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Abstract

Diagnostic systems become more and more an important within the
field of vehicle systems. This is much because new rules and regulation
forcing the manufacturer of heavy duty trucks to survey the emission
process in its engines during the whole lifetime of the truck. To do
this a diagnostic system has to be implemented which always survey
the process and check that the thresholds of the emissions set by the
government not are exceeded. There is also a demand that this system
should be reliable, i.e. not producing false alarms or missed detection.
One way of producing such a system is to use model based diagnosis
system where thresholds has to be set deciding if the system is corrupt
or not. There is a lot of difficulties involved in this. Firstly, there is
no way of knowing if the signals logged are corrupt or not. This is
because faults in these signals should be detected. Secondly, because
of strict demand of reliability the thresholds has to be set where there
is very low probability of finding values while driving. In this thesis a
methodology is proposed for setting thresholds in a diagnosis system
in an experimental test engine at Scania. Measurement data has been
logged over 20 hours of effective driving by two individuals of the same
engine. It is shown that the result is improved significantly by using
this method and the threshold can be set so smaller faults in the system
reliably can be detected.
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Chapter 1

Introduction

This master’s thesis has been performed for Scania in Södertälje, Swe-
den, both at the Linköping University at the department of Vehicle
Systems and in Scania, Södertälje. Scania is a multinational company
and a world leading truck manufacturer.

Background

The emission requirements for heavy truck engines have over the years
become more and more strict, both in the US and Europe. In Europe
there are legislation rules forcing the manufacturer to meet the needs
of EURO 4 in 2005. Included in demands of EURO 4 there is both
restrictions on pollution and demands of an on-board diagnosis (OBD)
system. The purpose of such a system is to make sure that the re-
quirements on emissions are kept, not only when the truck is new but
also during the truck’s whole operative life. The requirement is when a
fault that will increase emissions appear, it should be detected. Faults
would typically be due to wear or malfunction. An example of how a
fault could influence emission is if the intake mass flow sensor has a bias
fault by some percent and always show a higher value than it should.
The fuel injection would then be affected and emission increases.

There are also demands, not from the government but from Sca-
nia not to produce any false alarms from the OBD system during the
lifetime of a truck.

One way to construct a diagnosis system is to utilise model based
diagnosis. This approach is, as the name implies, based on having a
model of the engine and then on-line compare the measured signals
from the engine with the output from the model. When the measured
signals from the engine are sufficiently separated from the output from
the model, then a fault has occurred. This is done by constructing a

1



2 Introduction

test quantity and when this test quantity exceeds a certain threshold,
a fault has occurred. This is done using statistical methods.

In an early development stage it is not economically realistic to base
the threshold on measured data but on statistic assumptions. The rea-
son for this is because it would require such a huge amount of data to
base the thresholds on measured data, that it would be very expensive
to collect this amount of data. In this thesis an algorithm will be pro-
posed for constructing a test quantity and furthermore a methodology
for thresholding this test quantity.

Objectives

Work has been put into developing a diagnosis system. In this sys-
tem, a test quantity has to be constructed which will be thresholded.
This threshold has to be set correctly to avoid missed detection and
false alarms. There is though stringent condition for both false alarm
rate and missed detection rate. With these stringent conditions a huge
amount of data would have to be logged if not using statistical methods
and this would be economical unrealistic. By using statistical meth-
ods much less data has to be logged and this is the reason why using
statistical methods here.

The objective in this thesis is to develop an algorithm for producing
a test quantity and correctly set the threshold which fulfill the stringent
condition of false alarm rate and missed detection rate. The algorithm
consists of several distinct ”blocks” which can be changed and/or re-
placed when further development is done in the diagnosis system.

Methods

All signal processing has been evaluated in the Matlab/Simulink envi-
ronment. The signals are taken from a measurement system installed
in different heavy trucks. These measurement has been logged on a, by
Scania ordained, test course.

Specifications

The problem of which fault that increases the emission is hard to spec-
ify. The reason for this is because there is not at the moment a proper
understanding of which faults that are actually increasing the emis-
sions. Because this lack of knowledge some assumptions has to be
made about the faults. Assumptions that has to be verified lately on.
In this thesis, bias and gain fault in some sensors are considered and
assumed to increase the emissions. The reason for choosing to consider
these faults is both, that there is a limit for how much a thesis may
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contain, and bias and gain faults is two common faults in the diagnosis
system.

Reader’s Guide

Some fundamental mathematics and control theory are assumed to be
known by the reader. This would not be a problem for undergradu-
ate and graduate engineers specialised in signal processing. Not much
knowledge is needed in vehicle systems, though it will make it easier to
read with such a knowledge.
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Chapter 2

About the Exprimental

Engine

This chapter describes how turbocharged diesel engines work and in
particular the experimental test engine of the trucks of this project.

The two most commonly used engine types today are the petrol
engine, also known as the four stroke spark ignited (SI) engine, and
the diesel engines, or the compression ignited engine. As petrol engine
mostly are common in passenger cars, the diesel engines are mostly
used in heavy duty trucks.

In a diesel engine, the fuel is injected directly into the cylinder.
Firstly the air is inducted and compressed in the cylinder and there-
after the fuel is inducted. During the compression the temperature is
increased to over the self ignition temperature of the fuel. First when
the combustion is required to start, the fuel is injected. After a small
period of time, when the liquid fuel evaporates and mixes with air,
spontaneous ignition occurs. One advantage of this, compares to spark
ignited engines, is that negative effects such as knock1 is limited. The
knock occurs because the combustion starts before the whole amount
of fuel is injected.

The exprimental prototype test engine is fitted in a Scania 420 truck.
A schematic overview of the engine is given in Figure 2.1. As can be
seen in this figure the air are first compressed by the compressor and
subsequently led through the intercooler. In the intake manifold the
air is mixed with burned gases and inducted into the engine. In the
engine the fuel is directly injected and mixed with the air and burned
gases. Thereafter, the gases are led into the exhaust manifold. In the
exhaust manifold, some of the exhaust gases are led back to the intake

1Knock occurs in spark ignited engine and can if not handled properly cause

severe damage to the engine.
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6 Chapter 2. About the Exprimental Engine

manifold but most of the gases is by the turbin led to the exhaust pipe.

Intake
Manifold

Intercooler

Exhaust
Manifold

EGR
cooler

EGR
valve

N eng

T boost
p
boost

inW

Engine

Compressor

Turbin

Figure 2.1: Schematic overview of the exprimental test engine.

2.1 Exhaust Gas Recirculation

The prototype engine consists of a Exhaust gas recirculation (EGR)
system. EGR is a system which leads some of the exhaust fumes back
to the intake of the engine. The concept of EGR has been introduced
as a way to reduce nitrogen-oxide (NOx) production and by this reduce
the pollution from the engine. Since NOx mainly is produced under
high pressure and temperature, the way of decreasing the amount of
NOx is by either reducing the temperature or the compression in the
combustion chamber.

The EGR system mainly affects the maximum combustion temper-
ature. This is because the EGR mixes cooled exhaust gas and air in
the intake manifold and dilute thereafter the normal, unburned gases
in the combustion chamber.

There are however two major drawbacks with EGR. The first draw-
back is that it produces a more complex system of the engine which is
more difficult to model and there is not at the moment a sufficiently
good model for the system containing the EGR. Because of this, the
EGR has to be shut down when running the diagnosis system.

The second drawback is that EGR decreases the power output from
the engine and therefore the EGR is only active during low load con-
dition. The use of EGR reduces the formation of NOx up to 30 % and
therefore the EGR can not be shut down for longer periods. If done
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it will increase the amount of NOx above the governmental rules and
regulations.

2.2 The Intake System

It is the intake of the system of the engine that is modelled, but there
are a number of difficulties in correctly modelling the intake of the
system. One of the reason for this is that the intake system contains
of several volumes which is the compressor, the inter-cooler and the
intake manifold as described in Figure 2.1. All these volumes introduce
dynamic into the system resulting in a dynamic and complex system.
There are also standing waves in the intake manifold which sometimes
result in a negative mass flow between the different volumes. Another
problem is that there exist a break turbo which do affect the mass flow
sensor in the intake resulting in an increase of mass flow sensed by the
sensor but not inducted into the system. It is today not possible to
measure when the break turbo is on, and this further complicates the
process.

2.3 Sensors and Actuators

The sensors and actuators which are described in this thesis are pboost,
Win, Wbb, Neng and Tboost. The boost pressure sensors, which gives
the signal pboost, measures the pressure in the intake manifold. The
mass flow sensor measures the mass flow before the compressor and
produces the signal Win . The estimated mass flow , Wbb, gives the
the estimated mass flow from the black box model (see Section 5.1).
Finally, the engine speed actuator produces the signal Neng. The boost
temperature sensor measures the temperature in the intake manifold
and gives Tboost. Where in the engine these sensors are located can be
viewed in Figure 2.1.

2.4 Faults to be detected

In this thesis the measured mass flow signal Win will be examined for
fault detection. Why choosing Win for fault detection is that the mass
flow sensor is the sensor which has the highest probability to have a
fault. The accuracy for this sensor is not as good as the accuracy for
the other sensors which are taken into consideration. Faults in pboost

and Tboost may also be detected, as well as other types of faults. A
discussion about this can be read in Section 5.3.

There are two types of faults that will be examined and these faults
are bias and gain faults. If there is a gain fault of θg and a bias fault
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of θB , these faults can be described accordingly:

Wgain = θgWin

Wbias = θb + Win

2.5 Rules and Regulations

In the OBD regulations on heavy duty trucks there is a demand of
an on board diagnosis system which are defined in the regulations of
EURO 4 and EURO 5. All new engines from 1 October 2005 must be
certified with the OBD directives included in EURO 4, for EURO 5
the date is 1 October 2008. One year after these dates all vehicles and
engines sold, registered and taken into service must comply with the
directives.

The regulation of EURO 4 includes diagnosis. The threshold not
to be exceeded and to be monitored by the OBD system is 7 g/kWh
nitrogen oxide and 0.1 g/kWh particulates. In EURO 5 more stringent
conditions not decided yet is to be monitored.

100%

75%

50%

25%

25% 50% 75% 100%

Load

Engine Speed

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 2.2: The figure describes the ten minutes long on board diagnosis
cycle. Each circle describes each stationary point in the cycle. The
size of each cycle is proportional to the weighting of that operating
point and the number in the circles describes the order of the operating
points.
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2.5.1 OBD Test Cycle

The OBD test cycle is used to verify if the engines meets the criteria
included in EURO 4. During the cycle, the engine speed and the load
are changed during approximately ten minutes at a specified pattern
which is described in Figure 2.2. The cycle contains of thirteen station-
ary point. The engine works in all these stationary for 40 seconds each.
The transition time for the engine in between the stationary points
holds for 20 seconds. The procedure is described as:

1. One fault is simulated or implemented.

2. The engine is preconditioned in three OBD test cycles, with en-
gine startup and shutdown.

3. The engine is operated in one OBD test cycle, with engine startup
and shutdown.

This procedure is repeated four times. The OBD system must all
four times detect the fault, for the engine to meet the criteria for OBD
systems mentioned in EURO 4.

2.6 Measurements

The measurement data was logged from trucks while driving on a test
track. There was two separate trucks with the same kind of engine
which was driving for 12.5 hours and 5 hours respectively. The driving
was quite extreme. Some routes were with a lot of steep slopes while
others were driving on a bumpy track. The data was collected at Sca-
nias test track from 27 to 31 may 2002, with a sampling frequency of
20 Hz. A measurement program in windows named Gredi was used to
log all the signals.

All signal processing in this thesis is based on all logged data from
both of these two individual trucks. There is also 6 startups from the
first truck and 34 start up...
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Chapter 3

Theory Background

In this chapter, the theory background for the test quantity produc-
tion chapters (see chapter 4 to 10) will be explained. The theory that
has been gathered in this chapter is, as the name of the chapter im-
plies, theory background and some new thoughts can be found in the
following chapters.

3.1 Diagnosis

Diagnosis can be explain as for a process, in this case an engine, there
are observed variables for which there is a knowledge of what is expected
as normal. The task of diagnosis is to, from the observations and the
knowledge, generate a diagnosis, i.e. to decide whether there is a fault
or not. Including in diagnosis is also isolation of fault, this will however
not be dealt with in this thesis.

Model based diagnosis is based on having a process and also a model
of the engine. Comparing the model with the actual process then makes
the diagnosis. An overview of how a diagnosis system is set up is shown
in Figure 3.1.

The diagnosis system is run on the same input (i.e. input of signals)
as the engine and the outputs (i.e. output of signals) from the engine
are inputs to the diagnosis system. From these inputs the diagnosis
system produces a statement,S, that tells if there is a fault or not and
ideally which fault it is.

Comparing a test quantity, TQ, with a threshold J produces the
statement S. This J can be adaptive or fixed and the TQ is supposed
to express the difference between the engine and its model. The TQ
should be small (ideally zero) when there is no fault in the system and it
should be large when a fault is present i.e. if TQ exceeds the threshold
there is a fault detected.

11



12 Chapter 3. Theory Background

Engine

Diagnosis
  System

Statement

Figure 3.1: Overview of a diagnosis system.

When a test quantity is created it is based on a residual. This
residual is the difference between a estimated value and a measured
value. When signal processing this residual a test quantity is received.
There are a number of ways how to create this residual and how to
signal process this residual which will be discussed and compared in
this thesis.

3.2 Hypothesis Testing

There is a set of observations x=(x1, . . . , xn) from a distribution and a
certain null hypothesis has to be tested. If there is for example a bias
fault in a sensor then the distribution will depend on a parameter θb

which here is 0 when there is no bias fault and 6= o if there is a bias
fault. The null hypothesis H0 is then the fault free case i.e. θb = 0.
There are however not only one type of fault but several faults (which
fault to be examined is discussed in Section 2.4 and Section 5.3). The
test which are described in this thesis is if there is no fault or there
is any fault out of all the possible faults. Therefore only one binary1

hypothesis test is to be considered.

Another approach would be to use structured hypothesis testing [1]
but the workload of doing such a test is much heavier. Isolation of fault
is also a important part in structured hypothesis testing but there is
no intention of fault isolation here. This is the reasons why this more
direct approach to the problem is taken instead of the method with
structured hypothesis testing.

If a test quantity TQ(x) is defined, which is a function from the
observations x to a scalar value, a comparison with a threshold J can
be made. A declaration of a critical region C is also made which is a

1A binary test means that the outcome of the hypothesis test is one, out of two

possible decisions



3.3. False Alarm Rate 13

part of the region which TQ varies over. The following significance test
may be used

if TQ ∈ C reject H0

if TQ /∈ C do not reject H0

and a significance level can be defined as

α = P (TQ ∈ C) if H0 is true

The significance level here is the same as the false alarm rate for
the system.

3.3 False Alarm Rate

Assume that there is a probability of 1
1000 that a particular truck pro-

duces at least one false alarm during one year. Call this event A. This
assumption is made because one of thousand trucks sold is allowed to
produce one false alarm one time in one electric system during one year.

There exist 20 assumed independent electric system of which every-
one is able to produce false alarms. That the OBD system alarms one
time in one year produces a false alarm is called the event B0 and that
another system alarms one time in one year is called the event Bi for
i = 1 . . . 19. Every time the engine is started, one test is to be made.
This test longs for 600 second, which is the length of the OBD cycle.
The shortest time between two tests is therefore TT = 600 seconds. If
the assumption that the truck is driven 3500 hours each year is made
the maximum number of tests n during one year will be:

n = 3500 · 3600

TT

= 21000

This is of course an exaggeration and the number of tests is much
lower.Here there is an assumption that the maximum number of tests
for a year never exceeds 4000 tests If these tests are assumed to be
independent then the event that the OBD system alarms at the i:th
startup is called Ci. The event that the trucks has one failure in one
year can be written accordingly:

A = B0 ∪ B1 ∪ · · · ∪ B19 (3.1)

The probability that event A happen is:

P (A) =

19
∑

i=0

P (Bi) = 20 · P (Bi) (3.2)
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Here, the first equal sign holds because of the assumption of inde-
pendence and the second equal sign holds because of the assumption
that the events Bi happen with the same probability. The probability
that the OBD system alarms one time in one year is according to (3.2):

P (B0) =
P (A)

20
(3.3)

The probability that the OBD system alarms one time in one year
can also be written:

P (B0) =
4000
∑

i=1

P (Ci) = 4000 · P (Ci) (3.4)

Here, the first equal sign holds because of the assumption of inde-
pendence and the second equal sign holds because of the assumption
that the events Ci happen with the same probability. The probability
that the OBD system will produce one false alarm during one test is
can hence be written:

P (Ci) =
P (B0)

4000
=

P (A)

20 · 4000 =
1

1000
· 1

20
· 1

4000
(3.5)

Here, the first equal sign holds because of (3.4), the second equal
sign holds because of (3.3) and the last equal sign holds because that
event A happen with a probability of 1

1000 .

The probability for four consecutive tests to produce a false alarm
should be equal to (3.5) and if assume independence as before the
probability for detect one false alarm will be:

(P (A ∩ B ∩ C))
1
4 = (1.25 · 10−8)

1
4 = 0.0106 (3.6)

This equation then gives the result α = 0.01 which is the false alarm
rate (or significance level) to be used here.

3.4 Missed Detection Rate

There is demand from the government that a fault has to be detected
when running the OBD-cycle. The fault has to be detected four times
in a row in the OBD-cycle (see section 2.5.1). The Assumption is
made that a 10−2 chance of missed detection is the same as that a
fault can be detected. When taken the fact that the fault has to be
detected four times in a row into account the missed detection rate will
be 1 − (1 − 10−2)

1
4 = 0.0025.
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3.5 Threshold

A fixed or an adaptive threshold may be used when deciding the thresh-
old J . When using a fixed threshold one may need to look at the his-
togram of the test quantity TQ. If instead the adaptive threshold is
used, the TQ needs to be normalised with the adaptive threshold before
examine the histogram.

Because of the very low false alarm rate, statistical methods are
used. With statistical methods, the probability to find values in regions
where there is low probability of finding values can be decided with
comparatively small amount of data. Two approaches will be examined
in this thesis and which are further described section 3.5.1 and 3.5.2.

3.5.1 Gaussian Distribution

One approach is to assume that the test quantity is Gaussian dis-
tributed. Why choosing Gaussian distribution is because when examine
different test quantities, Gaussian distribution was a distribution that
quite well fitted the observed test quantities and the thresholds are then
based on that distribution. The definition of quite well is of course am-
biguous but one has to choose a distribution and the Gaussian was
chosen here. The Gaussian cumulative distribution function is defined
as

Φ(x) =
1

σ
√

2π

∫ x

−∞

e
−(t−µ)2

2σ2 dt (3.7)

where µ is the mean value and σ is the covariance. The probability
that the stochastic variable X will be within the value a and −a should
be 1 − α and it can be written

P (−a < X < a) = Φ(
a

σ
) − Φ(− a

σ
) = 1 − α if X ∈ N(0, σ) (3.8)

From this equation the threshold J is set to a. It is though impor-
tant to notice that the assumption of Gaussian distribution is made
and if the real distribution is too distinguished from the Gaussian dis-
tribution then the threshold will be wrongly set.

3.5.2 Tail Distribution Estimation

Another approach suggested by [2] is to estimate a exponential distri-
bution to the tail distribution of the test quantity. Why doing this is
because, as said before, it is only the tail that is of interest while setting
thresholds for very low false alarm rates. Most distributions are also
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approximately exponentially distributed in the tail of their distribution
and it is therefore a good choice for a estimation.

Adapt the following distribution to the tail (starting at h0) of the
test quantity (or the test quantity normalised with a adaptive thresh-
old):

pTQ(x) =
1

µ
e−

x
µ (3.9)

With the false alarm α and the estimated mean value of the expo-
nential distribution µ̂, the threshold J can be chosen as

∫

∞

J

1

µ̂
e

−(x−h0)
µ̂ dx (3.10)

or, if solving the integral

J = h0 − µ̂ ln(α) (3.11)

3.6 Sample Kurtosis

When setting the threshold then it is only the tail of the distribution
that it is of interest. This is because it is only the regions with low
probability that is of interest. If there are values when there is low
probability of finding one, assumed having Gaussian distribution, the
assumption of Gaussian distribution is not correct and therefore the
threshold can not be set to a.

One way of investigate if the distribution of the test quantity is near
Gaussian is to look at the histogram of the test quantity and compare
it with a Gaussian distribution. Another method is to use the sample
kurtosis which is defined as

κ =
E(x − µ)4

σ4
; (3.12)

where E(x) is the expected value of x. Kurtosis is a measure of both
peakedness and tail weight and the interpretation is not straightfor-
ward but one can in most cases look at it as an measurement of the
“flatness” or the “peakness” of the distribution. For a more throughout
explanation of the concept one may look in [3].

The kurtosis of the Gaussian distribution is 3. Distributions that are
more outlier-prone than the Gaussian distribution have kurtosis greater
than 3 and distributions that are less outlier-prone have kurtosis lesser
than 3. Looking at the distribution of a test quantity then the kurtosis
of that test quantity should be no greater than 3.
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3.7 Power Function

When using hypothesis testing described in section 3.2, the null hy-
pothesis H0 should not be rejected when it is true. The mistake to
reject H0 when H0 is true is called TYPE I error and this is the false
alarm rate α.

Similarly, not to reject H0 when the alternative hypothesis H1 is
true is called TYPE II error and is the chance of missed detection
denoted β. The possible faults can be summarised:

TYPE I error - false alarm rate α or 1−α chance of accepting a value
within the acceptable boundaries.

TYPE II error - missed detection β or 1 − β chance of rejecting a
value not within the acceptable boundaries.

and from this the power function h(θ) can be defined as

h(θ) = P (reject H0|θ) = P (T > J |θ) (3.13)

where θ here is a variable that the distribution depends on. With
TYPE I and TYPE II errors in mind, the power function can also be
described as

if θ ∈ H1 then h(θ) = 1 − β(θ)

if θ ∈ H0 then h(θ0) = α

where θ = θ0 when θ ∈ h(0) and θ 6= θ0 otherwise. The critical
region C is chosen as to keep the probabilities of both types of errors
small. However both probabilities can not be arbitrarily small because
a decrease in α results in an in increase in β. Since there is a demand
as for keeping α small, an assignment of the TYPE I error probability
α is done. The search is then for a critical region C of the sample space
so as to minimise the TYPE II error probability for θ.

3.7.1 Estimating the Power Function

The power function h(θ) may be estimated by using simulations since it
is very hard or even impossible to derive the power function analytically.
The method used here is called Monte Carlo simulation and can be
described as follows:

1. An assumption of a distribution of noise in the data is made.

2. The parameter θ is fixed for which h(θ) is calculated.

3. A large amount of data is generated from a Scania truck while
driving.
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4. For this data series, the test quantity TQi is calculated

5. All the n values TQi is collected in a histogram.

6. By using the fixed threshold J, h(θ) can be estimated.

7. Go back to step 2 and fix a new θ.

If not using fixed threshold the same methodology can be used with
the exception of normalisation the test quantity TQ with the adaptive
threshold J(x ).

The power function can be evaluated both for bias faults and for
gain faults. The gain faults will in this thesis be evaluated from -50% to
+50% and the bias fault from -50% to +50% of the mean of the signal
with the exception that the sensor is assumed not to give negative
values.



Chapter 4

A Test Quantity

Algorithm

A test quantity algorithm is proposed. Given measurement data, a
residual is created based on a model of the intake engine. At first,
some of the noise in the signal is reduced. Thereafter, some of the
values are rejected. After that the signal is normalised and the outliers
are disregarded. Finally, it will produce a test quantity TQ which is to
be thresholded.

[y1 y2 ... ym]

[x1 x2 ... xn] Modell

z
Outlier Rejection

r
Noise Reduction

v w
Subset Rejection

Normalisation

Figure 4.1: The test quantity algorithm schematically described.

The algorithm is schematically described in Figure 4.1 where [x1

x2 . . . xn] is the measured data and [y1 y2 . . . ym] is the test quantity
TQ produced. This test quantity shall be thresholded to decide if
there is a fault or not. Firstly there exist measuring data x which
applied to a model produces a residual r. How to choose model is
explained in Chapter 5. Noise is reduced from the signal r, producing
v. How this is done is thoroughly explained in Chapter 6. Some of the
values are thereafter rejected and the remaining values are the signal w.
Which values to reject and how this is done is discussed in Chapter 7.
This signal is furthermore normalised giving z. A discussion about
normalisation can be read in Chapter 8. At the end, outlier rejection is
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20 Chapter 4. A Test Quantity Algorithm

made eventually producing the test quantity y, also denoted TQ. The
outlier rejection algorithm is explained in Chapter 9. This test quantity
TQ is then thresholded. How to threshold is discussed in Chapter 10.
In the following chapters the different signals will be denoted according
the nomenclature described in figure 4.1.

Each block in the algorithm will be thoroughly explained in the
forthcoming chapters and the goal here is to produce both a pragmatic
and a general algorithm that can be easily reused and modified.



Chapter 5

Different Models

There are three different models that is to be examined in this thesis.
These models are two static models and one dynamic model. These
models are described in the following sections in this chapter. All the
models is valid when the EGR is shut off but can be replaced by newer
and better model when they are available.

5.1 Scanias black box model

There has been a development of a model at Scania for the intake of
the system for some times. This model will in this thesis be viewed as
a “black box” which mean that the input and the output of the system
only will be examined without worrying about what is happening inside
the “black box”. This model will be called ScBB. This model is static1

and producing an estimated mass flow in the intake of the system. The
residual, i.e. in this case the difference between the measured mass flow
and the estimated mass flow, will be denoted rScBB .

5.2 The Volumetric Efficiency Model

The measure used to measure the effectiveness of an engines induction
process is the volumetric efficiency, ηvol (see e.g. [4]) . The volumetric
efficiency is defined as the volume flow rate of air into the intake system,
V̇a, divided by the rate at which volume is displaced by the piston, V̇d:

ηvol =
V̇a

V̇d

=
2 · 60RairTboostWe

pboostNengncylVd

(5.1)

1That the model is static means that no old information is included in the model,

the opposite is a dynamic model.
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The estimated mass flow We are then compared with the measured
mass flow in the intake of the system producing a residual:

rSEv = Win − We (5.2)

The volumetric efficiency of the engine can reach values above unity
due to standing waves in the intake manifold but is for the test engine
between 0.89-0.92. The volumetric efficiency is usually displayed in
a 3-D plot depending on number of revolutions, Neng, and the boost
pressure, pboost and this is also the concept that is been using here. The
volumetric efficiency map has been produced by driving in a motor test
cell at Scania.

5.2.1 The Volumetric Efficiency Map

In the model that is being used here, there is a need for a volumetric
efficiency map. The method for producing this map is by driving in a
motor test cell. In this motor test, the load and the engine speed are
changed while the boost pressure, the mass flow of air and the boost
temperature are measured. From these measurement a map is devel-
oped, where the values between the measured values are interpolated.

One problem with the mass flow sensor, Win, that is mounted on
the engine is that there has to be a certain amount of flow of air for
the sensor to work correctly. This amount of air into the intake system
is not always enough so when the amount of air is low, the mass flow
sensor gives far too low values, i.e. in a certain operating range, the
sensor is not working correctly. The operating range was examined in
plots from measured data taken from trucks while driving.

There is much individual variation in the mass flow sensor, Win, for
different trucks. Therefore, it is hard to determine in which region the
mass flow sensor works correctly or the operating range for the mass
flow sensor Win. This means that the operating range for the mass
flow sensor can not be decided from the amount of mass flow. Instead,
it has to be decided from the pressure boost sensor and the engine
speed, which do not vary so much between different individuals. It was
found out that, when the pressure boost sensor, pboost, is between 100-
104 kPa and the engine speed, Neng is between 1000-1500 rpm then
the volumetric efficiency map is not correct. In one of the trucks it
differentiates as much as 55 % from the correct value. The data received
in this operating range is disregarded when further signal processing the
signal.

When running in the motor test cell, there are slightly different con-
ditions compares to, when the engine is placed in a truck. This means
that there need to be some slight adjustment in the map, to gain the
best available model of the engine. There are also unknown individ-
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ual variations between engines and how the sensors are implemented in
different trucks. To examine these individual variations and how much
the motor test cell deviates from the real model, data from more trucks
need to be examined.

When examine the signals from the two trucks, the mean of the
residual of the signals deviated from zero with 0.0186 kg/s respectively
0.0130 kg/s for the two different trucks. Here, the volumetric efficiency
map is compensated for this by multiplying the volumetric efficiency
map with 0.94 or the mean is moved 0.0153 kg/s towards zero. This
is the same as that the assumption is made that the real volumetric
efficiency is 6 % lower than the volumetric efficiency produced in the
test cell.

5.3 Fault Modelling

Power function is a measure of how good the system can detect faults
(see Section 3.7). As described in Section 2.4, there are bias and gain
faults in the signal Win, which will be examined. From (5.1) and (5.2)
the residual can be written accordingly:

rSEv = Win − pboostNengncylVdηvol(pboost, Neng)

2 · 60RairTboost

(5.3)

The volumetric efficiency nvol depends on the boost pressure pboost

and therefore a fault in the mass flow signal ,Win, affects rSEv different
than how a fault in the boost pressure signal affects the residual. This
means that the power function for fault in the boost pressure signal
will be different to the power function for fault in the mass flow signal.
Only power functions for faults in the mass flow sensor is considered
when optimising the test quantity algorithm. The reason for this that
the mass flow signal is the most unreliable signal of the signals in the
engine and it is most probably that there will be a small bias or gain
fault in this signal which need to be detected. This does not mean that
faults in the boost pressure signal and the boost temperature signal can
not be detected, because faults in these signals can be detected. A fault
in either the boost temperature signal. Tboost, and a fault in the boost
pressure signal, pboost will affect rSEv in (5.3). But the algorithm is not
optimised with respect to these signals. Other types of faults in the
engine may also be detected. If e.g. there is a leakage in the intake of
the engine, this fault may affect the pressure boost sensor but not the
mass flow sensor and hence the residual will depart from zero. Exactly
which faults, except fault in Win, that can be detected needs to be
examined further and is out of scope for this thesis.
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5.4 A Dynamic Model

If taken the dynamic of the system into account, an dynamic model can
be used. A dynamic model is produced and analysed in the following
sections.

5.4.1 A Model Based on an Observer

An observer can be used to model the system (For a throughout expla-
nation of the concept observer see e.g. [5]). This observer is derived
accordingly:

The ideal gas law is

pV = mRT (5.4)

and deriving 5.4 applied to the intake system produces the equation

ṗboostVtot = (Win − We)RairTboost (5.5)

where the mass flow, We is

We =
p̂boostNengncylVdηvol(p̂boost, Neng)

2 · 60 · RairTboost

(5.6)

A feedback with the estimated pressure denoted p̂boost minus the
boost pressure gives the observer

˙̂pboost =
RairTboost

Vtot

(Win − We) + K(pboost − p̂boost) (5.7)

where K is a design variable. A residual is then finally computed
as

robs = pboost − p̂boost (5.8)

5.4.2 How K affects the Dynamic Model

Assume that there is a fault in the mass flow sensor. Applying a mass
flow sensor fault δWin in (5.7) the equation

˙̂pboost =
RairTboost

Vtot

(Win + ∆Win − We) + K(pboost − p̂boost) (5.9)

will be given. Assume thereafter steady state, or ˙̂pboost = 0 and
using (5.6) in (5.9). This will give the equation
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0 =
RairTboost

Vtot

(Win + ∆Win) + Kpboost

− (
ncylVd

2 · 60Vtot

Nengηvol(Neng, p̂boost) + K)p̂boost (5.10)

or in another form:

p̂boost =

RairTboost

Vtot
(Win + ∆Win) + Kpboost

K +
ncylVd

2·60Vtot
Nengηvol(Neng, p̂boost)

(5.11)

Now, (5.8) and (5.11) produces the following residual:

robs = pboost −
RairTboost

Vtot
(Win + ∆Win) + Kpboost

K +
ncylVd

2·60Vtot
Nengηvol(Neng, p̂boost)

(5.12)

If there is no fault, i.e. Win = We, for K = 0, (5.12) will be zero.
The absolute value of the difference for the residual when there is a
fault and when there is no fault will be

abs(rfault−rnofault)(K) =

RairTboost

Vtot
∆Win

K +
ncylVd

2·60·Vtot
Nengηvol(Neng, p̂boost)

(5.13)

which has a maximum for K = 0, because K is always larger than
zero. The difference between the residual when there is no fault and
when there is a fault ought to be as large as possible since faults need to
be detected. The free parameter K = 0 shall therefore be used. Notice
that it does not matter if ∆Win is a gain or bias fault in Win, (5.13)
holds for both of these faults.

5.4.3 Step Response of the Dynamic System

How the free parameter K affects how fast the system is hard to know
because the system is not linear. A linearisation of the system will be
given in this section to find out the step response. The step response
is a measure of how fast the system is.

Assume that u = [TboostWin Neng]
T = [u1 u2]

T and y = pboost

and that ηvol is a constant, which is a quite good approximation since
0.89 < ηvol < 0.92. The equation (5.5) can then be written as

˙̂pboost = k1u1 − k2p̂boostu2 (5.14)

where k1 = Rair

Vtot
, ηvol = C (here C is a constant) and k2 =

ncylVdC

2·60Vtot
.
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If this equation evaluates for constant number of revolution , i.e.
Ṅeng = 0, the linear equation

˙̂pboost = k1u1 − k3p̂boost (5.15)

where k3 = k2 · Nconstant is given. It is known (see e.g. [5] page
143) that for linear systems, K is a adjustment between how fast the
system is and how much disturbances affect the system. The higher K
the faster system but also more sensitive to noise. This can be seen in
Figure 5.1 which describes the step response for the dynamic system
in the upper most plot when K = 0 and in the under most plot when
K = 10.
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Figure 5.1: The step response of the dynamic model with a fault of 10%.
The uppermost plot describes the step response when the feedback is
set to zero and the undermost plot describes the step response when
the feedback is set to ten.

5.5 Which Model to Use

It has been shown that in steady state, K = 0 is the optimum choice for
the dynamic model. It is not obvious that this is the optimum choice
when not in steady state but this has not been examined in this thesis.
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In Figure 5.2 the power functions for the static black box model, the
volumetric efficiency model and the dynamic model can be compared.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.2

0.4

0.6

0.8

1

h(
θ g)

θ
g

−0.1 −0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

θ
b

h(
θ b)

Figure 5.2: The power functions for the volumetric efficiency model
(solid), the dynamic model (dashed) and the black box model (dotted).

It can be seen in this figure that of the two static models, rSEv and
rScBB , the volumetric efficiency model is best. When further signal
processing the signal, the static volumetric efficiency model will be
used. The reason for not using the dynamic model is that it takes a lot
of time to simulate the dynamic model. It is worth mentioning that the
dynamic model do not have to be better than the static model when
running the test quantity algorithm described in Chapter 4 just because
the power function for the dynamic model here is better than the power
function for the static model. It should be investigated further, which
model that produces the best test quantity, but it is out of scope for
this thesis.
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Chapter 6

Noise Reduction

In the last chapter, the residual rSEv was constructed and in this chap-
ter the signal r in Figure 4.1 will be examined and the signal v will be
produced.

When examining signals in signal processing, there is often a lot
of noise disturbing the signal. This noise needs to be reduced so the
information in the signal can be obtained. One common method to
reduce the noise in the signal is by low pass filtering the signal and this is
also the method used here. Because the system will be implemented in
a computer, time discrete filters is to be considered. The most common
way of classify time discrete filters is to divide them according to the
impulse response:

1. FIR-filter (Finite-duration Impulse Response)

2. IIR-filter (Infinite-duration Impulse Response)

For a more throughout explanation of time discrete filters see e.g.
[6]. Before deciding which filter to use, it is important to find out how
much data the filter is able to use.

6.1 How Much Old Data to Use

There is a strive to reduce the noise in the signal as much as possible.
One intuitive way is to take the mean of the signal of a very long period
of time. This is because it is only the low frequency differences in the
signal that is of interest. When a fault occur, it is assumed that it
does effect the signal over a long period of time. The high frequency
differences in the signal are of no interest and shall be reduced as much
as possible. Hence, the longer period of time, to take the mean over,
the more high frequency differences are reduced, and the better result.
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Instead of taken the mean of the signal, it can be low pass filtered with
an IIR-filter, with a very low cut off frequency (exactly how to do this
is explained in Section 6.3). Also with the low pass filtering, much data
shall be used to gain the best performance of the system.

How much data can be taken into consideration? When having a
model which only works when the EGR is shut off, the data taken into
consideration can only be data from when the EGR is shut off. The
EGR is shut off one second at a time and therefore only one second
of data can be taken into consideration. When having a model which
works with the EGR, all data can be taken into consideration and the
result may be improved. Hence, there are two cases, one with EGR
and one without.

6.2 FIR-filters

There are certain benefits for choosing FIR-filter compared to IIR-
filters. The benefits are:

1. They are always stable.

2. They can be implemented non recursively, which is a chain of de-
lay elements multiplied with constants and then added together.

3. They have linear phase characteristic.

4. They do not oscillate.

There are however one drawback with FIR-filters and that is they
sometimes tend to have long impulse response and therefore a long time
delay to be effective.

This is a problem only if taken much data into consideration when
low pass filtering it. If there is only one second of data to handle, which
is the time the EGR is shut off, then this is not a problem. The delay
will only be for one second. Consequently, the FIR-filter will be used
in this case. But if taken all the data into consideration, FIR-filter
will not be the optimum choice. Here an IIR-filter is better because it
will have a very short time delay and it will easier be implemented in
software.

To use the FIR filter with a low cut off frequency is almost the same
as taken the mean of the twenty values within the second of data which
can be used. This is also the reason why choosing FIR filter when the
EGR is shut off. The reason for using the FIR filter instead of taken the
mean of the twenty values is because with the FIR filter, the constants
multiplied with the delay elements are not fixed. In this way, the FIR
filter may be improved by changing the cut off frequency, and hence
the constant before the delay elements. Remez algorithm is used when
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designing the FIR-filter. There are however one shortcoming with this
method. Faults, which only happen for small amount of mass flows can
not be detected. This is important to have in mind while reading this
chapter.

6.3 IIR-filters

IIR-filters have infinite impulse response and used here are causal and
stable filters. There exists several methods for optimising the filters
with respect to different constraints (butterworth filter, chebychev filter
etc). Chebychev I filters have fast roll off between pass band and stop
band and was chosen here.

There are several design parameters to choose for IIR-filters. The
first one to be decided is the order of the filter. The aim is to set the
order as low as possible but also have enough element in the filter so
the system’s dynamic correctly can be handled. Three was the choice
here as a good compromise. The cut off frequency has also to be set
correctly and how this frequency was chosen can be seen in Section 6.4.
The last design parameter is to decide how much peak-to-peak ripple
that is allowed in the pass band and 5 dB was chosen here.

The IIR-filter is chosen for the case when the EGR is not shut off.
The reason for this is because IIR-filter is faster that FIR-filter and it
needs less memory in software when implementing the filter.

6.4 The Cut Off Frequency

The signal is assumed to vary slowly. This assumption is made because
the faults is assumed to affect the output during a long time. The cut
off frequency need therefore to be set low and frequencies under 0.15
rad/s is to be considered.

In Figure 6.1, a comparison between the power function for cheby-
chev I filters with different cut-off frequencies can be viewed. The
cut-off frequency was chosen here to 0.00314 rad/s.

For the FIR-filter there can be seen no difference in the power func-
tion for cut-off frequencies of 0.15 rad/s and lower. The cut-off fre-
quency is therefore chosen to be 0.157 rad/s.

6.5 A Comparison Between the Filters

In Figure 6.2 the power function for the different filters applied to the
signal can be compared. Here can be seen that the IIR-filter is best,
the FIR-filter second best and not applying any filter is worst. It is
important to have in mind that the IIR-filter uses more information
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Figure 6.1: Power functions for r. It is shown for different cut-off
frequencies for the IIR-filter. The different cut-off frequencies are 0.157
rad/s (solid), 0.0157 rad/s (dashed), 0.0314 rad/s (dotted) and 0.00157
rad/s (dash dotted).

that the FIR-filter, and therefore has so much better power functions.
The IIR-filter is used when there is a model with EGR and the FIR-
filter is used when there is a model without EGR.

In the following chapters the FIR-filtered signal is used when further
signal processing is made. It is chosen because at this moment the EGR
has to be shut off for the system to work properly.
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Figure 6.2: Power functions for the IIR-filter applied to the signal
(dashed), the FIR-filter applied to the signal (solid) and no filter ap-
plied to the signal (dotted).
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Chapter 7

Subset Rejection

In the test quantity algorithm, the signal v in Figure 4.1will be exam-
ined in this chapter and the signal w will be produced.

Assume that the model is good when the mass of air flowing into the
intake of the engine is high but not so good when the amount of mass
flow is low. Then a criterium can be set to decide when the model is
valid or not based on the amount of mass flow. This means that there
will be a threshold to be set based on the amount of mass flow. If the
mass flow exceeds this threshold, the value is taken into consideration
but if the mass flow does not exceed this threshold, the value will be
disregarded.

If applying this criterium on the signal the result may be improved.
How to do this and the improvement of the result when applying this
criterium will be discussed in this chapter.

7.1 Validation of the Assumption

If setting a criterium of the signal depending on the amount of mass
flow, it is possible to compare the power functions for different criteria
on the mass flow. The power function for the residuals with mass flow
over 0.3 kg/s can e.g. be compared with the power function for the same
residual but with mass flow over 0.4 kg/s. By comparing different power
functions with different criteria applied to them an optimum choice of
the threshold can be obtained.

In Figure 7.1, power functions with different criteria on the signal
can be viewed. It is seen that the power function becomes better when
low mass flow values are disregarded, if comparing to the power function
when not disregard any values. The assumption that the model is
better when the mass of air flowing into the intake of the engine is
high, compares to when the amount of mass flow is low, is therefore
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Figure 7.1: For the signal v, a comparison between not applying any
criteria (solid), the mass flow do not have to exceed 0.35 kg/s (dotted),
0.40 kg/s (dashed) and 0.45 kg/s (dashdotted).

correct.

7.2 Setting the Threshold

The accuracy of the model is as described in Section 7.1 depending on
the amount of air flowing into the intake of the engine. In Figure 7.1,
power functions for different thresholds can be viewed. Here can be
seen that with a higher threshold, the result mostly will be improved.

There is however one limitation on how high the threshold can be
set. The higher threshold set the less values left, and with less values it
may be hard to find values to base the diagnose on. In Figure 7.2 it is
shown how many values in percent that is left for different thresholds.
Consequently, the threshold can not be set too high and 0.35 kg/s was
chosen as a good compromise. The power function is quite good for
this value and there is 28.9% values left.
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Figure 7.2: The figure describes how much values in percent that are
left when applying different threshold values for the mass flow.

7.3 Using Mass Flow as a Test Criterium

When using diagnosis one has to be cautious which signals to use for
deciding when a certain criterium has been met. The criterium W > J
(here J is the threshold and W the mass flow) can not be used because
there is no assurance that the mass flow signal is correct. If this signal
is corrupt, the system can be in a state when there will be no tests at
all, and consequently no faults will be detected. The problem can be
solved accordingly:

If assuming that there will be no more than one fault at a time,
max(We,Win) > J can be used as the test criterium. If using this test
criterium, the system will work even if one sensor is corrupt because We

does not depend on Win (see Section 5.4.1 for the definition of We). If
We (or Win) has a fault resulting in a too low value for the signal, then
the test criterium will hold anyway. The correct signal Win (or We)
will then be equal to max(We,Win) and the correct value of the mass
flow will be used in the test criterium. But if We (or Win) has a fault
resulting in too high value for the signal, the result will be different.
The corrupt value We (or Win) will be equal to max(We,Win). This
value will be higher than the correct mass flow resulting in that less
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data will be disregarded and the system will never come into a state
where there will be no tests.



Chapter 8

Normalisation

In this chapter, the signal w in Figure 4.1 will be examined and the
signal z will be produced.

When thresholding there are two different criteria that needs to be
considered. These criteria is as said in Section 3.7, both to avoid false
alarm and missed detection. When examine the histogram of the signal
w (see Figure 4.1) for different faults, the threshold shall be set to meet
the criteria mentioned in Section 3.3. Exactly how to set the threshold
is further explained in Chapter 10 but ought to both avoid false alarm
and missed detection.

In the uppermost plot in Figure 8.1 the histogram of w for the fault
free case can be seen. Assume that the threshold is set to 0.058 (exactly
how this is done is thoroughly explained in Chapter 10). When there
is a fault, as many bars as possible in the histogram shall exceed that
threshold (0.058 in this case). In the other two plots, in the same figure,
the histogram when there is 20 % fault in the sensor can be viewed.
The second plot describes the histogram of the signal when the mass
flow is between 0.35 kg/s and 0.40 kg/s. The third plot describes the
histogram of the signal when the mass flow exceeds 0.40 kg/s. It can be
seen that for higher amount of mass flow the residual depart from zero
more than for lower amount of mass flow and hence produce a better
result.

A way to take this into consideration is to normalise the residual
with the amount of mass flow.In Section 8.1 there will be a suggestion
of a method of how to normalise the residual. How the normalisation
of the residual will be affected by a gain fault will be examined in
Section 8.2 and how it will be affected by a bias fault in Section 8.3.
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Figure 8.1: Histogram for different faults for signal w. The first plot
has no fault, the second plot has 20 % fault but only signals where the
mass flow is between 0.35 kg/s and 0.40 kg/s is considered. The third
plot has also a 20 % fault but here mass flow that exceeds 0.40 kg/s is
considered.

8.1 A Method for Normalisation

The idea is that the absolute value of the mass flow of air coming into
the system decides the value of the threshold. If J is the threshold and
w is the residual used (see Chapter 4), the following inequity holds for
a no fault system:

abs(w) < J(Win) (8.1)

In (8.1) there is an adaptive threshold. If dividing the left side of
(8.1) with a function which depends on the mass flow, a fixed threshold
will be obtained (this function is the normalisation quantity). This is
desirable, because then power functions can be used as a performance
measure for the signal, which is not possible for adaptive thresholds.

It is however not possible to let the normalisation quantity depend
only on the measured mass flow Win, because this signal may be cor-
rupt. If assuming that there will not occur two faults in two different
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sensors at the same time, the following normalisation quantity is pro-
posed:

Wnorm(pboost, Tboost, Neng,Win) = min(We,Win) (8.2)

This holds because the estimated mass flow depends on pboost, Tboost

and Neng. If Win (or We) has a fault resulting in a too high value
for this signal, the normalisation quantity Wnorm will be equal to the
correct signal We (or Win), and the normalisation will work correctly.
If Win (or We) has a fault resulting in a too low value for this signal,
the normalisation quantity Wnorm will be equal to the corrupt value
Win (or We). This is however not a problem here. This is because
there will be a division with a value which is too low, resulting in too
high value for the residual. But one signal was corrupt so there is a
fault that needs to be detected. It is desirable to have a large residual
when there is a fault. The residual shall be large when there is a fault.
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Figure 8.2: In the uppermost plot the abs(rnorm) with respect to θ can
be viewed. In the second plot the abs(rnonorm) for different mass flow
can be viewed. Mass flow of 0.35 kg/s (solid), 0.40 kg/s (dotted), 0.45
kg/s and 0.50 kg/s can be compared.
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8.2 Normalisation Affected by Gain Fault

For gain fault, a comparison between not using the normalisation and
using normalisation may be made accordingly:

Assume, there is a gain fault in the signal, the residual will depend
on the gain fault θg accordingly:

rnorm =
Win − We

min(We,Win)
=

θgW − W

min(θgW,W )
=

{

θg − 1 if θg > 1
θg−1

θg
if θg ≤ 1

(8.3)

If not normalised, the residual will depend on the mass flow accord-
ing to

rnonorm = Win − We = (θg − 1)W (8.4)

and the plot of the abs(r) for equation (8.3) and (8.4) for different
amounts of mass flow can be seen in Figure 8.2 . In this figure, it is
important to notice that it is not a power function that is plotted and
what can be seen on y-axe is not important. What can be seen in
the plot is that the residual without the normalisation quantity depart
from zero different much depending on the amount of mass flow. This
is not so good because the residual shall not depend on the amount of
mass flow. If the residual when the amount of mass flow is low, do not
depart from zero, when there is a fault, as much as the residual depart
from zero when the mass flow is high, it will be harder to detect faults.
It can also be seen in the figure that the residual with the normalisation
quantity do not depend on the amount of mass flow, which is better.

8.3 Normalisation Affected by Bias Fault

When consider bias fault, the conclusion is different. First the residual
with the normalisation factor is to be considered:

rnorm =
Win − We

min(We,Win)
=

(W + θb) − W

min(W + θb,W )
=

{

θb

W
if θ > 0

θb

θb+W
if θb ≤ 0

(8.5)
Then the residual without the normalisation factor:

rnonorm = (W + θb) − W = θb (8.6)

The plot of the abs(r) for equation (8.5) and (8.6) for different
amounts of mass flow can be seen in Figure 8.3. In this figure, it is
important to notice that it is not a power function that is plotted and
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Figure 8.3: In the uppermost plot the abs(rnorm) for different mass
flow can be viewed. In the second plot the abs(rnonorm) can be viewed.
Mass flow of 0.35 kg/s (solid), 0.40 kg/s (dotted), 0.45 kg/s (dashed)
and 0.50 kg/s (dashdotted) is compared in the first plot.

what can be seen on y-axe is not important. What can be seen in the
plot is that the residual with the normalisation quantity depart from
zero different much depending on the amount of mass flow. This is not
so good because the residual shall not depend on the amount of mass
flow. If the residual when the amount of mass flow is low, do not depart
from zero, when there is a fault, as much as the residual depart from
zero when the mass flow is high, it will be harder to detect faults. It can
also be seen in the figure that the residual without the normalisation
quantity do not depend on the amount of mass flow, which is better.

8.4 Result of Normalisation

It can be seen in Figure 8.4 that the normalisation of the signal w do not
improve the result, it mostly deteriorates the result. The improvement
of the result described in Section 8.2 can not be seen in the upper most
plot in Figure 8.4. The normalisation of the residual do not improve the
power function for gain fault and the assumption made in the beginning
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Figure 8.4: A comparison between not using the normalisation quantity
(solid) and using normalisation (dashed) can be seen.

of this chapter do not hold. The normalisation do not improve the result
and the assumption that the signal w depend on the amount of mass
flow is not correct.

As can be seen in the under most plot in Figure 8.4 the power
function for bias fault will become much worse. The deterioration of
the result described in Section 8.3 is much and normalisation with the
normalisation quantity (8.2) shall not be used.

It may though exist normalisation factors which do improve the
result, but it is out of scope for this thesis to examine any further
normalisation quantities.



Chapter 9

Outlier Rejection

In the test quantity algorithm, the signal z in Figure 4.1will be exam-
ined in this chapter and the signal y will be produced.

The histogram for the fault free signal z can be viewed in the upper-
most plot in Figure 9.2. It can be seen that this signal is quite outlier
prone, resulting in a high false alarm rate. In the second plot in the
same figure, there is the histogram from the same signal but with a
20 % gain fault. Here, the signal is also outlier prone, resulting in a
high missed detection rate. There are a need to keep the false alarm
and missed detection rate low (see Section 3.3 and Section 3.4) and by
rejecting the outliers in the histograms the result may be improved. An
outlier rejection algorithm is proposed which will make the histograms
less outlier prone. This algorithm is made accordingly:

1. Because the OBD test holds for ten minutes, there are ten min-
utes of data to use. Divide the length of this ten minutes in ten
equidistant parts of one minute each.

2. Within every period, wait until the system is in a state where the
mass flow of air coming into the intake of the air is sufficiently
large (see Chapter 7). When the system is in this state, do a
subtest. This subtest holds for one second. If the system never
will be in this state, neglect this subtest.

3. Reject some of the noise in the signal (see Chapter 6).

4. After ten time periods, take the median of the absolute value of
the values within each measurement series, i.e. the result of all
the subtests, and reject each value which divert from the median
more than 20 %.

5. If there is lesser than four remaining values, then the test is not
to be considered reliable and there can be no conclusion of an
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alarm.

6. The mean value of the remaining values in each measurement
series produces the test quantity.

The aim for this algorithm is to reject the outliers of the signal
and produce a better overall performance. Notice that it is assumed
that the signal z do not depend on the amount of mass flow. That the
signal w do not depend on the amount of mass flow was the conclusion
of Chapter 8 (see Section 8.4) and hence there is no normalisation of
the signal w. Without normalisation, the signal w is equal to the signal
z and the conclusion of Chapter 8 holds here too. This is important
for point four in the algorithm to work correctly. If the signal z do not
depend on the amount of mass flow, there will not just be e.g. signals
with high amount of mass flow that is disregarded and faults in this
region can be detected.
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Figure 9.1: Power functions for the signal y (solid) and the signal z

(dotted).

The Figure 9.3 describes the histogram after the outlier rejection
algorithm is applied. The first plot describes the fault free case and
the second plot describe the histogram when there is a 20% gain fault.
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Here, most of the outliers are rejected and the result is improved if
compare to Figure 9.3.

That the overall performance is improved can also be seen in Fig-
ure 9.1. The power functions for the signal is improved and smaller
faults in the sensor can be detected when applying this outlier rejec-
tion algorithm.

9.1 Individual Variations

As can be seen in Figure 9.3, there are some data which is situated
far from where most of the data is situated. There are a lot of bars
around 0.04 in the third plot and around 0.07 in the fourth plot. This
deteriorates the result. These data comes from different startup of
trucks. If the variation in the different start ups can be handled, the
result can be improved significantly. This is though out of scope for
this thesis but may be investigated further.
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Figure 9.2: The first plot describes the histogram for the fault free
signal z and in the second plot, there is a 20 % gain fault.
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Figure 9.3: The first plot describes the histogram for the fault free
signal y. In the second plot, there is a 20 % gain fault.
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Chapter 10

Thresholding

When thresholding the data, parametric methods will be used due to
low false alarm rates (see Section 3.5). There are two methods that can
be used to set the threshold. The first is assuming gaussian distribution
and the second is the tail distribution estimation.

10.1 Assume Gaussian Distribution

Assume having gaussian distribution and estimate the data to that
distribution gives an estimated mean value and variance of µ̂ and σ̂
respectively (see Section 3.5.1). If using equation (3.8) and the specified
false alarm rate in Section 3.3, the threshold Jgauss = 0.041 will be
given. The estimated gaussian distribution for the signal y can be seen
in Figure 10.1.

When examine the distribution in Figure 10.1 one may notice that
the real distribution is not gaussian distributed. In the tail of the
distribution there is a lot of bars of data which exceed the estimated
gaussian distribution. The signal y has also a kurtosis of 4.13 which
indicate that the distribution is more outlier prone that the gaussian
distribution (see Section 3.6). All this indicates that the threshold
that will be set based on the assumption of the gaussian distribution
probably is not so good.

10.2 Tail Distribution Estimation

The tail distribution theory described in Section 3.5.2 can be used to
set the threshold. An exponential distribution is adapted to the tail
of the distribution starting at h0 = 0.04. The estimated mean value
is µ̂ = 0.0036 and the threshold is set, using (3.11) and the specified
false alarm rate in Section 3.3, to J = 0, 0566. Here, there is not so
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Figure 10.1: Histogram and gaussian distribution for y. The two plots
describes the same histogram with different scales.

many bars which exceeds the estimated tail distribution and hence it
is a better estimation than the gaussian distribution.

To find out how small faults that can be detected, an exponential
distribution is adapted to the tail of the distribution when there is a
fault applied to the signal. With the specified missed detection rate in
Section 3.4 and the threshold J = 0.0566 it can be found out how small
faults that can be detected.

In each plot in Figure 10.2, the histogram for the fault free signal
and the signal with the smallest fault that can be detected, can be
seen. The adapted exponential distribution can also be viewed in these
plots. There are four types of fault that can be detected and each fault
are plotted in each figure. In the first plot the fault free signal and a
signal with a positive gain fault of 20% is plotted. In the second plot,
a negative gain fault of 30% is plotted. In the third plot a positive bias
fault is plotted. In the fourth plot a negative bias fault is plotted.

In this figure it can be seen that most of the bars in the histogram do
not exceed the adapted exponential distribution, indicating that this
estimation is quite good. In Figure 10.2, it can also be seen that a
positive gain fault of 20%, a negative gain fault of 30%, a positive bias
fault of 0.11 kg/s (remember that Win varies between 0.05-0.5 kg/s)
and a negative bias fault of 0.09 kg/s can be detected.
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Figure 10.2: Histogram for the fault free signal y and the signal y with
a fault applied to it.
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Chapter 11

Conclusions

The objective with the thesis is to construct a test quantity in a model
based diagnostic test which shall be thresholded. There is an algorithm
constructed which produces this test quantity. Data has been used for
over 17 hours of driving in two separate trucks and a lot of start ups.
There is stringent condition on false alarm rate and missed detection
rate and statistical methods are used because of this. The models
examine in this thesis only work when the EGR is shut off and the
EGR is allowed to be shut off only ten seconds each ten minutes. This
complicates the process a lot and makes it hard be able to detect small
faults. The test quantity algorithm produced in this thesis consists
of several “blocks” which each and on (except one block) improve the
result.

11.1 Accomplishments

In this thesis, there are especially two of these “blocks” that improves
the result much. The first of these blocks is the subset rejection. In this
block, values are rejected when the mass flow is larger than a certain
threshold. The result is improved significantly and it is shown that the
model used, i.e. the volumetric efficiency model, is not good for low
mass flows.

The second block which improve the result a lot is the outliers
rejection block. This block consists of an algorithm which reject the
outliers in the residual and also improve the result significantly. Here
can also be seen why the result is not so good. The individual variations
in the different start ups of the trucks is large and deteriorates the
result a lot. If this individual variations can be solved, the result will
be improved a lot.

The result with this test quantity algorithm is that it is with a false
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alarm rate of 0.01 and a missed detection rate of 0.0025, it is possible
to detect a positive gain fault in the mass flow sensor of 20% a negative
gain fault in the same sensor of 30%. It is also possible to detect bias
fault in the mass flow sensor. Here the result was 0.09 kg/s and 0.11
kg/s respectively (the mass flow signal varies between 0.05 kg/s to 0.5
kg/s).

11.2 Future Challenges

There are several things needed to investigate to further improve the
result. The individual variations between different engines and differ-
ent start ups of these engines need to be investigated further. The
individual variations deteriorates the result a lot and if this could be
handled in a good way the result may be improved significantly.

There is a need for a model that works with the EGR, and if having
a model with the EGR, it would certainly improve the result. It would
also be interested to run an engine in an OBD cycle, with a fault
implemented to validate the diagnosis system produced. There are
also other things worth looking at. To examine the dynamic model
and other kind of normalisation vectors. Faults in other signals such
as the boost pressure signal the boost temperature signal may also be
examined.
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1994.

57



58



Notation

Symbols used in the report.

Nomenclature

Symbol Quantity Unit
ncyl Number of cylinders −
Neng Engine speed RPM
pboost Boost pressure Pa
p̂boost Estimated boost pressure Pa
RAir Gas constant for air J/(kg · K)
Tboost Boost Temperature K
Teng Engine Temperature K
Vd Displacement volume m3

Vtot Total volume in intake system m3

V̂a Volume flow rate of air into the intake system m3/s

V̂d Volume flow rate of air displaced by the piston m3/s
Wbb Estimated massflow of air from the black box model kg/s
We Estimated massflow of air into the cylinders kg/s
Win Massflow of air into the intake system kg/s
ηvol Volumetric efficiency −

Operators

Operator Explanation
∪ cup
∩ cap
6= not equal to
∈ in
/∈ not in
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Abbreviations

Abbreviation Explanation
EGR Exhaust Gas Recirculation
NOx Nitrogen-oxide
OBD On Board Diagnostics
SI Spark Ignited
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