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Abstract and Acknowledgments i

Abstract

The aim of this Master thesis is to control a vehicle with a Starter/Generator
included in the drivetrain with the help of an on-line control method called
Model Predictive Control (MPC). The controller is to be used as a cruise
controller and attempts are made to lower the fuel consumption with the
help of MPC. The control signals are the throttle angle and a current as-
sociated with the torque that can be obtained from the Starter/Generator.
The reference signal is velocity.

The control work is divided into two parts, linear and nonlinear MPC. For
the linear MPC the vehicle model is �rstly linearized and the obtained linear
model is used in the making of the linear controllers. The controllers are
derived for di�erent criteria and around di�erent working points, and tested
on the nonlinear model. The following of the reference velocity is good, but
it is not possible to directly inuence the fuel consumption. To be able to
cover a larger reference velocity range the linear controllers are combined in
two di�erent switching strategies, were a supervisor decides what controller
to use in a particular instant.

To be able to more directly inuence the fuel consumption, nonlinear MPC
is tried. A complete numerical solution would require substantial calcula-
tion time so a approximative method is used. The approximative method
is tested for two di�erent criteria, were one directly includes the fuel con-
sumption. The approximative method does not give as good a result as the
linear controllers with regards to the reference following. With regards to
the fuel consumption the result is hard to interpret since the control values
assume unrealistic values.
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ii Notation

Notation

Symbols

Av Cross-sectional area of vehicle
� Throttle angle
cr Rolling friction coeÆcient
cW Air resistance constant
Fairres Force on vehicle caused by air resistance
FB Force on vehicle caused by breaking
Fincline Force on vehicle caused by the incline of the road
Frollingres Force on vehicle caused by the rolling resistance
FR Sum of the resisting forces acting on the vehicle
g Gravitational acceleration
i Gear ratio
meff E�ective mass
M Output signal horizon
Mengine Engine torque
MSA Torque given by the starter/generator
N control signal horizon
�G eÆciency of the gear
nengine rpm in engine
nwheel rpm of the wheel
r reference signal, reference velocity
rwheel wheel radius
�air air density
s distance
v velocity
x a vector
X a vector in time
 angle of incline

Abbreviations

Consump. Fuel Consumption
GPC General Predictive Control
ICE Internal Combustion Engine
Lin. Linearisation
MPC Model Predictive Control
Ref. Reference velocity



Notation iii

RHC Receding Horizon Control
RPM Revolutions Per Minute
SOC State Of Charge
Working p. Working point
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1 Introduction 1

1 Introduction

This master thesis was made for and with the help of the DaimlerChrysler re-
search and development department FT2/EA, powertrain control, in Esslin-
gen am Neckar, Germany. The aim of the thesis is to control a nonlinear
model of a vehicle, including a Starter/Generator in the drivetrain, with the
help of a regulation method called Model Predictive Control (MPC). The
controller is to be used as a cruise controller. Attempts will also be made to
lower the fuel consumption of the car with the help of MPC. A presentation
of linear and nonlinear Model Predictive Control theory is also included.

1.1 Background

Today we can all be said to be part of the information society. With the
help of recent developments, such as wireless technology, the information is
also readily available in new places, for example in cars and trucks. It is
possible to get information about such important things for driving as the
speed limit and incline of the road, and based on these facts make decisions
about the driving strategy. It would be interesting to start taking more
advantage of these known facts.

Another recent development can be seen when looking at the price of fuel.
It has become expensive at the same time as people are becoming more and
more aware of the e�ect of car exhausts on the environment. A car that has
a low fuel consumption is attractive for consumers not only because it saves
its owners money but also because it saves the environment. This is where
an additional electrical source of power, the Starter/Generator, comes into
the picture. The normal car of today can spare about 14 volts for loading of
the car battery and the running of the air conditioning , the electrical seat
adjustments, the on-board computer and other electrical appliances. This
number would be raised to about 42 volts with the new Starter/Generator.
Not only does this give new opportunities for including comforts in the car, it
also gives a new dimension of freedom when optimizing the fuel consumption.
The reason for this is that the torque required for reaching a certain speed
can be obtained in part from the Starter/Generator and in part from the
normal combustion engine.

Model predictive control is a control method which takes advantage of the
information available and where in theory any criterion, such as a lower
fuel consumption, can be implemented. This is why this particular control
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method is chosen for this study.

1.2 Method

Firstly in the work of this thesis a literature study of Model Predictive
Control methods is made. A selection of the methods are then chosen
and applied to the nonlinear model W203E20ML, a vehicle containing a
Starter/Generator in the drivetrain. The model is implemented in Simulink
and the data used for the model is provided by DaimlerChrysler. For the
purpose of obtaining linear MPC controllers the model is linearized. The
controllers obtained with the help of linear MPC and this linearized model
are applied to the nonlinear plant. Then the linear controllers are combined
in order to cover a larger velocity range with the help of so called supervisors.
Finally nonlinear MPC is tried. The linearization, the linear controllers and
the nonlinear controller are calculated with the help of Matlab and imple-
mented in Matlab/Simulink.

1.3 Thesis Outline

The work done during the thesis and the concepts it contains are described
in the following chapters.

Chapter 2 The Vehicle Model The model of the vehicle and its engine
is presented. The assumptions made about what information is known
beforehand and the physical limits to the system signals are also in-
cluded in this chapter.

Chapter 3 MPC theory An introduction to Model Predictive Control,
linear and nonlinear, is given. Also the history of MPC is presented.

Chapter 4 Control The nonlinear model is linearized around several work-
ing points and linearized controllers are calculated for di�erent min-
imization criteria and applied to the nonlinear system. A nonlinear
MPC controller is also tested.

Chapter 5 Tabular Results from simulations made for the di�erent con-
trol strategies are presented here.

Chapter 6 Future work and extensions Extensions to the work done
in the thesis can be found here.
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Chapter 7 Conclusions The conclusions drawn from this work are pre-
sented and discussed.
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2 The Vehicle

To control a drivetrain with a Starter/Generator with the help of Model
Predictive Control is the aim of this thesis. To be able to get a satisfactory
result when working with Model Predictive Control it is, as the name of the
method implies, crucial to have a good working model of the plant that is to
be controlled. A model needs to describe the characteristics of the vehicle
and engine well and at the same time not be unnecessarily complex.

The engine that is the base for the model used here is a M111 inserted in
the car model W203E20ML, which is a new Mercedes C-class from Daim-
lerChrysler. The engine is an internal combustion engine (ICE) with spark
ignition, also called an Otto engine. The reason for looking at an engine
of the Otto type, as opposed to studying the other type of ICE engine, the
diesel engine, is that they are worse than the diesel engine from a fuel con-
sumption aspect. Thus the Otto engine has a higher optimization potential.

Catalyst

Throttle

Intake manifold

Crank shaft

Piston

Cylinder

Air

Power

Emissions

Fuel
Valves

Exhaust manifold

Figure 2.1: An internal combustion engine

A vehicle with an Otto engine works on the following basic principle: The
drive force for moving the vehicle is obtained when fuel mixed with air is
ignited. The amount of air that is used is regulated by the throttle. The
combustion moves a piston that turns the crank shaft. This results in a
rotational speed n, and a torqueMengine, of the crankshaft (�gure 2.1). The
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torque and the rotational speed are transformed into motion of the vehicle
via the gear-box. The Starter/Generator (section 2.1) can, depending on n
and a current I from the battery, add a torque to the one given from the
engine.

For the control of the vehicle in this thesis the throttle angle � and the
current I are considered to be the control signals, the wished for speed is
the reference signal and the speed given by the model and the distance
traveled are the outputs. Additional inputs in the model is the gear, the
breaking force and the incline of the road (�gure 2.2).

Velocity

Distance

Throttle angle

Current

Gear

Incline

Breaking
 resistance

Reference velocity

Figure 2.2: The reference, input and output signals of the modelled vehicle

These three additional inputs and the reference velocity are all considered
to be known to the system. The speed limit, the incline and the curvation
of the road are known beforehand from for example an ordinary map. The
speed limit can be a reasonable reference velocity.

All physical actuators have limits, and this is true also for the ones included
in this system. The throttle angle can only take a value between zero and
almost ninety degrees and the current is also limited. It has its maximum
around 150 A. Here all work is done with models, and this means that the
result of a throttle angle of 600Æand a current of 1000 A is a possible result.
It must then be remembered that this is only mathematical results, which
could not be reached in real life.

When modeling the engine of the vehicle there are some particularities that
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need to be described that put up a problem. One of those is the strongly
nonlinear connection between the rotational speed of the crankshaftn and
the throttle angle � on the one hand and the delivered torque of the engine,
Mengine one the other. It is also necessary for the purpose of this thesis to
get information from the model about the amount of fuel used. This too is
expressed by a nonlinear relationship between the two torques given from
the engine and the Starter/Generator, Mengine and MSA, the revolutions
per minute of the crank shaft, n, and the fuel consumption. Because the
mathematical foundation for describing these e�ects are very hard to obtain,
these relationships will be expressed with measure-based maps.

Another function of the car that is modeled is the switching of the gears. If
the focus of the study would be on dynamical changes it would be especially
important to have a good model of gear switching. In this case, however, the
main issue is the longterm behavior of the car, and each gear-shifting lasts
only a very short period of time of the entire driving session. Therefore the
assumption is made that the gears shift in steps, going instantly from one
constant value to the other. The clutch signal can be totally disregarded for
the same reason.

2.1 Engine with a Starter/Generator

At present, a car with a normal Otto engine is also equipped with a small
electrical engine for starting, and a separate generator to load the battery
that provides the start engine with power. The generator also supplies the
electrical appliances in the car with power. It is run over a belt, and this
fact sets a limit to the amount of power that can be obtained eÆciently from
the generator, to around 2 to 3 kW . It is possible to go above these limits,
but the losses in the generator then turn out to be bigger than what can be
considered acceptable. At the same time, the amount of applications in a
car that use electrical power has not reached its maximum, but is instead
steadily increasing. For example there are small electrical motors for seat
adjustments, on-board computers, navigation systems and air conditioning.
One solution to the problem of an increased demand for electrical power is
the Starter/Generator. The Starter/Generator takes the role of both the
start engine and the generator. It is located directly on the crank shaft and
uses magnetic �eld to a�ect the shaft with a torque, MSA. This torque can
both work with the torque from the engine and against it. Energy can both
be used to help the Otto engine and be stored in a battery.

The amount of energy loaded in the battery is measured with the state of
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charge (SOC). This energy can, as mentioned above, be used to help the
engine impel the car and thereby save gasoline or be saved in the battery
for future needs. The SOC can of course not be allowed to go under a lower
limit, since enough energy must be stored for starting the vehicle.

2.2 Vehicle model

The model of the vehicle containing an engine with a Starter/Generator is
expressed in the state space form and has Newtons second law as its base:

F = meff � a (2.1)

The e�ective mass, meff , of the vehicle serves as an energy storage. The
e�ective mass is the total vehicle weight plus an extra weight of ten percent
of the vehicle mass. This is to compensate for the e�ects of the rotating
masses of the drivetrain [1]. To reach the state space formulation that is
wanted, the acceleration a, is two times integrated. The second energy
storage is the battery, with its state of charge, SOC. It is modeled as an
integration over the current, multiplied with a current-depending eÆciency.
This results in the following state equations:

_s = v
_v = 1

meff
[FD � FR � FB ]

_SOC = �I

(2.2)

The third state, the state of charge, will not be used in the deriving of the
control laws, and will therefore be omitted in the following presentations of
the state space description of the vehicle model.

The acceleration in equation (2.2) is obtained from a sum over the applied
forces divided with the e�ective mass of the vehicle system. The forces are
the driving force FD, the resistance force FR and the breaking force FB .
They are expressed with the relations expressed with equations (2.3).
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FD = 1
rrad

i�GMtot(�; n; I)

FR = Fairres + Frollingres + Fincline
Fairres =

1
2�airAvcW v2

Frollingres = meffgcr cos 
Fincline = meffg sin
Mtot =Mengine(�; n; I) +MSA(n; I)

(2.3)

where the rotational speed of the engine is given from the following expres-
sion:

n = v
rwheel

i30
�

i = n
nwheel

(2.4)

The complete model of the vehicle, including a drivetrain with a Starter/Gen-
erator is expressed with the help of equation (2.2) to (2.4) in equation (2.5).

_s = v

_v = f(�; n; v) =
1

meff

[
1

rwheel
i�GMtot(�; n; I) �

1

2
�airAvcW v2 �

�meffgcr cos  �meffg sin � FB ] (2.5)

It was previously mentioned (section 2) that there are strong nonlinearities
in the vehicle that are hard to express as mathematical functions. To deal
with these maps are used. One map describes the relationship between the
rotational speed of the engine n, the throttle angle � and the delivered
torque of the engine Mengine (�gure 2.3). The other map shows how much
fuel is used in relationship to the torque Mengine and the revolutions per
minute of the crank shaft (�gure 2.4).

The vehicle model is implemented in Matlab/Simulink with the help of the
state space expressions and maps presented. The structure of the model can
be seen in �gure 2.5. For the exact Simulink model see appendix A.
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Figure 2.3: The engine torque depending on the throttle angle and the
engine speed
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Throttle angle

Starter/generator

Engine

Battery
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Figure 2.5: The vehicle and drivetrain model



12 2.2 Vehicle model



3 MPC theory 13

3 MPC theory

3.1 Introduction to Model Predictive Control

The fundamental idea when working with Model Predictive Control is to
express the output signals, y, in terms of past and future control signals, u,
and obtain a forecast of process behavior with the help of a process model.
The next step is then to �nd the future control strategy which will optimize
this forecast according to some criterion.

For a short introduction to MPC, see [2], and for a more complete presen-
tation see [3].

The MPC strategy is not only one �xed method. Instead there are a number
of slightly di�erent methods, all based on the same underlying ideas. They
all use a model of the process explicitly to obtain the control signal by
minimizing an objective function. There are some steps that can be said to
be the core of model predictive control and at least some of these steps are
included in each di�erent variant of MPC. These steps are:

1. At present time t, calculate or predict the output ŷ(t+ kjt) from the
process, over a time horizon M. These outputs will depend on future
control signals u(t + j); j = 0; : : : ; N , and past outputs and control
signals. These are known. The output prediction is obtained by using
a process model , hence Model Predictive Control.

2. Choose a criterion based on the variable ŷ and the states x̂ and opti-
mize it with respect to u(t + j); j = 0; : : : ; N under the chosen con-
straints. The current state of the plant is given as the initial state.

3. Apply the �rst control signal u(t) given by the optimization to the
plant.

4. At time t+ 1 go to 1 and repeat.

The constant moving of the time horizon one step forward leads to a so called
receding horizon. MPC can be called a receding strategy. One could say
that this strategy is similar to driving a car. The driver knows the desired
reference trajectory for a �nite control horizon. With this knowledge and the
knowledge of the car characteristics he or she decides which control actions,
such as accelerating or breaking, are necessary. Only the �rst control action
is taken at each instant.
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It should be noted that the �rst three steps above represent an open-loop
control strategy. If all the obtained control signals were to be applied to the
system and there were some sort of error, for example a imperfect model
or disturbances, these errors would never be fed back into the system. The
vital thing that turn the entire MPC strategy into a closed-loop control lies
in the fact that only the �rst control signal, u(t), is applied. The process is
done all over again, and as can be seen in point 2, the current state of the
plant is taken as initial value. This means that errors in the system will be
taken into account, and the control strategy is a closed-loop strategy.

There are several tuning parameters in the MPC algorithm, and they should
be chosen with care to get the desired result. They are:

� M. M is the time horizon for y, the outputs. M should be chosen so
that it covers the settling time for the system, thus making it possible
to look beyond to the more stable behavior. It should at the same time
be avoided to chose a to big value on M, since the size of the output
horizon inuences the calculation time of the optimization problem.

� N. N is the time horizon for u, the control signals. It is often a smaller
number than M, since it more or less decides the size of the optimizing
problem.

� V. V is the criterion to be optimized. This is maybe the most impor-
tant parameter. If the criterion is an unreasonable one that the system
can not ful�ll, this will not show in any way except by the result from
the controlled plant. It is up to the designer of the control system to
chose reasonable, sensible criterion.

The list is based on information found in [2, 3].

As a more practical explanation of how to derive a control law with the
help of MPC an example will be shown. The number of states, the control
signals and the values on M and N will be exactly the same as the ones
corresponding to the linear MPC of the vehicle system in this thesis.

First the model is stated in discrete state space form:

x[n+ 1] = Adx[n] +Bdu[n]
y[n] = Cdx[n]

(3.1)

x is the state space vector containing the two states x1 = s and x2 = v.
u is in the same way the vector containing the control signals u1 = � and
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u2 = I. Big letters symbolize a vector in time. In this thesis the output and

the reference are both scalar. In theory, there is no problem with the output

and reference being vectors containing several signals.

The next step is to chose a criterion to be minimized. The simplest one is

perhaps to use only the di�erence between the output and the reference value,

in this case shown with a quadratic norm and a weighting matrix Qy:

Vex =

MX
i=1

(yi � ri)
TQy(yi � ri) =

= jY �RjQy (3.2)

The criterion expressed with the help of the linear, discrete state space model

takes the form seen in (3.3).

Vex =
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(3.3)

Here, and in the rest of the control work done in this thesis the change in the

control signals is considered to be zero after the point in time N. Q represents

the weights put on di�erent variables in the criterion to be minimized. Only

the relationship between the weights is important, so in the example here

weighting does not make sense. In other criteria however, weights are an

important way to inuence the control structure, by for example giving a

heavy weight on a variable important to keep small. Thus the variable is

forced to a small value when the criterion with variables times the weights

is minimized.
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Figure 3.1: The obtained control structure when using a unconstrained,
quadratic criterion

The most common form of constraints are umin � u � umax but for this

simple example no constraints will be taken in to account. This turns the

optimization of Vex into a straightforward derivation problem:

@Vex

@U
= 2STQy(HX + SU �R) (3.4)

The optimal control signal, U�, is given by @Vex
@U

= 0. The solution is:

U� = �(STQyS)
�1STQy(Hx� r) (3.5)

From this solution only u(t) is applied to the model and then the process

starts over again.

If the model is linear and the criterion chosen is in a quadratic form as in
the example, and unconstrained, it is possible to �nd an analytical solution
to the optimization of V. The solution to the control problem will give a
u(t) were each control signal ui is on the form:

ui = c0y + c1r (3.6)

With this result the constants c0 and c1 only need to be calculated once,
o�-line, and can then be applied to control the process. It is exceptionally
easy to implement (�gure 3.1).

If an analytical solution is unobtainable the minimization has to be done in
each time step, be applied as a controller and calculated again in the next
time step, as described above. The controller is said to be calculated on-line.

The strength of MPC lies in the four steps listed above. It is easy to take
constraints of di�erent kinds into account, they only need to be included
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in the criterion to be optimized. A multi-variable case can be dealt with.
MPC can also be used to control a wide variety of processes, both linear and
nonlinear (section 3.2). The method of course also has weaknesses. One is
that the derivation of the control law can be very complicated, even more
so if the criterion has constraints. Another drawback is the need for a good
model of the process to be controlled. These models can be very hard to
obtain, especially for a nonlinear system.

3.2 Nonlinear Model Predictive Control

When a system has a mild nonlinearity, it might be possible to control it
with a linear controller if this controller is carefully tuned. For a system
with strong nonlinearities it is more interesting to make use of a nonlinear
controller. The fundamentals of MPC theory is such that it can be applied to
linear and nonlinear systems alike. In analogy with equation (3.1) a general
nonlinear problem with the criterion to be minimized can be de�ned as:

minu([kjk];::: ;u[k+N�1])V =
PM

j=1(l(xj ; uj))

x[n+ 1] = f(x[n]; u[n])

y = g(x; u)

u[k + j] 2 U; j = 0; : : : ; N � 1

�u[k + jjk] = 0; j � N

(3.7)

In the expression above the model and the criterion are nonlinear. Both
these properties will lead to a nonlinear controller, as will constraints on
the criterion. The problems with obtaining the nonlinear controller are
mainly of a practical nature. It can be very hard to optimize a nonlinear
problem mathematically. An analytical solution most often does not exist.
A complete numerical solution can require a substantial computational time,
most often longer than what is acceptable in an on-line controller.

The whish for short calculation time combined with the whish for a nonlinear
controller has lead to several methods that mix linear and nonlinear solutions
to di�erent degrees. One method that bases itself fully on linear MPC is
to linearize the system around several working points and with the help of
those models calculate linear controllers. The controllers are then combined,
and each controller is used to regulate the nonlinear plant in a area around
the working point it was created for.

Another method that tries to take the nonlinearity more into account is
described in [4]. This method is the one used for the nonlinear control in



18 3.2 Nonlinear Model Predictive Control

section 5. The idea is to compute the control sequence by calculating the
criterion at time t completely numerically and approximate the criterion in
the following time steps, t+1 to t+N , with a linearization. The optimization
problem this leads to can be expressed as follows:

minu[tjt]V

x[t+ 1] = f(x[t]; u[t])

y = g(x; u)

u[tjt] 2 U

�u[t+ ijt] = linearcontrol(x[t+ jjt]); j = 1; : : : ;M � 1

(3.8)

If one compares expression (3.7), the complete numerical solution of the non-
linear problem, with expression (3.8), the approximative solution, there are
two major di�erences. The �rst one is that in (3.7) the number of variables
to be optimized are the number of inputs times the control horizon but in
(3.8) the optimization variables are only the number of inputs, regardless of
the control horizon. It is good for stability to choose a rather large control
horizon, but this is in normal MPC hindered in some degree by the fact
that the number of optimization variables are the control horizon times the
number of outputs. When using expression (3.8) the optimization is done
with regard to the present time step of the control signals only. N does not
a�ect the number of optimization variables and can therefore be chosen big.

The second di�erence is that the control horizon for (3.7) is the chosen con-
trol horizon N. In (3.8) the control horizon instead equals the output horizon
M. The reason for this is that the on-line computation of the controller in
(3.8) is not a�ected by N. To get an overview the di�erences between a
complete nonlinear solution and one of the many approximative methods
for solving nonlinear problems, see table 3.2.

Controller (3.7) Controller (3.8)

Optimization Variables number outputs* N number outputs

Control Horizon N M

Table 3.1: Two controllers for nonlinear systems
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3.3 History of predictive control

The history of Model Predictive Control can be said to start in the 1970s
when several articles concerning predictive control appeared. The processing
industry also began to take notice of this control method. Several branches
of predictive control developed more or less independently. One was what
is now called Model Predictive Control (MPC). Two of the �rst varia-
tions within this branch where called Model Predictive Heuristic Control
(MPHC), later known as Model Algorithmic Control (MAC) and Dynamic
Matrix Control (DMC). Both these algorithms explicitly use a dynamic pro-
cess model but where MAC uses the impulse response, DMC uses the step
response. They took advantage of the increasing potential of digital comput-
ers at the time [3]. A second branch of predictive control, General Predictive
Control (GPC), was developed in the �eld of self tuning [5]. A third branch,
called Receding Horizon Control (RHC) was �rst developed as a variation of
Linear Quadratic Gaussian Control (LQG). All these variations of predictive
controllers can be seen as relatives to controllers from optimal control and
to linear programming [3].

MPC became popular especially in the chemical process industries. This
was in part due to the simplicity of the algorithm and in due to the use of
impulse or step response model, which was often preferred to input/output
or state space models as being more intuitive. In time however, MPC was
also formulated in the state space context, and that is the way it will be
used in this thesis.
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4 Linear control

4.1 Linearization of the vehicle model

The complete model of a vehicle, with a Starter/Generator included in the
engine model, can be linearized around any number of working points (op-
erating points). Each operating point consists of a velocity v0, a gear i0, a
throttle angle �0 and a current I0. The linearization of a state space system
is done by derivation of the system with respect to the states and the input
signals around the chosen working point [6]. The vehicle model described
by equation (2.5) thus gives the linearized model:

_s = 1(v � v0)

_v =
@f

@v
(v � v0)j�0;n0;v0;I0 +

@f

@�
(�� �0)j�0;n0;v0;I0 +

@f

@I
j�0;n0;v0;I0(I � I0) =

=
1

meff

[
1

rwheel
i�G

@Mengine

@n

@n

@v
j�0;n0;v0;I0 � �airAvcW v](v � v0) +

+
1

meff

[
1

rwheel
i�G

@Mengine

@�
]j�0;n0;v0;I0(�� �0) (4.1)

n0 is given by equation (2.4). The two derivates of the engine torque,
Mengine, must also be known to be able to make the linearization. Mengine(�; n)
is expressed by a map ( �gure 2.4) and the derivates can be obtained by a
interpolation of the map values, a known n and a known � ( Appendix B,
section B.1.1). But the throttle angle is not known, so before the torque
derivates can be found the throttle angle must be approximated. The ap-
proximation of � is given by observing what throttle angle value the nonlin-
ear model assumes when stabilized at the current working point velocity, v0,
by a rough PID regulator and using this value as the known throttle angle
value.

To each operating regime a linear model as seen in (4.1), called local model,
is associated. The local models are represented by a continuous state space
formulation, where _x(t) represents the system in (4.1) and y(t) the system
output, as seen in (4.2).

_x(t) = Ax+Bu
y(t) = Cx

(4.2)
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The di�erential equation (4.2) describes the system to be controlled, but
when implementing the control signals it is common that they are piecewise
constant. They are held at the optimal value calculated over one time step
[7]. Therefore the continuous representation is transformed to a time discrete
state space form and the result is:

x[t+ 1] = Adx[t] +Bdu[t]
y[t] = Cdx[t]

(4.3)

For each of the local models obtained a controller, called local controller,
can be derived with the help of linear MPC theory [4]. When a linearized
model and a quadratic criterion, V, are used in the MPC algorithm the ex-
act solution to the MPC optimization problem can be found. As previously
explained (section 3.1) this means that one gets the sought controller ex-
pressed on the form u[t] = c0y+c1r, which is easy to implement (section 3.1,
�gure 3.1). Because of this it would be very desirable if the local controllers
also could be used for the nonlinear vehicle system.

When one compares the response from the unregulated nonlinear model
with that from the unregulated local models they of course vary from each
other. As seen in �gure 4.1 the output velocities from the nonlinear and the
linearized models reach di�erent end values and assume di�erent shapes.
Still the similarities are such that there can be good hope of being able to
control the nonlinear model with the controllers obtained by using the linear
models.

For all the work done with linear MPC in this thesis the same output horizon
and control horizon are chosen. To look beyond the initial state of the system
a big enough value must be chosen for M. Also, the output horizon must be
long enough so that it is really possible for the system to ful�ll the criterion.
However, M also a�ects the computational time of the optimization, and
should for this reason not be to big. The control horizon N should be chosen
as small as possible while still being big enough so that it is possible for the
system to ful�ll the criterion, that is reach the desired velocity, and still
not be to big because of its a�ect on the size of the optimization problem.
Several di�erent values are tested. For example with an output horizon of
ten and a control horizon of two, the system is unable to reach the value of
the reference signal. Finally the values of ten seconds for the output horizon
M and four for the control horizon N are found to be good compromises.
These values are used throughout the entire work with linear MPC here.
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Figure 4.1: Output velocities from the nonlinear model and one linearized
model, when excited with a throttle angle of sevenÆand a current of zero A.
The x-axis is the time and the y-axis the velocity in km=h

4.2 Control with criterion one

The �rst attempt to control the nonlinear model of the vehicle is made with
the quadratic criterion V1.

V1 = (Y �R)TQy(Y �R) + U
T
QuU (4.4)

This criterion takes into account the error between the reference value, r,
and the output of the system, y, and it weights the control signals, u, over
the output horizon M and the control horizon N. This should lead to the ref-
erence velocity being followed and to moderate values on the control values.
If u1, that is �, is kept rather small this should also have a positive e�ect on
the fuel consumption, since it is indirectly inuenced by the throttle angle
(�gure 2.3 and 2.4).

Qy and Qu are weighting matrixes. If there for example is a output horizon
of three and a control horizon of two the weighting matrices will be:

Qy =

0
@ k0 0 0

0 k1 0
0 0 k3

1
A
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Qu =

�
k4 0
0 k5

�

By giving for example Qy a heavier weight than Qu using small input values
is prioritized. Using only a little current and a small perturbation in the
throttle angle is then considered more important than that the reference
velocity should be closely followed. This happens because the minimization
of V forces the signals with a heavy weight to be small, so that the total
value of V will be small. In the criteria described in this thesis the fore-
most concern is that the vehicle reaches and holds the velocity given as a
reference and the weights are adjusted to ful�ll this concern. When weights
are considered good they make the system reach the desired velocity (not
over, also not under) and hold it. First when this requirement is ful�lled
is it meaningful to try to minimize the fuel consumption at each speed by
distributing the desired torque needed for this speed between the ICE and
the Starter/Generator.

There is one decision to make when one tries to �nd the best weights for the
system, and that is if the weights should be tuned so that the local controller
is as good as possible for its corresponding local model, or if the controller
instead should be tuned to �t the nonlinear system. Here the second choice
is made, the tuning is made with the nonlinear system as a reference. If
the weighting leads to making the controller better in one area and worse in
another, it is prioritized that the controller gives a good result in the area
around its working point.

The attempt to control the nonlinear W203E20ML model with linear con-
trollers is for criterion (4.4) tried around four di�erent working points. They
are presented in table 4.1.

linearization point speed v0 km=h gear i0 throttle angle �0
1 40 3 5.6

2 50 3 6.5

3 70 4 7.4

4 100 4 9.5

Table 4.1: Linearization points for V1 and V2

Around each of these points the system is linearized and a control strategy is
derived with linear MPC theory ( for the exact Matlab implementation see
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Appendix B, B.1.1 and B.2.1). After that each local controller is tested for
a range of velocities on the non-linear plant. The resulting output velocities
and the fuel consumption from the plant when controlled with one of the
four controllers over a hundred time steps can be seen in section 6, table 6.1.
A study of the absolute deviation of the output velocity compared to the
reference, r, shows that the resulting velocities follow the reference value
tolerably well, but there is room for improvement (table 4.2). As could
be expected, the controllers made for the higher working points, 3 and 4,
give the best result for the higher speeds. For the lower speeds it is not as
obvious that the controllers 1 and 2 are better. They also give a higher fuel
consumption (section 6, table 6.1). This is mainly because the lower gear,
i0, used when running local controllers 1 and 2 results in a higher value of
RPM, which brings the fuel consumption up (�gure 2.4).

reference speed km=h 20 30 40 50 60 70 80 100

linearization point

1 0.61 1.95 0.49 0.18 0.42 1.41 2 3

2 0.49 1.75 0.2 0.24 0.93 2.03 2.71 4

3 1.27 0.67 0.3 0.37 0.7 0.17 0.24 0.4

4 1.3 0.46 0.04 0.69 1.15 0.68 0.56 0.2

Table 4.2: The absolute deviation from the reference velocity for the local
controller corresponding to working point 1,2,3 and 4 under V1

When continuing the control work in this thesis it will be realized that
the results regarding control signals and such for criterion V1 are almost
identical, only slightly worse, than the results for the following criterion V2.
For this reason the next criterion is studied more carefully with regard to
the behavior of the control signals and can be considered representative of
both linear criterion one and two.

4.3 Control with criterion two

To get a smooth change of the throttle angle a term �U can be included in
the optimization criterion V . �U describes the changes in the inputs � and
I between two time steps. The new criterion is expressed by equation (4.5).

V2 = (Y �R)TQy(Y �R) + U
T
QuU +�U

T
Q�u�U (4.5)
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Again the same four linearization points as for V1 are chosen (table 4.1)
Around these the model of the vehicle is linearized and for each resulting
local model a controller is obtained ( Appendix B, section B.1.1 and B.2.1).
The di�erent controllers each has areas in which they follow the desired
velocity, r, close and others where r is not so closely followed (section 6,
table 6.2).

reference speed km=h 20 30 40 50 60 70 80 100

linearization point

1 0.25 0.15 0.0 0.10 0.25 0.41 0.57 1.1

2 0.33 0.13 0.14 0.01 0.20 0.40 0.62 1.3

3 0.88 0.49 0.26 0.19 0.38 0.01 0.27 0.7

4 1.12 0.44 0.0 0.73 1.17 0.75 0.41 0.1

Table 4.3: The absolute deviation from the reference velocity for the local
controller corresponding to working point 1, 2, 3 and 4 under V2

This new criterion gives a better following of the reference speed than V1 for
all controllers, and for each individual speed also, with one or two exceptions.
The pattern of the controllers made for low working point functioning well
for low speeds and vice versa is clearer here (table 4.3).

When looking at the input signals, that is � and I, it is interesting to see if
the inclusion of them in the criterion is enough to keep them at a reasonable
level, even though the optimization is done without constraints, or if they
turn out to violate the physical constraints of the system. In a study of �gure
4.2 it can be seen that the inclusion of the control signals in the criterion is
indeed enough in this case. As could be expected the throttle angle peeks
with the changing of velocities, and lessens again when the system is back
in a steady state and has reached the desired speed.

The control signal I shows much the same behavior as the throttle angle. It
is kept within its limits and peeks when the speed changes are taking place,
giving the system an extra boost (�gure 4.2).

The torque a�ecting the vehicle is divided between the torque provided
by the engine, Mengine, and the one from the Starter/Generator, MSA. The
predominate part of the total torque is provided byMengine. It is interesting
to note that the controllers derived with the higher working points use more
torque from the Starter/Generator than the ones that were derived from the
lower working points. However, regarding the engine torque the situation is
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Figure 4.2: The throttle angle control signal and the current control signal
given to the nonlinear velocity model when controlled with linear MPC
controller for working point 1 and 4

reversed (�gures 4.3).

When comparing the fuel consumption using the two di�erent criteria V1
and V2 it can be seen V1 gives lower fuel consumption compared to V2 in
the lower velocity range, and V2 gives a lower consumption compared to V1
in the higher velocity range. These di�erences are very small, to small to
say de�nitely if one or the other criterion is better for the fuel consumption
aspect. Criterion two is still to be preferred, since it gives a good, smooth
following of the reference velocity.

The next step is to investigate if it is preferable to use one of the local
controllers obtained from V2 to control an entire velocity range, as was done
in section 4.2 and 4.3 or if the best control result is obtained by using a
supervisor, a switching control.
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Figure 4.3: The engine torques and Starter/Generator torques when using
controllers 1 and 4

4.4 Switching control

Switching control is a way to combine several local controllers so that they
together can cover a entire velocity range. The most appropriate local con-
troller is picked for each speed and this picking is handled by a so called
supervisor.

The �rst supervisor tested is based on the idea that the output from the
local models decide which local controller to use on the nonlinear model, as
described in [4]. The supervisor receives the same inputs as the nonlinear
system and applies these to each of the several local models. The outputs
are then compared to the reference velocity. The controller corresponding
to the local model whos output di�ers the least from the given reference is
chosen as controller for the nonlinear system ( �gure 4.4).

This strategy has one aw when used in this context. The decision made
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Figure 4.4: Supervisor according to strategy 1

regarding which controller to use to control the nonlinear model in the cur-
rent operating regime is based on the error between the reference and the
controlled linear model output. As was mentioned in section 4.1 the decision
was made in this thesis to adjust the weights in the minimization criterion
used for the local controllers to suit the nonlinear model best. If for example
the smallest error between reference value and linear model output is found
to be given from local model one, the local controller one will be picked
to control the nonlinear plant. But because of the choice made regarding
the weighting matrices it is possible that in fact using local controller two
will lead to a closer following of the reference for the nonlinear model. The
choice made has the positive e�ect that when actually controlling the non-
linear plant the MPC controllers follow the reference as well as possible, but
the negative e�ect that the controller picked by the supervisor might not be
the optimal one at the current speed for the nonlinear controller. Because
of this it can be stated that the above standing supervisor strategy is not a
good choice for this particular control problem.

After the realization that the choice made in 4.1 about weights makes the
�rst supervisor inappropriate a second, more basic supervisor structure is
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tested. This supervisor has a preset choice of local controllers and the choice
is based only on the reference velocity of the car. The switching between
controllers is completely rigid. Since the weighting matrixes were chosen in
the way explained above, this will ensure that the controller producing the
smallest error between reference velocity and output velocity is chosen every
time. Such a rigid switching strategy can produce spikes. This is sudden
peaks in the input as a result of the abrupt switching from one controller to
another. It can result in a strange behaviour of the output signal. As can
be seen in �gure 4.6 such spikes are not a problem in this case, but if they
appear it is not a problem to avoid it. For example one can search for the
points were the di�erent controllers produce the same control signal and let
the switching take place only in these points.

Supervisor 

Nonlinear model

u

:
:

Local 
regulator 1

Local 
regulator 2

Local 
regulator k

y

+
-

r

r

k

If 0< r < 30 k = 1

 else if 30 < r <40 k = 2
:
:

Figure 4.5: Supervisor according to strategy 2

Both supervisors give satisfactory results, but the rigid switcher follows the
reference velocity closer. It reaches a better end value and also follows the
steps of the reference velocity closer and quicker (�gure 4.6).

The conclusion drawn is that switching strategy using Supervisor 2 is best
for the purpose at hand. It is now interesting to see if it is in fact best to
use a switcher control on the nonlinear model compared to the results from
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Figure 4.6: Output velocity from the two di�erent switching strategies

using one single local controller. The comparison is made using the local
controllers around working point 1, 2, 3 and 4 with criterion V2. In other
words the best of the supervisors is compared with the best of the local
controllers.

Because of the structure of supervisor 2 it is given beforehand that it will give
the best following of the reference velocity since it picks the most appropriate
local controller in each instant. This result can be seen in the deviation from
the reference presented in table 4.4.
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reference speed km=h 30 40 50 60 70

supervisor 2 0.32 0.00 0.01 0.27 0.00

working point 1 0.32 0.00 0.10 0.31 0.49

working point 2 0.62 0.14 0.01 0.27 0.53

working point 3 1.40 0.70 0.65 0.31 0.00

working point 4 2.86 1.55 1.73 1.15 0.77

Table 4.4: Comparison of output velocity from nonlinear plant controlled
with supervisor 2 and local controllers derived with criterion V2

4.5 Linear control with fuel consumption in the criterion

One way to lower the amount of fuel used by the car at a certain speed
could be to put a heavy weight on the throttle angle and a low weight
on the current in the criterion to be minimized. This is true because fuel
consumption is lower for a lower value on the engine torque, and the torque
in its turn is low for small values on �, the throttle angle (�gures 2.3, 2.4).
Even though the fuel consumption might be brought down by a low value
on alpha, this does not mean that eÆciency of the engine, regarding the
fuel consumption, is good for a low throttle angle value, and this can not be
controlled with this linear criterion.

When experiments with the weighting matrices are made, it becomes clear
that with a heavy weight on the throttle angle and a low weight on the
current, I, the car does not reach the desired speed. When attempts are
made to balance the weighting matrices so that the fuel consumption will be
kept low but the reference speed will be reached the gain in fuel consumption
is minimal or more often none at all compared to the case of V1 and V2.

An important question to ask at this point is if it is at all useful to have
a MPC controller. Why not use ordinary PID controllers for the throttle
angle and the current instead. With the control structure of equation (4.6)
it is possible to give "more weight" to the current by using a large constant,
Ki, for the integrating term for I, exactly that which did not succeed with
weighting matrices.

y(s) = G � u(s) = (Kp +
Ki

s
+Kd � s) � u(s) (4.6)

To use mainly the current and just a very small throttle angle brings the fuel
consumption down and still the desired velocity is reached. The reason one
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Figure 4.7: State of charge for the nonlinear system controlled with an MPC
controller and two PID controllers using a bigger current as input. The x-
axis is the time and the y-axis the state of charge, were one corresponds to
a charge of 100 percent

gets this result is that the current takes on unrealistically big values. The
current has a limit around 150 Ampere. To stay well below this limit but still
draw a big enough current to make the fuel consumption go down is possible.
But then the problem of the state of charge (SOC) in the electrical battery
appears. The PID controllers does not take into account that the charge in
the battery keeps decreasing when a too big current is used. In the long run,
the battery is simply emptied. In �gure 4.7 the up-most line responds to
a fuel consumption that matches the consumption reached with MPC, and
the two lower ones represent cases of PID control that use a bigger current,
thus giving a lower fuel consumption as result. The two PID regulation
examples unfortunately also give the result of emptying the battery quick.
This leads to the conclusion that lowering the fuel consumption by putting
a heavy weight on control signal � is not a good method.

The minimization of V is so far only a minimization of the control input
and the di�erence between the wanted output (the cruise controller) and
the actual speed. In an attempt to lower the fuel consumption more, a term
that represents this consumption needs to be included in the criterion. The
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consumption in this case is dependent of the rotational speed of the engine,
n, and the engine torque, Mengine. The relationship between n, Mengine

and the fuel consumption is expressed with a map (�gure 2.4). This is a
nonlinear relationship and if it was included in V it would not be possible
to solve the minimization of the criterion explicitly. An alternative way to
include the fuel consumption in the criterion that is to be minimized needs
to be found. One can observe that the RPM is constant in a linearization
around a certain speed and gear. The engine torque in its turn depends on
� and this constant RPM. This lead to the idea to use a polynomial of the
second order �tted to the values ofMengine(�) at a �xed value for n, instead
of the consumption map. The resulting criterion is then:

V3 = (Y �R)TQy(Y �R) + U
T
QuU +�U

T
Q�u�U +Mpoly(�)

= (Y �R)TQy(Y �R) + U
T
QuU +�U

T
Q�u�U + k0�

2 + k1�+ k2

(4.7)

The minimization of this criterion is possible to solve exactly, just as the
criteria (4.4) and (4.5), but because of the constant terms in V3 the solution
also gets a slightly di�erent form. Whereas (4.4) and (4.5) results in a
controller that expresses the control signals in constants times the reference
value and output value, (4.7) also include constant terms in the controller.
These constant terms dominate the controller so much that is it not possible
to even reach several desired velocities, even with extremely low weights on
the input signals. So to include a term representing the fuel consumption in
this form turned out to give unacceptable result, not reaching the desired
velocity. So far the use of linear controllers to follow a reference speed has
been successful but it seems to be diÆcult to use these controllers when also
taking the fuel consumption into account. The next step is to move on to
nonlinear controllers.
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5 Nonlinear control

5.1 Complete nonlinear control

Nonlinear control using MPC in this case means using a criterion V that
might not be possible to solve analytically. The �rst attempt is to simply
solve the MPC algorithm with the criterion (5.8).

V1nonl = (Y �R)TQy(Y �R) (5.8)

The nonlinear part is the output Y , which is the output from the nonlinear
vehicle model. The tuning parameters are chosen in accordance with the
linear control section to the output horizon of ten, the control horizon of
four and Qy as the unit matrix. With the help of a Matlab function the
attempt is made to optimize the throttle angle and the current under (5.8).
It is soon realized that this is not feasible. The Matlab functions can not
handle a non-linear optimization problem of this scale, and even if it could,
the time required for the task is unreasonably large.

5.2 Approximative nonlinear control

A new method must be found for the problem. There are a number of
approximate methods that can be used and here the one presented in section
3.2, equation (3.8) is chosen. The tuning parameters are chosen slightly
di�erent compared to the ones in section 4, with a smaller output horizon
of four and the control horizon of two. The result of choosing these tuning
parameters are shown for a simple criterion in equation (5.9).

Vnonlin = (Y �R)TQy(Y �R) =

=

��������

0
BB@
0
BB@
y(t+ 3)
y(t+ 2)
y(t+ 1)
y(t)

1
CCA�

0
BB@
r(t+ 3)
r(t+ 2)
r(t+ 1)
r(t)

1
CCA
1
CCA

��������
Qy

(5.9)

After these necessary choices have been made the method is implemented
in the following way: The �rst action that is taken is that a local controller
is run for one time step. Which local controller to be used depends on the
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Figure 5.8: Approximative nonlinear method

reference velocity in the present time step. The choice is made in the same
way that controllers are picked in switching strategy two.

The resulting values for the throttle angle and the current are used as start-
ing values in the next step, the �rst time step in the MPC algorithm. In this
step the nonlinear, unregulated system is run to with the control signals �
and I as variables. After that the regulated system, controlled with a linear
controller, is used to approximate output y for the following time steps in
the output horizon. All steps are a�ected by the optimization (and control)
variables, � and I, because they a�ect the �rst, nonlinear step. The output
velocity and distance from this step are of the starting values for the next,
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controlled step, so that the current state of the model is the initial values
for the following step (�gure 5.8).

The result is a typical on-line controller and all the steps above have to be
run for each time step of the entire vehicle system, producing a control law
for each step.

5.2.1 Control with nonlinear criterion one

The work with the new method starts using criterion V1nonl.

V1nonl = (Y �R)T (Y �R) (5.10)

This criterion concentrate only on reaching the given reference velocity and
does not take the input signal or the fuel consumption into account at all.

The resulting output and fuel consumption when the system is simulated
with a velocity pro�le going from thirty to seventy in steps, each step twenty
time units long and a gear pro�le using third gear for velocities 30-50 and
fourth gear for velocities 60-70 can be seen in section 6, table 6.4. The
deviation for the reference velocity is presented in table 5.5. The resulting
output velocities are acceptable over the entire velocity range, using this one
controller, but the fuel consumption is higher than when using the Supervi-
sor 2 as control, and also higher than when using each of the local controller
derived from criterion V2 separately.

reference speed km=h 30 40 50 60 70 consump. l

V1nonl 0.23 0.11 0.29 0.35 0.54 0.1175

Table 5.5: Absolute deviation from reference velocity when using nonlinear
controller with criterion V1nonl

When studying the control signals, that are not included in the criterion, it
can be seen that the throttle angle reaches values totally unrealistic (�gure
5.9). Since the control signals are not included in expression (5.10) and the
optimization problem is unbounded there is nothing to suppress the signals.
The values assumed by � makes the result of this simulation hard to set in
relation to a real life control of a vehicle.
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Figure 5.9: Control signals for approximative nonlinear control using crite-
rion V1nonl with R as a pro�le from 30 to 70 km/h

5.2.2 Control with nonlinear criterion two

The main reason for trying nonlinear MPC is because it is possible to use
a nonlinear optimization criterion and include the fuel consumption in the
criterion. This leads to expression (5.11).

V2nonl = (Y �R)TQy(Y �R) + (fuel consumption) (5.11)

Again the focus is on the output reaching and keeping the reference velocity,
with the added wish to keep the fuel consumption low. As in criterion (5.10)
no explicit consideration is taken to the input signals, U . Since the criterion
now has two terms the weighting becomes interesting, and the control is
tested with several di�erent weights. A pattern emerges that shows that
for very low values on Qy the total fuel consumption is lowered when using
criterion (5.11). At the same time this leads to the reference velocity not
being kept, but instead heavily overshot (�gure 5.10).

This is of course unacceptable. The weight Qy is therefore steadily increased.
This results in a better following of the reference (section 6, table 6.5). The
increasing of the weight is kept up until the reference velocity is followed
in a satisfactory way and the fuel consumption is as low as possible given
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Figure 5.10: The output velocity from the nonlinear model when controlled
with approximative nonlinear method, criterion 2, weight Qy = 0:000001

that the velocity output is satisfactory ( �gure 5.11). The fuel consumption,
with a good following of r, then reach a minimum at the exact same value
that was given by (5.10).

Including the fuel consumption in the criterion did not have the desired e�ect
of bringing the fuel consumption down to a low level. It could not improve
the fuel economy and also did not dampen the values that the control signals
assume. Again the throttle angle take on values that are impossible when
considering its physical limit of 90Æ. Depending on what weights are used
the current can also assume very big values (�gure 5.12).

The unsatisfactory result when using this method can be ascribed to the fact
that the method is only approximative. The approximations are made using
linear control strategies derived from a linearization of the vehicle system.
The linearization, in its turn, is done around working points well within the
area of states were it is physically possible for the system to be, and in this
linearization maps are used. When using the criteria V1nonl and V2nonl the
control signals assume values that are far beyond the values covered by the
map, values the system can not reach in real life.
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Figure 5.11: The output velocity from the nonlinear model when controlled
with approximative nonlinear method, criterion 2, weight Qy = 0:001
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6 Tabular

6.1 Tables for linear control

The following two tables show the fuel consumption and the output velocity
when the nonlinear vehicle model is controlled with the local controllers that
were the result of MPC with criterion V1 and V2 recpectivly (section 4).

ref. speed km=h 20 30 40 50 60 70 80 100

lin. point

working p.1 19.39 28.05 39.51 49.82 60.42 71.41 82.0 103

consump. l 0.053 0.069 0.074 0.101 0.132 0.146 0.178 0.260

working p.2 19.51 28.25 39.8 50.24 60.93 72.03 82.71 104

consump. l 0.054 0.070 0.075 0.102 0.134 0.148 0.180 0.264

working p.3 21.27 30.67 40.3 49.63 59.3 69.83 80.24 100.4

consump. l 0.036 0.050 0.063 0.082 0.109 0.140 0.173 0.251

working p.4 21.3 30.46 40.04 49.31 58.85 69.32 79.66 100.2

consump. l 0.036 0.050 0.062 0.081 0.107 0.139 0.171 0.247

Table 6.1: Output velocity and consumption from nonlinear model when
using controllers derived with V1

ref. speed km=h 20 30 40 50 60 70 80 100

lin. point

working p.1 20.25 30.15 40 50.1 60.25 70.41 80.57 101.1

consump. l 0.042 0.057 0.067 0.106 0.137 0.172 0.216 0.344

working p.2 20.33 30.13 39.86 49.99 60.2 70.4 80.62 101.3

consump. l 0.042 0.057 0.077 0.105 0.135 0.170 0.213 0.338

working p.3 20.88 30.49 40.26 49.81 59.62 69.99 80.27 100.7

consump. l 0.036 0.050 0.064 0.086 0.114 0.145 0.177 0.256

working p.4 21.12 30.44 40 49.27 58.83 69.25 79.59 100.1

consump. l 0.036 0.050 0.062 0.081 0.108 0.139 0.171 0.247

Table 6.2: Output velocity and consumption from nonlinear model when
using controllers derived with V2

The weighting matrixes have been chosen to give the best possible result
(with regard to reaching and holding the reference velocity) in the nonlinear
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model at the linearization speed. Each reference speed is held constant one
hundred time steps. the consumption is the total consumption after this
time and the velocity is the end value of the output velocity.

6.2 Tables for switching control

The nonlinear model is controlled with Supervisor two and the local con-
trollers for criterion V2. The reference velocity is a pro�le one hundred time
steps long, starting on thirty and ending one seventy. Each velocity is held
for twenty time steps and shifted in steps. The gear follows this shifting,
starting on two, shifting to three for speeds 40-50 km/h and the shifting to
gear four.

ref. pro�le km=h 30 40 50 60 70 consump. l

supervisor 2 29.68 40.00 49.99 60.27 70.00 0.1082

working p.1 29.68 40.00 50.10 60.31 70.49 0.1115

working p.2 29.38 39.86 49.99 60.27 70.53 0.1094

working p.3 28.60 39.30 49.35 59.69 70.00 0.1062

working p.4 27.14 38.45 48.27 58.82 69.23 0.1015

Table 6.3: The resulting velocity pro�le for the model with supervisor 2 and
controllers from criterion V2

6.3 Tables for nonlinear control

Nonlinear control with the criterion V1nonl = (Y � R)TQy(Y � R) is made
with the reference velocity as a pro�le one hundred time steps long, starting
on thirty and ending on seventy. Each velocity is held for twenty time steps
and shifted in steps. The gear follows this shifting, starting on two, shifting
to three for speeds 40-50 km/h and the shifting to gear four.

ref. pro�le km=h 30 40 50 60 70 consump. l

reached speed 29.77 39.89 49.71 59.65 69.46 0.1175

Table 6.4: The resulting velocity pro�le for the model controlled with non-
linear controller, criterion V1nonl

Nonlinear control with the criterion V2nonl = (Y�R)TQy(Y�R)+fuelconsumption
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was made with the same reference velocity and gear shifting as for the cri-
terion V1nonl. Several di�erent weights were tried.

ref. pro�le km=h 30 40 50 60 70 consump. l

reached speed Qy = 10�6 41.00 48.60 61.80 71.40 83.20 0.081

reached speed Qy = 5 � 10�6 31.11 43.16 55.36 65.76 77.90 0.136

reached speed Qy = 10�4 30.43 41.78 52.29 63.07 72.93 0.126

reached speed Qy = 5 � 10�5 29.90 40.22 50.22 60.24 70.21 0.119

reached speed Qy = 5 � 10�4 29.78 39.92 49.76 59.71 69.54 0.1178

reached speed Qy = 10�3 29.77 39.91 49.73 59.68 69.50 0.1175

reached speed Qy = 2 29.77 39.89 49.71 59.65 69.47 0.1175

Table 6.5: The resulting velocity pro�le for the model controlled with non-
linear controller, criterion V2nonl
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7 Future work and extensions

The work done in this thesis can in no way be regarded as �nished. There
exist any number of ways to proceed.

The very �rst step should be to make full use of the Model Predictive Con-
trol algorithm by including constraints in the optimization problem. As
mentioned before, all physical systems have limits and this holds true for
the vehicle which is of current interest here. To be able to include the con-
straint of the throttle angle values (between zero and ninety degrees) would
be of great interest as would the constraints on the current and the torques.
It would result in a picture of the control problem at hand that would be
more true to reality.

Another way available when going further with this work is to try other
approximative nonlinear solutions. An interesting solution is presented in
[3] where the prediction of the plant output is done in two parts. The
free response, the future response obtained if the input is maintained at a
constant level for the duration of output and control horizons, is obtained
from a nonlinear model of the plant. The forced response, the response due
to future control moves, is obtained using a linear model. The two responses
are then added to make up the sought after prediction.

Finally, one should turn ones eye to the big �eld of predictive control, where
MPC is just a small part, and test other predictive control methods.

In the future the energy a vehicle consumes should be optimized in all parts,
from the fuel consumption of the engine to the electrical power needed for
the air conditioning.
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8 Conclusions

The aim of this thesis was to regulate a nonlinear vehicle model, including
a Starter/Generator in the drivetrain, with the control strategy Model Pre-
dictive Control. An attempt to lower the fuel consumption of the vehicle
with the help of this control strategy was also to be made. To do this the
model and its nonlinearities was �rst presented and explained.

Both linear and nonlinear MPC was used. To be able to derive linear control
laws it was necessary to linearize the vehicle model around several working
points.

The �rst criterion chosen for the linear MPC was V1 (equation (4.4), section
4.2). To make the output follow the reference and at the same time prevent
the control signals from assuming big numerical values, which is impossible
in reality, the criterion includes the di�erence between the reference and
output, and the control signals.

The linear control of the model with criterion V1 resulted in a good following
of the reference velocity, for all the local controllers. The expected result
that each controller would function at its best in an area around the working
point for which it was made, could be seen in part. However, the result was
not unambiguous. The control signals were kept at reasonable levels. The
result was very similar, but slightly worse, than the one obtained when using
linear criterion V2. The behavior of the model when regulated with the local
controllers corresponding to V2 was therefore studied more carefully.

The inclusion of the change in control signals, �U , in V2 (equation (4.5))
was made so that the throttle could be a�ected not to make big changes
fast and not show a uttering behavior. The new criterion led to a slightly
smoother and closer following of the reference signal and the following of the
reference velocity was very good in general, especially so in an area around
each controllers working point. This pattern is an expected result, and can
be seen more clearly when studying the output from control with V2 than
from outputs from control with criterion V1 (tables 4.2 and 4.3).

When studying the two control signals, the throttle angle and the current,
it can be seen that the each peak rather quickly for a velocity change, thus
giving extra power. They then return to a steady, lower value to keep the
speed. The values of the control signals keep within the physical boundaries
of the system, even though the optimization is unbounded. The inclusion
and weighting of � and I in the criteria leads to this result (�gure 4.2).
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The total torque is distributed between the torque from the engine,Mengine,
and the torque from the Starter/Generator, MSA. The main part of the
torque is taken from the engine. It both remains at a higher steady level
when driving at a constant speed and reaches higher peaking values when the
reference shifts to a higher value. The torque from the Starter/Generator has
a low constant velocity level, close to zero. It also peaks when the reference
velocity increases, to help give extra power, but the peaks are much smaller
than the ones from Mengine (�gure 4.3).

Observing the good results when using local controllers on the nonlinear
system, especially when operating in an area around their respective working
point and using criterion V2, leads to the idea of a switching strategy. In
a switching strategy several controllers are combined in a control structure,
where each controller is used when it is most appropriate. The choosing of
which linear controller to use in a particular instant is done by a supervisor.

Two di�erent supervisors were tested. Supervisor 1 gave an unsatisfactory
result because it sometimes chose the wrong controller, that is a controller
that lead to the di�erence between the reference and the output being greater
than it could have been, had another controller been chosen. The reason
for this was that the structure of the supervisor was based on the fact that
the local controllers would be optimally tuned for their corresponding local
models. However, in this thesis the choice was made to tune the linear
controllers to perform at their best for the nonlinear system instead. Thus
the nonlinear system follows the reference better when controlled with these
linear controllers, but Supervisor 1 can be deemed inappropriate to use in
this context.

Supervisor 2 was of a completely rigid structure, and based itself on previous
information about which local controller would give the best output behav-
ior when applied to the nonlinear model with a certain reference signal. The
drawback of this method is that the information must be gathered in ad-
vance, but when this information is available, as in this case, the structure
will guarantee that the best local controller always is chosen. Supervisor
2 has all the positive e�ects of the best local controllers, the ones corre-
sponding to linear criterion two, with the added quality that the positive
e�ects are over the entire velocity range, not just in the area around each
controllers working point.

Since the vehicle model is strongly nonlinear it is interesting to try to control
it with nonlinear MPC, even though the linear results are satisfactory with
regards to the following of the reference velocity. It was not possible to a�ect
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the eÆciency of the engine with respect to the fuel consumption with linear
control. Only with nonlinear control is it possible to take the nonlinear
fuel consumption map directly into consideration. A criterion with only the
output error, Y �R, is the �rst one tried. The criterion is nonlinear because
the output no longer is calculated from the state space matrices from the
linearized model, but directly from the nonlinear model. The problem is to
complicated to solve with the help of Matlab calculations, and a possible
solution would have a computational time far, far beyond what could be
considered acceptable. The complete nonlinear solution is abandoned, and
a approximate method is used.

The approximate nonlinear method is tested with to di�erent criteria. The
�rst one, V1nonl, is again simply the di�erence Y � R. The criterion, con-
taining only one term, is not subject to the tuning of weight matrices, since
only the di�erence in weights between two terms in the criterion is impor-
tant. The strength of the method is that the reference velocity is followed
well over the entire velocity range, using just one controller. However, not
only is the fuel consumption higher than the results from both control with
local controllers and from the switching strategies. The control signals also
assume unrealistic values, that make it hard to evaluate the results at all,
since they could never be reached by a physical system.

Finally a nonlinear controller is made using the approximative method de-
scribed in section 3.2 and 5.2, with a criterion that includes the fuel con-
sumption as a term to be minimized. Now that two terms are present in
the new criterion V2nonl, the weighting again becomes an important issue.
It is possible to weight the criterion in such a way that the fuel consump-
tion is considerably lowered, but the the reference is not followed well at all.
Di�erent weights are tested, but under the condition of a good following of
the reference value there is a limit to how low the fuel consumption can get.
The end value is the same one as when using nonlinear control with criterion
V1nonl.

When studying the control signals they again show the tendency to assume
very large values. This bring the vehicle system into a state were the linear
controllers, the linearization and the maps used as parts of the approxima-
tion are put out of the running. To be able to say anything conclusive about
the use of the nonlinear approximative Model Predictive Control it must be
tested either with the control signals in the criterion, properly weighted to
be kept within certain limits, or the optimization problem must be turned
into a bounded one.
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The conclusions to be drawn from the control work done here is �rstly that
MPC is indeed a usable method when one wants a cruise control a�ect.
Using linear MPC is straight forward and good for the understanding of
how the changing of the control parameters a�ect the behavior of the model
and its output. The results obtained from linearizing the model and creating
local linear controllers are amazingly good, considering the heavily nonlinear
system the controller regulate. The best result is obtained when the local
controllers are combined in the Supervisor 2 structure. This method of
building a switching strategy is also very uncomplicated, but demand a
knowledge of how the local controllers a�ect the nonlinear plant, so it must
be possible to test this. If that is not the case, it might be wise to reconsider
the choice made with regards to the weighting strategy in section 4.4. If
the tuning is instead made with the local, linear, model in focus, supervisor
strategy one might be more appropriate.
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A.1 Simulink model
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B Appendix

B.1 Linear control Matlab �les

The linear control Matlab �les give as their �nal output a o�-line control
strategy consisting of four constants on for the vehicle system output y and
one for the reference value r, for both the control signals, the throttle angle
and the current.

B.1.1 Linearization.m

This Matlab function linearizes the nonlinear system, given the working
point (a0, i0,v0), the vectors which make the engine torque map (a is alpha,
b is n and M is M mot), the step size to take when linearizing the map
(chosen as delta a is 0.5 and delta b is 200) at the chosen point and �nally
the sampling time T (chosen as 1 s).

The outputs are the discrete state space matrices, the RPM (n0) responding
to the working point, the sampling time and the throttle angle and velocity
given in the working point.

function [Ad,Bd,Cd,Dd,initial_throttle,initial_speed,T_sample,n0]=

linearisation(i0,v0,a,b,M,a0,delta_a,delta_b,T)

\%**********Constants********************************************

r_rad = 0.308; \% dynamischer Radradius [m]

J_4rad = 4.03; \% Tr�agheitsmasse der 4 R�ader [kg*m^2]

m_Fzg = 1470; \% Fahrzeugmasse [kg]

m_Zul = 100; \% Zuladung [kg]

c_r = 0.015; \% Rollreibungskoeffizient

g = 9.81; \% Erdbeschleunigung [m/s^2]

rho_L = 1.1688; \% Luftdichte [kg/m^3]

c_w = 0.27; \% Luftwiderstandsbeiwert

A_f = 2.07; \% Frontfl�ache [m^2]

eta_G = .93; \% Getriebewirkungsgrad

m_f = (m_Fzg + m_Zul);

dndv=(30*i0)/(r_rad*pi);

v0=v0*1000/3600;

b0=(v0*i0*30)/(r_rad*pi); \%r�akna om i m/s
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\%----------Calculation of the derivates used in the linearization

\%----------by using the map M_mot, n, alpha

value1a = interp2(a,b,M,a0,b0);

value2a = interp2(a,b,M,a0+delta_a,b0);

dmdalpha = (value2a - value1a)/delta_a;

value1b = interp2(a,b,M,a0,b0);

value2b = interp2(a,b,M,a0,b0+delta_b);

dmdn = (value2b - value1b)/delta_b;

\%*********Calculate the constants in the linearisations with the***

\%*********already calculated derivates

\%constant for (v-v0)

Konst_v=(1/m_f)*(i0*eta_G*(dmdn)*(dndv)/r_rad - rho_L*A_f*c_w*v0);

\%constant (alpha- alpha0)

Konst_alpha=(1/m_f)*(i0*eta_G*(dmdalpha)/r_rad);

\%constant (I-I0)

Konst_current=42/(0.85*(30*i0*v0/pi*r_rad));

\%**********calculating the state space matrices in the**************

\%**********continous version of the model

A=[0 1;

0 Konst_v];

B=[ 0 0;

Konst_alpha Konst_current];

C=[0 1];

D=[0 0];

\%***********calculating the discrete state space matrices**********

sys_cont=ss(A,B,C,D);

sys_discrete=c2d(sys_cont,T);

Ad=sys_discrete.a;

Bd=sys_discrete.b;

Cd=sys_discrete.c;

Dd=sys_discrete.d;
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initial_throttle=a0;

initial_speed=v0*3.6;

T_sample=T;

n0=b0;

B.2 Mpc matrix.m

This Matlab function takes the outputs from the linearization above and as
its inputs and gives as outputs the control constants to be used in controlling
the vehicle system via the throttle angle and the current with the help of
the vehicle system output y and the reference value r. It was used for the
linear criterion V1.

function [U_opt_alpha,U_opt_I] =mpc_matrix_delta(Ad,Bd,Cd,Qu,Qy,Qdeltau,...

M,n_const,n_vector,throttle_a)

\%*******************************************************************

\%[U_opt_alpha,U_opt_I] = mpc_matrix_delta_u(Ad,Bd,Cd,Qu,Qy,Qdeltau,

\%M_mot,n0,n,alpha).

\%n_const=n0 throttle_a=alpha

\%Gives the control constants for alpha and I

\%*******************************************************************

R=ones(10,1);

H=[Cd*Ad^10;

Cd*Ad^9;

Cd*Ad^8;

Cd*Ad^7;

Cd*Ad^6;

Cd*Ad^5;

Cd*Ad^4;

Cd*Ad^3;

Cd*Ad^2;

Cd*Ad];

S=[Cd*Ad^6*Bd Cd*Ad^7*Bd Cd*Ad^8*Bd Cd*Ad^9*Bd;

Cd*Ad^5*Bd Cd*Ad^6*Bd Cd*Ad^7*Bd Cd*Ad^8*Bd;

Cd*Ad^4*Bd Cd*Ad^5*Bd Cd*Ad^6*Bd Cd*Ad^7*Bd;

Cd*Ad^3*Bd Cd*Ad^4*Bd Cd*Ad^5*Bd Cd*Ad^6*Bd;
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Cd*Ad^2*Bd Cd*Ad^3*Bd Cd*Ad^4*Bd Cd*Ad^5*Bd;

Cd*Ad*Bd Cd*Ad^2*Bd Cd*Ad^3*Bd Cd*Ad^4*Bd;

Cd*Bd Cd*Ad*Bd Cd*Ad^2*Bd Cd*Ad^3*Bd;

0 0 Cd*Bd Cd*Ad*Bd Cd*Ad^2*Bd;

0 0 0 0 Cd*Bd Cd*Ad*Bd;

0 0 0 0 0 0 Cd*Bd ];

syms x1 x2

X=[x1;x2];

syms a3 I3 a2 I2 a1 I1 a I r

U=[a3; I3; a2; I2; a1; I1; a; I];

deltaU=[a3-a2; I3-I2; a2-a1; I2-I1; a1-a; I1-I; a; I];

\%*******************************************************************

\%The criterium V=(Y-r*R)'*Qy*(Y-r*R)+ deltaU'*Qdeltau*deltaU =

\%(H*X+S*U-r*R)'*Qy*(H*X+S*U-r*R) + deltaU'*Qdeltau*deltaU

\%the derivate 0.5* dVdU = S'Qy(HX+SU-r*R) +Qdeltau*deltaU-

\%[specialmatrix]*deltaU

dVdU=S'*Qy*(H*X + S*U-r*R) + Qdeltau*deltaU...

-[0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0; Qdeltau(1,:);Qdeltau(2,:);

Qdeltau(3,:);Qdeltau(4,:); Qdeltau(5,:); Qdeltau(6,:)]*deltaU;

\%pretty(vpa(dVdU,2));

\%********************************************************************

\%calculate the symbolic solution to dVdU=0. U*=U_opt

S= solve(dVdU(1,1),dVdU(2,1), dVdU(3,1),dVdU(4,1),dVdU(5,1),dVdU(6,1),...

dVdU(7,1),dVdU(8,1),'a','a1','a2','a3','I','I1','I2','I3');

U_opt=[vpa(S.a3,4);vpa(S.I3,4);vpa(S.a2,4);vpa(S.I2,4);vpa(S.a1,4);...

vpa(S.I1,4);vpa(S.a,4);vpa(S.I,4)];

U_opt_alpha=U_opt(7,1);

U_opt_I=U_opt(8,1);

B.2.1 Mpc matrix delta u.m

This Matlab function takes the outputs from the linearization above and as
its inputs and gives as outputs the control constants to be used in controlling
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the vehicle system via the throttle angle and the current with the help of
the vehicle system output y and the reference value r. It was used for the
linear criterion V2.

function [U_opt_alpha_r,U_opt_alpha_x2,U_opt_I_r,U_opt_I_x2] =

mpc_matrix_delta_u(Ad,Bd,Cd,Qu,Qy,Qdeltau,M,n_const,n_vector,throttle_a)

\%[U_opt_alpha_r,U_opt_alpha_x2,U_opt_I_r,U_opt_I_x2]=

\% mpc_matrix_delta_u(Ad,Bd,Cd,Qu,Qy,Qdeltau,M_mot,n0,n,alpha)

\%n_const=n0 throttle_a=alpha

\%Gives the control constants for alpha and I

R=ones(10,1);

H=[Cd*Ad^10;

Cd*Ad^9;

Cd*Ad^8;

Cd*Ad^7;

Cd*Ad^6;

Cd*Ad^5;

Cd*Ad^4;

Cd*Ad^3;

Cd*Ad^2;

Cd*Ad];

S=[Cd*Ad^6*Bd Cd*Ad^7*Bd Cd*Ad^8*Bd Cd*Ad^9*Bd;

Cd*Ad^5*Bd Cd*Ad^6*Bd Cd*Ad^7*Bd Cd*Ad^8*Bd;

Cd*Ad^4*Bd Cd*Ad^5*Bd Cd*Ad^6*Bd Cd*Ad^7*Bd;

Cd*Ad^3*Bd Cd*Ad^4*Bd Cd*Ad^5*Bd Cd*Ad^6*Bd;

Cd*Ad^2*Bd Cd*Ad^3*Bd Cd*Ad^4*Bd Cd*Ad^5*Bd;

Cd*Ad*Bd Cd*Ad^2*Bd Cd*Ad^3*Bd Cd*Ad^4*Bd;

Cd*Bd Cd*Ad*Bd Cd*Ad^2*Bd Cd*Ad^3*Bd;

0 0 Cd*Bd Cd*Ad*Bd Cd*Ad^2*Bd;

0 0 0 0 Cd*Bd Cd*Ad*Bd;

0 0 0 0 0 0 Cd*Bd ];

syms x1 x2

X=[x1;x2];

syms a3 I3 a2 I2 a1 I1 a I r

U=[a3; I3; a2; I2; a1; I1; a; I];

deltaU=[a3-a2; I3-I2; a2-a1; I2-I1; a1-a; I1-I; a; I];
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\%******************************************************************

\%The criterium V=(Y-r*R)'*Qy*(Y-r*R) + U'*Qu*U + deltaU'*Qdeltau*deltaU =

\%(H*X+S*U-r*R)'*Qy*(H*X+S*U-r*R) + U'*Qu*U + deltaU'*Qdeltau*deltaU

\%the derivate 0.5* dVdU = S'Qy(HX+SU-r*R)+QuU +Qdeltau*deltaU-...

[specialmatrix]*deltaU

dVdU=S'*Qy*(H*X + S*U-r*R) + Qu*U + Qdeltau*deltaU...

-[0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0; Qdeltau(1,:);Qdeltau(2,:);

Qdeltau(3,:);Qdeltau(4,:); Qdeltau(5,:);Qdeltau(6,:)]*deltaU;

\%pretty(vpa(dVdU,2));

\%***************************************************************

\%calculate the symbolic solution to dVdU=0. U*=U_opt

S= solve(dVdU(1,1),dVdU(2,1),

dVdU(3,1),dVdU(4,1),dVdU(5,1),dVdU(6,1),dVdU(7,1)...

,dVdU(8,1),'a','a1','a2','a3','I','I1','I2','I3');

U_opt=[vpa(S.a3,4);vpa(S.I3,4);vpa(S.a2,4);vpa(S.I2,4);vpa(S.a1,4);...

vpa(S.I1,4);vpa(S.a,4);vpa(S.I,4)]

U_opt_alpha=U_opt(7,1);

U_opt_I=U_opt(8,1);

U_opt_alpha_r=subs(U_opt_alpha,{'r' 'x2'}, [1 0]);

U_opt_alpha_x2=subs(U_opt_alpha,{'r' 'x2'}, [0 1]);

U_opt_I_r=subs(U_opt_I,{'r' 'x2'}, [1 0]);

U_opt_I_x2=subs(U_opt_I,{'r' 'x2'}, [0 1]);

B.3 Nonlinear control Matlab �les

The nonlinear Matlab �les give as their output a on-line control strategy
with two values for the control signals, the throttle angle and the current,
at present time t.

B.3.1 nonl onestep controlfuel gear.m

This Matlab �le calculates the values of the control signals at present time
t, for the criterion given in Ny krit fuel gear.m. For solving the nonlinear
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optimization problem it also calls upon Ny solvefuel gear.m. The method
used is the approximative method descriebed in section 3.2 and 5.2.

function[v_velocity,throttle_angle,Current,consumption_tot,...

consumption_tot_vector,satorque,enginetorque]=...

nonl_onestep_controlfuel_gear(velocity,gear)

\%-------------------------------------------------------------------

\%[v_velocity,throttle_angle,Current,consumption_tot,...

\%SAtorque,enginetorque]=nonl_onestep_controlfuel_gear(velocity,gear)

\% this program are the same as nonl_onestep_control but trying to

\%include gear as a input.

\%------------------------------------------------------------------

global g_v

global r

global throttle_opt

global I_opt

global v_Fzg_onestep0

global position_onestep0

global x_result

global consumption

global SAtorque

global Enginetorque

consumption=0;

consumption_tot=0;

consumption_tot_vector(1)=0;

\%----------------------------------------------------------------

\%load all the necesary things as globals in the workspace by

\%running load_onestep.m!

\%***********************************************************************

R=velocity;

v_Fzg_onestep0=40;

position_onestep0=0;

enginetorque=0*ones(length(R),1);

satorque=0*ones(length(R),1);

consumption_tot_vector=0*ones(length(R),1);

for k=1:(length(R))

r=R(k,1)
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k

g_v=gear(k,1)

\%solve the criterion with one nonlin step followed by some lin.

\%This gives optimal throttle angle and current, x_result.

ny_solvefuel_gear

v_Fzg_onestep0;

position_onestep0;

\%simulate nonlinear model

throttle_opt=x_result(1,1);

I_opt=x_result(1,2);

throttle_angle(k)=throttle_opt;

Current(k)=I_opt;

sim('w203_onestep_gear')

\%do an update on the states

v_Fzg_onestep0=...

v_Fzg_onestep.signals.values(length(v_Fzg_onestep.signals.values));

position_onestep0=...

s_Fzg_onestep.signals.values(length(s_Fzg_onestep.signals.values));

v_velocity(k)=v_Fzg_onestep0;

enginetorque(k)=Enginetorque.signals.values(length...

(Enginetorque.signals.values));

satorque(k)=SAtorque.signals.values(length(SAtorque.signals.values));

consumption_tot=...

consumption_tot+consumption.signals.values(length...

(consumption.signals.values));

consumption_tot_vector(k+1)=...

consumption_tot_vector(k)+...

consumption.signals.values(length(consumption.signals.values));

end

B.3.2 Ny solvefuel gear.m

\%the input has to be declared global in the function f=output and in

\%the matlab window. This happens here. Also the data needed for the
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\%simulation of w203 is loaded.

global g_v

global r

global v_Fzg_onestep0

global position_onestep0

global x_result

global U_opt_alpha_r

global U_opt_alpha_x2

global U_opt_I_r

global U_opt_I_x2

global alpha_in

global I

w203_data_optim2

w203_data_optim

\%********************************************************************

qu1=[1 0 0 0 0 0 0 0];qu2=[0 1 0 0 0 0 0 0];

qu3=[0 0 1 0 0 0 0 0];qu4=[0 0 0 1 0 0 0 0];

qu5=[0 0 0 0 1 0 0 0];qu6=[0 0 0 0 0 1 0 0];

qu7=[0 0 0 0 0 0 1 0];qu8=[0 0 0 0 0 0 0 1]

\%*******************************************************************

\%calculate the U=[u(t+10)..u(t)] with a linear controller

\%for ex with mpc_matrix_delta_u

if ( r<=40)

[Ad,Bd,Cd,Dd,initial_throttle,initial_speed,T_sample,n0]= ...

linearisation2(3,40,alpha,n,M_mot,5.6,0.5,200,1);

Quu=0.0058*eye(8,8);

Qyy=eye(10,10);

Qdeltadelta=[0.001*qu1;qu2;0.001*qu3;qu4;0.001*qu5;qu6;0.001*qu7;qu8];

U_opt=mpc_matrix_onestep(Ad,Bd,Cd,Quu,Qyy,Qdeltadelta,...

M_mot,n0,n,alpha);

elseif (r > 40)& (r <= 60)

[Ad,Bd,Cd,Dd,initial_throttle,initial_speed,T_sample,n0]= ...

linearisation2(3,50,alpha,n,M_mot,6.5,0.5,200,1);

Quu=0.0105*eye(8,8);
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Qyy=eye(10,10);

Qdeltadelta=[0.005*qu1;qu2;0.005*qu3;qu4;0.005*qu5;qu6;0.005*qu7;qu8];

U_opt=mpc_matrix_onestep(Ad,Bd,Cd,Quu,Qyy,Qdeltadelta,...

M_mot,n0,n,alpha);

elseif (r > 60) & (r <=80)

[Ad,Bd,Cd,Dd,initial_throttle,initial_speed,T_sample,n0]= ...

linearisation2(4,70,alpha,n,M_mot,7.42,0.5,200,1);

Quu=0.02*eye(8,8);

Qyy=eye(10,10);

Qdeltadelta=[0.05*qu1;qu2;0.05*qu3;qu4;0.05*qu5;qu6;0.05*qu7;qu8];

U_opt=mpc_matrix_onestep(Ad,Bd,Cd,Quu,Qyy,Qdeltadelta,...

M_mot,n0,n,alpha);

elseif (r > 80)

[Ad,Bd,Cd,Dd,initial_throttle,initial_speed,T_sample,n0]= ...

linearisation2(4,100,alpha,n,M_mot,9.5,0.5,200,1);

Quu=0.2*eye(8,8);

Qyy=eye(10,10);

Qdeltadelta=[0.08*qu1;qu2;0.08*qu3;qu4;0.08*qu5;qu6;0.08*qu7;qu8];

U_opt=mpc_matrix_onestep(Ad,Bd,Cd,Quu,Qyy,Qdeltadelta,M_mot,n0,n,alpha);

end

U_opt_alpha=U_opt(5,1);

U_opt_I=U_opt(6,1);

U_opt_alpha_r=subs(U_opt_alpha,{'r' 'x2'}, [1 0]);

U_opt_alpha_x2=subs(U_opt_alpha,{'r' 'x2'}, [0 1]);

U_opt_I_r=subs(U_opt_I,{'r' 'x2'}, [1 0]);

U_opt_I_x2=subs(U_opt_I,{'r' 'x2'}, [0 1]);

\%***************************************************************************

\%This simulation is run to get good starting values for fminsearch

sim('w203_call_controlled_gear')

alpha0=alpha_in.signals.values(length(alpha_in.signals.values));

I0=I.signals.values(length(I.signals.values));

optimset('TolFun',1e-1);
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[x eval] = fminsearch('ny_kritfuel_gear',[alpha0 I0],[],r, U\_opt);

x;

x_result=x;

eval;

B.3.3 Ny krit fuel gear.m

function out = ny_kritfuel_gear(u,r,U_opt)

global g_v

global in_alpha

global in_current

global U_opt_alpha_r

global U_opt_alpha_x2

global U_opt_I_r

global U_opt_I_x2

global I_opt

global throttle_opt

global v_Fzg_onestep0

global position_onestep0

global v_Fzg0

global position0

global rot_speed

global T_engine

global n_v

global M

global Verbrauch

Qy=0.000001*eye(2,2);

\%*********************************************************************

\%Initial values for w203_call should be the most recent from

\%nonl_onstep_control, that is equal to v_Fzg_onstep0, position_onestep0

\%--------------- t ----------------------------------------------------

v_Fzg0=v_Fzg_onestep0;

position0=position_onestep0;

in_alpha = u(1);

in_current = u(2);
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sim('w203_call_gear')

y1=v_Fzg.signals.values(length(v_Fzg.signals.values));

\%-------------- t+1,(3 sec) ----------------------------------------

v_Fzg0=y1;

postion0=s_Fzg.signals.values(length(s_Fzg.signals.values));

\%call_controlled _ny har simuleringstid 3*t_sim och data_optim

sim('w203_call_controlled_ny_gear')

y2=v_Fzg.signals.values(length(v_Fzg.signals.values));

\%*******************************************************************

\% the criterion to be minimized

rot_speed=n_Mot.signals.values(length(n_Mot.signals.values));

T_engine=MotMom.signals.values(length(MotMom.signals.values));

fuel_consump=interp2(M,n_v,Verbrauch,T_engine,rot_speed)

R_reference = r*[1;1];

Y=[y2;y1];

out=(Y-R_reference)'*Qy*(Y-R_reference)+fuel_consump

B.3.4 load onestepfuel gear.m

w203_data_optim

w203_data_optim2

global g_v

global in_alpha

global in_current

global U_opt_alpha_r

global U_opt_alpha_x2

global U_opt_I_r

global U_opt_I_x2

global r

global throttle_opt

global I_opt
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global v_Fzg_onestep0

global position_onestep0

global v_Fzg0

global position0

global x_result

global rot_speed

global T_engine

global n_v

global M

global Verbrauch


