Embedded software for new engine controller
Johan Kallstrém

LITH-ISY-EX-3192
2001-11-05

Embedded software for new engine controller

Examensarbete utfért i Fordonssystem
vid Linképings Tekniska Hogskola
av

Johan Kallstrom

Reg nr:LiTH-ISY-EX-3192

Handledare: Robert R. Newberry, Ingemar Andersson
Examinator: Lars Nielsen

Linkoping 2001-11-05

01-11-05

(o8 Uy,
é‘? ‘, é% Avdelning, Institution Datum 2001-11-05
3 % Division, department Date 2001-11-05
- Py -
7, &
T Pt . . .
“tgs it Department of Electrical Engineering
ISBN
Sprak Rapporttyp
Language Report: category ISRN
Q Svenska/Swedish Q Licentiatavhandling — .
x Engelska/English x Examensarbete Serietitel och serienummer ISSN
Q C-uppsats Title of series, numbering
Q D-uppsats
Q Q Ovrig rapport

LiTH-ISY-EX-3192

URL for elektronisk version
www.fs.isy.liu.se

Titel Programvara foér inbyggt realtidssystem fér motorstyrning
Title Embedded software for new engine controller

Forfattare Johan Kiillstrom
Author Johan Kallstrom

Sammanfattning
Abstract

This thesis describes software devel opment for and testing of a new prototyping system for engine control
units used at DaimlerChrysler. The system uses advanced new hardware to implement the engine
controller. The purpose of the new hardware is to reduce the cost for the development of new engine
control units without sacrificing performance. Thisis achieved by using hardware designed specifically for
engine control. With the help of advanced software toolsit should aso be possible for people without
detailed knowledge about the hardware or programming to work with the system during devel opment.

The development of driversfor the hardware and a communication protocol to allow communication
between the ECU and external units is presented. An application to allow engineersto perform
measurements and calibrations during the devel opment of the engine controller is also assembled and
tested. It should be possible for people without knowledge about programming the system to use and alter
this application.

The testing shows that the current system is functioning satisfactory, but it is also concluded that
modifications might have to be made in the future when the engine controller is expanded to perform more
functions. It is aso concluded that some modifications to the software could be made to increase the
performance of the system. It is believed that the described development system will be very powerful
onceit has matured.

Nyckelord
Keywords ECU, embedded system, vehicular system, rapid prototyping

ABSTRACT

This thesis describes software development for and testing of a new prototyping system for
engine control units used at DaimlerChrysler. The system uses advanced new hardware to
implement the engine controller. The purpose of the new hardware is to reduce the cost for
the development of new engine control units without sacrificing performance. Thisis
achieved by using hardware designed specifically for engine control. With the help of
advanced software tools it should also be possible for people without detailed knowledge

about the hardware or programming to work with the system during development.

The development of drivers for the hardware and a communication protocol to alow
communication between the ECU and external unitsis presented. An application to allow
engineers to perform measurements and calibrations during the development of the engine
controller is also assembled and tested. It should be possible for people without knowledge

about programming the system to use and alter this application.

The testing shows that the current system is functioning satisfactory, but it is al'so concluded
that modifications might have to be made in the future when the engine controller is expanded
to perform more functions. It is also concluded that some modifications to the software could
be made to increase the performance of the system. It is believed that the described

development system will be very powerful once it has matured.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Robert Newberry and everyone else at DaimlerChrysler
in Esslingen for their help. Special thanks to Frank at AIEC for his help on the hardware and

the engine controller, which made work much easier.

Link6ping, November 2001
Johan Kdllstrom

ABBREVIATIONS

ADW
AIEC
APIC
ARM
ASIC
AXD
CAN
ECU
FPGA
GUI
ICE
IDE
ISR
IRQ
KWP2000
LED
LLIB
PWM
RISC
RTEC
scl
soC

ARM Debugger for Windows
Automotive Integrated Electronics Corporation
ARM Processor Interrupt Controller
Advanced RISC Machines
Application Specific Integrated Circuit
ARM eXtended Debugger

Controller Area Network

Engine Control Unit

Field Programmable Gate Array
Graphical User Interface

In-Circuit Emulator

Integrated Development Environment
Interrupt Servicing Routine

Interrupt Request

Keyword Protocol 2000

Light Emitting Diode

Load/Logic Interface Board

Pulse Width Modulator

Reduced Instruction Set Computer
Real-Time Engine Controller

Serial Communication Interface
System On Chip

CONTENTS

1 INTRODUCTION 5
1.1 BACKGROUND 5
1.2 OBJECTIVES 6
1.3 READER’S GUIDE 7
2 THE DEVELOPMENT SYSTEM 9
2.1 OVERVIEW OF THE DEVELOPMENT SYSTEM 9
2.2 REAL-TIME WORKSHOP 10
2.3 ARM DEVELOPER SUITE 11
2.4 MULTI-ICE 13
2.5 THE ARM PROCESSOR BOARD 13
2.6 THE INTEGRATOR LOGIC MODULE 15
2.7 LOAD/LOGIC INTERFACE BOARD 18
2.8 THE ENGINE CONTROLLER 19
2.9 COMMENTS ON THE DEVELOPMENT SYSTEM 19
3 PROGRAMMING THE ENGINE CONTROLLER 21
3.1 SOFTWARE DEVELOPMENT FOR A BARE-BOARD ENVIRONMENT 21
3.2 C/C++ VERSUS ASSEMBLY LANGUAGE 22
3.3 SOFTWARE DEVELOPMENT FOR THE REAL-TIME ENGINE CONTROLLER 23
3.4 SETTING UP AND TESTING THE DEVELOPMENT SYSTEM 25
4 THE ARM PROCESSOR INTERRUPT CONTROLLER 27
4.1 INFORMATION ABOUT THE APIC 27
4.2 INITIALISATION OF THE SYSTEM 29
4.3 TESTING THE APIC FUNCTIONALITY 31
4.4 COMMENTS ON THE APIC AND THE DEVELOPED ROUTINES 32
5 THE SERIAL COMMUNICATION INTERFACE 35
5.1 INFORMATION ABOUT THE SCI 35
5.2 DEVELOPING ROUTINES FOR THE SCI 35
5.3 DEVELOPED DRIVERS FOR THE SCI 37
5.4 CONNECTION TO THE PC 39
5.5 EVALUATION OF THE SCI ROUTINES 40
5.6 COMMENTS ON THE DEVELOPED SCI ROUTINES 40

6 THE KEYWORD PROTOCOL 2000 43
6.1 DEFINITION OF KWP2000 43
6.2 IMPLEMENTATION OF THE PROTOCOL 45
6.3 TESTING OF THE PROTOCOL WITH PC TERMINAL PROGRAM 48
6.4 COMMENTS ON THE IMPLEMENTATION OF KWP2000 51
7 ADAPTING KWP2000 TO MARCI1 53
7.1 THE MARCI1 APPLICATION SYSTEM 53
7.2 MODIFICATIONS MADE TO THE PROGRAM 54
7.3 A MARCI1 APPLICATION EXAMPLE 57
7.4 TESTING THE APPLICATION 60
7.5 COMMENTS ON ADAPTING KWP2000 TOo MARCI1 62
8 CONCLUSIONS AND SUGGESTIONS FOR THE FUTURE 63
8.1 THE DEVELOPED SOFTWARE 63
8.2 SUGGESTIONS FOR FURTHER DEVELOPMENT 63
8.3 EVALUATION OF THE DEVELOPMENT SYSTEM 65
8.4 CONCLUSIONS 65
REFERENCES 67
APPENDIX A: VB CODE 69
APPENDIX B: RS232 CONVERTER DATA-SHEET 77

LIST OF FIGURES

FIGURE 1.
FIGURE 2:
FIGURE 3:
FIGURE 4:
FIGURE5:
FIGURE 6:
FIGURE 7:
FIGURE 8:
FIGURE 9:
FIGURE 10

FIGURE 11:
FIGURE 12:
FIGURE 13:
FIGURE 14:
FIGURE 15:
FIGURE 16:
FIGURE 17:
FIGURE 18:
FIGURE 19:
FIGURE 20:
FIGURE 21:
FIGURE 22:
FIGURE 23:
FIGURE 24:

THE DEVELOPMENT SYSTEM AND ITS COMPONENTS

THE ARM EXTENDED DEBUGGER

THE ARM PROCESSOR BOARD

THE ARCHITECTURE OF THE INTEGRATOR LOGIC MODULE

PRODUCING A BITSTREAM FOR THE FPGA

DOWNLOADING A BITSTREAM TO THE FPGA

BLOCK SCHEDULE OF THELLIB

BLOCK SCHEDULE OF THE REAL-TIME ENGINE CONTROLLER

BLOCK SCHEDULE OF THE APIC

: THE APIC REGISTERS

THE SCI REGISTERS

SCHEMATIC FOR THE RS232 CONVERTER

FORMAT FOR A KWP2000 REQUEST MESSAGE

FORMAT FOR A KWP2000 POSITIVE RESPONSE

FORMAT FOR A KWP2000 NEGATIVE RESPONSE

FLOWCHART FOR KWP2000

COMPONENTS OF THE KWP2000 PROGRAM

EXAMPLE OF A COMMUNICATION LOG FILE

THE USER INTERFACE OF THE TERMINAL PROGRAM

A MARC1 DEVELOPMENT ENVIRONMENT

FORMAT FOR KWP2000 MESSAGES

THE BITS OF THE FORMAT BYTE

THE TIMING OF RESPONSE MESSAGES

LOOK-UPTABLESIN MARC1

12
14
16
17
18
18
23
27
28
36
39

46
47
49
50

55
55
56
59

1 Introduction

This thesis describes work carried out on DaimlerChrysler’ s new development system for
engine control units, ECU:s. The work was carried out at DaimlerChrysler’s research and
development department in Esslingen, Germany. This chapter gives a short introduction to the
problem that was to be solved and also gives areader’s guide to the thesis.

1.1 Background
DaimlerChrysler in Esslingen has recently started working on anew system for ECU

development. The centre of the system is areal-time engine controller developed by AIEC,
Automotive Integrated Electronics Corporation. This engine controller isimplemented using a
processor core provided by ARM, Advanced RISC Machines. For the development of control
algorithms Matlab and Simulink are used, and with the help of Real-Time Workshop these
algorithms can be transformed to embeddable C code. Thisway fast and efficient
development of engine control functions can be performed. When development is finished,
the engine controller will be fabricated as a Systerm On Chip, SOC.

Thefirst ECU:s started appearing in cars sometime in the mid 1970’s. There

were two main reasons for this. Firstly the high priced fuel had created a need to lower the
fuel consumption. Secondly the allowed emission rates had been lowered, forcing car
manufacturers to think of ways to reduce emissions from their engines. This could be done
with the aid of an ECU, which enabled a more accurate control of engine functions than
previously used mechanical methods. These mechanical methods had involved, anong other
things, step up convertersfor the car battery creating thousands of volts, mechanical
"distributors’ for choosing the right sparkplug and other crude methods. Scientists knew that
this was bad for power and pollutants. To achieve better results it would be necessary to
develop new technology to make it possible to more accurately mix fuel and air and ignite at
the right moment. It was easily understood that this could not be achieved by using the

mechanical devices, and interest soon turned to microprocessors.

The purpose of the ECU isto precisely mix air and fuel, and then ignite this mixture at
exactly the right moment. It is aso possible to monitor the engine and diagnose unexpected

5

1 Introduction

and unwanted events. This information can then be used for service of the engine. For the
ECU to be able to work properly it is necessary to use sensors, measuring data critical to the
engine’ s function. Examples of data needed to be measured are crank- and camshaft rotational
position, throttle position and rate of throttle position change. Before the input from the
sensors in the engine can be processed, it must be converted to digital form. To perform the
analogue to digital conversion the ECU is equipped with a number of A/D converters.
Communication is done with Controller Area Network, CAN, communication busses, which
provide fast and reliable communication in the tough automotive environment. For a
presentation of the theory of automotive control systems the reader isreferred to (Kiencke &
Nielsen, 2000).

More advanced engine control functions soon demanded more powerful software for
calculations, which in turn raised the demands on the microprocessors used for the ECU:s.
For really sophisticated diagnostic functionsit can be said that they need about the same CPU
usage as the engine controller. One disadvantage with microprocessors provided by some
manufacturersis that they are general-purpose in nature, and therefore might not be very well
suited for everybody’ s specific needs. The reason for semiconductor manufacturers to
produce general-purpose devicesis that they can be used for many different applications,
which means that the manufacturer can achieve amore cost efficient development and

production.

For the customer on the other hand, the effect can be quite the opposite. The general-purpose
microprocessors can not offer optimal performance for every specific task, and to compensate
for thisit might be necessary to consider investing in more advanced, and therefore more
expensive, microprocessors. By using a peripheral that is specifically aimed towards engine
control applicationsit is possible to achieve high performance at alower cost. It might also be
possible to implement functions that would be unthinkable when using a general-purpose
device. This has been one of the main design goals when devel oping the DaimlerChrysler

real-time engine controller, RTEC.

1.2 Objectives
The objectives of the work described in this thesis were to devel op software that was needed

for the engine control unit and the development system described above. This software could

include drivers for the various engine control functions, I/O routines and routines needed for

6

1.3 Reader’sguide

the automatic code generation from the Matlab environment. At the department there is
currently a development system using a power PC based ECU. With thissystem it is possible
to use Simulink to design control structures and have C code for the ECU automatically
generated. Graphical environments for measurements and calibrations of the ECU can also be
generated from the Simulink environment. This means that people without knowledge about
hardware and programming can work with the system. It is desired to develop the software for
asimilar system using the ARM hardware to implement the ECU.

Work came to focus on the implementation and testing of a communication protocol, keyword
protocol 2000 (KWP2000), which is used at DaimlerChrysler for communication between an
ECU and adiagnostic tool or another ECU, using RS232 serial communication.

Since the devel opment system is brand new and has not previously been used at
DaimlerChrysler in Esslingen, some of the work would also include setting up and testing the
system and some of the functions of the engine controller.

1.3 Reader’s guide
As a guide to the contents of this document, the following short summary of the chaptersis

given:

e Chapter 2 describes the various parts of the devel opment system that was used during the
work.

e Chapter 3 provides some information about things worth knowing when performing
software development for the RTEC.

e Chapter 4 presents the ARM Processor Interrupt Controller, APIC, how it works and what
initialisations have to be done for interrupt handling to function correctly. It also describes
how the APIC was used for the implementation of interrupt driven serial communication
on the system.

e Chapter 5 describes the Serial Communication Interface, SCI, that is implemented in the
engine control system and some drivers developed for it to be used for the implementation
of a communication protocol.

e Chapter 6 describes how the communication protocol KWP2000 is defined and how it
was implemented and tested.

1 Introduction

e Chapter 7 describes how the implementation of the protocol was dlightly changed to work
correctly with a software tool used for ECU measurements and calibrations, and also gives
an example of how it was tested.

e Chapter 8 finally gives some conclusions and suggestions on how work could proceed in

the future.

2 The development system

This chapter gives a short introduction to the various parts of the development system. The
system consists of hardware provided by ARM and AIEC for the implementation of the
engine controller, a power electronics board for connection to the engine and software tools

for development of control functionality.

2.1 Overview of the development system
The development system and its various components are shown in figure 1 below.

Simulink/RTW | C/C++ IDE | ECU VHDL model |
S
% ||
C code Synthesis tool
(]
8
o
= : :
% Multi-ICE unit E< oA bitcream
Engine
o e S ;
g Processor board Sensor signals Kl .\ 7
= / Logic module S /
= // LLIB Control signalsfe fh'_. N
/ Power electronics board L) B Vo | : /

Figure 1: The development system and its components

2 The development system

The advanced hardware used in the system has been designed specifically for controlling
DaimlerChrysler engines, which should make it possible to develop high performance ECU:s
at alow cost. The processor board, the logic module and the LLIB are used to implement the
ECU by programming them with a synthesised VHDL model. The ECU will later be
implemented as a SOC. The software tools should make it possible to develop and test engine
control functions as fast as possible, without knowing any details about how the ECU is
programmed. Thisis accomplished by using Real-Time Workshop to automatically generate
the code needed for the system. The code is downloaded to the system with the Multi-ICE
unit. A description of each part of the development system is given in the following sections
of this chapter. To fully understand what is presented it might be useful for the reader to have
abasic knowledge about digital electronics and computer architecture. For a description of
application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) and
digital electronicsin general the reader isreferred to (Schilling & Belove, 1989). In (Roos,
1995) a presentation of computer architecture, like for instance reduced instruction set
computers (RISC) can be found.

Since both software and hardware are quite sophisticated, alot of time had to be spent getting
familiar with the equipment before work could really begin.

2.2 Real-time Workshop
Real-Time Workshop (RTW) is a software tool that isto be used together with Matlab and

Simulink. Simulink provides an environment where control algorithms can be implemented
and simulated in afast and simple way. By using some of the available toolboxes for Matlab
development can be performed even faster. When a control function has been implemented
and tested in Simulink it is possible to use Real - Time Workshop to transfer the Simulink
model to ANSI C code, thereby making it possible to, for example, download it to a

microprocessor system as shown in the figure above.

A rapid prototyping system like this shortens the time needed for development. Since not as
much time has to be spent on writing code by hand, the engineer can concentrate on
developing and refining the important control algorithms. It is usually necessary to make
changes to the algorithms several times during development, and then perform testing to see if
the desired performance can be reached. For thiskind of iterative design procedure a
development system using Real-Time Workshop can be ideal.

10

2.3 ARM Developer Suite

The code that is generated can be affected by choosing between a number of different target
templates, depending on what your needs are. If none of the available standard templates are
considered suitable the user has the option to design a custom template. Thisway it is

possible to have code generated that will give as high performance as possible when running

on the system in question.

2.3 ARM Developer Suite
ARM is a semiconductor manufacturer offering microprocessors and a number of

development tools. Among other things they were the ones who developed the world’ s first
commercia RISC processor (in 1985). The ARM developer suite, ADS, is a software package
that has been designed for devel oping applications for ARM based systems. The ADS has the

following features:

e Code generation tools with embedded C++ and C compilers, assembler and linker

e Code Warrior Integrated Development Environment (IDE) for Windows or UNIX

e Enhanced GUI debuggers (AXD and ADW)

e Instruction set simulators

e Support for new ARM cores

¢ On-line documentation

e ARM applications library

e ReaMonitor, which is a powerful software tool that can be used for debugging real-time

systems, which can sometimes be somewhat complicated

The ADS comes with two debuggers: ARM eXtended Debugger, AXD, and ARM Debugger
for Windows, ADW. For the work described in this report AXD was used. Thisisatool that
can be used to monitor and control a program that is being executed on an ARM system. It is
also used for download of program code to the system. The debugger has various functions
that can be useful when testing the devel oped software. The programmer has accessto
memory, registers and program variables. This can be useful for debugging, for instance to
check that each register contains the right value during program execution. Breakpoints can

be set to halt execution at points that are considered critical.

11

2 The development system

Figure 2 below shows the debugger GUI, and some of the available functions. To the left of

the picture there is awindow showing the variables of the program currently running. The two

windows in the middle show the program C code and disassembly. Breakpoints are added

simply by double clicking a point in one of these two windows. The window in the bottom

right corner of the picture shows the memory contents of the system. This can be useful for

finding hardware functions that are not operating correctly, causing some memory locations

to contain the wrong values. To the left of the memory window is the command line interface.

This can, for instance, be used to write values to memory. During the work described in this

report the ARM electronics were used for development without a motherboard. For this kind

of development system a memory write (smem 0x1000000C 0x04, as seen in the figure) has

to be done before a program can be executed on the system. Otherwise the electronic boards

will still think that they are connected to a motherboard, and will therefore try to fetch

program code from the wrong memory location. This memory write can be performed

manually from the debugger or be put in a script that is executed automatically when the
debugger is started.

3 AXD

Fle Search Processoriews SpstemViews Exccute Opffons Window Help

[_[=]x]

Target | Image | Files | Class |

il

(51 9) | s 0

ARM3_0-Variables 09:56:21.566
Local | Global | Ciass |

Variable Value 2]
E-APIC OxFFFFFEOD

Baud_Contral 0x00000001

Baud_Rate 0x00000240

change 0x00000046
charac_2dim_field_float f...}
El-charac_zdin_field_int [

X [31

B4 131

.data 191

clear_to_send 0x00000000

counterl 0x0000008E

counterz 000001416

diagmostic_session_type .

format_count b

index 0x00000003
Elirgquec 000000018

k 0x00000000

kup_flay Ox00000000

number_of_bytes 000000000
PUNCHTRO 0x9FDTET62
PUNCHTRLO 0xFO00Z000
FUMPRDO 0xFO00Z010
PUMPRSCLO 0xFO00Z008
E-PIMEWD 0xFO002014
E-PUMSTATO 0xFO00Z004
EHQ3CIL 0xFO005000
E-ser_buff [254] "SRO0OO0"
EFser_kwz000_diag buff [254] "OO0"

zer_kwz000_fut

ser_kwz000_len

ser_kw2000_srcadr

ser_kwz000_tgtadr .

ser_size 000000007
Eucpzc [15] i
Eufpzs_blz [15] =l

BEBEEEE

) ARMY_

00009cds [Oxe5801028]
00009cde [OxeZ4ll5980] sub
00003ced [0xe580102c]
00003ced [Oxe2d4115840]
00009ced [Oxe5801030]
00009ces [Oxe3a0lddn]
00009cE0 [0Xe5801034]
00009cE4 [Oxe3allSfe]
00009cES [Oxe5801038]
= 00009cfe [Oxeafffffe] b
00003400 [0x0000d535]

00009404 [0x0000d574] ded 0x0000a574 wfi..
Install H[0xe04l0000] sub £0,rl,r0
0000940 [0xeZ800008] add 0,10, #5
00009410 [0xela00800] mow r0,ro, 15l #16
00009414 [0xe59£2010] 1ldr rz,0x00009d2c : = #0xeS1E£000
00009418 [0xela00820] mow 0,0, 13 #16
00009dlc [0xelS02002] orr 2,10,z
‘Innnnqwn Mee 591000071 1dr rn._rrl _#n1

G K

sassembly 09:54:55 983

2]

str rl,[r0,#0x28]
rl,rl, #0x200000
rl, [0, #0xzc]

rl,rl, #0x400000

str
sub

str 1, [£0, #0x30]

now 1, #0x 40000000

str rl,[r0,#0x34]

now rl, #0x3£800000

str rl, [0, #0x38]
OxdcEe

: (main + Ox£0)

ded 0x00004538 80..

3 ARM3_0 - C:\c_files\examples_workinghapplication_testB\main.c

ufPZG bla[l] = L:
ufPZG bla[2] = 2:
ufPIG bl2[3] = 3:
ufPIG bl2[4] = 16;
ufPIG_bl2[5] = 5;
ufPIG_bl2[6] = 7;
ufPZG_blz[?] = 8;
ufPZG_bl2[8] = 7:
ufPZG bl2[3] = 6:
ufPZG b12[10]
ufPZG b12[11]
ufPZ6 b12[12]
ufPZ6_b12[13]
ufPZ6_b12[14]

5
4,
3
2
1

/* infinite loop, waiting for generation of interrupt vhen char re
while(1)

| r

System Dutput Monitor
RDI Log | DebugLog
Log file:

4 |

(4RM RDI Module Server ADS 1 1 [Bulld number 703 Aftaching to ARMIGEE S and EmbeddedICE
4FM RDI Module Server ADS 41,1 [Build number 70], CF18, EICE"
4RM RDI 1,5.1 -» ASTNC RDI Protocsl Converter ADS +1.1 [Build number 709, Copyright (<) 4RM Linited
ARM MUlACE Version 2.0. Coppright [c) ARM Limited 19982001

Conrected ta TAP 0, ARMIGEE-5 on Server *lacalhost”, Litle-Endian target

1|

ARMS._0 - Memory 035351038 Start address[040 =

Command Line Inteiface

Tabl-Hex | Tab2 - Hex - No prefis | Tab3 - Hex - No prefis | Tabd - Hex - No prefis |

Addzess\ul2\4\5|s|a\c\e|i|
0x00000000 DXE7TEZ Dx9FDT DxDA9A 0x4252 O0xAJSS 0x5402 0x0ABA 0x2533
Dx0ONADALD MeB14r DxCBAE DxCSZE (xFTEZ (xF214 OXESLF Mxl107 0dss
0x0000D0Z0 DxEDE DXEAST Dxe60 O0xOCFS OxEZ77 0x4A7F UXESTC (xADFA
0x00000030 OxA956 OxEZ28 Ox4aF0 OxDAEE 0xCZFF OxFAEE 0x0811 0OxC95D
Dx00NADA4D MXBASE DxAFET DxFCOB (xFAET (xFFDT 0xADFD 0xG103 M7CES
000000050 OxSDDC DxDEFF k113D 0xB34B Ox6DFO 0x7CBO 0x2515 Ox7EEC
PFI0B00050 OX6EST OxTBAL 0x0020 OxF0S3 OxBF33 DKECDC 0+1092 0x93S2 |
e A1AANATT T QeRAan QAR A (e AGEE (eANER feARan emas

[Debug »smen 0x1000000C Ox04 =]
Debuy =

y o

Far Help, press F1

llocalhost; TAP 0, ARMIEEE S [<Na Pas> [MuliICE [ARME_D [kwp.ani

Figure 2: The ARM eXtended Debugger

12

2.4 Multi-ICE

With the ADS there is also a code development environment included, a special ARM version
of the CodeWarrior IDE from Metrowerks. This tool together with the compilersis used to
create code that is particularly suited to run on an ARM based system such as the one used for
thiswork. It comes with library functions that have been provided by ARM, as to make code
development as fast and efficient as possible. Creating applicationsis very ssmple, you just
add your code files to a project and compile. The IDE is connected to the debugger, so that a
program can be compiled, downloaded to the system and run right from the IDE.

To be able to download the program to the system and debug it a third software is needed, the
Multi-ICE server. This provides a connection between the debugger and the Multi-1CE box,
which will be described in the next section of this chapter. From the Multi-ICE server
interface a configuration file isloaded, or the server can be configured automaticaly. Itis
then left running during the debugging of the program. It is also possible to reset the target

from the server interface.

It took some timeto get used to all the functions of the software used. But once you get
familiar with the programs they are very easy to use and work really well. No real problems

or shortcomings of the software were discovered during work.

2.4 Multi-ICE
Multi-ICE isaJTAG-based In-Circuit Emulator (ICE). This unit, together with the Multi-ICE

server, iswhat makes debugging of the system possible. It is possible to perform debugging
of the embedded processor at maximum clock frequency, and on-chip debugging of multiple
ARM and mixed architecture devices is also possible. In addition to that you can also debug
slow or variable frequency designs and low voltage cores (down to one volt). The device
supports al the current ARM cores and has fast download and stepping speeds. The Multi-

ICE unit can be seen in figure 6, used for programming the FPGA:s on the circuit boards.

2.5 The ARM processor board
ARM provides development platforms enabling flexible development of a number of different

systems. The ARM processor board can be used for developing as a standalone system,
together with an ARM Integrator motherboard or integrated into an ASIC prototyping system.
It is also possible to connect a number of boards (up to four) on top of each other to further

expand the system.

13

2 The development system

The board comes equipped with the following features:

e ARMO966E-S microprocessor core

e Volatile memory comprising up to 256MB of SDRAM (optional) plugged into the DIMM
socket and IMB SSRAM

e Core module FPGA which implements SDRAM controller, system bus bridge, reset
controller, interrupt controller, status- , configuration- and interrupt registers

e SSRAM controller PLD

e Clock generator

e Integrator system bus connectors

e Multi-ICE debug connector

e Logic analyser connectors for local memory bus

e Traceport

Figure 3 below shows how the ARM processor board |ooks and what different components

areon it (as described in the text above).

Core module/motherboard connectors Core module/motherboard connectors

Power connector Multi-ICE connector

Trace connector

Processor core

Reset button

\F
SDRAM DIMM
connectors

Logic analyser connectors

Figure 3: The ARM processor board

14

2.6 TheIntegrator logic module

The core module/motherboard connectors, as shown in the figure, are used to stack a number
of boards or to connect the processor board to an ARM motherboard. For our system the
ARM processor board is used for development together with an ARM Integrator logic module
and a Load/Logic Interface Board, LLIB, which are described in the following two sections of

the report.

Thisisavery flexible development system, which allows for fast prototyping to be
performed. It is easy to implement and test new functions for applications. The real-time
engine controller used for our system has been specifically designed for use together with an
ARM core. This meansthat it has been possible to implement it in such away that maximum
performanceis reached. Thisis not always possible when building a control system using a
general -purpose microprocessor. When development is finished the ARM core and the RTEC
will be fabricated as a SOC.

2.6 The Integrator logic module
The Integrator/LM logic module is a device designed by ARM to be used as a platform when

developing systems using their ARM cores. The logic module can be used in four different

ways.

e Asastandalone system.

e With an ARM processor board and Integrator motherboard.

e Asaprocessor board with the Integrator motherboard if a synthesised core is programmed
into the FPGA on the board.

e Stacked without a motherboard with one module in the stack providing the same system

controller functions as a motherboard would.

Our system uses the last option, a stack with an ARM processor board, an Integrator logic
module and the LLIB. The implementation of the RTEC is located in the FPGA on the
Integrator logic module. It is possible to make modifications to the RTEC, for instance if an
error in the old implementation is discovered, and download this new implementation to the

FPGA. Thisisof course very practical when testing a new system.

15

2 The development system

Figure 4 below shows the architecture of the Integrator logic module, and what is available to
the developer. The board has basically the same connectors as the ARM processor board, to
allow connecting it to the Multi-ICE unit and logic analysis tools. It also has connectors to
make it possible to add the board to a board stack. For prototyping there is also a grid of
connections to the FPGA that is located on the board. This prototyping grid can be used to

access the inputs and outputs of the FPGA. It could for instance be used to:

e Wireto off-board circuitry.
e Mount connectors.

e Mount small components.

This possibility can be very useful when developing new systems, where for example

connections to off-board equipment of various kinds are necessary.

Multi-ICE Logic analyzer

Module/Motherboard

Figure 4: The architecture of the Integrator logic module

The logic module FPGA can be programmed to perform different functions. With the help of
VHDL or Verilog adescription of the logic in the FPGA for a certain functionality is created.
By using logic synthesis this description is turned into an Electronic Data Interchange Format,
EDIF, netlist that is technology specific (for instance to be used with Xilinx FPGA:s). Apart
from a VHDL/Verilog description you aso have to provide the synthesis tool with
information about the technology you are using. The EDIF netlist is then combined with some

requirements on the design to produce a final output for the FPGA:s to be programmed with.

16

2.6 TheIntegrator logic module

Different software have different requirements and options, but the information you supply

the program with to perform the whole procedure usually contains the following:

e Alistof HDL files.

e Thetarget technology.

e Required optimisation.

e Timing and frequency requirements.

e Required pull-ups or pull-downs on the FPGA input/output pads.
e Output drive strengths.

For our system Xilinx hardware is used, and by using Xilinx specific software and the EDIF
netlist abitstream fileis generated. Thisfileisthen used for programming the FPGA:s. Figure
5 below shows the program flow when producing a new bitstream for the FPGA:sto be
programmed with.

!

Synthesis
tool

o)
8
Q
2

Congtraints

route tool .
file

Figure 5: Producing a bitstream for the FPGA

This programming procedure might have to be repeated several times before afully
functioning and stable system has been achieved. The method is very efficient and allows for

17

2 The development system

fast development of new systems. The actual downloading to the FPGA:sis done with the
help of Multi-1CE by connecting it to the logic module as shown in figure 6 below.

ARM

JTAG
connection

Parallell
connection

MUTCE

I I
= 0
Computer running The Multi-ICE unit The logic module
the M ulti-1CE server

Figure 6. Downloading a bitstream to the FPGA

2.7 Load/Logic Interface Board
The load/logic interface board, LLIB, is an interface board designed for prototyping SOC

integrated circuits. The primary function of the device is to provide an interface between a
load board with power electronics and alogic board with microprocessor and peripherals. The
3.3 volts used on the logic board are converted to 5 volts for the load board, and the other way
around. The LLIB isaso equipped with A/D converters to handle the conversion of analogue
sensor signals from the load board to digital signals that can be handled by the logic board.
There are aso two discrete CAN interface circuits for communication purposes. A maximum
of 152 signals can be transferred between the load and logic boards. Thisis controlled by
programming the FPGA:s on the LLIB. The pins on the board can be programmed as inputs,
outputs or bi-directional pins. The programming is done in the same way as for the integrator
logic module. A block schedule of the interface between load board and logic board is shown

in figure 7 below.

<«— 33Vto5V conversion <Dlgltal Control Slgnals>

o &
% —» 5V to 3.3V conversion <D|g|tal Control Slgnali ‘§
£ S
8 O
g A/D convertars <Dlgltal Control Slgnals’ E
8]

g 2
“—— X Digital Control Signals | —

B CANs < P

Figure 7. Block schedule of the LLIB

18

2.8 Theengine controller

2.8 The engine controller
The real-time engine controller has been developed by AIEC and it isavailable asa VHDL

model. By using the procedure described above the FPGA on the logic module can be
programmed with this model.

The RTEC is aperipheral that has been developed for use together with a microprocessor core
for controlling internal combustion engines. It was designed to increase the performance of
the engine and decrease the exhaust of pollutants by making a precise delivery of ignition and
injection pulses possible. By using an advanced design the interrupt handling performed by
the controlling processor has been reduced, giving a great increase in throughput. Thisin turn
makes it possible to use more complex control algorithms, since the processor can spend more

time on processing these.

Because of theintelligent hardware it is not necessary to write that many low level routines
for the drivers, which makes software development simpler, faster and cheaper. The fact that
the RTEC is not a general-purpose device but instead dedicated hardware gives high

performance at lower cost for the engine controller.

2.9 Comments on the development system
Both the software and the hardware used during the work on this thesis are quite advanced

and complex. It was therefore necessary to do alot of literature studies before the actual
software development could begin. Of courseit also took some time to get used to the various
development programs and to learn to take advantage of their available features as much as

possible.

The hardware developed exclusively for DaimlerChrysler is very new and has not yet been
used that much. That meant that some problems appeared during work with the hardware not
acting exactly as you expected it to. This was usualy due to the FPGA:s being programmed
with incorrect configuration files, and the solution was simply to have new configuration files
generated and downloaded to the circuit boards. Though not a very complicated procedure, it

was still somewhat time-consuming.

19

2 The development system

20

3 Programming the engine controller

This chapter gives some information about what is worth considering when performing
software development for a real-time embedded system such as the RTEC. During such
software development it is necessary to take considerations not necessary when devel oping
for acomputer platform like a PC environment. A real-time system is a system that must react
on certain events and deliver an appropriate response on time, while an embedded systemisa
computer system that interacts with its environment. Some general information and some
information specific for the development performed on our system are given. A description of
software and hardware for embedded systems can be found in (Gupta, 1995). For a
presentation of real-time systems the reader is referred to (Burns & Wellings, 1997).

3.1 Software development for a bare-board environment
When programming for a bare-board environment, that is a system where the processor is

working without the aid of an operating system, the programmer must have more knowledge
about how the system in question works. Some of the things that must be dealt with are the
I/O structure, interrupt structure and register set of the system. Y ou also have to consider how

much program and data memory there is available on your system.

Access to external unitslike serial ports, A/D and D/A convertersis performed by reading and
writing the control and data registers of these units. The programmer himself must make sure
that al the units areinitialised in the right way before they are used. The functions available
in standard 1/O library files like stdio.h and others can no longer be used, since standard 1/0
does not work for an embedded application. Instead the programmer must write his own
version of the functionsin these files that are needed for the system. The software tools that
come with ADS do however give the programmer the possibility to write messagesto a

console window in the debugger, which can be useful for debugging.

When transferring old, non-embedded code, to an embedded application you might have to

consider what has been mentioned above. It is very possible that some changes have to be

21

3 Programming the engine controller

made for the code to be able to run on the embedded application, especialy if it uses many

standard C library functions.

A short discussion on software development for bare-board environments and a good example
can be found in (Bilting & Skansholm, 2000).

3.2 C/C++ versus assembly language
There are anumber of factors that should be considered when choosing between doing

programming in assembly or in a high level language like C or C++. Some factors are
throughput, memory requirements, devel opment schedules, portability and how experienced
the programmer is. For areal-time application it is often essential that the services are

performed as fast as possible.

A program written in assembly language will always be more efficient than a program written
in C, but the development time for the assembly code will most likely be longer than that for
the C code. When you start working with a new development system you might also have to
spend time learning the assembly instructions for that particular system, while most
programmers already have a good knowledge of C language. This means that if it isimportant
to get development started a soon as possible it might be better to use C as your programming
language, provided of course that it is possible to fulfil the requirements on the program when
codingin C.

A program written in C can also later on be ported to other systems, perhaps with some slight
modifications. A program written in assembly on the other hand can not be ported, but must
instead be completely rewritten. If modifications have to be made to the program in the future
by someone else than the original author it is also much easier to read and understand a

program written in a high level language.

When you try to optimise a program you will usually find that there are a few sections of the
code that take significantly more time to execute than others. Some say that a program spends
90% of thetimein 10% of the code. One way to deal with optimisation could then be to write
these parts of the program in assembly, thus increasing system performance while not having

to spend too much time doing assembly coding.

22

3.3 Software development for the real-time engine controller

3.3 Software development for the real-time engine controller
The real-time engine controller that is used in the system is a sophisticated device developed

by AIEC. One of the objectives during the development of this device has been to put as
much functionality as possible in the hardware. The purpose of thisisto obtain a system
where the devel oper has to spend as little time as possible writing drivers for the functions of

the engine controller, giving him more time to focus on devel oping control functions.

One of the goals has also been to make it possible to do al the driver development in a high
level language like C or C++. On some other systemsit is often necessary to write driversin
assembly to get high enough performance. By using intelligent hardware AIEC has made this
unnecessary when writing drivers for the RTEC. This means that the development can be
performed faster.

Figure 8 below is a block schedule of the RTEC that shows the various parts of the device, as
presented in (DCRTEC Reference Manual 0.2, 2001).

Addr&sg M icroprocessor P Ignition
Data—|) Interface | Chanrels Ignition Pulses
Control ——»p I
» Injection
— >)
CRiﬁlhlﬂ :: C Y g P Chanrels Injection Pulses
- Cesso E
c
Q Sl yp| Knock Signals
Q o —
Oueued Data > § Generator
. . is) P
Acquisition Unit % = N Low
> % Resolution
Trigger |q 4 Processor

Figure 8: Block schedule of the real-time engine controller

The parts that the RTEC consists of are described below.

e Themicroprocessor Interface is responsible for monitoring the microprocessor control and

address lines and generating correct read and write signals to the RTEC registers.

23

3 Programming the engine controller

e The cam/crank processor keeps control of the cam and crank positions. It has got a
resolution of 0.1° after synchronisation. The synchronisation is done with the help of so
called teeth patterns.

e The queued data acquisition unit handles the A/D conversions. There are 32 analogue
inputs that are connected to a multiplexer. The conversion is performed using successive
approximation with 10-bit resolution, and can be position- or time-based-triggered or
initiated by software. After theinitialisation of the queued data acquisition the conversions
are performed automatically, independently of the microprocessor.

e Theignition channels handle the task of asserting the ignition pins. They are programmed
by writing to two registers: the dwell time register and the ignition advance register. The
dwell time register decides when the pins are asserted and the ignition advance register
decides when the pins are de-asserted. The RTEC supports most of the ignition strategies
commonly used. After the two register writes have been performed, everything works
without disturbing the microprocessor.

e Theknock signa generation is used for analysing knock intensity.

e Theinjector channels are used for implementing the chosen injection strategy. Most
commonly used strategies, like simultaneous injection, group injection and sequential
injection, are supported. After the initialisation the programming is done by register
writes. Y ou can choose between angle/time mode (where an injector output pin is asserted
for aspecified time starting at a programmed angle) or time/angle mode (where the output
pinisasserted at a programmed pulse time before the specified end angle).

e Thelow resolution processor has a resolution of 1.0° compared to the cam/crank
processor’s 0.1°. It can be used for starting A/D conversions at specified angles,
generating microprocessor interrupts at programmable engine positions and severa other
functions. After the initialisation the low resolution processor works independently of the

Mi Croprocessor.

In addition to this engine control functionality there are also serial communication interfaces,

pulse width modulators, general purpose I/0 and similar available for development.

Accessto the different parts of the engine controller, as shown in the figure above, is
performed with memory-mapped registers. Driver development for the RTEC basically means
that you write to a number of different control registersto set the appropriate bits for a certain

function. By reading various status registers the software can control what is happening in the

24

3.4 Setting up and testing the development system

system, and thereafter take necessary actions. It is also possible to have interrupts generated
when flags are set. This can for instance be used to make sure that the system always handles
the most urgent task.

When declaring variables that should be used as flags or similar, it must be determined if
these variables can be changed by external devices, for instance in an interrupt routine. If that
is the case they should be declared with the keyword volatile, like this (ready is avariable that
is changed when aflag in one of the status registers of the RTEC functions, for instance the

serial communication interface, is set):

extern volatile int ready;

Otherwise the compiler might perform optimisations that will cause the program to operate in
the wrong way. The following while-loop, for instance, would not work if the variable ready
had not been declared as volatile:

while (Iready)
{

If ready was not declared as volatile, the program might only read the value of the variable
before the first turn of the loop, and then get stuck there forever. This sort of behaviour is
prevented by the use of the volatile keyword.

Since the registers of the RTEC are changed by external devices when various events occur,

the register variables should always be declared as volatile.

3.4 Setting up and testing the development system
After the hardware and the software described in chapter two had been installed, some

software development was performed to make sure that the system was operating properly. A

second purpose of thiswas to get familiar with the tools that were to be used | ater on.

25

3 Programming the engine controller

Thetools used are quite easy to get to know, and it does not take that long to get started with
the development. The programs have many useful features that proved very helpful for
debugging of programs that were not operating correctly.

Some simple programs were developed to test access to various registers of the system, for
instance general purpose I/O, LED:s and numeric displays. After thislearning period, the
development of functions for the real engine control system was started, which is described in

detail in the following chapters.

26

4 The ARM Processor Interrupt Controller

This chapter describes the ARM processor Interrupt Controller, APIC, and some routines that
were developed for it. Those routines were later to be used for implementing interrupt driven
serial communication on the system. Some information is also given about how the system
had to beinitialised in order for the interrupt handling to work correctly. For a description of
how interrupt handling in computer systems works the reader is referred to (Roos, 1995).

4.1 Information about the APIC
The ARM processor itself does only provide two interrupt sources. For an engine control

system thisis quite insufficient, since alot of interrupts need to be generated by the different
sensors in the engine and handled simultaneously by the control system. To solve this
problem AIEC has developed the ARM Processor Interrupt Controller, which adds an
additional number of thirty interrupt sources to the system, thereby making it more capable of
handling the demands of engine control. These interrupt sources can be assigned to different
inputs on the devel opment boards by reprogramming the FPGA:s. Among the sources
currently available are the SCI, the RTEC low resolution processor and the RTEC queued
data acquisition. The structure of the APIC is shown in the block schedule in figure 9 below.
Details about the APIC are presented in (APIC Reference Manual 0.2, 2001).

Interrupt
Sources
Addresses_ » FIRQ
Control
3 IRQ

S

CLK—p

Data
out

Figure 9: Block schedule of the APIC

27

4 The ARM Processor Interrupt Controller

For each interrupt source the programmer decides on what priority the source should have,
sets the address of the associated interrupt servicing routine, ISR, and decides if the source
should be used as a hardware or software interrupt source. A hardware interrupt is generated
when aflag in a status register of one of the RTEC functionsis set, while a software interrupt
can be generated at any time by the program code by doing awrite to the control register of
the software interrupt source. It is also possible to define an interrupt source as afast
interrupt, FIRQ. When many interrupt sources are used in the system, some thought must be

put into assigning each source the right priority.

When an interrupt is generated the ISR address of the source is moved into the ISR vector
register of the APIC, while the program counter jumps to address 0x18. Located at address
0x18 is abranch to the address located in the ISR vector register. When the ISR vector
register is read by the processor the interrupt is cleared, so that the program will not
immediately jump back into the servicing routine after the interrupt has been handled.

It is very important, especially for a system with alot of interrupts generated, that the
interrupt handling is done in an effective way. Effective interrupt handling means higher
throughput and gives the processor more time to work with the important engine control
functions. That way the system performance isincreased. Thisis something that has been one

of the major objectives during the design of the APIC.

Figure 10 below shows the available registers and their contents, as presented in (ENCORE
Reference Manual 0.3, 2001).

Register [Access| Hex Bit Position
Name Type |Address| 31 | 30 [29 [28 | 27 | 26 | 25 | 24 [23 | 22 [21 [20 [19 [18 [17 | 16
15 | 14 | 13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
APICCNTRL RW FFFFFEOO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 FENA | IENA
APICISTAT RW FFFFFEO4 | IRQ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 PRI
APICFCNTRL| R/MW | FFFFFE08 0 0 0 0 0 0 0 0 0 0 0 0] oJ o] oTo
0 0 0 0 0 0 0 0 0 0 0 FIRQS
APICISRVEC R/W FFFFFEOC ISR Address of Current IRQ Interrupt Source
APICFISRVEC| RW FFFFFE10 ISR Address of FIRQ Interrupt Source
APICEOI WO FFFFFC14 End of Interrupt
APICISRVAQ R/W FFFFFE20 ISR Address For Interrupt Source 0
APICISRVA31| R/MW | FFFFFESC ISR Address For Interrupt Source 31
APICCNTRLO| R/MW | FFFFFEAO | ENA | SWT JACTLVJED/ALVSWHW] 0 | 0] 0 [0 0] 0 J] o] o0oJ] o] oo
0] o]l ol ol olToJJ ol oTo 0 | o | PRI
o
APICCNTRL31| RW | FFFFFF1C [ENA | SWT |ACTLV| ED/LV |SWIHW| 0 J ol oJ o JToJoT ToTJToToTo | o
0 | 0 | o | o o] oo [Jo oo o PRI

Figure 10: The APIC registers

28

4.2 Initialisation of the system

Following below is a short description of each register, as presented in the (APIC Reference
Manual 0.2, 2001).

e APICCNTRL: Thisregister contains the control bits for enabling the generation of
interrupts.

e APICISTAT: This status register shows what interrupt source is currently being handled
and the priority of this source.

e APICFCNTRL: Thisisastatus and control register for the fast interrupt request, FIRQ.

e APICISRVEC: Thisregister isloaded with the address of the interrupt servicing routine
of the interrupt source currently being handled.

e APICFISRVEC: Thisregister contains the address of the interrupt servicing routine of the
fast interrupt source.

e APICEOI: Thisregister should be written to at the end of the interrupt servicing routine to
signal to the APIC that the interrupt handling has finished.

e APICISRVAO -> APICISRVA3L: These registers contain the addresses of the interrupt
servicing routines of the available interrupt sources.

e APICISCTLO -> APICISCTL31: These are the control registers for the available interrupt

Sources.

4.2 Initialisation of the system
In order for the interrupt handling to work properly it is necessary to make sure that no

information islost when an interrupt is generated, and thereby guarantee that the program can

continue to execute when the interrupt has been serviced.

In (ARM Developer Suite Version 1.1 Developer Guide, 2000) two different ways to handle
interrupts are presented. The simplest way to do it is by using the _irq keyword in front of the

declarations of the interrupt servicing routines, like this:

irq_ void interrupt_servicing_routine(void);

By doing this you will let the compiler know that this routine is for handling interrupts and
make it add code necessary for storing and restoring crucia registers before and after the
routine, so that the interrupts work properly. In addition to that, initialisations of the stack
space, stack pointers and other system functions needed for the interrupt handling will be

29

4 The ARM Processor Interrupt Controller

carried out. The problem with the _irq keyword isthat it does not work for re-entrant
interrupts, that is, no interrupt must occur during the servicing of another interrupt. If this
would happen registers would be corrupted and the system would not work. This makes the
_irq keyword useless for our system, since an engine control system with many interrupt

sources definitely should be able to handle re-entrant interrupts.

When the _irq keyword is not used the programmer must use the second, slightly more
complicated method, which involves making sure that the system is set up in such away that
everything will work once an interrupt occurs. This means that some initialisation code has to

be written and executed at the start of a program.

When writing programs for the ARM system it is possible to choose from a number of
different configuration options. Depending on what your needs are you might have to write
more or less complex code to initialise the system in the proper way. The initialisation
routines used for our system handle the initialisation of some system functions needed for the
interrupt handling. Basically thisinvolves setting up the stack space and initialising the stack
pointers, which are used when an interrupt servicing routineis called. You must also initialise
some flags used by the system, and finaly it is necessary to make sure that the memory
location 0x18 contains a branch to the address pointed to by the ISR vector register. Most of

the initialisations can not be made from C language, but must instead be written in assembly.

When more interrupt sources are added to the system, or when other changes are made, it
might be necessary to add more code to the initialisation routine, for instance to set up the
stack space for the handling of fast interrupt requests, FIRQ. It might also be important to
think about how the layout of the memory map will affect the performance of your system.
No matter what your system is there will have to be ROM containing executable code at the
address Ox0 after areset. After that you could simply leave the ROM whereit is, but to
achieve maximum performance it can be necessary to perform aremapping of the memory.
Our system, and engine control systemsin general, rely on interrupts generated by sensor
signals from various vital parts of the engine. The current system has 18 different sources for
generation of hardware interrupts, and there are an additional 14 sources that can be used for
generating software interrupts or for adding more hardware interrupt sources in the future.
When more interrupt sources are used in the future it might be worth considering using one of
the ROM/RAM memory remaps that are described in (ARM Developer Suite Version 1.1

30

4.3 Testing the APIC functionality

Developer Guide, 2000) to speed up the interrupt handling. The code for this could then be
included in the initialisation function for the system.

The above described initialisations are what is needed for the handling of a single interrupt on
the system. To accomplish re-entrant interrupt handling the interrupt handler routine,
IRQ_handler, must contain assembly code that stores all the relevant registers before
executing the code tied to a particular interrupt, and then restores the same registers after the
handling of the interrupt is finished. The interrupt servicing routine, rtec_int_isr, which
contains the code to perform the tasks needed for the interrupt currently being handled can be
written in C language and branched to from within the assembly code. At the end of the
interrupt servicing routine any flags that caused the interrupt should be cleared and by writing
to the APIC End Of Interrupt (APICEOI) register the program should signal to the APIC that
the handling of the interrupt has finished, which means that a new interrupt can be handled.

Each interrupt source should have an interrupt servicing routine like this.

Before the interrupt sources of the system can be used, an assembly-macro has to be called to
enable the interrupt handling, by reading the cpsr flags and updating bit 7. Thereisasimilar
macro that does the opposite, that is it disables the interrupt handling. This macro could be
used before a crucial segment of code that must not be interrupted by any of the interrupt

Sources.

4.3 Testing the APIC functionality
To make sure that the interrupt handling was working the way that it was supposed to, and to

test some interrupt servicing routines that had been written, some simple test programs were
created.

The following routines for the initialisation and handling of the interrupt sources were written

for the system:

e system _init: afunction that does the necessary initialisations of the system for the
interrupt handling to work properly, as described above.

e init_interrupts sci: afunction used to initialise the interrupts needed for the serial
communication routines developed further on.

e enable interrupts: function to enable the generation of interrupts.

31

4 The ARM Processor Interrupt Controller

e interrupt_status: function to check the current status of the interrupt handling.

e enable interrupt_source: function used to enable and configure one of the interrupt
sources.

e (generate software interrupt: function used to generate a software interrupt on one of the

interrupt sources.

For testing purposes the interrupt servicing routines for the available sources were made to
simply reset the source that had caused the interrupt and print a message to the screen. This
was used to determine that the interrupt handling and the interrupt sources were working like
they should.

During the testing of the APIC it was discovered that the interrupts were not cleared when the
APICISR was read. This meant that this had to be done manually to prevent the program from
immediately jumping back into the interrupt routine as soon as finished interrupt handling
was signalled by writing to the APICEOI register, thereby causing the program to stall. By
generating new configuration files for the FPGA:s this problem was later removed and the

APIC was from there on functioning the way it should.

For the development described in this report the interrupts were used for interrupt driven
serial communication, which was then used for the implementation of a communication
protocol. The APIC was used for generating hardware interrupts when a character was
received on the serial port. The interrupt servicing routine put the received charactersin a
buffer and called various functions depending on what commands had been received. Another
interrupt source was used for generating software interrupts when aresponse to the received
commands was to be sent. For timing of the messages sent, an interrupt driven timer was also

implemented later on. Thiswill be described further in the following chapters of the thesis.

4.4 Comments on the APIC and the developed routines
One of the advantages of the RTEC isthat it has alot of functionality built into the hardware

that would usually have to be handled by writing code. This means for instance that not much
low level code has to be written when developing drivers for the various functions of the
system. For interrupt handling though, some low level code is needed before the system
functions the way it should. This code is actually needed for the ARM hardware, and not for

32

4.4 Comments on the APIC and the developed routines

the RTEC itself. But since this code does not have to be changed that often, it does not cause

the developer that many problems.

For the work described here only a couple of the available interrupt sources were used.
Adding support for the rest of the RTEC interrupt sources simply involves writing the
interrupt servicing routine, rtec_int_isr, for each added source. This routine can be written in
C language. The assembly IRQ_handler code will look the same for each interrupt source and

can therefor be reused.

When more interrupt sources are added the devel oper will have to put more thought into
assigning each source the right priority. For thisthesis only four interrupt sources were used,
which meant that it was not that difficult to decide which source should have the highest
priority.

33

4 The ARM Processor Interrupt Controller

5 The Serial Communication Interface

This chapter describes the RTEC Serial Communication Interface, SCI, and the devel opment
of routines for the same. The previously developed APIC routines were used to implement
interrupt driven serial communication on the system. This was later to be used for the
implementation of a communication protocol that is used by DaimlerChrysler ECU:s. Some
information about how serial communication and communication with external units work
can be found in (Roos, 1995).

5.1 Information about the SCI
Onthe LLIB thereisa 30-pin port for which different functions of the RTEC can be assigned.

For our system two of the pins of this port were assigned to one of the two SCI:sthat are
implemented in the RTEC. These pins were to be used for serial communication with external
equipment, like for instance anormal PC serial port. Routines for the SCI were developed for
acouple of different purposes. Most of the routines were designed so that they could later be
used for the implementation of the Keyword Protocol 2000, a communication protocol used
by ECU:s with diagnostic capability. Thisimplementation is described in chapter 6 of this
report.

The SCI isimplemented using the Motorola standard serial interface format. It can be used in
byte mode or in buffered mode, where there is a 16 byte receive buffer and a 32 byte transmit
buffer. There are control registers for choosing Baud rate, word length and parity type as well
as enabling generation of various kinds of interrupts. There are also a couple of status

registers available to the user.

The SCI is described in detail in (QSCI Reference Manual, 2001).

5.2 Developing routines for the SCI
Writing drivers for the SCI basically consists of accessing the proper register and setting

control bitsin such a manner that the desired function is achieved. After the control bits have

been set the status registers are used to monitor the communication. The registers available

35

5 The Serial Communication Interface

for the SCI in our system and the bits of these registers are shown in figure 11, taken from
(ENCORE Reference Manual 0.3, 2001).

Register [Access| Hex Bit Position
Name | Type |Address| 15 [14 [13 |12 |11 [10]| 9 | 8 [7 [6 [s [4 [3 [2T 1To
CI1DR RIW F0005000 Transmit / Receive Data
CI1SR R/Wt F0005004 0 0 0 0o | o] o o FI'DRE TC_ |RDRF| RAF | IDLE | OR NF FE PF
CI1CR RIW F0005008 0 LOOP [WOMS] ILT | PT | PE |MODE|WAKE| TIE | TCIE | RIE ILIE TE RE | RWU | SBK
SCI1BRR RIW F000500C 0 0 0 Baud Rate Divisor (System Clock/32)
QSCI1CR RW F0005010 | ENQ 0 |RBRKIEJRQNFI Receive Queue Near Full Count ITQOFIIEI‘TQNEIE| Transmit Queue Near Empty Count
QSCI11BD R/IW F0005014 0 0 0 0 0 0 0 0 Transmit Inter Byte Delay (System Clock/1024)
QSC11SR R/W1t F0005018 | RXP | TXP |RBRK1|RQNF1] RQP |TQOF1|TQNEf] O Transmit Queue Bytes Left to Transmit
QSCI1RQP RW F000501C 0 0 0 0 0 0 0 0 0 | o J o | o | ReceiveQueue Pointer
QSCITD WO F0005020 0 0 0 0 0 0 0 Transmit Data
QSCI1RDO RO 0005024 0 0 0 |WRAP| NF FE PF Queued Receive Data #0
QSCIMRD15 | RO | Fooos050 | 0 | o | o [WRAP] NF | FE | PF | Queued Receive Data #15

Figure 11: The SCI registers

Following below is a short description of each of these registers and how they are used, as
presented in (QSCI Reference Manual, 2001).

e SCI1DR: Thisisthe dataregister used in byte mode. It is used as areceive register when
read and as a transmit register when written.

e SCI1SR: Thisistheregister containing status bits for the communication when
communicating in byte mode. It contains flags to monitor transmission, reception, line
activities and message errors.

e SCI1CR: Thisisthe control register of the SCI. It contains control bits to enable
transmission/reception, loop-back from transmit to reception buffer, choice of parity and
character length and enabling various interrupts.

e SCI1BRR: Thisregister is used to set the Baud rate of the system, and must be written
before any communication can start. The register is written with a suitable Baud rate
divisor to obtain the desired Baud rate.

e QSCI1CR: Thisregister controls the SCI when operating in buffered mode. It contains
bits to enable buffered mode and the generation of various interrupts.

e QSCI1BD: Thisregister iswritten with avalue to determine how much delay should be
inserted between transmitted bytes when operating in buffered mode. The delay is
measured in (system clock / 1024). A delay might be necessary when communicating with
slow devices.

e QSCI1SR: Thisregister contains status bits for the buffered SCI. The bits show status of
transmit and receive buffers and the logic level of transmit and receive pins.

e QSCI1RQP: Thisregister contains the receive buffer pointer, which showsin what buffer

position the next received byte will be placed.

36

5.3 Developed driversfor the SCI

e QSCI1TD: Thisregister isthe transmit buffer datainput register. The register iswritten
with abyte that should be transmitted, which is then transferred to the end of the transmit
buffer.

e QSCI1RDO0 -> QSCI1RD15: These sixteen registers are the receive-buffer data registers.

They contain the most recent data that has been received on the serial port

Before the SCI can be used the control registers must be written to achieve the desired
functionality, as mentioned above. This can be to choose between buffered or byte mode
communication, setting the Baud rate, setting delay between bytes and of course enabling
receive and transmit. For sending a byte you write that byte to a transmit register, and to

receive a byte you read a reception register.

For our system the SCI’ s buffered mode was to be used. The RTEC has 16 receive registers
and a 32 byte buffer for the transmitter. The latest received byte can be accessed with the help
of the receive buffer pointer, which gives the location in the buffer where the next byte will be

placed. Datais sent to the transmit buffer by writing the transmit buffer data input register.

The control register has bits that can be set to generate hardware interrupts to the APIC when
various events occur. For our system the RBNFWE (Receive Buffer Near Full Warning
Enable) bit was set to generate an interrupt when the number of bytes indicated by the value
in RBNFC (Receive Buffer Near Full Count) had been received. Thiswas later used for
filling up a buffer needed for the communication protocol used by the ECU when requests for
diagnostic services are received from external diagnostic tools.

5.3 Developed drivers for the SCI
Basic routines for initialising the SCI, changing Baud rate, sending/receiving characters and

similar were developed, as well as some application specific routines that were aimed at the
implementation of the communication protocol described in chapter 6.

During the work described in this report, the following drivers and functions were devel oped

for the serial communication interface:

37

5 The Serial Communication Interface

init_ser_io: thisroutineis used to initialise the serial communication interface by enabling

receive and transmit, setting the default Baud rate, setting the SCI to generate an interrupt

when a character is received and enabling buffered mode.

e close ser_io: thisroutineis used to close down the serial communication by disabling
receive and transmit.

e set baud rate: thisfunction can be used to set the Baud rate by passing the function a
value for the Baud rate divisor register.

e select_baud_rate: thisfunction is used to select the Baud rate by passing it one of the
Baud rate constants that are defined in the program.

e put_char_b: thisfunction is used to transmit a single one byte character on the serial port
when the SCI is operating in byte mode.

e get char_b: thisfunction reads a single one byte character from the serial port when the
SCI is operating in byte mode.

e put_str_b: thisfunction is used to transmit a string on the serial port when the SCl is
operating in byte mode.

e put_char: thisfunction is used to transmit a single one byte character on the serial port
when the SCI is operating in buffered mode.

e get _char: thisfunction reads a single one byte character from the seria port, data register
number zero, when the SCI is operating in buffered mode.

e put_str: thisfunction is used to transmit a string on the serial port when the SCl is
operating in buffered mode.

e read char: thisfunction reads the latest received byte on the serial port and thereafter
decrements the receive buffer pointer when the SCI is operating in buffered mode.

e write_char: thisfunction transmits a character on the serial port without checking for
transmit buffer overflow when the SCI is operating in buffered mode.

e send message: thisfunction is used to transmit a message buffer on the serial port when

the SCI is operating in buffered mode, it accepts a pointer to the buffer and the length of

the buffer as arguments. It is used to send responses to commands that have been sent to

the ECU.

These functions were then tested, as described in section 5.5, to make sure they operated
correctly. The drivers implemented for this thesis were the ones that were considered useful

for the project.

38

5.4 Connection to the PC

5.4 Connection to the PC
After the drivers for the serial communication interface had been written, it was necessary to

make it possible to connect the ECU to other equipment, like for example a PC. Thiswould
allow for some real testing of the system to be performed, and of course later on it would also

be necessary for the development of the control functionality.

To connect the LLIB SCI port to the PC it was necessary to build a converter to convert the
signal produced by this board to a signal complying with the RS232 standard, as used by the
PC serial port. Luckily enough there are integrated circuits available to do exactly this. The
converter was built using asimple circuit consisting of a Motorola IC and four capacitors. The
integrated circuit contains three pairs of receiver and transceiver pins, which are connected to
datain and data out pins for the electronic boards. The four capacitors are needed to perform a
voltage conversion from 5 volts as used by the LLIB to 10 volts for the PC seria port. The
RX/TX and DI/DO pins were soldered to a DB-9 connector and a 30-pin connector

respectively, and electronics and PC were connected with a zero modem cable.

The schematic for this simple conversion circuitry is shown in figure 12 below.

PIN ASSIGNMENT

1@ ZOJCWJr

FCM .
LGND[2 19 1 VCC}
E e Pher- 1
T—Vss[]VDDJ
——Rx1[[—R 11D01—=

ToPC From board
R [%ﬂ] o— 8

Rx2[R 11 D02

szt%ﬁ] DI2

R R 1003

x3(] D—pi3

D =DRIVER
R =RECEIVER

Figure 12: Schematic for the RS232 converter

A data sheet for the integrated circuit isincluded as an appendix.

39

5 The Serial Communication Interface

5.5 Evaluation of the SCI routines
To begin with, some of the written routines had been tested simply by doing aloop-back on

the port, that isthe TX and RX pins were connected. After the RS232 converter had been
built some more thorough testing could be performed with the help of the PC terminal
program Hyperterminal. A test program was written to enable testing of the various functions
that had been written, especially those that were supposed to be used for the communication

protocol.

During the testing of the SCI some problems with the configuration of the RTEC were
discovered. Because of faulty configuration files the RX pin was not operating correctly,
meaning that nothing could be received on the system. Another problem was that the system
clock could not be changed to a new value, but instead remained at the default value of 3
MHz, which is set at reset. Since the system clock sets alimit for the Baud rate, according to

the following formula:

System Clock
2x16xSBRR

Baud Rate=
where SBRR is the value programmed to the Baud rate divisor register, this meant that there
were problems communicating at the Baud rates needed by the communication protocol that

was to be implemented.

These problems were later solved by doing adjustments to the RTEC and having new

configuration files generated.

5.6 Comments on the developed SCI routines
Aswith the other functions of the RTEC the drivers for the SCI basically consists of writesto

different control registers and reads of status bits in the status registers. This means that code
development is quite easy. Unfortunately during the work some problems with the SCI
functionality were encountered. For instance, as mentioned above, the port on the LLIB was

at first not functioning the way it was supposed to.

To find out exactly what is causing problems when a program is not working correctly you

preferably use the debugger that comes with the ARM software. By accessing the various

40

5.6 Comments on the developed SCI routines

registersin the electronics you can check to see if some of them contain the wrong values or
are not acting correctly. It isimportant to make sure that the methods you use to debug the
software do not affect the behaviour of the system. If a problem with the functionality of the

hardware is found, this can be solved by generating new configuration files for the FPGA:s.

The SCI routines that were devel oped were intended for the implementation of a diagnostic
tool communication protocol. In the future it might turn out that more routines would be
useful. Those routines could then probably easily be implemented, perhaps using some of the
routines already developed. It is believed that all of the SCI functionality has now been tested

and future code development in this area should be quite painless.

For anewer version of the LLIB an RS232 converter was added to the board itself, making
the external converter unnecessary. The port on the LLIB can now send and receive signals
that comply with the RS232 standard.

41

5 The Serial Communication Interface

42

6 The Keyword Protocol 2000

This chapter describes the development of a communication protocol used for the
communication between ECU:s and external diagnostic tools, the Keyword Protocol 2000
(KWP2000). The developed protocol uses the previously devel oped interrupt driven serial

communication.

6.1 Definition of KWP2000

KWP2000 is a communication protocol that should be used by all DaimlerChrysler ECU:s
with diagnostic capability. The protocol defines how the request and response messages that
are sent between an ECU and an external diagnostic tool or between two ECU:s should look.
The purpose of the protocol is to achieve standardisation of diagnostic feature content and
diagnostic services. Figure 13 below shows how the format of a request message is defined in
(Keyword Protocol 2000 Requirements Definition, 2001).

Data Data Value Parameter Parameter Description Message Usage
Byte #
1 $XX Request Service ID Mandatory
2 $XX Parameter #1

$YY Parameter value #1

$77 Parameter value #1
3 $XX Parameter #2

$YY Parameter value #2

$77 Parameter #2 Value
n $XX Parameter #m

$YY Parameter value #m

$77 Parameter value #m

Figure 13: Format for a KWP2000 request message

The first column of the table specifies the byte number that should be used for each parameter
in the data stream. The data value is a hexadecimal value for service ID:s and parameters. The
parameter description describes each parameter in the message. M essage usage specifiesif the

parameter is considered to be mandatory, conditional or optional.

6 The Keyword Protocol 2000

When an ECU receives arequest to perform a certain service it should respond with either a
positive or a negative response message, depending on if it can perform the requested service

or not.

The format of a positive response message is shown in figure 14 below. Positive response can
be sent to indicate that a request has been received, and is always sent to indicate that a
requested service can be performed by the ECU.

Data Data Value Parameter Parameter Description | Message Usage
Byte #

1 Request Service ID + $40 Positive Response ID Mandatory
2 XX Parameter value #1 Conditional

n $XX Parameter value #n-1 Conditional

Figure 14: Format for a KWP2000 positive response

The columns of thistable are properly described by the description given above for the
request message format. The first byte of the positive response is the service ID plus 0x40.

If arequested action can not be performed a negative response should be sent by the ECU.
Thefirst byte of the negative response message will always be $7F. This byte is followed by
the service identifier of the requested action as well as a negative response code. The
KWP2000 definition lists a number of different negative response codes that can be used for
this message. The format of the negative response message is shown in figure 15 below.

Data Data Value Parameter Parameter Description | Message Usage
Byte #

1 $7F Negative Response 1D Mandatory

2 $XX Request Service ID Mandatory

3 $XX Negative Response Code Mandatory

Figure 15: Format for a KWP2000 negative response

Under some conditions there should be no positive or negative response sent by the ECU. The

conditions for this are:

e The message indicates that no response is required.
e ECU diagnostics are functionally started, maintained and stopped.

6.2 Implementation of the protocol

The protocol uses diagnostic service identifiers (SID:s) to identify the different services
supported by the protocol standard. The SID:s are hexadecimal values that are used for
exchanging information between the ECU and an external tool or another ECU, reading
trouble codes, controlling ECU operation or reading signal levels. The supported SID:s can be

divided into five different groups according to their function. These groups are:

Diagnostic Management: SID:sthat are used for start, stop, altering or maintenance of

diagnostic sessions.

e DataTransmission: SID:s for enabling an external tool to send, receive and alter data
stored in an ECU.

e Input/Output Control: SID:s for enabling an external tool to control the states of 1/0
devicesin an ECU.

e Remote Activation of Routine: SID:s used for starting or stopping aroutine or for
returning results from aroutine.

e Upload/Download Control: SID:s that enable the external tool to demand datato be

downloaded to the ECU or uploaded from the ECU to the external tool.

6.2 Implementation of the protocol
For the implementation of the protocol described above the previously devel oped routines for

the APIC and the SCI were used. The system was designed to generate an interrupt every time
a character was received on the serial port. This character is then placed in a message buffer.
The first thing that is done after the reception of a complete message is a control that the
message is avalid request message. This means checking that no unknown identifiers are
being used, and it might also include determining whether or not the message has been
corrupted during transmission. If the message is considered to be correct, afunction is called
for handling the request sent by the external diagnostic tool. This request handler decodes the
received message and calls the appropriate SID handler function to determine if the requested
service can be performed or not. If the service can be performed, code for servicing the
request is executed and a positive response message is prepared. Otherwise a negative
response message is prepared with the best suited negative response code. If the received
message is considered to be incorrect in any way, no response should be sent. Thiswill force

aretransmission of the message.

6 The Keyword Protocol 2000

After the handling of the received message has finished the program must wait until it is

allowed to transmit the response, and then send it on the serial port. After the response has

been sent the program goes back into aloop waiting for the reception of a new message. If no

message is received within a certain period of time atimeout occurs, and a reset of the

communication is performed by the ECU.

In figure 16 below thereis asimple flowchart that describes how the program works.

>

Wait for reception of message [

l

Read message from serial port

Correct format ?

Call function for handling

Request supported ?

Handle request and respond

v

Ignore request

Send negative response

Wait until response allowed [«

v

Send message on serial port

Figure 16: Flowchart for KWP2000

The definition of KWP2000 only covers how request and response messages should be

formatted. Nothing is mentioned about how the communication in the system should be

handled, this is something that might vary from system to system. Some of the things that you
must consider are how the timing of the messages works, what kind of error protection should

be used and what kind of additional information you have to transmit for the communication

to work.

46

6.2 Implementation of the protocol

Great effort was put into implementing the protocol in such away that it would be easy to
extend it to support more functions or change the implementation of the already supported
functions. Possible reasons for such changes could be changes to the ECU making it possible
to support more of the services covered by the protocol definition, or changes to the protocol
itself, making it necessary to change the implementation of protocol functions. These events

are very likely to occur, since the development of this ECU has only just started.

The block schedulein figure 17 below shows the different components of the program and the

connections between them.

Initialisation Code Assembly Init. Code APIC Routines SCI Routines

v
Main Program:
Timer |l g Hardware External
e Init. Of System Interface System
e Loop Waiting for Message

KWP Constants KWP Variables KWP Request Handler KWP Service Handler

Figure 17: Components of the KWP2000 program

Following below is alist of the filesin the project and a description of what they do.

e main.c: thisfile performs necessary initialisations, like initialising the apic and the sci and
setting the system clock frequency to the correct value. After that it goes into an infinite
loop, waiting for the reception of a character on the seria port.

e init.s: thisfile contains assembly code to initialise the system for the interrupt handling to

work.

47

6 The Keyword Protocol 2000

e system init.c: thisfile contains code for setting the clock frequency and setting up the
stack space, aswell asinitialising the interrupt handling and the serial communication
interface.

e apic.c: thisfile contains functions needed for the interrupt handling to work.

e gi.c: thisfile contains the drivers for the serial communication interface.

e kwp.c: thisfile contains functions that handle the reception of arequest message and the
sending of aresponse message.

e kwp_services.c: thisfile contains the functions that carry out the requested services and
format appropriate response messages.

e timer.c: thisfile contains the timer that is needed for the communication. How the timer
should be configured depends on the system where the protocol is used. One exampleis
given in the next chapter.

e kwp_constants.h: thisfile contains various constants that are needed for the protocol, for
instance service identifiers and error codes.

e kwp variables.c: thisfile contains variables that are needed for the protocol and the
communication, for instance message buffers and status flags.

e |RQ _handlersx.s: each interrupt source has an IRQ handler to allow for re-entrant
interrupts.

As previously mentioned some of the code is dependent of how communication is handled in

the system.

6.3 Testing of the protocol with PC terminal program
At the time when the implementation of the protocol had been finished there was no red

diagnostic tool available for testing the system. Instead a simple terminal program was created

and used to simulate the communication between the ECU and a diagnostic tool.

In the department an older system using KWP2000 was available. This system had afunction
that could automatically generate log files of the communication between diagnostic tool and
ECU. Thisfunction was used to generate log files that could serve as a basis for the testing of

the developed system.

The communication part of the system had already been tested with the help of anormal PC
terminal program. One problem when testing the protocol was that many of the hexadecimal

values used by the protocol correspond to characters that can not be printed on the screen by

48

6.3 Testing of the protocol with PC terminal program

the terminal program, and can also not be entered from the keyboard. To get around this
problem the terminal program first had to do a conversion of the received values, aswell as
converting entered values before transmission. This means that you convert a hexadecimal
valueto its corresponding ASCII character (0xO converted to’0" and so on) and the other way
around. With this functionality and the above mentioned log files it was possible for the

terminal program to simulate the connection between ECU and diagnostic tool.

An example of one of the log files used is shown in figure 18 below.

SSSSSSSSSSSSSSSSEESSEESSE>>

Created by user: kaellst on computer: FTSTG3116 at Fri Aug 31 13:46:21.675 2001
driver: KWP2000 (build Oct 24 2000)

<L L L L L L g gl g gl g gt gt <

COM1 , baud: 10400 (8N1)
Fri Aug 31 13:46:27.363 2001
TxD: InitPattern 81 18 F1 81 0B

Fri Aug 31 13:46:27.473 2001
RxD: 80 F1 18 03 C1 DF 8F BB

Fri Aug 31 13:46:27.473 2001
TxD: 83 18 F1 10 86 04 26

Fri Aug 31 13:46:27.543 2001
RxD: 80 F1 18 02 50 86 61
baud: 57600 (8N1)

Fri Aug 31 13:46:27.563 2001
TxD: 82 18 F1 83 00 OE

Fri Aug 31 13:46:27.613 2001
RxD: 80 F1 18 02 7F 10 1A

Fri Aug 31 13:46:27.613 2001
TxD: 88 18 F1 3B FC OF A0 00 90 41 00 48

Fri Aug 31 13:46:27.693 2001
RxD: 80 F1 18 04 7B FC OF A0 B3

Figure 18: Example of a communication log file

The terminal program was created in Visual Basic, and it has the features necessary for the
simulations. A simple graphical user interface was created to make it possible to open the
serial port, set the Baud rate, send request messages and display the received responses. It was
not possible to use all the Baud rates that are used by the protocol, since only alimited
number of Baud rate values are allowed to be set from the Visual Basic application. Therefore
some values had to be replaced with one of the available standard values. This minor change
was not believed to be a problem.

49

6 The Keyword Protocol 2000

Diagnostic requests were sent from the termina program to the ECU by clicking a message

button in the user interface, and the received response from the ECU could then be displayed,

studied and verified against the correct response available in the log files. The diagnostic

requests were made up of strings of bytes from the log files.

The result of this testing was that the program seemed to be working properly, at least as far

as the formatting of the messages was concerned. Of course it could not yet be concluded that

the current implementation would function correctly in area system. For instance the

terminal program had none of the timing functionality that areal system would have. Some

further testing that was done to gain some knowledge in this areais described in chapter 7 of

the thesis.

Figure 19 shows how the user interface of the program looks.

w. K\WPZ000 Sinnulation

FiwF2000 Requestsz

Start Communication
Baud rate

10400
£ 5700

Start Diagnostic Session

Read Data By [dentifier

zet B-rate
Wiite Data By [dentifier open
oM
Start Routine By [dentifier close
oM

Read Trouble Codes

Controlz

— Fead byte
byte 1
byte 2
byte 3
byte 4
byte &
byte &
byte ¥
byte &
byte 3

o lie e Nie Nie e e e’

clear

Status: Communication open
Baud rate = 10400

[~ Buffer
[Dlisplay

Read Memony

Meszane:

Request Download

Character received

Request Upload

Reset ECL

MHumber af bytes in receive I:uuffer:|1

=101 %]

Received

Figure 19: The user interface of the terminal program

50

6.4 Comments on the implementation of KWP2000

To the left in the figure you can see the buttons used for sending request messages. In the
middle there are some control functions as well as status displays. To the right of the figure

the user can choose to display a number of bytes from the received response message.

6.4 Comments on the implementation of KWP2000
During the work on the protocol some problems were caused by the fact that it was somewhat

unclear exactly how the implementation would have to be done in order to be compatible with
other systems using the protocol. An implementation from an older system, a power PC based

ECU, was available to give some guidance in that area.

The current ECU does not support all of the services that are handled by the protocol. In the
future there might be a need to add support for more diagnostic services. This should then
cause no problems. The implementation of the protocol can easily be extended by adding
support for the new functions in the service handling part of the program. The communication
part already supports requests for all of the services available in the latest protocol definition,
so no changes would be necessary in that area of the program.

The simulation with the log files and the PC terminal program shows that the ECU can
receive areguest message formatted according to KWP2000, handle that request and send a
response message formatted correctly. This would show that the implementation of the
protocol had been done correctly. The simulation with the terminal program had not shown
whether or not the timing functionality of the program was working correctly. To make sure

that this was the case some further testing was performed, as described in the next chapter.

51

6 The Keyword Protocol 2000

52

7 Adapting KWP2000 to MARC1

This chapter describes how the implemented system was tested and evaluated, which was
done with the help of a software called MARC1. Some changes that had to be done to adapt
the protocol implementation to this software are presented. A simple measurement and
calibration application that was created is also described.

7.1 The MARC1 application system
The MARC1 application system is a software that can be used for performing measurements

and calibrations on an ECU during the development. This software had previously been used
in the department for the power PC based ECU development system. For the communication
between the ECU and the software running on the PC various protocols can be used, for
instance KWP2000. It was therefor thought that it would be a good ideato useit to test the
developed software.

MARCL can be used to put together a graphical measurement and calibration environment, to
be used for evaluation of the ECU’ s performance. The configuration files needed to create an
application can be generated automatically from a Simulink block-schedule. For the power
PC based system control structures are created using Simulink blocks for the different
functions of the ECU. The finished Simulink model can then be used to generate C code for
the ECU and configuration files for the application system, which in turn can be used to
create a measurement and calibration environment. This allows the user to easily and fast
make changes to the system, without any detailed knowledge about programming the ECU or
configuring the application system. It is desired to make this possible for the ARM based
development system al so.

Figure 20 shows how atypical development environment in the application system can look.

53

7 Adapting KWP2000 to MARC1

(Einheit) (Einheit]
1000:WW Start 1001:WW Lange.

Drehzahl [u/min]: 3943
Luftfeder Ist [Pa]: 944,00
Luftfeder Soll [Pa]: 945,0000

150 655
< 2l [keine] [keine]
i) UVZG_400= nact UNZG_401 = nac

K|
sssssss S]] | Verseten a1 I 1635 05 Gerart

Figure 20: A MARC1 development environment

The dliders that are shown in the figure are used for calibration of the ECU, and the tables and
the graph are used for displaying the measurement values sent by the ECU to the application

tool.

The software is very simpleto use, and it is aso very flexible when changes have to be made.
For most of the communication with the application tool services for reading and writing data
are used. It is also necessary to use services for starting communication and diagnostic
session, as well as services for synchronisation of the communication between the ECU and

the application tool.

7.2 Modifications made to the program
For testing purposes an application was to be created in the MARCL1 devel opment

environment. This application would consist of sidersto enter values to be sent to the ECU
and some different ways to display measured values, like graphs and tables. As mentioned in
chapter 6, KWP2000 does not define how the communication should be handled in the
system. For the previously developed program to work correctly together with the MARC1
application it would be necessary to make some changes. What had to be handled were the

header bytes used by the application system and the timing of the messages.

Figure 21 below shows how the messages sent between application system and ECU should

look.

7.2 Modifications made to the program

Header bytes KWP2000 message Check sum

N N N
r N\ r R r R

Format Source Target Length | Message Data bytes Check sum
byte address address byte type
Figure 21: Format for KWP2000 messages

At the beginning of the message there are a number of header bytes. The first byte, the format
byte, gives some information about the message and how it is formatted. For instance it
contains information about whether or not the following three header bytes, source address,
target address and length byte, are available. The first two bits of the format byte show what
kind of addressing is used, while the remaining six bits either contain the length of the
message, if no length byteis used, or are al zero, if alength byte is available in the message.
Thisis shown in figure 22 below.

Address bits Length bits

N N
r N\ r N\

| Bit1 | Bit2 | Bitl1 | Bit2 | Bit3 | Bit4 | Bit5 | Bit6 |
Figure 22: The bits of the format byte

After the header bytes you find the real KWP2000 message. The first byte of the message
provides information about what kind of message it is. For request messages thisis the service
identifier, telling the ECU what service to perform. For response messages this byte indicates
a positive or negative response. Following this byte are data bytes that are dependant on
which service has been requested. Finally there is a checksum byte at the end of the message
that can be used to determine if the message has arrived without being modified during the

transmission.

The checksum is calculated by adding all the charactersin the message. At the receiving end
the checksum is once again calculated and compared to the checksum that has been received
together with the message. If it turns out that the message is in some way incorrect the
message will be ignored, and no response will be sent. Thiswill force aretransmission of the

message, which will then hopefully arrive in a correct format.

55

7 Adapting KWP2000 to MARC1

The code needed for handling the header bytes and the checksum had already been written for
the test with the terminal program and the log files, as described in chapter 6, so no changes
had to be made in that area of the program.

Something that had not yet been handled by the program was the timing of the messages sent.
Since the application tool sends out a new request every 500 ms and does not accept a
response until 20 ms after the last message byte has been sent, some kind of timer had to be
added to the system. The timer would be used to make sure that the ECU sent a response
message to a received request sometime between 20 ms and 500 ms after the reception of the
last byte of the message, as shown in figure 23 below.

20 ms 500 ms
| Response not allowed | Send response | Timeout
Figure 23: The timing of response messages

If 500 ms pass and a response has not yet been received by the application tool, a
communication timeout will occur and a new message will be sent to the ECU. Similarly, if
the ECU does not receive a request from the application tool before 5000 ms has passed there
will be atimeout on the ECU side, and the protocol must be reset. Thisis because the Baud
rate has to be changed if future messages shall be received correctly, and it is also necessary

to reset some flags and counters.

To implement the timer one of the RTEC' s PWM (Pulse Width Modulator) channels were
used. This allows the programmer to make the ECU generate an interrupt every time a
programmable number of system clock cycles has passed. There are two registers that have to
be written to get the right timer period generated by the PWM channel, as described in (Pulse
Width Modulator Reference Manual, 2001). Y ou first write the prescale register with the
number of system clocks that should be used for measuring the period. Then you write the
desired period, in number of system clocks, to the period register. For everything to operate
correctly it will also be necessary to write avalue, smaller than the period, to the pulse width
register. After the registers have been initialised in this manner you can write the PWM
control register and enable the generation of an interrupt every time the PWM counter reaches

the programmed period.

56

7.3 A MARCL1 application example

For our system the PWM was set to generate an interrupt every millisecond. For the timing of
the communication on the serial port two counters were used. These were incremented every
time the interrupt servicing routine of the PWM was called. When the last character of a
request message was received one of the counters were reset. When it had once again reached
20 aflag was set in the interrupt servicing routine to let the system know that it was now
allowed to send aresponse to the request. The 5000 ms counter was reset every time a
character was received. If there was no character received for more than 5000 ms aroutine
was called to reset the protocol. As mentioned this reset operation involves setting flags and
other variables to default values, as well as setting the Baud rate of the system to the default
value of 10400.

7.3 A MARC1 application example
For evaluation purposes a simple application was put together in MARCL. This application

consisted of elements enabling measurements, calibrations and access to look-up tables

defined in the ECU. A screenshot of the application is shown in figure 20.

Each control in the application must be assigned an ID, which can then be sent to the ECU
together with the request message to tell it what structure or what memory location in the
ECU should be read or written. The assignment of ID:sisdone in aconfiguration file, and
together with the ID there is also information about what data types should be used, possible
limits for values and dimensions if applicable. For configuration of MARC1 some of the
configurations used for the power PC system were modified so that they would work together
with the ARM based ECU.

The test application gives the user the possibility to perform measurements on some data
structures in the ECU and have the read values presented in tables and graphs. When the user
requests the start of a measurement by clicking the measurement button, thisinformation is

what is sent between the ECU and the application system.

SSSSSSSSSSSSSSSSSSSSSS>>>
Created by user: kaellst on computer: FTSTG3116 at Fri Aug 31 13:43:11.852 2001

driver: KWP2000 (build Oct 24 2000)
<LLLLLLLLLLLLLLLLLLLLLLLL

COM1 , baud: 10400 (8N1)

Fri Aug 31 13:43:14.706 2001
TxD: InitPattern 81 18 F1 81 0B

57

7 Adapting KWP2000 to MARC1

Fri Aug 31 13:43:14.816 2001
RxD: 80 F1 18 03 C1 DF 8F BB

Fri Aug 31 13:43:14.816 2001
TxD: 83 18 F1 10 86 04 26

Fri Aug 31 13:43:14.886 2001
RxD: 80 F1 18 02 50 86 61
baud: 57600 (8N1)

Fri Aug 31 13:43:14.906 2001
TxD: 82 18 F1 83 00 OE

Fri Aug 31 13:43:14.956 2001
RxD: 80 F1 18 02 7F 10 1A

Fri Aug 31 13:43:14.986 2001
TxD: 8318 F1 21 FA 01 A8

Fri Aug 31 13:43:15.046 2001
RxD: 80 F1 18 3F 61 FA 01 2C 04 F544 0080 0044 00 C0 0044 0000014400400144008001 44 ...

Fri Aug 31 13:43:15.056 2001
TxD: 8318 F1 21 FA 02 A9

Fri Aug 31 13:43:15.116 2001
RxD: 80 F1 18 3F 61 FA 02 00 00 50 42 00 CO 00 44 00 00 01 44 00 40 01 44 00 00 68 4200 C001 44 ...

The first message that is sent (TxD) to the ECU is arequest to start communication. If a
positive response is received (RxD) the application requests a diagnostic session to be started.
Then the Baud rate is changed, and the application sends a message to make sure that the
ECU has changed Baud rate and the communication is still operating correctly. After these
transmissions have been made the measurements can be performed. One measurement is

made every 500 ms until the user ends the measurement session by going offline.

For the testing performed no real measurements were made. Instead the program was made to
create data that could be transmitted when a measurement was requested by the application. It
would bejust as simple to fetch the measurement values from some register tied to one of the

sensors in the engine.

For writing data to the ECU the application has two slider controls. Data can be sent either by
simply clicking and moving the slider or by typing avalue into the box at the bottom of the
slider control. This can be used for calibration purposes during development. Before any

values can be written the user must go online by clicking the calibration button. When thisis

58

7.3 A MARCL1 application example

done the application first sends a request to the ECU to read the values currently stored in the
available data structures, and displays these values on the controls in the user interface.

As previously mentioned, alook-up table was also implemented in the application and in the
ECU. Look-up table blocks are available in Simulink for design of control structures. A look-
up table is used to map a number of inputs to an output using linear interpolation. For the test
application a 2D look-up table was used. This block has two inputs and one output. Two
vectors, corresponding to x and y axes, are defined, and for each pair of valuesin these two
vectors adatavalueis assigned. If two input values to the look-up table matches row and
column parameters the output will be the data value at the intersection of the row and column,
otherwise an interpolation will be performed. The look-up tableis defined in the ECU asthe

following data structure:

typedef struct CHARAC 2DIM_FIELD_FLOAT _Tag

{
float x[11];

float y[11];
float data[121];
}CHARAC _2DIM_FIELD_FLOAT;

The program initialises this structure to some suitable values at the start-up of the system, and
the data val ues can then be changed from the graphical user interface, either by entering the
value in atable or by clicking and dragging 2D or 3D graphs. Figure 24 shows how the |ook-
up table is presented in the MARC1 application system, as a 3D graph and asimple table.

i Gonilpaon Goto Meson Ysoon Onirg Avezoion £ Eover Kol 2

ID 4000: TestKennfeld2 - float

20 v Do
B
E‘

Wert

0T e\ caysio

@ | e T Versten Gt TIN5 00 Gever - o o ac @

les in]\MRC]

Figure 24: Look—ub tab

59

7 Adapting KWP2000 to MARC1

When the values of the look-up table are changed, the application sends a request to the ECU
to update the affected data structures. This communication looks the following way when the
value 65 is written to x-position 7 and y-position 5.

SSSSSSSSSSSSSSSSSSSSSS>>>
Created by user: kaellst on computer: FTSTG3116 at Fri Aug 31 13:46:21.675 2001
driver: KWP2000 (build Oct 24 2000)

< <L L L L L L L gl gl gL g gl g g g <<
COM1 , baud: 10400 (8N1)
Fri Aug 31 13:46:27.363 2001

TxD: InitPattern 81 18 F1 81 0B

Fri Aug 31 13:46:27.473 2001
RxD: 80 F1 18 03 C1 DF 8F BB

Fri Aug 31 13:46:27.473 2001
TxD: 83 18 F1 10 86 04 26

Fri Aug 31 13:46:27.543 2001
RxD: 80 F1 18 02 50 86 61
baud: 57600 (8N1)

Fri Aug 31 13:46:27.563 2001
TxD: 82 18 F1 83 00 OE

Fri Aug 31 13:46:27.613 2001
RxD: 80 F1 18 02 7F 10 1A

Fri Aug 31 13:46:27.613 2001
TxD: 88 18 F1 3B FC OF A0 00 90 41 00 48

Fri Aug 31 13:46:27.693 2001
RxD: 80 F1 18 04 7B FC OF A0 B3

The first three messages are used to establish stabile communication, as for the measurement
operation described above. Then the actual writing to the look-up table is performed (TxD: 88
18 F1 3B FC OF A0 00 90 41 00 48). The value 90 is the offset from the start of the look-up
table structure in the ECU corresponding to the x and y coordinates, and 41 is the hex-value
for 65.

7.4 Testing the application
During testing there were at first some problems with values not showing correctly during

measurements and calibrations. For the configuration of these services the same kind of
configurations as for the power PC based system had been used. It turned out that the problem
was that this system and the ARM based system uses different byte ordering. The ARM
system uses little endian byte ordering, while the power PC system uses big endian byte

ordering. Since the configurations also contain limits for what values are allowed, this meant

60

7.4 Testing the application

that some values were set to zero because they exceeded the limit, and the values that were
left unaltered still did not show up correctly. By modifying the configurations this problem

was removed.

Another thing that was discovered was that the application system uses two byte integers
while the ARM system uses four byte integers. This caused the wrong number of valuesto be
transmitted during measurements when the values were declared as integers. This was simply
solved by changing the data types of the variables in the ARM system from integer to short
integer.

One known problem is that the system currently can not handle large |ook-up tables. If the
data of the table require more than 245 bytes of memory, there would be a need for the
application to send repeated requests to read the whole look-up table from the ECU. Thisis
because the communication buffer can not hold more data than that. Currently thisis not
working correctly. The application system will only send one read request, even if that is
insufficient to transfer the whole look-up table. Thisis believed to be caused by the
application system and not by the protocol implementation. The reason for the problem is

probably afaulty driver.

After the necessary changes had been made the application was running smoothly and could
be used to perform measurements and write data to the ECU. The measurements were set to
take place every 500 ms. Thisis the frequency that had been used for measurements on the
older development system. Some measurements were made with the help of an oscilloscope
to determine how much time the ECU needed to handle the requests currently used. One of
the RTEC' s general purpose input/output channels, as described in (General Purpose
Input/Output Reference Manual, 2001), was used to toggle apin on the LLIB at the start and
theend of the request handling in the ECU, thereby creating awaveform on the oscilloscope
that could be used to measure the time needed for processing. This test showed that the ECU
currently needs significantly less than 20 msto handle the requests. Since 20 msisthetime
the ECU must wait before responding to arequest, this means that it is this time that limits the
possible frequency of measurements.

61

7 Adapting KWP2000 to MARC1

7.5 Comments on adapting KWP2000 to MARC1
By setting up some simple functionsin the MARCL1 application system the implementation of

the protocol has been tested and is now working correctly, except for the handling of large
look-up tables. It is believed that a faulty driver is causing problems when handling these
structures. Some modifications had to be made to the program, like adding a timer function.
The simple formatting of the messages had previously been tested with the PC terminal
program and, as thought, this part of the program did no need to be modified.

The current system is very simple and basically only consists of some drivers for the SCI and
the implementation of KWP2000. In the future, when more functions are added, it will be
important to make sure that the timing of the protocol is not disturbed. If for instance more
interrupt sources are added, these must be assigned the right priority so that they do not cause
the timers to stop working. If this would mean that the timing functionality would have to be
implemented in some other way, there would probably still be no need to do any changes to
the main part of the protocol. Also when more functions are added to the protocol
implementation the same precautions have to be taken to make sure that the communication

remains stabile.

62

8 Conclusions and suggestions for the future

This chapter comments on the values and the shortcomings of the software developed.
Suggestions are also given for how development could proceed in the future and how the

software could be improved.

8.1 The developed software
Due to some time consuming hardware problems that had to be solved, not all of the planned

work could be completed. It is still believed though, that this work has to some extent paved

the way for future development on the system.

Driversfor the serial communication interface have been devel oped and tested, and
communication with external devices now operates correctly. The SCI routines will probably
be useful in the future, and new ones can easily be devel oped now that the hardware has been

fully tested and is considered to be fully functioning.

The APIC was used for the implementation of interrupt driven serial communication and an
interrupt driven timer. The developed APIC routines show how to set up the system in order
for the interrupt handling to work. They also show how the future interrupt servicing routines
for the other interrupt sources should be written. Thiswill probably be helpful for other

developers.

The implemented communication protocol was tested using the MARCL application system,
and is believed to be functioning correctly. The testing performed with the Visual Basic
terminal program, though somewhat theoretical, should also show that the services not

requested by the measurement application have been implemented correctly.

8.2 Suggestions for further development
The developed communication protocol has been tested using the MARCL application

system, creating a simple measurement and calibration application. Hopefully thistest is

enough to show that the implementation is fully functioning, and if problems would still arise

63

8 Conclusions and suggestions for the future

in the future it is thought that only minor changes would have to be doneto get afully
functioning system. During the testing one problem was discovered when reading large data
structures in the ECU. Thisis believed to be caused by the application system and not by the
software running on the ECU system. To gain certain knowledge in this area it will be

necessary to do some more testing of this functionality in the future.

The ECU currently only supports a small subset of the requests covered by KWP2000. In the
future it might be necessary to add support for additional services, which could easily be done
by adding appropriate code fragments to the service handling part of the protocol
implementation.

To reduce the number of interrupts that are being generated the timer could be changed. It
currently generates an interrupt every ms, but it would be possible to change thisto have it
generate an interrupt every 20 ms, thus reducing the number of timer interrupts by afactor
twenty. The reception of messages could also be changed to reduce the number of interrupts
for this purpose. Currently an interrupt is generated every time a character is received. This
could be changed by letting the program check the first byte of the received message to see
how many bytes must be received, and then setting the RBNFC bits in the buffered SCI
control register to have an interrupt generated when the whole message has been received.
Something that must be considered in that case is the fact that some messages will contain
more than sixteen bytes, and will therefor not fit in the receive buffer. In those situations an
interrupt would have to be generated each time the buffer was full. When changing Baud rate
the program currently must wait for awhile to make sure that the transmit buffer is empty
before the Baud rate is changed. This means that the program will be halted for awhile,
which of courseisnot so good. It istherefor desired to make changes to eliminate this

problem.

A new version of the program that solves the problems with the timer interrupts and the Baud
rate change was actually written. This program generates atimer interrupt every 20 ms and
uses a counter to decide when enough time (presently between 40 and 60 ms) has passed for
the Baud rate change to be made. Since the license for the application system had expired this
program could only be tested with the PC termina program, and it is therefor not certain that
it would work with the application system. This is something that must be determined in the

future, and possibly some modifications to this program must be made.

64

8.3 Evauation of the development system

The developed routines for the APIC can be used in the future when more of the ECU
functions are implemented, and more interrupt sources are added to the system. This could be
done by simply using the developed routines for enabling and configuring the needed
interrupt sources, or the developed code could be used as a template to develop new routines
more suitable for a certain usage. This part of the system is thought to have been fully tested
at the completion of thiswork.

The devel oped and tested serial port connection to the PC could probably be used in the future
for sending commands to the system when testing and evaluating new functions that have
been developed. If more routines would be needed these could easily be implemented,

possibly by using the routines already developed or by using them as guidance.

8.3 Evaluation of the development system
During the work some problems were encountered with the hardware. It was not always as

simple asit should be to do development. The reason for thisis that the system is very new
and has not yet been fully tested, and therefor some problems are likely to be encountered.
During the future development on the system, when other functionality of the ECU is used,
other problems might very well occur and have to be dealt with.

It is believed though, that when the system has matured and when it has been fully tested it
will probably allow developersto do fast ECU development. The RTEC will allow for very
fast development of new drivers and the ARM based system will alow for very flexible
adjustment of the hardware. By using Matlab, Simulink and Real-Time Workshop for the
development of control agorithms this can also be donein avery fast and efficient way. The
MARCL application system and Real-Time Workshop will also allow people to work with
ECU and engine development without knowing how to perform software development for the
system. Putting these parts together and getting them to work properly will provide a great
system for the development and testing of new engine control functions.

8.4 Conclusions
Even though not as much of the work as desired could be completed, the work on thisthesis

has still provided some valuable insight into close to hardware programming and devel opment
of engine control systems. It has also been an opportunity to practice akind of practical

65

8 Conclusions and suggestions for the future

problem solving that is not often encountered at the university. Hopefully the completed work
will be useful for the people who will be working with the same system and the same tools in

the future.

66

References

APIC Reference Manual 0.2,
AIEC, 2001

ARM Developer Suite Version 1.1 Developer Guide,
ARM, 2000

Bilting U. & Skansholm J.,
Viigen till C, 3rd ed.,
Studentlitteratur, ISBN 91-44-01468-6, 2000

BurnsA. & WellingsA.,
Real-time systems and programming languages, 2nd ed.,
Addison-Wesley, ISBN 0-201-40365-X, 1997

DCRTEC Reference Manual 0.2,
AlEC, 2001

ENCORE Reference Manual 0.3,
AIEC, 2001

General Purpose Input/Output Reference Manual,
AlEC, 2001

GuptaR. K.,
Co-Synthesis of Hardware and Sofiware for Digital Embedded Systems,
Kluwer Academic Publishers, ISBN 0792396138, 1995

Keyword Protocol 2000 Requirements Definition,
DaimlerChrysler, 2001

KienckeU. & NielsenL.,
Automotive control systems for engine, driveline, and vehicle,
Springer-Verlag, ISBN 3-540-66922-1, 2000

Pulse Width Modulator Reference Manual,
AlEC, 2001

OSCI Reference Manual,
AIEC, 2001

Roos O.,
Grundldggande datorteknik,
Studentlitteratur, ISBN 91-44-46651-X, 1995

Schilling D. L. & Belove C.,,
Electronic circuits, discrete and integrated, 3rd ed.,
McGraw-Hill, ISBN 0-07-055348-3, 1989

67

References

68

APPENDIX A: VB code

Private Sub Change Baud_Rate Click()

'set new Baud rate

If Option1.Value = True Then

M SComm1.Settings = "9600,N,8,1"
Option2.Vaue = True

Label 3.Caption = "Baud rate = 10400"
Textl4.Text = "Set B-rate = 10400"
Elself Option2.Vaue = True Then

M SComm1.Settings = "57600,N,8,1"
Optionl.Vaue = True

Label 3.Caption = "Baud rate = 57600"
Text1l4.Text = "Set B-rate = 57600"
End If

End Sub

Private Sub Open_Comm_Click()

If MSComm1.PortOpen = False Then
'open comm port 1
MSComm1.CommPort = 1

M SComm1.Settings = "9600,N,8,1"
MSComm1.PortOpen = True

'change status messages

Label11.Caption = "Communication open"
Textl4.Text = "Comm opened”

Else

Textl4.Text = "Comm already open”

End If

End Sub

Private Sub Close_ Comm_Click()

If MSComm1.PortOpen = True Then
'close port 1
M SComm1.PortOpen = False

'change status messages

Label 11.Caption = "Communication closed"
Text14.Text = "Comm closed"

Else

Textl4.Text = "Comm already closed"

End If

69

APPENDIX A: VB code

End Sub

Private Sub MSComm21_OnComm()

If MSComm1.CommEvent = comEvReceive Then
Text14.Text = "Character received"
MSComm1.RThreshold =0

End If

End Sub

Private Sub Clear_Display_Click()

'Clearing the display

If Check2.Value =1 Then
Text7.Text=""
Text8.Text =""
Text9.Text=""
Textl0.Text =""
Textll.Text=""
Textl2.Text=""
Textl3.Text=""
Text2.Text=""
Text3.Text=""
Option3.Vaue = True
Textl4.Text = "Receive fields cleared”
End If

'Clearing the receive buffer
If Checkl.Vaue =1 Then
MSComma2.InBufferCount = 0
Textl.Text=0

End If

End Sub

Private Sub Read Bytes Click()
number_of bytes = MSCommd1.InBufferCount

If Option3.Vaue = True And number_of bytes> 0 Then
Text7.Text = Hex(Asc(M SCommd1.Input))

Optiond.Vaue = True

number_of bytes = number_of bytes- 1

Textl.Text = number_of bytes

Elself Option4.Vaue = True And number_of _bytes> 0 Then
Text8.Text = Hex(Asc(M SComml.Input))

Option5.Value = True

number_of bytes= number_of bytes- 1

Textl.Text = number_of bytes

Elself Option5.Vaue = True And number_of bytes> 0 Then

70

APPENDIX A: VB code

Text9.Text = Hex(Asc(M SCommd1.Input))

Option6.Vaue = True

number_of bytes = number_of bytes- 1

Textl.Text = number_of bytes

Elself Option6.Vaue = True And number_of _bytes> 0 Then
Text10.Text = Hex(Asc(M SCommLl.Input))

Option7.Vaue = True

number_of bytes= number_of bytes- 1

Textl.Text = number_of bytes

Elself Option7.Vaue = True And number_of bytes> 0 Then
Text11.Text = Hex(Asc(M SComml.Input))

Option8.Value = True

number_of bytes = number_of bytes- 1

Textl.Text = number_of bytes

Elself Option8.Vaue = True And number_of _bytes> 0 Then
Text12.Text = Hex(Asc(M SComml.Input))

Option9.Value = True

number_of bytes= number_of bytes- 1

Textl.Text = number_of bytes

Elself Option9.Vaue = True And number_of bytes> 0 Then
Text13.Text = Hex(Asc(M SCommLl.Input))

Option10.Vaue = True

number_of bytes= number_of bytes- 1

Textl.Text = number_of bytes

Elself Option10.Value = True And number_of bytes> 0 Then
Text2.Text = Hex(Asc(M SComml.Input))

Option1l.Vaue = True

number_of bytes= number_of bytes- 1

Textl.Text = number_of bytes

Elself Option11.Value = True And number_of bytes> 0 Then
Text3.Text = Hex(Asc(M SCommd1.Input))

Option3.Vaue = True

number_of bytes = number_of bytes- 1

Textl.Text = number_of bytes

End If

End Sub

Private Sub Start_ Communication_Click()

'Start KWP2000 communication
If MSComm1.PortOpen = True Then
M SComm1.Output = Chr(&H81)
M SComm1.Output = Chr(&H18)
M SComm1.Output = Chr(&HF1)
M SComm1.Output = Chr(&H81)
M SComm1.Output = Chr(&HB)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent”
Else

Text14.Text = "Open comm first"

71

APPENDIX A: VB code

End If

End Sub

Private Sub Start_Routine By _ldentifier_Click()

'Start routine by local identifier
If MSComml.PortOpen = True Then
M SComm1.Output = Chr(&H82)
M SComm1.Output = Chr(&H18)
M SComm1.Output = Chr(&HF1)
MSComm1.Output = Chr(&H31)
M SComm1.Output = Chr(&H1)
M SComm1.Output = Chr(&HBD)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent"
Else

Text14.Text = "Open comm first"
End If

End Sub

Private Sub Read Memory_Click()

'Read memory by address

If MSComm1.PortOpen = True Then
M SComm1.Output = Chr(&H85)
M SComm1.Output = Chr(&H18)
M SComm1.Output = Chr(&HF1)
M SComm1.Output = Chr(&H23)
M SComm1.Output = Chr(&HO0)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&HO0)
M SComm1.Output = Chr(&H1)
M SComm1.Output = Chr(&HB2)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent”
Else

Text14.Text = "Open comm first"
End If

End Sub

Private Sub Request_Download_Click()

'Request download

If MSComm1.PortOpen = True Then
M SComm1.Output = Chr(&H88)

M SComm1.Output = Chr(&H18)

M SComm1.Output = Chr(&HF1)
MSComm1.Output = Chr(&H34)

72

APPENDIX A: VB code

M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&H1)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&HO0)
M SComm1.Output = Chr(&H1)
M SComm1.Output = Chr(&HC7)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent"
Else

Text14.Text = "Open comm first"
End If

End Sub

Private Sub Request_Upload_Click()

'Request upload

If MSComm1.PortOpen = True Then

M SComm1.Output = Chr(&H88)
M SComm1.Output = Chr(&H18)
M SComm1.Output = Chr(&HF1)
M SComm1.Output = Chr(&H35)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&HO0)
M SComm1.Output = Chr(&HO)
MSComm1.Output = Chr(&H1)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&H1)
M SComm1.Output = Chr(&HCB8)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent"
Else

Text14.Text = "Open comm first"
End If

End Sub

Private Sub Write_ Data By _Identifier_Click()

'"Write data by local identifier

If MSComm1.PortOpen = True Then

M SComm1.Output = Chr(&H88)
M SComm1.Output = Chr(&H18)
M SComm1.Output = Chr(&HF1)
M SComm1.Output = Chr(&H3B)
M SComm1.Output = Chr(&HFC)
M SComm1.Output = Chr(&H1)

M SComm1.Output = Chr(&H90)

APPENDIX A: VB code

M SComm1.Output = Chr(&H42)
M SComm1.Output = Chr(&HCB8)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&HO)
M SComm1.Output = Chr(&H63)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent”
Else

Text14.Text = "Open comm first"
End If

End Sub

Private Sub Start Diagnostic_Session_Click()

'Start diagnostic session

If MSComm1.PortOpen = True Then
M SComm1.Output = Chr(&H83)
M SComm1.Output = Chr(&H18)
MSComm1.Output = Chr(&HF1)
M SComm1.Output = Chr(&H10)
M SComm1.Output = Chr(&H86)
M SComm1.Output = Chr(&H4)
M SComm1.Output = Chr(&H26)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent"
Else

Text14.Text = "Open comm first"
End If

End Sub

Private Sub Read Data By ldentifier_Click()

'Read data by local identifier

If MSComm1.PortOpen = True Then
M SComm1.Output = Chr(&H84)
M SComm1.Output = Chr(&H18)
M SComm1.Output = Chr(&HF1)
MSComm1.Output = Chr(&H?21)
M SComm1.Output = Chr(&HFC)
M SComm1.Output = Chr(&H1)
M SComm1.Output = Chr(&H90)
M SComm1.Output = Chr(&H3B)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent"
Else

Textl4.Text = "Open comm first"
End If

End Sub

74

APPENDIX A: VB code

Private Sub Reset ECU_Click()

'ECU reset

If MSComm1.PortOpen = True Then
M SComm1.Output = Chr(&H82)
M SComm1.Output = Chr(&H18)
M SComm1.Output = Chr(&HF1)
MSComm1.Output = Chr(&H11)
MSComm1.Output = Chr(&H1)
M SComm1.Output = Chr(&H9D)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent”
Else

Text14.Text = "Open comm first"
End If

End Sub

Private Sub Read Troube Codes Click()

'Read status of diagnostic trouble codes
If MSComm1.PortOpen = True Then
M SComm1.Output = Chr(&H83)

M SComm1.Output = Chr(&H18)

M SComm1.Output = Chr(&HF1)
MSComm1.Output = Chr(&H17)

M SComm1.Output = Chr(&HO)

M SComm1.Output = Chr(&H1)

M SComm1.Output = Chr(&HA4)
MSComm1.RThreshold = 1
Textl4.Text = "Message sent"

Else

Text14.Text = "Open comm first"
End If

End Sub

75

APPENDIX A: VB code

76

APPENDIX B: RS232 converter data-sheet

MOTOROLA
SEMICONDUCTOR TECHNICAL DATA

Order this document
by MC145407/D

Advance Information

5 Volt Only Driver/Receiver
EIA-232—E and CCITT V.28

The MC145407 is a silicon—gate CMOS IC that combines three drivers and
three receivers to fulfill the electrical specifications of EIA-232—E and CCITT
V.28 while operating from a single + 5 V power supply. A voltage doubler and
inverter convert the + 5V to £ 10 V. This is accomplished through an on-board
20 kHz oscillator and four inexpensive external electrolytic capacitors. The
three drivers and three receivers of the MC145407 are virtually identical to
those of the MC145406. Therefore, for applications requiring more than three
drivers and/or three receivers, an MC145406 can be powered from an
MC145407, since the MC145407 charge pumps have been designed to
guarantee + 5 V at the output of up to six drivers. Thus, the MC145407 provides
a high—-performance, low—power, stand—alone solution or, with the MC145406,
a + 5 V only, high—-performance two—chip solution.

Drivers

e +7.5V Output Swing

¢ 300 Q Power-Off Impedance

e Output Current Limiting

e TTL and CMOS Compatible Inputs

* Slew Rate Range Limited from 4 V/us to 30 V/us
Receivers

e + 25V Input Range

e 3to 7 kQ Input Impedance

e 0.8 V Hysteresis for Enhanced Noise Immunity

Charge Pumps

e +5Vtox 10 V Dual Charge Pump Architecture

o Supply Outputs Capable of Driving Three On—Chip Drivers and Three
Drivers on the MC145406 Simultaneously

* Requires Four Inexpensive Electrolytic Capacitors

e On-Chip 20 kHz Oscillator

REV 1
10/95

MC145407

P SUFFIX
! PLASTIC DIP
20 CASE 738

1

DW SUFFIX
20 SOG PACKAGE
CASE 751D

1

ORDERING INFORMATION

MC145407P Plastic DIP
MC145407DW SOG Package

PIN ASSIGNMENT

cf]'® i

2 19

GND(] I

3 18

c2-[] 1cC1-

4 17
Vssll 1Vpp

Rx1 [i 11001

Tx1[10<£] DIt

Rx2] Z 11002

szt%ﬁ] D2

RaF R 1241 bos

o)

100 D1

3l D13

D=DRIVER
R =RECEIVER

This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Motorola, Inc. 1995

@ MOTOROLA

77

