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� Övrig rapport

�
URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Titel

Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

A nonlinear state space model of the DaimlerChrysler diesel engine
OM611 is used. Three different faults in the air path have been taken
under consideration: inlet manifold pressure sensor fault, air mass-
flow sensor fault and leakage in the inlet manifold. These faults are
modeled and added to the nonlinear state space model. The faults are
assumed to be constant during estimation. An extended Kalman filter
is used as an observer of the system in order to estimate the different
fault-parameters. Only one fault-parameter is monitored at a time.
Simulations with high inlet manifold pressure has turned out to give
good results, the estimated fault-parameters are close to the true values.
For simulations with low pressure in the inlet manifold are the results
less good, probably due to model errors. The extended Kalman filter
has proved to perform well in this type of application, as an observer
for a diagnosis system of an automotive engine.

Vehicular Systems,

Dept. of Electrical Engineering 5th November 2001

LITH-ISY-3160

—

—

—

http://www.fs.isy.liu.se

Parameter Estimation for Fault Diagnosis of an Automotive Engine
using Extended Kalman Filters

Parameterskattning för diagnos av en bilmotor med hjälp av extended
kalmanfilter

Martin Gunnarsson

××

Extended Kalman Filter; Automotive Diesel Engine; Nonlinear Model;
Fault Diagnosis





Abstract

A nonlinear state space model of the DaimlerChrysler diesel engine OM611
is used. Three different faults in the air path have been taken under con-
sideration: inlet manifold pressure sensor fault, air mass-flow sensor fault
and leakage in the inlet manifold. These faults are modeled and added
to the nonlinear state space model. The faults are assumed to be con-
stant during estimation. An extended Kalman filter is used as an observer
of the system in order to estimate the different fault-parameters. Only
one fault-parameter is monitored at a time. Simulations with high in-
let manifold pressure has turned out to give good results, the estimated
fault-parameters are close to the true values. For simulations with low
pressure in the inlet manifold are the results less good, probably due to
model errors. The extended Kalman filter has proved to perform well
in this type of application, as an observer for a diagnosis system of an
automotive engine.

Keywords: Extended Kalman Filter; Automotive Diesel Engine; Non-
linear Model; Fault Diagnosis

v



Preface

The work done during this thesis and the concepts contained in the thesis
are described in the following chapters.

Chapter 1 , Introduction: Background to this thesis is presented.

Chapter 2, Observer: Major differences between normal Kalman fil-
ters and extended Kalman filter is presented in this chapter.

Chapter 3 , Model: This chapter is based on conference paper [1] ex-
cept Section 3.4.4. A nonlinear state space model of the diesel en-
gine OM611 will be presented. Also the different fault models are
explained here.

Chapter 4, Implementation: Some implementation problems are dis-
cussed here.

Chapter 5, Results: The results from simulations are presented in this
chapter.

Chapter 6, Conclusion: Conclusions and future work is discussed in
this chapter.
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Chapter 1

Introduction

This master thesis has been performed for DaimlerChrysler AG, Research
and Technology (FT2/EA). DaimlerChrysler is one of the worlds biggest
automotive producers and is responsible for brands like: Mercedes Benz,
Chrysler, Smart, and Freightliner.

1.1 Background

The last decades more and more rigorous demands regarding emissions
from automotive engines has led to more refined methods to achieve these
requirements. When new hardware is installed to fulfill these requirements
then there also has to be a way to decide whether this hardware is working
as it should or if it is faulty. This is done by an on board diagnosis system
(OBD-system) and its importance has increased over the last years. Since
year 2000, see [1], all cars sold within EU must be equipped with a OBD-
system.

One way of building a diagnosis system is to make a model of the
process that we want to supervise. By letting an observer estimate some
parameters and compare these estimated parameter values with the re-
spective measured value, can one perform a diagnosis of the system.

The objective of this thesis have been to design an observer for a
diagnosis system. The system is described by a nonlinear state space
model. One observer that have turned out to give good results in other
situations is the Kalman filter. The Kalman filter is derived for linear
system but there also exist a version of this filter for nonlinear cases, the
extended Kalman filter.

One important part of the diagnosis requirements for automotive en-
gines are the components in the air path. Possible faults includes sensor
faults, actuator faults, and leakages. These types of faults typically lead
to degraded emission control, and also possible damage to engine compo-

1



2 Introduction

nents.

1.2 Objective

The goal of this thesis was to investigate whether extended Kalman filters
(EKF) can be used for fault-parameter estimation in a diagnosis system of
a automotive engine. The faults that has been taking under consideration
are inlet pressure sensor fault, air mass-flow sensor fault and leakage in
the inlet manifold.

1.3 Limitations

Faults in the sensors are typically slow varying and affects the measure-
ments as offset or scale factors. Also leakages are assumed slow varying.
During simulation are all faults assumed to be constant. It is also assumed
that only one fault at a time is present.



Chapter 2

Observer

This chapter will present one idea of how to use an observer in a diagnosis
system. One example of an observer that can be used is the Kalman
filter. Since the process in this thesis only can be satisfactory described
by a nonlinear model, the extended version of the Kalman filter is used.
The major differences between the normal Kalman filter and the extended
Kalman filter will also be discussed in this chapter.

2.1 Why an Observer?

Why do we need an observer? The answer to this question is that we
can not always measure all parameters of interest in a process. We can
then make a model of the process and try to estimate the parameters of
interest.

Assume there exist a model of the process of interest and that all
signals into the process, u(t), and all signals out from it, e.g. measured
output y(t), are recorded. Lets say that one parameter in this model
describes a possible fault in the process. It is then of interest to determine
if this model can describe the behavior of the process.

Process

Model

y(t)

ŷ(t) r(t)

u(t)

Figure 2.1: Simple fault detection system.
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4 Chapter 2. Observer

If we run the model with the same inputs as to the true process we
will get an estimate of this fault-parameter. The fault-parameter is then
fixed to this estimated value and the observer is run once more with the
same inputs. This presumes that the fault is constant during estimation.
If the fault-parameter can describe the actual fault in the process, the
difference, r(t) also called the residual, between the measured output from
the process, y(t), and the estimated output from the model, ŷ(t), will be
small, ideally zero. The principal is shown in Figure 2.1. If, on the
other hand, the model with the fixed estimated fault-parameter can not
describe the behavior of the process, the difference between the measured
and estimated output will be large.

This is one way of designing a model-based diagnosis-system for an au-
tomotive engine. A more thorough introduction to model based diagnosis
is given in [2].

There exist different types of observers but in this thesis the focus will
be on the Kalman filters which will be described in the following sections.
There exist two version of the Kalman filter, the normal one derived for
linear systems and an extended version for nonlinear systems. Since the
process, an automotive engine, best is described by a nonlinear model,
the extended Kalman filter is used. The model of the process will be
presented in Chapter 3.

2.2 Continuous Linear Kalman Filters

Usually is the discrete Kalman filter used in for industrial applications
but in this thesis will the continuous Kalman filter be used instead. This
is due to the existing model of the actual process, see Chapter 3, is con-
tinuous. One other reason is that Matlab/Simulink provides support for
continuous models for simulations.

The continuous linear time-variant Kalman filter is derived for pro-
cesses that can be described by linear state space models, according to
conditions in Table 2.1. It is assumed that v(t) and w(t) are white noise
processes uncorrelated with x(0) and with each other.

Model
Plant ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)w(t)
Measurement y(t) = C(t)x(t) + v(t)
Plant noise w(t) ∼ N (0, Q(t))
Measurement noise v(t) ∼ N (0, R(t))

Table 2.1: Linear plant and measurement models.

If the process can be described by a linear model, a Kalman filter can
be used as an observer of this process. Table 2.2 contains the equations
describing the continuous linear Kalman filter.
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Continuous Kalman filter
Assumption x(0) ∼ N (x0, P0)
Estimate update ˙̂x(t) = A(t)x̂(t)+B(t)u(t)+K(t)[y(t)−

C(t)x̂(t)]
Covariance update Ṗ (t) = A(t)P (t) + P (t)AT (t) +

G(t)Q(t)GT (t)−K(t)R(t)KT (t)
Kalman gain K(t) = P (t)CT (t)R−1(t)

Table 2.2: Continuous linear Kalman filter equations.

The initial value x(0) is supposed to be a Gaussian process with known
mean x0 and covariance matrix P0.

2.2.1 Property of the Linear Kalman Filter

A time-invariant system is assumed here. The estimation error is

x̃(t) = x(t) − x̂(t)

If substituting plant and measurement model into estimate update equa-
tion for the Kalman filter from Table 2.2 we get the following equation

˙̃x = [A − K(t)C]x̃ + Gw − Kv (2.1)

This equation is driven by the measurement and process noise. If [A −
K(t)C] tend to an asymptotically stable matrix as t → ∞, then in the
limit the estimate x̂(t) converges to the expected true plant state x(t).

A system is detectable if A − KC can be made asymptotically stable
by some matrix K. This implies that all unstable modes in A must be
observable.

If a system is detectable then we know that x̂(t) will converge towards
the expected true plant state x(t).

The solution to the error update equation

Ṗ = AP + PAT + GQGT − KRKT (2.2)

tends to a bounded steady-state value P if

lim
t→∞P (t) = P

is bounded. In this case , for large t, Ṗ (t) = 0 so that (2.2) tends to the
algebraic Riccati equation

0 = AP + PAT + GQGT − KRKT

If we in beforehand know that a system is detectable then the following
theorem provides us with some useful information.
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Theorem 2.1 Let Q be a symmetric positive semidefinite matrix and R
is a positive definite matrix. Suppose that (A,G

√
Q) is controllable. Then

is (A,C) detectable if and only if:

• There is a unique positive definite solution P to (2.2) which is in-
dependent of P(0). Furthermore, P is the unique positive definite
solution to the algebraic Riccati equation.

• The steady-state error system defined by (2.1) with the steady-state
Kalman gain

K = PCT R−1

is asymptotically stable.

Since the system is detectable the theorem says that there exist a
matrix P which is a solution to the algebraic Riccati equation and that
there also exist a asymptotic stable Kalman gain K. Thence follows that
the estimated state x̂(t) will converge toward the true state x(t).

The proof of theorem 2.1 is found in [3]. For a more thorough descrip-
tion of the Kalman filter look in [4, 3].

2.3 Processes Described by Nonlinear Mod-
els

For some processes, a linear model is not a good description of the process.
Suppose then, that the process can be described by the following nonlinear
plant and measurement models, see Table 2.3. It is assumed that v(t) and
w(t) are white noise processes uncorrelated with x(0) and with each other.

Model
Plant ẋ(t) = f(x(t), u(t), t) + G(t)w(t)
Measurement y(t) = h(x(t), u(t), t) + v(t)
Plant noise w(t) ∼ N (0, Q(t))
Measurement noise v(t) ∼ N (0, R(t))

Table 2.3: Nonlinear plant and measurement models

The functions f and h are continuously differentiable functions with
respect of the state vector. The initial value x(0) is supposed to be Gaus-
sian process with known mean x0 and covariance matrix P0, see [4].

As can be seen in Table 2.2, the error covariance update contains
the state matrix A(t) and the Kalman gain equation contains the mea-
surement matrix C(t). Since the nonlinear model of the process doesn’t
contain these matrices, the continuous linear Kalman filter theory can not
be used and a another approach is needed.
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2.3.1 Linearization About a Point

One way of handling nonlinear systems is to do a first order Taylor ap-
proximation around a certain point x̂. If the perturbation of the system
is sufficiently small relative to the higher order terms in the in the Taylor
expansion, these higher order terms can then be ignored beyond some
order.

Let the symbol ∆ denote perturbation from x̂ and

∆x(t) = x(t) − x̂(t)
∆y(t) = y(t) − h(x̂(t), u(t), t)

Then

∆ẋ(t) = f(x(t), u(t), t) − f(x̂(t), u(t), t)
ẋ(t) = f(x(t), u(t), t)

= f(x̂(t), u(t), t) +
∂f(x(t), u(t), t)

∂x(t)

∣∣∣∣
x=x̂(t)

∆x(t)

or

∆ẋ(t) = f(x(t), u(t), t) − f(x̂(t), u(t), t)

=
∂f(x(t), u(t), t)

∂x(t)

∣∣∣∣
x=x̂(t)

∆x(t) + higher-order terms

If the higher order terms can be neglected, then

∆ẋ(t) = F (t)∆x(t)

and the first-order approximation coefficient are given by

F (t) =
∂f(x(t), u(t), t)

∂x(t)

∣∣∣∣
x=x̂(t)

=




∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
. . . ∂fn

∂xn




∣∣∣∣∣∣∣∣∣∣
x=x̂(t)

That is F (t) is an n × n matrix.
The same idea is used for the measurement equation h, which will lead

to

y(t) = h(x(t), u(t), t) = h(x̂(t), u(t), t) +
∂h(x(t), u(t), t)

∂x(t)

∣∣∣∣
x=x̂(t)

∆x(t)

+ higher-order terms
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or

∆y(t) =
h(x(t), u(t), t)

∂x(t)

∣∣∣∣
x=x̂(t)

∆x(t) + higher-order terms

If the higher-order terms in the Taylor expansion can be neglected the
perturbation can be represented as

∆y(t) = H(t)∆x(t)

where the first-order approximation coefficient are given by

H(t) =
∂h(x(t), u(t), t)

∂x(t)

∣∣∣∣
x=x̂(t)

=




∂h1
∂x1

∂h1
∂x2

. . . ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

. . . ∂h2
∂xn

...
...

. . .
...

∂hl

∂x1

∂hl

∂x2
. . . ∂hl

∂xn




∣∣∣∣∣∣∣∣∣
x=x̂(t)

This means that H(t) is an l × n matrix.
The matrixes A(t) and C(t) in the equations for the linear continuous

Kalman filter will be replaced with F (t) and H(t) respectively to handle
the nonlinear process model.

2.4 Continuous Extended Kalman Filter

The major difference between the normal Kalman filter and the extended
Kalman filter is how we handle the error covariance update and Kalman
gain. In the extended Kalman filter we has to do an Taylor expansion of
the process model and use these approximations in the Kalman gain and
error covariance update.

The necessary conditions and the continuous extended Kalman filter
equations are summarized in Table 2.4 and 2.5.

Model
Plant ẋ(t) = f(x(t), u(t), t) + G(t)w(t)
Measurement y(t) = h(x(t), u(t), t) + v(t)
Assumption w(t) and v(t) are white noise processes uncorrelated

with x(0) and each other
Plant noise w(t) ∼ N (0, Q(t))
Measurement noise v(t) ∼ N (0, R(t))

Table 2.4: Nonlinear plant and measurement models
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Continuous extended Kalman filter
Assumption x(0) ∼ N (x0, P0)
Estimate update ˙̂x(t) = f(x̂(t), u(t), t) + K(t)[y(t) −

h(x̂(t), u(t), t)]
Linear approximation F (t) ≈ ∂f(x(t),u(t),t)

∂x

∣∣
x=x̂(t)

H(t) ≈ ∂h(x(t),u(t),t)
∂x

∣∣
x=x̂(t)

Covariance update Ṗ (t) = F (t)P (t) + P (t)FT (t) +
G(t)Q(t)GT (t)−K(t)R(t)KT (t)

Kalman gain K(t) = P (t)HT (t)R−1(t)

Table 2.5: Continuous extended Kalman filter equations.

The reason of using an extended Kalman filter comes from the fact
that normal Kalman filters has turned out to be powerful in effect and
simple in form. The extended filter is then a natural extension of the
linear methods for nonlinear systems.

One of the drawbacks of the extended Kalman filter is that it is com-
putational heavy. The linearization must be evaluated in every point. The
corresponding theory to the Theorem 2.1 does not exist for the nonlinear
case, which is also is a big drawback. It then unfortunately become a
problem of type, try and see if it works.
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Chapter 3

Model Development

This chapter is based on conference paper [1], except Section 3.4.4.

3.1 Engine Description

The process in this thesis is a diesel engine, the Mercedes-Benz OM611,
with 2.2 liter displacement and direct ignition. Detailed information about
the engine can be found in [5]. A principle illustration is shown in Fig-
ure 3.1. The air entering the engine is measured by an air-mass flow-meter
(HFM). It then passes the compressor and the CAC (Charge Air Cooler),
enters the intake manifold, and flows into the cylinders. On the exhaust
side, a part of the exhausts drives the turbine, and a part is recycled via
the EGR (Exhaust Gas Recycling) path.

Inlet
Manifold

Charge Air
Cooler

Compressor

VNT-Turbine
EGR

Cooler

p

T

m

W

W

W

W

W

W

W

W

W

m
m

Inlet

CAC

Exh

Turb

Turb

EGR

Fuel

EGR

Inlet

Exh

HFM

HFM

Air

EGR

EGR
Valve

Exhaust
Manifold

Engine

Figure 3.1: The Mercedes-Benz OM611 diesel engine.
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12 Chapter 3. Model Development

3.2 Model Inputs and Output

The model of the engine is created to capture the performance in the air
path. The characteristics of CAC and Compressor is not included in the
model.

The production version of this engine is equipped with sensors measur-
ing in-flowing air WHFM , the temperature after charge air cooler (CAC)
TInter and inlet manifold pressure pInlet. The inputs to the engine are
WFuel, the turbine vane position XV NT , and the effective EGR-valve area
AEGR.

The model of the engine uses the same actuator and sensor signals as
the real engine, plus an additional input, normalized mass-flow of fuel,
WFuelmap. The inputs to the model can be seen in Table 3.1.

inputs explanation
AEGR effective area of EGR valve
NEng engine speed
PAtm atmospheric pressure
TInter temperature after CAC
WFuel mass-flow of fuel
WFuelmap normalized mass-flow of fuel
WHFM air mass-flow past the air mass-flow sensor
XV NT position of VNT vanes

Table 3.1: Signals used as inputs to the engine model

Output from the model is the inlet manifold pressure, pInlet. This
value is then compared with the true inlet manifold pressure from the
engine.

3.3 Model of OM611 in the Fault-Free Case

The model used for the Kalman filter design is based on principles de-
scribed in [6, 7, 8, 9].
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Engine Model in the Fault-Free Case

The model of the OM611 engine for the fault free case is as follows:

ṗInlet = 1
VInlet

(RAircp,Air

cv,Air
WHFMTInter +

+RExhcp,Exh

cv,Exh
WEGRTEGR

−RInletcp,Inlet

cv,Inlet
WInletTInlet

)
(3.1)

ṁAir = WHFM − mAir

mAir+mEGR
WInlet (3.2)

ṁEGR = WEGR − mEGR

mAir+mEGR
WInlet (3.3)

ṁExh = WExh − WTurb − WEGR (3.4)

where

WEGR = AEGRpExh√
RExhTExh

ΨκExh
(pInlet

pExh
) (3.5)

Ψκ(
p1

p0
) =




√
2κ

κ−1

{(
p1
p0

) 2
κ −

(
p1
p0

)κ+1
κ

}

if
(

p1
p0

)
≥

(
2

κ+1

) κ
κ−1

√
κ

(
2

κ+1

) κ+1
κ−1

otherwise

(3.6)

WInlet = f(NEng,
pInlet

TInletRInlet
) NEngpInlet

TInletRInlet

VEng

120 (3.7)

WExh = WInlet + WFuel (3.8)
WTurb = pExh√

TExh
g( pExh

pAtm
,XV NT ) (3.9)

TExh = TInlet + QLHV h(WF uelmap,NEng)
cp,Exh(WInlet+WF uel)

(3.10)

pExh = mExhRExhTExh

VExh
(3.11)

cp,Inlet = cv,Inlet + RInlet (3.12)

cv,Inlet = cv,AirmAir+cv,ExhmEGR

mAir+mEGR
(3.13)

RInlet = RAirmAir+RExhmEGR

mAir+mEGR
(3.14)

TInlet = pInletVInlet

(mAir+mEGR)RInlet
(3.15)

TEGR = 831K (3.16)

The model contains three static functions: f , h, and g. They are rep-
resented as interpolation in lookup tables (maps). Also the Ψκ(·)-function
is implemented as interpolation in a lookup table. The parameters and
lookup tables in the model were obtained partly from manufacturer data,
and partly from steady state and dynamic measurements.

The presented model is assumed to be valid in the fault-free case.
When there is a fault present, other models are valid and these will be
described later in Section 3.4.
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Figure 3.2: Simulated and measured inlet pressure pInlet (upper lines).
The absolute value of the difference (lower line).

3.3.1 Model Validation

The model described above is simulated and a comparison with real mea-
surement data can be seen in Figure 3.2. The figure shows the simulated
and measured inlet pressure pInlet. The agreement is quite good but some
model errors can be seen for highly dynamic parts. Also longer measure-
ments were compared and on average, an RMS error of 3% was obtained.

3.4 Modeling of Faults

There are three different fault types taken into consideration, inlet pres-
sure sensor fault (IPS), air mass-flow sensor fault modeled in two different
ways (HFM1 & HFM2) and manifold leakage (ML).

3.4.1 No Fault (NF )

The model for the fault free engine was described in Section 3.3. To
completely describe the NF fault-mode, we also add equations describing
that the sensors and actuators are fault free.
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WHFM,s =WHFM (3.17a)
TInlet,s =TInlet (3.17b)
pInlet,s =pInlet (3.17c)
NEng,s =NEng (3.17d)
pAtm,s =pAtm (3.17e)
AEGR =AEGR,r (3.17f)
WFuel =WFuel,r (3.17g)
XV NT =XV NT,r (3.17h)

Here, index s indicates sensor value and index r indicates reference
value, set by the controller. For example, equation (3.17a) says that the
measured value WHFM,s is equal to the physical variable WHFM .

3.4.2 Inlet Pressure Sensor Fault (IPS)

The model for the fault mode IPS is obtained by taking the model for
the NF fault-mode but replacing equation (3.17c) with

pInlet,s = k pInlet (3.18)

where k is an unknown constant, and k 6= 1.

3.4.3 Mass-Flow Sensor Fault:
One Parameter Model (HFM1)

The mass-flow sensor fault is modeled in two ways. One model with one
fault-parameter (HFM1) and one with two fault-parameters HFM2. In
the first model the gain in the sensor is proportional towards the true
mass-flow.

The model for fault mode HFM1 is obtained by taking the model for
the NF fault-mode but replacing equation (3.17a) with

WHFM,s = g WHFM (3.19)

where g is an unknown constant, and g 6= 1.

3.4.4 Mass-Flow Sensor Fault:
Two Parameter Model (HFM2)

A typical mass-flow sensor fault has been measured. Its characteristics
can be seen in Figure 3.3. The sensor have a variable gain-fault and the
gain is defined in percentage as

measured mass-flow − true mass-flow
true mass-flow

· 100 + 100
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Figure 3.3: Measured gain-fault in a mass-flow sensor

For low mass-flows of air through the sensor the measured mass-flow is
almost 35% higher then the true mass-flow. For high mass-flows the mea-
sured mass-flow is approximately 98% of the true mass-flow , that is 2%
less than the actual mass-flow, and then more or less fault free. This
sensor-fault can be modeled as follows:

WHFM,s = f(WHFM )WHFM

Where f(·) is a function describing the gain in the sensor and is seen
as a function of the real mass-flow through the sensor. As described in
Section 3.2 WHFM is an input signal to the model and is therefore to be
explicitly found.

We can then model the gain-fault as

WHFM = g(WHFM,s)WHFM,s

where the gain g(WHFM,s) is defined as

1
f(WHFM )

The gain g(·) is looked upon as a function of the measured mass-flow
though the sensor. The characteristics of the gain-fault as a function of
the measured mass-flow can be seen in Figure 3.4. For low measured
mass-flows the true mass-flow through the sensor is approximately 75% of
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Figure 3.4: The gain in a mass-flow sensor as a function of the measured
mass-flow.

the measured mass-flow. Fore high mass-flows the sensor is more or less
fault free, as said before.

When the gain g(·) is plotted as a function of the logarithmic mass-
flow, as in Figure 3.5, solid line, the gain can be approximated with a first
order polynomial:

g(WHFM,s) = a + b log10 WHFM,s

The polynomial coefficients that best approximate the gain for all mass-
flows in Figure 3.5, in least-square sense, dashed line, is

a = 1.11 b = 0.15.

For high respective low mass-flows these coefficients do not describe the
gain-fault in a good way. For high mass-flows are

ahigh = 1.19 bhigh = 0.23

a better approximation of the coefficients, see Figure 3.5 the dotted line.
The polynomial coefficients that best approximate, in least-square sense,
low mass-flows are

alow = 1.48 blow = 0.34

See Figure 3.5 the dash-dotted line.
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Figure 3.5: The gain g(WHFM,s) plotted as a function of the logarithmic
measured mass-flow, solid line, and a first order polynomial to approxi-
mate the gain, in least-square sense, dashed line. The dotted and dash-
dotted lines are also first order polynomial to solely approximate high and
low mass-flows respectively
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Consequently, the model for fault mode HFM2 is obtained by taking
the model for the NF fault-mode but replacing equation (3.17a) with

WHFM = (a + b log10 WHFM,s)WHFM,s (3.20)

where a, b are unknown constants, and a 6= 1 or b 6= 0.
The mass-flow sensor fault has been modeled in two ways. The first

model,HFM1, will have problem to detect a fault in the sensor whose
characteristics can be seen in Figure 3.3. For some mass-flows the gain
fault is big but for other mass-flows the sensor is almost fault free. On
the other hand the second model, HFM2, is more complicated and more
computational power will be needed to simulate this model. Which model
we choose is therefore a balance between how much computational power
we have access to and how good we want the diagnosis system to be.

3.4.5 Manifold Leakage (ML)

It is assumed that the leakage occur in the inlet manifold and that the
area of the hole is constant. The flow through the leakage is modeled as
a flow through a restriction. This type of model has been validated in [8]
with good results.

Equations (3.1), (3.2), and (3.3) in the fault-free model is replaced by

ṗInlet =
1

VInlet

(RAircp,Air

cv,Air
WHFMTInter +

+
RExhcp,Exh

cv,Exh
WEGRTEGR

− RInletcp,Inlet

cv,Inlet
(WInlet + WLeak)TInlet

)
(3.21)

ṁAir = WHFM − mAir

mAir + mEGR
(WInlet + WLeak) (3.22)

ṁEGR = WEGR − mEGR

mAir + mEGR
(WInlet + WLeak) (3.23)

WLeak =
ALeakpInlet√
RInletTInlet

ΨκAir
(
pAtm

pInlet
) (3.24)

where

ALeak 6= 0

and the function Ψκ(·) was defined in (3.6). All sensors and actuators are
assumed fault free, and thus equations (3.17) are assumed to hold.
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Chapter 4

Implementation

4.1 Complete State-Space Model of the Faulty
Engine

The model of the engine in the fault free case is described by four state
equations as was shown in Section 3.3.

For each fault mode, the model of the engine is obtained by adding
and/or replacing equations according to Section 3.4. Since all fault-
parameters are assumed constant the derivative of each fault parameter
is zero.

As an example, a part of the five state equations that describes the
IPS-fault model are:

ẋ =




ṗInlet

ṁAir

ṁEGR

ṁExh

k̇


 =




1
VInlet

(RAircp,Air

cv,Air
WHFMTInter + . . . )

WHFM − mAir

mAir+mEGR
WInlet

WEGR − mEGR

mAir+mEGR
WInlet

WExh − WTurb − WEGR

0




Of these five equations four describes the engine and the last one the fault
parameter k. The model of the measurement equation

y = pInlet

is replaced by equation (3.18) and then becomes

y = k pInlet

Equation (3.5) to (3.16) are of course included to describe the the model
of the IPS-fault completely.

The same methodology is used to create the remaining fault models.
Each fault model is simulated in Matlab/Simulink and the results are
presented in Section 5.2.

21
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4.2 Linearization Tool

As been described in Chapter 2, and can be seen in Table 2.5, we need
a linearization of the state-space model. The linearization is based on a
first order Taylor approximation and therefore the partial derivatives of
the fault models are calculated.

For the linearization of the different models a linearization tool was
developed in Mathematica. The basic idea with this linearization tool is
that the results from already calculated expressions and partial derivatives
are reused, in order to save calculation time during simulation.

The principal of the linearization tool will be shown with the following
example:

f(v, x, y, z) = vxz + vxz(1 + xy)

To evaluate f(v, x, y, z) 2 additions and 6 multiplications will be needed.
If we define g(v, x, z) and h(x, y), where

g(v, x, z) = vxz

h(x, y) = 1 + xy

and

f̄(g, h) = g(v, x, z) + g(v, x, z)h(x, y)

will this result in the exact same equation of f̄(g, h) as of f(v, x, y, z):

f̄(g, h) = g(v, x, z) + g(v, x, z)h(x, y) = vxz + vxz(1 + xy)

In this case will the evaluation of f̄(g, h) results in 2 additions and 4
multiplications. The latter way saves 2 multiplications.

If the partial derivative of f(v, x, y, z) with respect to x is taken, one
will get the following result:

∂f(v, x, y, z)
∂x

= vz + vz(1 + xy) + vxzy

To compute the derivative there will be a need of 3 additions and 7 mul-
tiplications.

When we take the partial derivative of f̄(g, h) with respect to x we
will obtain the following result:

∂f̄(g, h)
∂x

=
∂g(v, x, z)

∂x
+ g(v, x, z)

∂h(x, y)
∂x

+
∂g(v, x, z)

∂x
h(x, y)

where

∂g(v, x, z)
∂x

= vz

∂h(x, y)
∂x

= y
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Since g(v, x, z) and h(x, y) are already evaluated, the evaluation of the
partial derivative of f̄(g, h) with respect to x will results in 2 additions
and 3 multiplications. Compared with the first way of calculating the
partial derivative the latter way saves 4 multiplications and 1 addition
due to the fact that already calculated expressions can be reused.

It is according to this principal the linearization tool works. The equa-
tions (3.5) to (3.15) are differentiated in the reversed order and saved as
separate variables. Whenever an expression of an already calculated equa-
tion appears it is replaced by the corresponding variable. The linearized
state-space model is saved as analytical expressions in a m-file. For every
point that is simulated the m-file with the linearized state-space model is
run.
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Figure 4.1: Simulink model of the extended Kalman filter.

4.3 Implementation of Kalman filters

The Kalman filters where implemented in Matlab/Simulink. The graph-
ical environment of Simulink provides an easy way of implementing the
equations in Table 2.5 that describes the extended Kalman filter. In Fig-
ure 4.1 can a part of this implementation be seen. One drawback of
implement the filters in Simulink is that it is computational heavy and
therefore takes long time.

The results from the linearization tool where saved as m-files. Also the
different state-space models where saved as m-files. During simulation of
a fault-model, the states are updated by running the m-files containing
the state-space model and the linearized state-space model of the actual
fault-model. This is handled by the block denoted f(x )̂, h(x )̂,dfdx|x =
xˆ= F and inside block K in Figure 4.1. The output from block dfdx|x =
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xˆ = F and block P are matrixes, all other signals are vectors. Block
Extract Diagonal extracts the diagonal from the covariance matrix P . The
diagonal of matrix P contains the variance of the different state variables.

Inputs to the Simulink model of the extended Kalman filter in Fig-
ure 4.1 are the measured pressure in the inlet manifold, denoted y, and
the input signals from Table 3.1, denoted u. Output from the Simulink
model are estimated inlet manifold pressure, denoted y .̂ Also the residual
(pInlet − p̂Inlet), denoted e, the estimated state variables, denoted xˆand
the diagonal of the covariance matrix P , denoted P diag are outputs from
the Simulink model for help during tuning of the filters.

The extended Kalman filter based on the different fault models has
turned out to be stiff. By rescaling the state pInlet from Pa to MPa
the results during simulation has improved significantly. Also the fault-
parameter ALeak has been scaled, from m2 to m m2.

A lot of time have been spent on tuning the different Kalman filters
in order to make them perform as desired. This is done by setting the
elements in the covariance matrixes Q and R, see Table 2.4, to different
values. By varying the element values one can e.g. decide how fast a
fault-parameter shall converge. The faster the filter is the more sensible
it is to disturbances. The final settings of the element values in matrixes
Q and R are a compromise between how fast the filters should converge
and how sensible it should bee.



Chapter 5

Experimental results

In this chapter the results from the simulations are presented and dis-
cussed.

5.1 Recapitulation of how a diagnosis sys-
tem can work

The idea with these different observers is that they should work in a diag-
nosis system. We simulate the different observers with the same data and
determine the fault-parameters for each observer respectively. Then we
run the observers once again with the same data and the fault-parameters
fixed to the values determined in the previous simulation. By studying the
residual, i.e. the difference between the measured inlet manifold pressure
and the estimated inlet manifold pressure, a diagnosis can be determined.
If the residual is small, then the actual fault-parameter can explain the
behavior of the engine and we have a present fault. If on the other hand,
the residual is large, then the actual fault-parameter can not explain the
behavior of the engine and the that fault that this fault-parameter corre-
spond to is rejected.

5.2 Performances of the different filters

The data for the simulations comes from driving sessions with a car
equipped with the OM611 diesel engine on public roads. The faults in
the sensors has been simulated. In the case of manifold leakage a hole
with a known diameter has been made in the inlet manifold.

The figures in this section shows the estimated inlet manifold pressure,
residual, estimated fault parameter, solid line, together with the true value
of the fault-parameter, dashed line, and the covariance of the estimated

25
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fault-parameter. In the figures of the HFM -faults the estimated inlet
pressure plot is replaced with the plot of the measured mass-flow WHFM .
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Figure 5.1: IPS-filter with high pressure in the inlet manifold and an
IPS-fault present.

5.2.1 IPS-filter

The IPS-fault has been modeled as a static gain fault in the sensor. In
this case a gain-fault of 0.9 has been used for validation of the IPS-filter,
e.g. the sensor is measuring 90% of the true pressure. In Figure 5.1 can
we see that the estimated gain converges fast and that it’s varying only a
few percentage around the true value.

A different behavior can be seen in Figure 5.2, the convergence is slow
and it is only in the last few seconds of the simulation that we can say
that it has converged toward a value. The lower the pressure in the inlet
manifold is the slower the filter tends to converge in general. In this latter
case there has been a low demand of torque from the driver resulting in
a low inlet manifold pressure. At steady state the inlet manifold pressure
is proportional to the output torque from the engine.
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Figure 5.2: IPS-filter with low pressure in the inlet manifold and an IPS-
fault present.

5.2.2 HFM1-filter

As with the IPS-fault the HFM1-fault is seen as a gain-fault. In this
case the has the gain been set to 1.1 during validation, e.g. the sensor
measures a mass-flow through the CAC that is 10% higher than the actual
mass-flow.

Figure 5.3 shows the behavior of the HFM1-filter when the mass-flow
though the CAC is high. The filter converge fast with only a small varia-
tion of the estimate parameter ĝ.

In Figure 5.4 can we see the behavior of the HFM1-filter when the
mass-flow through the CAC is low and with small variation. The filter con-
verges quite fast but has unfortunately a negative bias of approximately
2%.

This is due to the low mass-flow and small variation in the input
signals. One may think that an estimated parameter that is only two
present from the true value is good. But in this case, when the actual
fault is simulated, the estimation should be better because the fault-model
is “perfect”. One possible cause of this behavior is that the engine model
has a bigger model error when the mass-flow is low compared to when the
mass-flow through the CAC is high.



28 Chapter 5. Experimental results

420 430 440 450 460 470 480
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time [s]

W
H

F
M

,s
 [k

g/
s]

420 430 440 450 460 470 480
−4

−3

−2

−1

0

1

2
x 10

4

Time [s]

R
es

id
ua

l [
P

a]

420 430 440 450 460 470 480
95

100

105

110

115

Time [s]

E
st

. g
 [%

]

Estimated
True

420 430 440 450 460 470 480
0

2

4

6

8

10

12
x 10

6 Parameter g:s covariance 

Time [s]

C
ov

. g

Figure 5.3: HFM1-filter with high mass-flow through the CAC and a
HFM1-fault present.
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Figure 5.4: HFM1-filter with low mass-flow through the CAC and a
HFM1-fault present.
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Figure 5.5: HFM2-filter with high mass-flow through the CAC and HFM2-
fault present.

5.2.3 HFM2-filter

The HFM2-fault is based on a typical mass-flow sensor fault as described
in Section 5.2.3. The coefficients that best explains the faulty mass-flow
sensor for all mass-flows in Figure 3.5 were concluded to be a = 1.11 and
b = 0.15. For high mass-flows were they concluded to be ahigh = 1.19 and
bhigh = 0.23.

As can be seen in Figure 5.5 the estimated parameters â and b̂ are in
between these values. The estimated values are: â ≈ 1.16 and b̂ ≈ 0.2.
This seams reasonable, the mass-flow through the CAC is rather high and
therefor should the estimated parameter values be closer to the coefficients
that models the high mass-flow.

If the mass-flow through the CAC is low during simulation we will
get a filter behavior as in Figure 5.6. In this case, the estimation of
the both fault-parameters is really poor: â ≈ 0.95 and b̂ ≈ 0.05. The
parameter values that best explained low mass-flows where concluded to
be alow = 1.48 and blow = 0.34 and the estimated fault-parameters are
far from these values.

These values of the estimated fault-parameters suggest that the sensor
is almost fault-free which it isn’t. The actual fault is largest for low mass-
flows. Why the estimated parameters values are far from the theoretical
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Figure 5.6: HFM2-filter with mass-flow through the CAC and HFM2-fault
present.

values can be due to the fact that the over all model errors are larger
when the mass-flows and thereby the inlet manifold pressure is low.

5.2.4 ML-filter

The ML-filter is modeled to estimate the leakage area between CAC and
the cylinders. Figure 5.7 shows a simulation where a 4 mm hole has been
made in the inlet manifold. In this case is the estimated leakage area
ÂLeak ≈ 1.3 · 10−5 m2 which indicates a hole diameter of 4.1 mm. To be
able to detect a hole there must a difference between the ambient pressure
and the pressure in the inlet manifold. The bigger difference, the easier
to detect.

In Figure 5.8 can we see an example when the difference between
the ambient pressure and inlet manifold pressure is low. The estimated
leakage area is far from the true value. Would it not have been for the
last sudden increase in inlet pressure, would the estimated area ÂLeak be
approximately 4 ·10−7 m2 which indicates a hole diameter of 0.7 mm. Far
from the true value.
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Figure 5.7: ML-filter with high pressure in the inlet manifold and 4 mm
hole present.
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Figure 5.8: ML-filter with low pressure in the inlet manifold and 4 mm
hole present.
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5.2.5 Summary

For more or less all the filters, there is a demand for high pressure in the
inlet manifold if the estimate is going to be good. When this is the case all
filters worked well but when this is not the case, the estimates are poor.
This problem makes it hard to rely on the filters; is the estimate good or
is it a simulation where the variation in the input signals are low?

5.3 When should the estimation be stopped?

For a diagnosis system it is essential to be able to rely on the estimated
parameter, otherwise will it be impossible to make the right decision. Bad
estimated parameters can cause the diagnosis system to take decisions
where the true fault is rejected.

The problem of estimating parameters is to know when the estimation
is good enough. If the estimation is good enough there is no need for
further estimation and computation time can be saved. If, on the other
hand, the estimate is poor, more time for estimation is needed for a good
result.
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Figure 5.9: Manifold leakage filter with high inlet manifold pressure and
6 mm hole present.
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5.3.1 Experimental results

The performance of the observers are in general better when the inlet
manifold pressure is high, as was discussed in Section 5.2.5. During eval-
uation of the different observers, fix time intervals of 60 seconds have
been used for estimation of the different parameters. For those cases with
low excitation of the system, this time was not long enough to give good
estimations.

One idea which have been examined in this master thesis project, is
to use the covariance function of the estimated fault-parameter and from
this draw an conclusion if the estimation is good enough and therefore
stop the estimation.

One example. In Figure 5.9 are the engine speed, estimated inlet
manifold pressure, the residual, estimated leakage area ÂLeak, solid line,
together with the true leakage area, dashed line, and the covariance of
ÂLeak been plotted. In this case there is a 6 mm hole present in the inlet
manifold. The estimated leakage area is approximately 2.55 · 10−5 m2

which indicates a hole diameter of 5.7 mm, close to the true size of the
hole. When studying the covariance of ÂLeak in Figure 5.9 it is almost
constant from 400 seconds an further on to the end, and the same is
currently the case of the the estimated fault-parameter ÂLeak. In this
case would a limit at 600 maybe be appropriate. When the covariance of
the estimated parameter drops below this limit the estimation is said to
be good and the simulation is aborted.

In Figure 5.10 we can see an additional case when the covariance of
ÂLeak drops below the limit. In this case is it also the ML-filter with
a 6 mm hole present in the inlet manifold but the inlet pressure is low
during simulation. But when we study the value of ÂLeak the estimated
leakage area is negative. The estimation is very bad, even though drops
the covariance below the limit. Maybe the covariance is not a good way
of deciding if the estimation is good.

5.3.2 Summary

In the first simulations shown in Figure 5.9 and 5.9 it seams that it could
work but in Figure 5.10 we have an undesired behavior of the observer.
Why does the covariance drop to such a low value even though the esti-
mate is poor. It could be due to model errors. To study the covariance
of the estimated parameter and from that come to a conclusion about if
the estimated parameter is good, seams difficult. In this case the model
errors are to large to be able to come to any conclusions. This will be
even more difficult if there is another fault present that the observer was
designed for. Further investigation of this is area is needed.
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Figure 5.10: Manifold leakage filter with low inlet manifold pressure and
6 mm hole present.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusion

Three different faults have been taken under consideration, air-mass flow
sensor fault, inlet manifold pressure sensor fault and air-leakage in the
inlet manifold. Inlet pressure sensor fault and mass-flow sensor fault are
modeled as gain-faults. The mass-flow sensor fault is modeled in two
different ways. Air leakage is modeled as a flow through a restriction.

The four different fault-models where linearized in Mathematica and
the results where saved as m-files for Matlab. The extended Kalman
filters where implemented in Matlab/Simulink.

The different filters has been evaluated with real data from a car driven
on public roads. All filters, but especially the HFM2 and ML-filters, has
turned out to be sensitive to low mass-flows or low inlet manifold pressure.
When the inlet pressure and the excitation of the system is low the result
is effected in a negative way. On the other hand, during simulations with
high inlet manifold pressure all filters produce good results. The estimated
fault-parameters are close to the true value of the faults.

The idea of studying the covariance of the estimated fault-parameter
to decide when to stop the simulation seams not to work. Even for bad
estimations of the parameters the covariance drops to a low value and
thus makes it hard to make the right decision.

The extended Kalman filter has turned out to perform well as an ob-
server for a diagnosis system of an automotive engine. When the process-
model corresponds well with the process, good estimations of the fault-
parameters are produced.
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6.2 Future Work

Some topics that can be looked upon at future work.

Further development of the engine model. The problems with esti-
mating the fault-parameters during simulation with small variations
in the inputs is probably due to model errors. Therefore would fur-
ther development of the engine model be desirable.

Smoothers. Since the observer is working off-line, a nonlinear Kalman
smoother could be interesting to investigate. A smoother is non-
causal filter.

When should the simulation be stopped? The problem of when to
stop the simulation by studying the covariance of the estimated
parameter needs further investigation.



References

[1] M. Nyberg, T. Stutte and V. Wilhelmi. Model based diagnosis of the
air path of an auotmotive diesel engie. IFAC Workshop: Advances in
Automotive Control, pages 255–260, Karlsruhe, Germany, 2001.

[2] M. Nyberg and E. Frisk. Diagnosis and supervision of technical pro-
cesses. Linköping, Sweden, 2001. Course material, Linköpings Uni-
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Abbrevations and
Notation

Abbreviations

CAC Charge Air Cooler
Cov Covariance
EKF Extended Kalman Filter
EGR Exhaust Gas Recycling
OBD On Board Diagnosis
RMS Root Mean Square
RPM Revolutions Per Minute
VGT Variable Geometry Turbocharger
VNT Variable Nozzle Turbine
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Notation

Variable Unit Explanation
AEGR m2 Effective area of EGR valve
ALeak m2 Effective leakage area
cp,Air J/(kg · K) Specific heat at const. pres. of air
cp,Exh J/(kg · K) Specific heat at const. pres. of exhaust gas
cp,Inlet J/(kg · K) Specific heat at const. pres. of gas in intake manifold
cv,Air J/(kg · K) Specific heat at const. vol. of air
cv,Exh J/(kg · K) Specific heat at const. vol. of exhaust gas
cv,Inlet J/(kg · K) Specific heat at const. vol. of gas in intake manifold
mAir kg Mass of air in intake manifold
mEGR kg Mass of EGR-gas in intake manifold
mExh kg Mass of exhaust gas in exhaust manifold
NEng min−1 Engine speed
RAir J/(kg · K) Gas constant of air
RExh J/(kg · K) Gas constant of exhaust gas
RInlet J/(kg · K) Gas constant of gas in intake manifold
pAtm Pa Atmospheric pressure
pExh Pa Pressure in exhaust manifold
pInlet Pa Pressure in intake manifold
QLHV J/kg Lower Heating Value
TEGR K Temperature of EGR gas-flow into the intake manifold
TExh K Temperature in exhaust manifold
TInlet K Temperature in the intake manifold
TInter K Temperature of the air after the charge-air cooler
VEng m3 Engine displacement
VExh m3 Volume of exhaust manifold
VInlet m3 Volume of intake manifold
WEGR kg/s EGR mass-flow into intake manifold
WExh kg/s Exhaust mass-flow into the exhaust manifold
WFuel kg/s Mass-flow of injected fuel
WFuelmap kg/s Nominated mass-flow of injected fuel
WHFM kg/s Air mass-flow past the air mass-flow sensor
WInlet kg/s Mass-flow into engine inlet-ports
WLeak kg/s Mass-flow thrue a hole
WTurb kg/s Exhaust mass-flow past the turbine
XV NT % Position of VNT vanes
κ cp/cv Ratio of specific heats
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