handle the linear growth of estimation covariance of
locally unobservable parameter states is to introduce an upper limit for the
corresponding estimation error covariance matrix elements. A possible upper
limit is the initializing error covariance matrix, P0. Since it is desirable to
limit the estimation error covariance of only those parameters that are locally
unobservable it is appropriate to do the limitation element wise, i.e., compare
Pi,i to P0 i,i, and limiting Pi,i by setting Qi,i = 0 if Pi,i > P0 i,i. By choosing
P0 as an upper limit, the introduction of yet another filter tuning parameter is
avoided.

One may think that by just analyzing the diagonal elements, Pi,i, the in-
formation of the parameter corresponding to the i:th diagonal element of P is
incorrect due to possible cross correlations in P . However, it is straightforward
to show that the off-diagonal elements in P do not affect the estimation error
covariance for a single parameter, which is done in Appendix C.

Further, this property of the EKF and locally unobservable states can solve
some of the engine map adaptation problems that control engineers struggle with
in modern engine control systems. For example, experiences from adaptive maps
in engine applications, not using the EKF/UKF and joint parameter and state
estimation, are for example how to handle the fact that an engine during normal
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Figure 4.3: The figure shows the development of the estimation error variance
for three parameter states. One that is unobservable during the entire trajectory
– θ5, one that is observable for the first half of the trajectory – θ8, and one that
is observable for the second half of the trajectory – θ10.
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operation does not cover the entire parameter space used to span the map and
only occasionally enters some areas. Many of todays adaptation schemes apply
the same adaptation algorithm in each update step and do not adjust the update
procedure with respect to when the parameter was last updated. This may
result in undesired system behavior caused by old parameters, not handled by
the adaptation scheme. In cases like this, a linearly growing uncertainty for
seldom updated parameters could be helpful, enabling a fast parameter update
without risking large errors in the state estimates.

4.3 Noise Sensitivity

Even though the method developed in this chapter is quite similar to the one
developed in Chapter 3, for example new states are introduced to compensate
for stationary biases, there are some differences. One difference between the
observer developed and analyzed in this chapter compared to that treated in
Chapter 3 is the time scale in which the bias and parameter states have to be
updated.

For the observer designed in Chapter 3 it is necessary for the bias state to
change approximately as fast as the system dynamics, otherwise it will not be
able to track a change in operating point. However, a rapidly changing bias
state captures also high frequency disturbances which makes the bias state in
this approach inappropriate for usage as engine adaptation map estimation.

In an observer utilizing a parameterized function to describe the bias, the
parameter states have to work in a time scale determined by system aging,
which is substantially longer than for a bias state, and can therefore be made
slow. This makes the observer based on a model containing a parameterized
function or map less sensitive to temporary disturbances, compared to the ob-
server designed in Chapter 3 since a temporary disturbance does not affect the
parameter states significantly. Figure 4.7 presents the true parameterized map,
a map estimated with a joint state and parameter estimating EKF, and a bias
state augmented EKF from Chapter 3. It is seen that a filter utilizing a param-
eterized map describing the bias manages to estimate the true map well and
that a filter utilizing a bias state in mean captures the adaptation map but with
significant variance.

Another issue that is straightforwardly handled by stochastic filters is ini-
tialization of unknown bias or function parameters. By proper initialization
of the corresponding elements in the estimation error covariance matrix, P0,
a temporary faster update of unknown bias or function parameter states is
achieved. That is, due to an initially faster update rate of unknown parame-
ters, in the same way as old parameters are allowed a faster update rate, a rapid
convergence of the parameter states is achieved.
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4.4 Experimental Evaluation

To evaluate the bias parameterization, a simulation study is performed on a non-
linear model of the heavy duty truck engine presented in Appendix A. Inputs
to the simulation model are measured signals from an engine in an engine test
cell, collected during an ETC.

Three observers are designed and evaluated. The first observer is based on
the default model directly, the second observer is based on the idea in Chapter 3,
and the third observer utilizes the ideas of a parameterized map describing the
bias.

Figure 4.4 shows the simulation set-up used for creating the data used in the
observer evaluation. The data is created by simulating the model with input
data from an ETC segment, presented in Figure 4.5. The segment is chosen to
contain a wide range of air mass-flows such that a trajectory that makes the
system observable is created. Apart from the model, a correction map is applied
on the simulation output to distort the measured air mass-flow with the aim to
mimic the sensor error illustrated by the calibration curve studied in Chapter 2.
Further the choice of introducing the bias in the measurement equation shows
that the developed methods work, not only for bias in the dynamic equation,
but also for bias in the measurement equation. The calibration curve from
Chapter 2 corrects for a too low measured air mass-flow Wmeas compared to the
true Wtrue,

Wtrue = (1 + r(Wmeas))Wmeas, (4.8)

where the typical appearance of r is presented in Figure 2.1. To simulate this
incorrect air mass-flow measurement the correction map used in the simulation
adjusts the true air mass-flow according to

Wmeas = (1 + f(Wtrue))Wtrue, (4.9)

where f(Wtrue) is presented in Figure 4.1. This distorted air mass-flow is then
used for feedback in the observers.

All these observers use feedback from the air mass-flow sensor only whilst
the estimation performance evaluation is with respect to all states and outputs,
i.e., intake and exhaust manifold pressures, turbine speed, and air mass-flow
through the compressor.
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Figure 4.5: Simulated states and outputs from the ETC segment used in the
experimental evaluation. The true states states and outputs are plotted with
solid lines and the distorted output used for feedback is plotted with a dotted
line.
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4.4.1 Observers

The observer designs are: an EKF observer based on the default model described
in Appendix A directly

xt+1 = xt + Tsf(xt, ut)

yt = h(xt),

referred to as Def., an EKF observer with an extra bias state introduced in
the measurement equation to reduce the estimation error from the approach
developed in Chapter 3

xt+1 = xt + Tsf(xt, ut)

qt+1 = qt

yt = h(xt) + qt,

referred to as Aug., and a joint state and parameter estimating EKF based on
the default model and a parameterized bias,

xt+1 = xt + Tsf(xt, ut)

θt+1 = θt

yt = (1 + qfcn(h(xt), ut, θt))h(xt),

referred to as Map.
The EKF:s are tuned according to the discussion in Section 4.3 with respect

to the driving noise for the bias and parameter states. That is, all three ob-
servers have the same measurement noise R, and system noise corresponding to
the default states x, i.e., the nx × nx upper left block of Q. While the differ-
ence in the bias modeling between the Map. and Aug. observers gives that the
nq × nq lower right block in Q corresponding to the Aug. observer is thousand
times greater than the nθ ×nθ lower right block of Q corresponding to the Map.
observer. This due to the different time scales in which the bias and parameter
states operate. By this tuning the Aug. observer becomes sufficiently fast and
is able to track the bias.

4.4.2 Convergence Speed

One issue with the estimation bias correction method developed in Chapter 3
is that since no information about the bias in each operating point is saved
the observer convergence is directly dependent on the speed of the bias states.
While the extension presented in this chapter use a parameterized function and
the convergence will therefore not be dependent on the speed of the parameter
states.

To analyze and compare the convergence speed of filters utilizing a parame-
terized bias to filters utilizing bias states is a difficult task. A reason for this is
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that the convergence is highly dependent on the filter tuning. Since the max-
imum errors occur in transients, see for example the transient at the time 5 s
in Figure 4.6, they give an indication on how well the estimate is able to track
transient behavior. That is, a coarse way of analyzing convergence speed is to
analyze the maximum absolute errors. Figure 4.6 presents the estimation errors
from an ill tuned Aug. observer, where the bias state deliberately has been
tuned to be too slow and does not manage to track the change in bias, together
with the estimation errors from the Map. and Def. observers. From Section 4.3
where the difference in variance of the driving noise of the augmented states be-
tween the methods developed in chapters 3 and 4 is discussed, the convergence
speed is just a matter of filter tuning and it is hard to make a fair comparison.
Since a bias state has to be approximately as fast as the system dynamics and
the parameters as fast as the system aging, filters tuned with these aspects in
mind will have about the same performance, which is confirmed in Table 4.1.
Nevertheless, since the bias state is allowed to change much faster than the
parameter states, a filter utilizing that approach will be more sensitive to dis-
turbances. A filter with a parameterized function with slow parameters does
not allow disturbances to affect the estimation of neither model nor parameter
states, i.e., have a stronger smoothing effect.

Figure 4.7 shows the true and estimated map, and the correction made by
the slowly varying bias from Chapter 3 computed according to

f =
q̂t

ŷt − q̂t
.

From this figure it is seen that the Map. observer manages to estimate a correc-
tion map out of a cycle without any post processing. Also the correction made
by the Aug. observer captures the true map but some post processing, like for
example mean value computations, is needed to get a map that can be used for
interpolation etc.

4.4.3 Adaptation Map Development

In an application where the method is used for engine map adaptation it is
of great importance that the method converges toward the true parameterized
map. Figure 4.8 shows the development of the adaptation map over time and
shows how it converges as air mass-flows from the entire operating region spans
the adaptation space.

In Table 4.1 it is seen that all measures, both maximum and mean, are
approximately the same for the Aug. and Map. observers for all system states
and the system output, while the Def. observer has significantly larger errors.
From this it can be concluded that the estimation performance with respect to
the default states and outputs are similar for the two observers Aug. and Map.
Though, the Map. observer also estimates a parameterized map which is quite
common in modern engine control systems.
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Figure 4.6: Estimation error of an ill tuned Aug. observer, where the bias
deliberately is modeled to be too slow which gives large estimation errors in
transients, together with estimation errors of the Map. and Def. observers.
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Figure 4.7: True and estimated air mass-flow correction maps together with the
correction made by the slowly varying bias from Chapter 3.

Table 4.1: Estimation error for default, augmented and mapped observer re-
spectively, where the filters are tuned according to Section 4.3.

Max abs. error Mean error
Measurements

Def. Aug. Map. Def. Aug. Map.
pim[Pa] 5286 264 230 1145 5 4
pem[Pa] 5169 241 205 1086 4 4

ntrb[rpm] 1183 99 99 304 -0.5 -0.3
Wair[kg/s] 0.007 0.0005 0.0006 0.002 0.00001 0.00001
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Figure 4.9: Propagation of the variance for three parameter states. Here the
variance of the driving noise is significantly increased compared to the filter
which estimation error is presented in Table 4.1. This increase in system noise is
just for illustrating the linear increase in uncertainty for the locally unobservable
parameters and an exponential decrease in uncertainty when the parameters
become locally observable.

Figure 4.9 shows how the estimation error covariance is updated. Notice
that the estimation error covariance matrix element corresponding to a locally
unobservable parameter grows approximately linearly until it reaches the up-
per bound defined by P0, according to Section 4.2.2. However, for short time
periods, like the ones simulated here, this linear growth of estimation error co-
variance is hardly a problem whilst it might become a problem when considering
the entire life-time of an engine. In the figure the parameter noise covariance
has been increased by a factor of 105 to clearly illustrate the growth in variance
of the locally unobservable parameters.

4.5 Conclusions

The method developed in Chapter 3 does not keep the information collected
about the bias in each operating point, i.e., as soon as the operating point
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is changed the information about the bias in that point is discarded. In this
chapter a method for storing bias information from different operating points is
developed. With this method it is possible to achieve simultaneous estimation
of original model states and parameters, like for example adaptation of engine
maps.

If a stochastic filter is used, like for example an EKF, then the estimation er-
ror stochastics, which in an EKF is the estimation error covariance, can be used
to achieve variable update rate of the map parameters. For instance by proper
tuning of the initialization covariance, a fast initial update of the parameters
is achieved. Further, the use of stochastic filters together with a parameter-
ized bias offers a straightforward way to handle the problem of seldom updated
parameters in ordinary engine map adaptation algorithms. The original al-
gorithms do not consider when the parameters were last updated, which may
result in unwanted system behavior due to old parameters. With a combination
of the parameterized bias, a stochastic filter and the fact that a seldom updated
parameter has been locally unobservable for some time, the update rate of these
old parameters is increased. The linear growth of estimation error covariance,
that comes as a result of local unobservability of the parameters, form a poten-
tial problem for the filter and a way to limit this growth is provided. This to
avoid numerical problems like for example over flow.

Besides the method itself, its relations to simultaneous localization and map-
ping (SLAM) are discussed, mainly with respect to local observability of the
parameters states. In SLAM there is for example no problem of growing es-
timation error covariance since the map parameters are considered fixed and
the system noise of the parameters are set to zero. This is not an option in an
engine map adaptation application since its purpose is to track system aging
and changes in environmental conditions.

The method shows promising results in a simulation study using an EKF,
where it manages to estimate the engine states while at the same time estimating
a parameterized air mass-flow adaptation map. Further it is shown that while
maintaining the same estimation quality with respect to mean and maximum
absolute error, as the method developed in Chapter 3, an engine adaptation
map can be estimated as well.
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5

Conclusions and Future Work

5.1 Conclusions

The task of estimating fundamental variables needed for control, or diagnosis
in heavy duty truck engines is crucial to fulfill customer demands on low fuel
consumption and high torque output. This have to be done without significant
time delay and with high accuracy to keep the emissions below legislated levels.

It is empirically established that continuous adaptation of the air mass-flow
signal in heavy duty diesel engines is needed and it is further concluded that the
air mass-flow adaptation is operating point dependent. The sensor correction
needed increases for higher air mass-flows and varies with outer conditions such
as summer, winter, high altitudes etc.

In model based observer designs the model quality has a crucial effect on the
resulting observer. In the engine application studied in Chapter 2 the model
deficiency is that the model captures dynamics well but is biased. Further, the
stationary errors often varies with operating point.

An idea of how to handle stationary model errors is to augment the model
with extra states that describe the bias. Methods for estimating a bias reduc-
ing model augmentation are developed which handles operating point depen-
dent stationary errors. The methods utilize a default model that captures the
dynamics of the modeled system well but suffers from stationary errors, and
measurements from the system. Based on this a low dimension model augmen-
tation is estimated. Any suitable observer design can then utilize the augmented
model to get an observer that has reduced stationary errors compared to using
the default model directly. An analysis of robustness against model errors, and
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noise is also conducted. This analysis indicates that one of the methods is less
sensitive to noise than the others.

The main results regarding the augmentation estimation are a theorem stat-
ing which bias augmentations are possible while maintaining observability and
another theorem stating what augmentations are possible to find through es-
timation. The latter theorem states that it is the sensor set-up of the system
that limits the space in which bias is observable.

When using a pure bias state augmentation to compensate for an operating
point dependent bias, like in Chapter 3, the information about the bias in
each operating point is discarded as soon as the operating point is changed.
A way to better take care of this bias information is to replace the bias state
with a parameterized function. In this way the bias information is stored in
the function parameters that are introduced as new states instead of the bias
state. This approach falls under what is usually called joint parameter and state
estimation where some common methods are extended and unscented Kalman
filters (EKF/UKF). By applying these stochastic filters the approach can be
used as a new way of updating engine adaptation maps. The stochastic part
of the filters give a frame-work suitable for controlling the parameter update
rate, that is the filters handle system aging and locally unobservable parameter
states by increasing the update rate of these seldom updated parameters once
they become locally observable.

The first method developed utilize introduction of new bias states to reduce
the stationary estimation errors and is shown to give an approximate mean
estimation error reduction of 50 % in an engine application using real measure-
ments. In this application the exhaust manifold pressure is estimated using an
EKF and feedback from the intake manifold pressure and turbine speed.

In the second method the bias states are replaced by parameterized functions
with unknown parameters, and these parameters are then introduced as new
states. This method shows promising results in a simulation study where both
the original engine states as well as an air mass-flow correction map, like the one
discussed in Chapter 2, is estimated. The promising results refers to that the
method finds the correction map fast, and that the ideas fits well in established
frame works without any need for ad hoc choices.

5.2 Future work

During the development process of this thesis several interesting questions and
thoughts have arisen that have not been given their deserved attention, and this
section serves as a compilation of the most important of these ideas.

Starting with the question disregarded in Chapter 4, namely how to find
a suitable parameterized function qfcn(x, y, u, θ) and corresponding inputs x,
y, and/or u. A simple idea of how to find these is to analyze the correlation
between the biases found in Chapter 3 and the states, outputs, and inputs. This
however only answers parts of the questions namely which inputs should the
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parameterized function have. Nevertheless, in the case of using the approach for
continuous engine map adaptation, suitable parameterizations are often already
found from physical relations or other engineering experiences.

Further, in many applications the model and/or measurements are of dif-
ferent quality depending on system operating point. In these cases it can be
desirable to be able to control the update of the parameters, for example in oper-
ating points where the measurements are known to be inaccurate they should be
ignored and when the model is inaccurate some other filter modification might
be appropriate to achieve a globally better performing observer. This can be
achieved by introducing time varying system and measurement noise descrip-
tions, Qt and Rt, and thereby in some sense extend the procedure of limiting
the magnitude of the estimation error covariance. Another related term on the
same topic that could be useful is Q-boosting, which means a temporal increase
in system noise when the model has become invalid.

It would also be interesting to apply the developed methods to other esti-
mation problems both in the vehicle power train, for example turbine speed,
intake manifold temperature, as well as in other applications such as for exam-
ple selective catalytic reduction (SCR) catalysts and diesel particulate filters
(DPF).

Throughout this thesis the EKF have been used and some other related
filters with different properties are for example the UKF and the particle filter
(PF) (Gordon et al., 1993) and it would be interesting to also analyze what
possible gains there would be in using one of these instead of the EKF.
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A

Plant Model

The engine model, used throughout this thesis, is a third order non-linear state-
space model of an inline six cylinder Scania diesel engine with variable geometry
turbo (VGT) and exhaust gas recirculation (EGR). The model states are in-
take manifold pressure, pim, exhaust manifold pressure, pem, and turbine speed,
ntrb. The inputs are injected amount of fuel, VGT and EGR positions. Be-
sides these control inputs the model is parameterized by the ambient pressure
and temperature, pamb and Tamb, and the engine speed, ne. It is based on
a model developed in (Wahlström and Eriksson, 2006) and slightly simplified.
The simplifications are that the states for the EGR mass fraction and actuator
dynamics are removed. The states for EGR mass fraction are removed since
they are unobservable and the actuator dynamics are removed to get a simpler
model. A plant overview is presented in Figure A.1.

A.1 Basic Structure

The basic structure of the model is

ẋ =





ṗim

ṗem

ṅtrb



 =





fpim
(pim, pem, ntrb, uegr, ne)

fpem
(pim, pem, ntrb, uδ, uvgt, uegr, ne)
fntrb

(pim, pem, ntrb, uvgt)





y =
(
pim pem ntrb hWc

(pim, ntrb)
)T

,

where fpim
, fpem

, fntrb
, and hWc

are described in Section A.2. Further, the
model inputs, outputs, and states used are collected in Table A.1.
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Figure A.1: The model structure of the diesel engine. It has three control
inputs, and three states related to the engine. In addition, it has one external
parameterization input, the engine speed ne.

Table A.1: Model inputs and outputs
Inputs Outputs States
uδ pim pim

ne pem pem

uvgt ntrb ntrb

uegr Wc
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A.2 Model Details

Below follow a summary of the model equations using the symbols and indices
presented in Table A.2 and Table A.3. More details about the model is found
in (Wahlström and Eriksson, 2006).

Manifolds

d

dt
pim =

Ra Tim

Vim

(Wc + Wegr − Wei)

d

dt
pem =

Re Tem

Vem

(Weo − Wt − Wegr)

Cylinder

Cylinder flow

Wei =
ηvol pim ne Vd

120Ra Tim

η vol = cvol1

√
pim + cvol2

√
ne + cvol3

Wf =
10−6

120
uδ ne ncyl

Weo = Wf + Wei

Cylinder out temperature

Since the equations used to model the cylinder out temperature are non-linear
and dependent on each other, the temperature is computed numerically using
a fix point iteration using the equations

qin,k+1 =
Wf qHV

Wei + Wf

(1 − xr,k)

xp,k+1 = 1 +
qin,k+1 xcv

cva T1,k rγa−1
c

xv,k+1 = 1 +
qin,k+1 (1 − xcv)

cpa

(
qin,k+1 xcv

cva
+ T1,k rγa−1

c

)

xr,k+1 =
Π

1/γa
e x

−1/γa

p,k+1

rc xv,k+1

Te,k+1 = ηsc Π1−1/γa
e r1−γa

c x
1/γa−1
p,k+1

(

qin,k+1

(
1 − xcv

cpa

+
xcv

cva

)

+ T1,k rγa−1
c

)

T1,k+1 = xr,k+1 Te,k+1 + (1 − xr,k+1) Tim.
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For each time sample the iteration is initialized by setting the initial values xr,0

and T1,0 to the solutions of xr and T1 from the previous time sample.

Tem = Tamb + (Te − Tamb) e
−

htot π dpipe lpipe npipe
Weo cpe

EGR-valve

Wegr =
Aegr pem Ψegr√

Tem Re

Ψegr = 1 −
(

1 − Πegr

1 − Πegropt

− 1

)2

Πegr =







Πegropt if pim

pem
< Πegropt

pim

pem
if Πegropt ≤ pim

pem
≤ 1

1 if 1 < pim

pem

Aegr = Aegrmax fegr(uegr)

fegr(uegr) =







cegr1 u2
egr + cegr2 uegr + cegr3 if uegr ≤ − cegr2

2 cegr1

cegr3 − c2
egr2

4 cegr1
if uegr > − cegr2

2 cegr1

Turbo

Turbo inertia

d

dt
ntrb =

Pt ηm − Pc

Jt ntrb

Turbine efficiency

Pt ηm = ηtm Wt cpe Tem

(

1 − Π
1−1/γe

t

)

Πt =
pamb

pem

ηtm = ηtm,max − cm(BSR − BSRopt)
2

BSR =
Rt ntrb

√

2 cpe Tem

(

1 − Π
1−1/γe

t

)

cm = cm1(ntrb − cm2)
cm3
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Turbine mass flow

Wt =
Avgtmax pem fΠt(Πt) fvgt(uvgt)√

Tem

fΠt(Πt) =

√

1 − ΠKt

t

fvgt(uvgt) = cf2 + cf1

√

1 −
(

uvgt − cvgt2

cvgt1

)2

Compressor efficiency

Pc =
Wc cpa Tamb

ηc

(

Π1−1/γa
c − 1

)

Πc =
pim

pamb

ηc = ηcmax − χT Qc χ

χ =

[
Wc − Wcopt

πc − πcopt

]

πc = (Πc − 1)
powπ

Qc =

[
a1 a3

a3 a2

]

Compressor mass flow

Wc =
pamb π R3

c ntrb

Ra Tamb

Φc

Φc =

√

1 − cΨ1 (Ψc − cΨ2)
2

cΦ1
+ cΦ2

Ψc =
2 cpa Tamb

(

Π
1−1/γa
c − 1

)

R2
c n2

trb

cΨ1 = cωΨ1 n2
trb + cωΨ2 ntrb + cωΨ3

cΦ1 = cωΦ1 n2
trb + cωΦ2 ntrb + cωΦ3
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Table A.2: Symbols used in the plant model

Symbol Description Unit
A Area m2

BSR Blade speed ratio −
cp Spec. heat capacity, constant pressure J/(kg · K)
cv Spec. heat capacity, constant volume J/(kg · K)
J Inertia kg · m2

ncyl Number of cylinders −
ne Rotational engine speed rpm
ntrb Rotational speed rad/s
p Pressure Pa
P Power W
qHV Heating value of fuel J/kg
rc Compression ratio −
Ra, Ry Gas constant J/(kg · K)
Rc, Rt Radius m
T Temperature K
xcv Fuel mass fraction burned during constant volume −
uegr EGR control signal. 100:open 0:closed %
uvgt VGT control signal. 100:open 0:closed %
uδ Injected amount of fuel mg/cycle
V Volume m3

W Mass flow kg/s
γ Specific heat capacity ratio −
η Efficiency −
Π Pressure quotient −
ρ Density kg/m3

Φc Volumetric flow coefficient −
Ψc Energy transfer coefficient −
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Table A.3: Indices used in the plant model.
Index Description
a air
amb ambient
c compressor
d displaced
e exhaust
egr EGR
ei engine cylinder in
em exhaust manifold
eo engine cylinder out
f fuel
im intake manifold
m mechanical
t turbine
vgt VGT
vol volumetric
δ fuel injection
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B

Experimental Set-up and Data

The data are collected in an engine test cell at Scania CV AB in Södertälje,
Sweden and are from an inline six cylinder Scania diesel engine with VGT
and EGR. Data was collected during a European transient cycle (ETC) de-
fined in (Council of European Parliament, 2005). The sensor signals used in all
experimental evaluations are; intake and exhaust manifold pressures, turbine
speed, and engine speed. Actuator signals used are; VGT and EGR positions,
and injected amount of fuel. All these signals are available on a standard en-
gine, i.e. no extra lab sensors were used, and collected with a sampling rate of
100 Hz.

For the experimental evaluation in Chapter 2 an extra air mass-flow sensor,
Wref, is used as a reference. This signal is logged using a different measurement
system with a sampling frequency of 10 Hz. For the evaluation in Section 2.4
the measurements are synchronized. The synchronization is made by comparing
measurements of the same signal with the two systems and performing a time
shift.

Sensor Dynamics

To justify that it is the system dynamics that is captured by in the measure-
ments, i.e., the sensors is fast enough to be able to track the system dynamics,
a brief presentation of the sensor data is presented. The sensor specifications
are provided by Scania.

The pressure sensors are capacitive pressure senors and have a first order step
response with a time constant of approximately 15 ms for the intake manifold
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pressure, and 20 ms for the exhaust manifold pressure.
The mass-flow sensor measuring the air mass-flow through the compressor is

a hot wire sensor also with a first order response and a time constant of 20 ms.
The rotational speed sensors are inductive and measures the time between

two interrupts. For the engine speed the interrupts occur every sixth crankshaft
degree and the signal used throughout this thesis is the mean value of 20 consec-
utive interrupts. This gives a time constant of approximately 20 · (1−e−1) ≈ 13
samples. For the turbine speed the interrupts occur ones for every revolution
and the signal used throughout this thesis is the median of three consecutive
interrupts. That is, the maximum lag is roughly 13 times six crankshaft de-
grees and 2 times 360 turbine shaft degrees respectively. For engine speeds over
500 rpm, which is the engine idle speed, this gives a maximal time constant of
approximately 13 · (500/60 · (360/6))−1 = 26 ms, and for turbine speeds over
20 000 rpm, which is the minimum revolution speed for which the sensor works,
this gives a maximum time delay of approximately 2 · (20 000/60)−1 = 6 ms.
Since these sensor responses are significantly faster than the dynamics seen in
measurements they are neglected throughout this thesis.

Reference Signal – Wref

The measured reference output Wref is a cell sensor measuring the air mass
flow into the engine. It is a hot wire sensor, a Sensyflow P-Tube with type no.
14241-7962638 and a measuring range of 0.055-1.111 kg/s. The uncertainty is
less than 1 % of reading and the sensor has a response time of 12 ms. This sensor
is placed approximately 4 meters in front of the engine air mass-flow sensor on a
straight pipe with a diameter of 0.28 meters. The fact that the reference sensor is
mounted in an environment well suited for air mass-flow measurements, i.e., no
restrictions on packing etc. have to be fulfilled, makes this sensors reading closer
to the actual air mass-flow. The volume and distance between the two sensors
give rise to unwanted dynamics. Calculations show that the filling and emptying
dynamics from this volume has a time constant of approximately 10 ms and the
effect from wave propagation has approximately the same traveling time, which
is small in comparison to the time constants of the system. With these facts
and the fact that the reference signal has to be manually synchronized with the
other signals, these effects are not considered.
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State Marginalization

In Section 4.2.2 the problem of growing estimation error covariance for locally
unobservable states are discussed. An idea on how to handle this problem is to
introduce an upper limit on the estimation error covariance. Since it is desirable
to limit only the error covariance of the locally unobservable parameters the
limitation is done element wise, that is by comparing Pi,i to P0 i,i, and limiting
Pi,i by setting Qi,i = 0 if Pi,i > P0 i,i, where P0 is the upper limit.

To deduce that it is sufficient to analyze the diagonal elements in P when
limiting the estimation error covariance in the EKF it is convenient to introduce

P =

(
Px Pxθ

PT
xθ Pθ

)

, x̄ =

(
x
θ

)

, µ̄ =

(
µx

µθ

)

,

and the variable transformation x̄θi
= Tθi

x̄, where

Tθi
=







0 0 1 0
Inx

0 0 0
0 Iθj<i

0 0
0 0 0 Iθj>i







,

to move θi to the top of the state vector.
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Then the probability density function for θi can be computed according to

fΘi
(θi) =

∫

x,θj 6=i

e−
1
2
(x̄−µ̄)T P−1(x̄−µ̄)

(2π)(nx+nθ)/2
√

det(P )
dxdθj 6=i

=

∫

x,θj 6=i

e
− 1

2
(

=I
︷ ︸︸ ︷

T−1
θi

Tθi
(x̄−µ̄))T P−1T−1

θi
Tθi

(x̄−µ̄)

(2π)(nx+nθ)/2
√

det(P )
dxdθj 6=i

=

∫

x,θj 6=i

e−
1
2
(x̄θi

−µ̄θi
)T (

Σi
︷ ︸︸ ︷

Tθi
PTT

θi
)−1(x̄θi

−µ̄θi
)

(2π)(nx+nθ)/2
√

det(P )
dxdθj 6=i

=

∫

x,θj 6=i

e−
1
2
(x̄θi

−µ̄θi
)T Σ−1

i
(x̄θi

−µ̄θi
)

(2π)(nx+nθ)/2
√

det(Σi)
dxdθj 6=i, (C.2)

where the change of variables x̄θi
= Tθi

x̄ have been used.
Now setting

Σ−1
i =

(
Σθi

Σθiζ

ΣT
θiζ

Σζ

)−1

= Mi =

(
Mθi

Mθiζ

MT
θiζ

Mζ

)

,

and

x̄θi
− µ̄θi

= qi =

(
θi − µθi

ζ

)

,

(x̄θi
− µ̄θi

)T Σ−1
i (x̄θi

− µ̄θi
) = qT

i Miqi =

(θi − µθi
)T Mθi

(θi − µθi
) + (θi − µθi

)T Mθiζζ + ζT MT
θiζ(θi − µθi

) + ζT Mζζ

(C.2) becomes

fΘi
(θi) = e−

1
2
(θi−µθi

)T Mθ(θi−µθi
)×

∫

x,θj 6=i

e−
1
2 ((θi−µθi

)T Mθiζζ+ζT MT
θiζ(θi−µθi

)+ζT Mζζ)

(2π)(nx+nθ)/2
√

det(Σi)
dxdθj 6=i (C.3)

which by completing the squares,

(θi − µθi
)T Mθiζζ + ζT MT

θiζ(θi − µθi
) + ζT Mζζ = (ζ − ζ̂)T Mζ(ζ − ζ̂) + C

= ζT Mζζ − ζT Mζ ζ̂ − ζ̂T Mζζ + ζ̂T Mζ ζ̂ + C
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⇒
MT

θζ(θi − µθi
) = −Mζ ζ̂

(θi − µθi
)T Mθζ = −ζ̂T Mζ

ζ̂T Mζ ζ̂ + C = 0

⇒
C = −(θi − µθi

)T MθζM
−1
ζ MT

θζ(θi − µθi
),

can be written

fΘi
(θi) =e−

1
2
(θi−µθi

)T (Mθ−MθζM−1

ζ
MT

θζ)(θi−µθi
)× (C.4)

∫

x,θj 6=i

e−
1
2
(ζ−ζ̂)T Mζ(ζ−ζ̂)

(2π)(nx+nθ)/2
√

det(Σi)
dxdθj 6=i

=
e−

1
2
(θi−µθi

)T (Mθ−MθζM−1

ζ
MT

θζ)(θi−µθi
)

(2π)(nx+nθ)/2
√

det(Σi)

(2π)(nx+nθ−1)/2

√

det(Mζ)

=
e−

1
2
(θi−µθi

)T (Mθ−MθζM−1

ζ
MT

θζ)(θi−µθi
)

√
2π

√

det(Σi)
√

det(Mζ)
. (C.5)

Finally, using the equalities

(
A B
C D

)−1

=

(
(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

)

,

det

(
A B
C D

)

= det(A − BD−1C) det(D),

and

det(A−1) = det(A)−1, if det(A) 6= 0,
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(C.4) becomes

fΘi
(θi) =

e−
1
2
(θi−µθi

)T (Mθ−MθζM−1

ζ
MT

θζ)(θi−µθi
)

√
2π

×
√

det(Mθ − MθζM
−1
ζ MT

θζ) det(Mζ)
√

det(Mζ)

=e−
1
2
(θi−µθi

)T (Mθ−MθζM−1

ζ
MT

θζ)(θi−µθi
)

√

det(Mθ − MθζM
−1
ζ MT

θζ)√
2π

=
e−

1
2
(θi−µθi

)T (Mθ−MθζM−1

ζ
MT

θζ)(θi−µθi
)

√

2π det(
(

Mθ − MθζM
−1
ζ MT

θζ

)−1

)

=
e
− 1

2
(θi−µθi

)T Σ−1

θi
(θi−µθi

)

√

2π det(Σθi
)

. (C.6)

Which shows that θi ∼ N (µθi
,Σθi

) = N (µθi
, Pθi

).
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