
Hard Realtime Rapid Prototyping

Development Platform

Master’s thesis
performed in Vehicular Systems

by
Christer Rosenquist

Reg nr: LiTH-ISY-EX-3377-2003

15th September 2003

Hard Realtime Rapid Prototyping

Development Platform

Master’s thesis

performed in Vehicular Systems,
Dept. of Electrical Engineering

at Linköpings universitet

by Christer Rosenquist

Reg nr: LiTH-ISY-EX-3377-2003

Supervisor: Ph.D. student Per Andersson
Linköpings Universitet

Examiner: Associate professor Lars Eriksson
Linköpings Universitet

Linköping, 15th September 2003

Avdelning, Institution

Division, Department
Datum

Date

Spr̊ak

Language

¤ Svenska/Swedish

¤ Engelska/English

¤

Rapporttyp

Report category

¤ Licentiatavhandling

¤ Examensarbete

¤ C-uppsats

¤ D-uppsats

¤ Övrig rapport

¤

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer

Title of series, numbering
ISSN

Titel

Title

Författare

Author

Sammanfattning

Abstract

Nyckelord

Keywords

Matlab Simulink is a commonly used tool in the design process of
control systems. To further take advantage of the Matlab Simulink
models it is desirable to translate them for realtime use together with
the possibility to read/write physical signals.
Real-Time Workshop is an extension to Simulink that automatically

generates code from a model to a variety of target platforms. RTAI and
RTLinux are hard realtime operating systems, making use of Linux.
To make automatically generated code run on RTAI and RTLinux

an adaptation of the generation of code is necessary.
To control, for example, an automotive engine a data acquisition card

with an appropriate device driver is required. Comedi, an open source
project, provides a number of device drivers for data acquisition cards.
The developed system makes use of Simulink, Real-Time Workshop,

RTAI or RTLinux, and the standard data acquisition card NI 6035E
using a Comedi device driver. The Simulink models may be executed
at frequencies up to 50 kHz on ordinary PC hardware.
The evaluation of the system consisted of measuring the inter-

rupt latency of the used motherboard’s bus, measuring computation
times running Simulink models with known complexity, running mod-
els developed at Vehicular Systems and a comparison of interfacing
Simulink/Real-Time Workshop between RTAI and RTLinux.
The recommended realtime operating system is RTAI due to the open

source community support of it as a target platform for Real-Time
Workshop.

Vehicular Systems,
Dept. of Electrical Engineering
581 83 Linköping

15th September 2003

—

LITH-ISY-EX-3377-2003

—

http://www.vehicular.isy.liu.se
http://www.ep.liu.se/exjobb/isy/2003/3377/

15th September 2003

Hard Realtime Rapid Prototyping Development Platform

Utvecklingsplattform för snabb framtagning av prototyper för h̊ard re-
altidsexekvering

Christer Rosenquist

××

rapid prototyping, hard realtime, RTLinux, RTAI, Simulink, Real-Time
Workshop

Abstract

Matlab Simulink is a commonly used tool in the design process of con-
trol systems. To further take advantage of the Matlab Simulink models
it is desirable to translate them for realtime use together with the pos-
sibility to read/write physical signals.

Real-Time Workshop is an extension to Simulink that automatically
generates code from a model to a variety of target platforms. RTAI and
RTLinux are hard realtime operating systems, making use of Linux.

To make automatically generated code run on RTAI and RTLinux
an adaptation of the generation of code is necessary.

To control, for example, an automotive engine a data acquisition
card with an appropriate device driver is required. Comedi, an open
source project, provides a number of device drivers for data acquisition
cards.

The developed system makes use of Simulink, Real-Time Workshop,
RTAI or RTLinux, and the standard data acquisition card NI 6035E
using a Comedi device driver. The Simulink models may be executed
at frequencies up to 50 kHz on ordinary PC hardware.

The evaluation of the system consisted of measuring the inter-
rupt latency of the used motherboard’s bus, measuring computation
times running Simulink models with known complexity, running mod-
els developed at Vehicular Systems and a comparison of interfacing
Simulink/Real-Time Workshop between RTAI and RTLinux.

The recommended realtime operating system is RTAI due to the
open source community support of it as a target platform for Real-
Time Workshop.

Keywords: rapid prototyping, hard realtime, RTLinux, RTAI, Simulink,
Real-Time Workshop

v

Preface

This master’s thesis has been performed in Vehicular Systems, Depart-
ment of Electrical Engineering at Linköpings Universitet, winter/spring
2002/2003.

Acknowledgment

I would like to thank my supervisor Per Andersson for his support dur-
ing the work and the enjoying times in Vehicular Systems automotive
engine laboratory. I would also like to thank Erik Sunneg̊ardh and An-
dreas Bergström for their interest in making the necessary changes to
their models to make them run on the developed system, and
Martin Gunnarsson for helping out in the laboratory.

Last, but not least, a thank to the master of science students
Emma Strömberg, Andreas Bergström, Carl-Adam Torbjörnsson and
Johan Gill and the research engineer Erik Sunneg̊ardh for interesting
discussions about most from feminism to second Gulf war.

The very last thank goes to Wei Hing Ip for delaying my work in a
most pleasant way.

vi

Contents

Abstract v

Preface and Acknowledgment vii

1 Introduction 1
1.1 Objectives . 1
1.2 Methods . 1
1.3 Specifications . 2
1.4 Reader’s Guide . 2
1.5 Thesis outline . 2

2 System Analysis for Rapid Prototyping 3
2.1 Hard Realtime Linux . 5

2.1.1 RTLinux . 6
2.1.2 RTAI . 8

2.2 Real-Time Workshop . 8
2.2.1 Targeting RTLinux 8
2.2.2 Targeting RTAI 8

2.3 Device Drivers . 9
2.3.1 Comedi . 9

3 Development of Prototyping System 11
3.1 System Components . 12
3.2 Real-Time Workshop . 13

3.2.1 Target Language Compiler 14
3.2.2 Template Makefiles 14
3.2.3 External Mode 14
3.2.4 C API . 14

3.3 Targeting RTLinux . 14
3.3.1 STRTL . 15
3.3.2 STRTL M6.5 . 16

3.4 Targeting RTAI . 19
3.5 Device Driver Blocks in Simulink 19

vii

4 Evaluation of Prototyping System 25
4.1 Bus Interrupt Latency 26

4.1.1 Results . 26
4.2 Computation Times . 26

4.2.1 Measuring . 27
4.2.2 Algorithms . 27
4.2.3 Results . 28

4.3 Simulink Test Applications 30
4.3.1 Cylinder Air-Mass Flow Observer 31
4.3.2 Adaptive Catalyst Model for Control 32
4.3.3 Modeling and Control of Torque in an Engine . . 32
4.3.4 Results . 32

4.4 Comparison of RTAI and RTLinux Interfaces 33

5 Conclusions 35
5.1 Future advice . 36

References 37

Notation 41

A Hardware 43

B Software 45

C External Mode Configuration and Execution 47
C.1 Setting Up the Model 47
C.2 Generating Code . 48
C.3 Running the Application 49

D Installation 51
D.1 System . 51
D.2 Installation of Simulink Target for RTLinux 52
D.3 Comedi . 53

E Frequently Asked Questions 55
E.1 STRTL M6.5 . 55
E.2 RTW-RTAI-4.65.3 . 55
E.3 rtailab-24.1.11-pre2 . 56

F Test Code 57
F.1 Modified rt proc.c . 57
F.2 Logging of Computation Times 58
F.3 Bubble Sort . 59
F.4 Bubble Sort + Floating Point Operations 59

viii

Chapter 1

Introduction

Since some years back Vehicular Systems, Department of Electrical
Engineering at Linköpings Universitet (from now on simplified to Ve-
hicular Systems), have sought for the possibility to evaluate models
and control systems in hard realtime at higher sample rates than 20
Hz; their former, R.I.P.1, DOS founded hard realtime system degraded
since the creator and maintainer of it disappeared and there was a
change of hardware in the laboratory.

This master’s thesis is an attempt to overcome this shortage, to
develop a system with enhanced execution frequency, faster turnaround
time, and more maintainable and extendable properties.

1.1 Objectives

The objectives are:

• Evaluate the means to realize a hard realtime rapid prototyp-
ing development platform, to support Vehicular Systems in their
research on modeling and control of the automotive engine.

• Implement a rapid prototyping hard realtime system.

1.2 Methods

Internet will be used as the main source of information. To reuse as
much work already done in suitable areas will be a leading motive.

1Rest In Peace.

1

2 Introduction

1.3 Specifications

The system will consist of or be able to:

• an interface to Matlab/Simulink

• execution of Simulink models in hard realtime

• high execution frequency, i.e. at least 5 kHz

• ordinary PC hardware

• standard data acquisition card, e.g. NI 6035E

• extending the system with more hardware, in particular to use a
CAN bus

1.4 Reader’s Guide

For a user of the system Chapter 3 and the introduction of Chapter 2
would be enough reading, together with some of the Appendices. The
reader interested in more details of the system is recommended to read
all chapters.

1.5 Thesis outline

A summary of the chapters:

Chapter 1: Introduction Gives a brief introduction to why, how
and what will be achieved.

Chapter 2: System Analysis for Rapid Prototyping An analy-
sis of the components needed is covered.

Chapter 3: Development of Prototyping System The structure
of the developed systems is explained; software used, dependen-
cies, etc.

Chapter 4: Evaluation of Prototyping System Using performance
metrics, the system is evaluated with respect to interrupt laten-
cies and execution times.

Chapter 5: Conclusions Conclusions and future advice.

Notation Descriptions of acronyms used and some definitions.

Chapter 2

System Analysis for

Rapid Prototyping

In developing models and control systems it is a tedious work converting
the model and/or control system into source code. A way to hasten this
process would be to automatically generate source code, see Figure 2.1.

A development platform for rapid prototyping may consist of:

• a modeling tool

• a simulation tool

• an automatic code generator

• a hard realtime platform

- computer hardware

- data acquisition hardware

- hard realtime operating system

- device drivers

For modeling and simulation the Matlab toolbox Simulink is well
known and used. Real-Time Workshop, an additional toolbox for
Simulink, is a general automatic code generator of Simulink block dia-
grams. The number of targets1 supported by Real-Time Workshop is
limited, so an adaptation of the automatically generated source code
must be done.

There are limitations to Simulink models proposed by Real-Time
Workshop:

1A target is an environment – hardware or operating system – on which the
generated code will run.

3

4 Chapter 2. System Analysis for Rapid Prototyping

Run simulations

Create/edit model

Analyze results

Are
results

ok?

No

Yes

Implementation

Execute on target platform

Analyze results

No

Yes

Are
results

ok?

Automatic code generation

Adaption of model to RTW

Figure 2.1: Rapid prototyping development process.

Operators Not Allowed : ˆ .ˆ {} . \ .\ ′ .′ ; ,

Unsupported Blocks The S-function format does not support the
following built-in-blocks:

• Matlab Fcn Block

• S-function blocks containing any of the following:

- M-file S-functions

- Fortran S-functions

- C MEX S-functions that call into Matlab

• Scope block

• To Workspace block

Limitations of External Mode External mode2 does not support

2In external mode, Real-Time Workshop establishes a communications link be-
tween a model running in Simulink and code executing on a target system. The
system Simulink exists on and the target system may be different systems.

2.1. Hard Realtime Linux 5

changing a parameter that results in a change in the structure of
a model. For example, the following is not changeable:

• the number of states, inputs or outputs of any block

• the sample time or the number of sample times

• the integration algorithm for continuous systems

• the name of the model or of any block

• the parameters to the Fcn block

If any of these changes were made to the block diagram, new code
must be generated and compiled.

As computer hardware, an ordinary PC will be used, see Appendix A.
For the hard realtime execution two operating systems will be evalu-
ated, RTLinux and RTAI. In addition, means to measure and control
physical signals will be needed.

Beside executing code in hard realtime, storing data in files is a
necessity to be able to analyze results after execution.

To use Microsoft Windows NT as a hard realtime operating sys-
tem is not possible due to that the latencies imposed by the operating
system is not deterministic [1].

2.1 Hard Realtime Linux

Linux is a full-featured UNIX implementation. The main design crite-
rion of the Linux kernel is throughput, while realtime and predictability
is not an issue. The main thing making Linux not realtime is the none
preemptible kernel.

From the very first version of Linux the scheduler was realtime
POSIX3 compatible, e.g. it supports fixed priority (SCHED FIFO)
policy, which is the base feature to build a realtime system. POSIX
offer several advantages: POSIX is a real standard, not an effort to
lock customers into a proprietary API; and POSIX is widely known
and well documented

On systems using virtual memory it is not possible to build realtime
applications due to the random and long delays when RAM is swapped
in and out from the hard drive. To circumvent this problem Linux
provides the mlock() and mlockall() functions to disable paging for
a specified range of memory, or for an entire process [2].

3Portable Operating System Interface for Unix. POSIX is an IEEE
standard. Current Linux implementation of POSIX threads (POSIX
1003.1c) is based on the work of Xavaier Leroy, known as LinuxThreads.
See http://pauillac.inria.fr/∼xleroy/linuxthreads/

6 Chapter 2. System Analysis for Rapid Prototyping

To provide realtime services within Linux systems4, there are two
main approaches:

Preemption Improvement Preemption improvement makes modi-
fications to the Linux kernel code to reduce the amount of time
the kernel spends in none preemptible sections of code. This ap-
proach can only be used for soft realtime, and is used e.g. by
TimeSys and KURT.

Interrupt Abstraction Interrupt abstraction uses a separate sched-
uler and makes the entire kernel preemptible by having a hard-
ware abstraction layer with complete control over the hardware
interrupts, and simulate the interrupts to the Linux kernel, allow-
ing the kernel to run unmodified on the realtime scheduler, and
as the lowest priority task, alongside the realtime tasks [4]. This
is the approach taken by e.g. RTAI and RTLinux.

2.1.1 RTLinux

RTLinux is a hard realtime operating system. The design is based
on the concept of the virtual machine [5]. By modifying a standard
operating system to act as a base kernel in a system where control is
shared with a realtime kernel, both realtime and the richness of the
standard operating system is achieved, see Figure 2.2 and Figure 2.3.

Interrupt Control
Hardware

User Processes

Device Control
Hardware

Realtime Task_1 Realtime Task_n Linux
Interrupt Handlers

Realtime Executive

Standard Linux
Kernel

(Base Kernel)

Figure 2.2: The structure of RTLinux. The realtime executive has no
superior control of the interrupt control hardware implying the hard-
ware latencies solely depend on the hardware. Linux itself is executing
as a thread with the lowest priority, and all interrupts in the Linux
interrupt handlers are soft interrupts, making Linux completely pre-
emptible

4There are a number of ongoing realtime operating system projects making use
of Linux [3].

2.1. Hard Realtime Linux 7

The modification consists of emulation code that intercepts com-
mands to enable and disable interrupts. The emulation prevents the
base kernel from delaying hardware interrupts. Interrupts to the base
kernel are passed through the emulation software after all realtime
work is carried out. This makes the modifications of the base kernel
small5 [6].

RTLinux treats the base kernel as the task with the lowest priority,
executing only when there are no realtime tasks to run.

RTLinux decouples the mechanisms of the realtime kernel
from the mechanisms of the general purpose kernel so that
each can be optimized independently and so that the real-
time kernel can be kept small and simple [7].

The means for tasks to communicate, either between realtime tasks or
between a realtime task and a Linux process, is through special FIFOs
or via shared memory. The RTLinux provided schedulers are an earliest
deadline first [8] and a rate-monotonic scheduler6. Other Scheduling
schemes have been implemented [9].

The RTLinux API conforms to the POSIX 1003.13 ”Minimal Real-
time System Profile” (PSE51) [10].

Task
Realtime

Task
Realtime

Process
Linux

Process
Linux

Interrupt Control Hardware

Realtime Kernel

Kernel Space

User Space

Realtime FIFO

Standard Linux Kernel
(Base Kernel)

Figure 2.3: Flow of data and control. Ordinary Linux processes exe-
cutes in user space, a protected environment, while the Linux kernel
and the realtime tasks executes in kernel space, without protection
against programming errors. Linux processes and realtime tasks com-
municates, e.g., via realtime FIFOs.

5There is primarily three modifications to the base kernel: the cli routine to
disable interrupts, the sti routine to enable interrupts, and third the low level
”wrapper” routines, which save and restore state around calls to handlers.

6The rate-monotonic scheduler is implemented by Oleg Subbotin (see the
rtlinux.org homepage).

8 Chapter 2. System Analysis for Rapid Prototyping

2.1.2 RTAI

RTAI is founded on RTLinux, but its development is detached from
RTLinux and has taken a different direction [11]. The main difference
is RTAI’s much broader API, trying to serve the programmers need in
as many cases as possible; where RTLinux like to keep their API as
small and clean as possible. The fundamental workings are, however,
the same, so the overall description of RTLinux applies to RTAI as well.

2.2 Real-Time Workshop

Real-Time Workshop is capable of generating customizable ANSI C
code directly from Simulink models using point-and-click interactions.
Generated code can run on PC hardware, DSPs, microcontrollers on
bare-board environments, and with commercial, proprietary or open
source realtime operating systems [12].

To targeting7 Real-Time Workshop generated code for a specific
platform some work is usually needed. A common way to achieve this
is to modify an already existing targeting system.

2.2.1 Targeting RTLinux

A previous work targeting RTLinux has already been performed, using
an older version of Real-Time Workshop [13]. The work is an outcome
of a PhD research project undertaken at Glasgow Caledonian Univer-
sity. The project was initiated to allow remote monitoring of realtime
control experiments. The main goal was to set up a realtime platform
for students to test control algorithms.

The work lacks device driver support of the data acquisition card
used in this project, see section Device Drivers. It does not support
the latest, at the moment of writing, Matlab version. An adaptation
to the latest Matlab will be investigated.

2.2.2 Targeting RTAI

A work targeting RTAI is made available by Roberto Bucher, University
of Applied Sciences of Southern Switzerland [14]. The work supports
the Matlab version used in this project.

The work lacks device driver support of the data acquisition card
used in this project, see section Device drivers.

7The process of specifying an environment, a target, is called targeting.

2.3. Device Drivers 9

2.3 Device Drivers

To be able to communicate with hardware in a decent way, device
drivers are needed.

A device driver is a piece of software that interfaces a par-
ticular piece of hardware: a printer, a sound card, a mo-
tor drive, etc. It translates the primitive, device-dependent
commands with which the hardware manufacturer want you
to configure, read and write the electronics of the hardware
interface into more abstract and generic function calls and
data structures for the application programmer [15].

There are three possibilities to get a device driver:

• the manufacturer of the device supply one.

• get it elsewhere.

• writing a device driver from scratch.

The best case is the manufacturer supplying a device driver and the
worst case is writing a device driver from scratch. With the used data
acquisition card, the first possibility is lost.

At the moment, not many manufacturers of cards for measurement
and control purposes supply device drivers for Linux. But thanks to
the open source community, this is no longer a problem. The Comedi
project8 supply a lot of device drivers in this area, and among them the
data acquisition card used here, the National Instruments NI 6035E.
See the RTAI homepage, www.rtai.org, for supported hardware.

2.3.1 Comedi

The Comedi project develops open source drivers, tools, and libraries
for data acquisition in Linux. Comedi supports realtime Linux, using
the same interface provided by the user space library.

8www.comedi.org

10

Chapter 3

Development of

Prototyping System

The main part of developing the system consists of targeting the au-
tomatically Real-Time Workshop generated code to the hard realtime
operating systems RTLinux and RTAI. In addition, how to make the
device driver for the used data acquisition card a building block in
Simulink will be explained. See Figure 3.1.

Simulink

Real−Time Workshop

Targeting a Platform

Target Platform

Device Drivers

Hardware

Figure 3.1: A way of viewing the system components and their relations
to each other. Target platforms will be RTLinux or RTAI. The target-
ing of a platform is the conforming of the automatically Real-Time
Workshop generated code to a specific platform.

11

12 Chapter 3. Development of Prototyping System

3.1 System Components

The software resides on the computer bristol.isy.liu.se and is organized
under the directory /home/Realtime/, see Figure 3.2. It consists of
software packages, configuration files and RPMs1. For hardware used
see Appendix A.

STRTL_M6.5

RTW−RTAI−4.65.3

/home/Realtime/

linux−realtime−extensions

dot−config−files

rpms

comedi

linux−kernels

Figure 3.2: The directory structure of the software packages and con-
figuration files.

RTW-RTAI-4.65.3 Source code for targeting the Real-Time Work-
shop generated code for RTAI.

STRTL M6.5 Source code for targeting the Real-Time Workshop
generated code for RTLinux.

linux-realtime-extensions Source code for RTLinux and RTAI. The
directory contains two compressed tarball2 files:

• rtlinux-3.2-pre1.tar.bz2

• rtai-24.1.10.tgz.

An example installing RTAI is provided in Appendix D.

dot-config-files Some useful configuration files for Linux kernels 2.4.18
and 2.4.19, RTLinux-3.2-pre1 and RTAI-24.1.10.

rpms Contains the RPMs for gcc295, gcc295-2.95.3-0.i386.rpm,
version 2.95.3 and g++295, gcc295-c++-2.95.3-0.i386.rpm,

1Redhat Package Manager. To install: rpm -ivh name of package. To query
about a specific software package use the flag -q.

2Tarball is a jargon term for a tar archive – a group of files collected together as
one. Tar – Tape ARchive. See searchSolaris.com. Tarballs have been the standard
way to ship source code distributions since mid-1980s, see GNOME Dictionary 2.0.2.

3.2. Real-Time Workshop 13

version 2.95.3. The compilers are needed to compile the Linux
kernels and the Linux realtime extensions, i.e. RTLinux and
RTAI.

comedi Source code for device drivers. The directory contains two
compressed tarball files:

• comedi-0.7.65.tgz

• comedilib-0.7.19.tgz.

To install see Appendix D.

linux-kernels Linux kernels source code. The directory contains two
compressed tarball files:

• linux-2.4.18.tar.gz

• linux-2.4.19.tar.gz.

In section 3.3 and section 3.4 a more comprehensive description of
RTW-RTAI-4.65.3 and STRTL M6.5 will be given.

3.2 Real-Time Workshop

To better understand the Real-Time Workshop generation of code, the
Target Language Compiler and template makefile concepts will be ex-
plained. Further, monitoring signals and modifying parameters will be
touched. There are two ways of doing this, external mode and a C API
The process of generating an executable is viewed in Figure 3.3.

Make

Executable

Simulink Model Template Makefile

Target
Language
Compiler

Source Code Custom Makefile

Figure 3.3: In the build process the Target Language Compiler gener-
ates source code, and a custom makefile is generated from the template
makefile. To create the executable, the make -f model.mk command
is issued.

14 Chapter 3. Development of Prototyping System

3.2.1 Target Language Compiler

Real-TimeWorkshop generates source code for models and blocks through
the Target Language Compiler, which reads script files (or TLC files)
that specify the format and content of output source files. Two types
of TLC files are used:

1. A system target file, which describes how to generate code for a
chosen target, is the entry point for the TLC program that creates
the executable.

2. Block target files define how the code looks for each of the Simulink
blocks in the model.

System and block target files have the extension .tlc [16].

3.2.2 Template Makefiles

Real-Time Workshop uses template makefiles to build an executable
from the generated code. The build process creates a makefile from the
template makefile. Each line from the template makefile is copied into
the makefile; tokens encountered during this process are expanded into
the makefile. The name of the makefile created by the build process is
model.mk, where model is the name of the Simulink model [16].

3.2.3 External Mode

External mode allows two separate systems – a host and a target – to
communicate. The host is the computer where Simulink is executing.
The target is the computer where the executable created by Real-Time
Workshop runs.

External mode allows modifying, or tuning, block parameters in
realtime and to view and log block outputs in many types of blocks
and subsystems [17].

3.2.4 C API

Real-Time Workshop includes a C API interface to support develop-
ment of C application programs for tuning parameters and monitoring
signals independent of external mode [18].

3.3 Targeting RTLinux

The starting point of targeting RTLinux is an outcome of a PhD re-
search project at Glasgow Caledonian University [13]. This work,
“Simulink Target for RT-Linux” (from now on, referred to as STRTL),

3.3. Targeting RTLinux 15

supports Matlab 5.3.1 and Matlab 6.1. It makes use of the external
mode for tuning parameters and monitoring, storing signals.

3.3.1 STRTL

The specification of STRTL:

• Monitoring of the realtime experiment using the Simulink’s ex-
ternal mode mechanism. The target machine (RTLinux) and the
host machine (Simulink) are connected through a TCP/IP con-
nection. Signal values are uploaded and displayed on the Scope
blocks.

• A check is performed to ensure that the target platform can han-
dle the requested Fixed step size specified in the block diagram.
If the Fixed step size is too small the application terminates and
an error message is displayed.

• File data logging is supported. However, data logging supported
by Matlab can not be used. Thus, all blocks used to store data
on files must not be included. Instead STRTL permits to create
files where data monitored on scopes can be recorded. A file is
created for each sample rate used (tid3), and in each file all the
signals with the same sample time are saved. It is up to the user
to discern what data corresponds to which signal. Data is saved
in binary format at run time.

• Singeltasking4 and multitasking5 mode is supported.

• A watchdog makes sure overrun conditions do not occur.

• A Discarding Algorithm has been implemented to improve real-
time monitoring in local area networks. It measures the available
bandwidth and discards signal points that do not fit within this
bandwidth.

• The last update of STRTL has been developed using Red Hat 6.2
with the Linux kernel version 2.4.4 and RTLinux V 3.1.

3Each sample time in a model is assigned a task identifier (tid). The tid is
passed to the model output and update routines to decide which portion of the
model should be executed at a given time.

4Singletasking – A mode in which a model runs in one task.
5Multitasking – A process by which a microprocessor schedules the handling of

multiple tasks. The number of tasks is equal to the number of sample times in the
model.

16 Chapter 3. Development of Prototyping System

3.3.2 STRTL M6.5

The modified STRTL has been renamed to STRTL M6.5, the M6.5
part indicates the adaptation to Matlab 6.5.

The purpose of STRTL M6.5 is to make the Real-Time Workshop
generated code RTLinux compilable and executable. The emplacement
of its functionality can be viewed as in Figure 3.4.

DAQ

Real−Time Workshop

Simulink

STRTL_M6.5

LinuxRTLinux

comedi

Figure 3.4: System overview with RTLinux as the hard realtime exe-
cution component and STRTL M6.5 as the component conforming the
automatically Real-Time Workshop generated code to be runnable on
RTLinux.

For the directory structure of STRTL M6.5 and a brief description
of the directories contents, see Figure 3.5.

Changes in Matlab 6.5

A number of new features and enhancements have been added to Real-
TimeWorkshop 5.0 since Real-TimeWorkshop 4.1. Among the changes,
the packaging of generated code into .c and .h files has changed. And,
instead of storing information about the root model in the SimStruct
data structure, the rtModel data structure is preferred. The new rtModel
is a lightweight data structure eliminating unused fields in the repre-
sentation of the root model. For more information about the changes,
see [19].

Rewriting of STRTL

Due to the changes in the new release of Real-Time Workshop, a rework
of STRTL was needed. To convert STRTL to STRTL M6.5 [20] was
used. In the next two sections the affected files will be listed, and briefly
explained.

3.3. Targeting RTLinux 17

/home/Realtime/STRTL_M6.5

extern

include

rtw

c

grt

libsrc

src

rtlinux

include

tools

simulink

Figure 3.5: The directory structure of STRTL M6.5. The directory
extern/include contains header and .mlib files. Under the rtw/c

directory the important directories are rtlinux and src. The directory
simulink/include contains Matlab header files.

rtlinux

The rtlinux directory contains:

ext comm rtl.c Host side, transport independent external mode func-
tions. Calls to these functions originate from Simulink and are
dispatched through ext main.c.

ext comm rtl.mexglx How to build the file, see Appendix C.

rtlin.m A dummy S-function for the RTL In block. During Simulink
simulation it returns zeros. When the model is compiled via
Real-Time Workshop, the block is replaced by a specific hard-
ware adapter (e.g. a device driver) that allows the hardware to
pull in new data from a particular I/O device.

rtlin.tlc Script file defining the source code for the RTL In block.

rtlout.m A dummy S-function for the RTL Out block, allowing Simulink
to run when the model has not yet been compiled. It functions
similarly to the RTL In block.

rtlout.tlc Script file defining the source code for the RTL Out block.

18 Chapter 3. Development of Prototyping System

rtlinux main.c Model initialization, execution and termination are
controlled within this file.

rtlinux.tlc A script file targeting RTLinux.

rtlinux.tmf A template makefile for building an RTLinux realtime
version of a Simulink model using generated C code.

rtlinlib.mdl Defines the Simulink blocks RTL In and RTL Out.

slblocks.m Defines a block library, Simulink Target for RTLinux in
the Simulink Blocksets & Toolboxes, for Simulink; containing the
blocks in rtlinlib.mdl.

src

The following files, in the src directory, are modified according to [20]:

krnl main.c The execution engine in kernel space.

ext svr rtl.h Header file.

ext svr rtl.c Writes a signal point to shared memory, from where it
is later read in ext svr us.c and transmitted to the host machine.
It also processes a checksum.

us main.c The execution engine in user space.

updown.h Header file.

updown.c Handles the details of interacting with the target model.

ext svr us.h Header file.

ext svr us.c Carries out tasks such as establishing and terminating
connection with the host.

Execution Space

The execution space is divided into two, kernel space and user space.
In kernel space, normally, the kernel, device drivers and any kernel
extensions run. In RTLinux, realtime modules run in kernel space.
In user space, user applications run. How STRTL M6.5 modules are
divided into the two spaces, see Figure 3.6.

Device Driver

To support data acquisition an adapter, ni 6035e adapter.c, in the
src directory, was developed. The adapter is working as a glue between
the Simulink blocks RTL In and RTL Out, and the Comedi device
driver. The signals are normalized to the range [-1 1].

3.4. Targeting RTAI 19

krnl_main.o

rt_numfinite.o

rtlinux_main.o

rt_sim.o

rt_ext_svr_rtl.o

updown.o

us_main.o
datalog.o

ext_svr_us.o

ext_svr_transport.o

kernel space user space

Figure 3.6: The modules are separated into kernel space and user space.
The communication between modules is achieved by special realtime
FIFOs or special realtime shared memory. The shared memory can not
be swapped in and out of the hard drive.

3.4 Targeting RTAI

Roberto Bucher, at University of Applied Sciences of Southern Switzer-
land, has targeted RTAI, with support for Matlab 6.5 [14]. It makes
use of the C API for tuning parameters and viewing, storing signals.
The applications making use of this API also uses the Qt platform6

and Gnuplot7. Figure 3.7 shows the emplacement of this component.
The software package will be called RTW-RTAI-4.65.3, see Figure 3.8
for the directory structure.

How to install and work with the system, see the PDF-document
rtw rtai.pdf in the Documentation directory.

Device Driver

The Simulink blocks, RTL In and RTL Out, in STRTL M6.5 are used,
and, of course, the Comedi device driver too. The difference is the use
of ni 6035e adapter rtai.c, in the linux rt/rtai directory, instead
of ni 6035e adapter.c used in STRTL M6.5.

3.5 Device Driver Blocks in Simulink

The realtime task communicates with external hardware via device
drivers, see Figure 3.9. A Simulink device driver block can be added
to a model like any other Simulink block.

6A multiplatform, C++ application framework. See www.trolltech.com.
7An interactive plotting program. See www.gnuplot.info.

20 Chapter 3. Development of Prototyping System

DAQ

Real−Time Workshop

Simulink

RTAI

RTW−RTAI−4.65.3

Linux

comedi

Figure 3.7: System overview with RTAI as the hard realtime execution
component and RTW-RTAI-4.65.3 as the component conforming the
automatically Real-Time Workshop generated code to be runnable on
RTAI.

bin

examples

/home/Realtime/RTW−RTAI−4.65.3

Documentation

linux_rt

rtai

lib

matlab

utility

Figure 3.8: The directory structure of RTW-RTAI-4.65.3. The direc-
tory Documentation contains a PDF-document describing installation
and how to use the system. examples contains some (useless) exam-
ples. linux rt contains the RTAI files necessary to compile and link
the realtime module. matlab contains the files for the Matlab shell;
RTW, MEX etc. utility contains the source code of the utilities
scope, rtplot, rtppar, changertpar and gengnu.

Comedi

Some Comedi terminology will be explained:

• Comedi arranges a data acquisition card into subdevices. A sub-

3.5. Device Driver Blocks in Simulink 21

Simulink

Realtime task

ni_6035e_adapter.c

Device driver

NI 6035e

Figure 3.9: Simulink and the realtime task communicates via the ex-
ternal mode. The realtime task and the device driver communicates
via ni 6035e adapter.c, the device driver is provided by Comedi.
NI 6035E is the data acquisition card.

device may consist of a group of analog input signals, analog
output signals, timers, etc. A specific subdevice is referred to as
0,1,2,. . .

• A 16-bit signal has within Comedi the range [0 FFFF]. Where
0 represents the most negative value and FFFF represents the
most positive value, e.g. if the chosen measurement range is [-5
5] the -5 is represented as 0 in Comedi and the 5 is represented as
FFFF in Comedi. A value outside the range is silently handled
by Comedi.

The Adapter

ni 6035e adapter.c, in STRTL M6.5, provides three functions:

ni 6035e data write() The function takes five parameters:

- the subdevice to use

- the channel to write to

- a range

- an analog reference

- the data to write to the channel

The subdevice, channel, range and analog reference parameters
are the parameters entered in the Simulink block RTL Out, see

22 Chapter 3. Development of Prototyping System

Figure 3.12. To convert the normalized signal to Comedi’s repre-
sentation, the formula

(value+ 1) · 0xFFF

2

is used. The resolutions of the analog output signals of the used
data acquisition card are 12 bits.

ni 6035e data read() The function takes five parameters:

- the subdevice to use

- the channel to read from

- a range

- an analog reference

- a pointer to a real T type

The subdevice, channel, range and analog reference parameters
are the parameters entered in the Simulink block RTL In, see
Figure 3.11. To normalize the signal, the formula

value · 2

0xFFFF

is used. The resolutions of the analog input signals of the used
data acquisition card are 16 bits.

ni 6035e open() The function is used by krnl main.c to initialize the
Comedi device driver when loaded into kernel space.

The file must be included in the template makefile rtlinux.tmf. In
case of RTW RTAI 4.65.3, the above applies to the file ni 6035e adapter rtai.c,
and must likewise be added to the template makefile rtai.tmf.

Simulink Device Driver Blocks

The source code of the Simulink device driver blocks RTL In and RTL
Out are made up of the following files:

• rtlin.m

• rtlin.tlc

• rtlout.m

• rtlout.tlc

The .m-files are just dummies used for Simulink simulations. The .tlc-
files are Simulink C MEX S-functions, see [21]. The device driver blocks
are contained in the block library file rtlinlib.mdl. To display the
library, type rtlinlib at the Matlab prompt, see Figure 3.10. To
configure a device driver block, each block has a dialog box to set
configuration parameters, see Figure 3.11 and Figure 3.12.

3.5. Device Driver Blocks in Simulink 23

Figure 3.10: The rtlinlib block library containing the device driver
blocks RTL In and RTL Out.

Figure 3.11: The input device driver block interface. Using the NI 6035e
card: the Subdevice 0 is the group of analog input signals; in Channel
the wanted input signal is chosen from the range [0 15], i.e. the card
can handle 16 analog input signals; in Range there are 4 measurement
ranges to choose among.

24 Chapter 3. Development of Prototyping System

Figure 3.12: The output device driver block interface. Using the
NI 6035e card: the Subdevice 1 is the group of analog output signals;
in Channel the wanted output signal is chosen from the range [0 1], i.e.
the card can handle two analog output signals.

Chapter 4

Evaluation of

Prototyping System

The evaluation of the system consists of:

• Measuring the interrupt latency of the motherboard’s bus, run-
ning the system under heavy load.

• Measuring computation times running some simple Simulink mod-
els with known complexity, to give a brief understanding of the
evaluation time needed and of the latencies occurring while run-
ning a model.

• Finding the maximum execution frequency of a minimal model
in the system.

• Running three different models, developed at Vehicular Systems,
in the automotive engine laboratory, to test the system in its
targeted environment.

• A comparison of the interfacing to Simulink between RTAI and
RTLinux.

To keep the testing simple, most of the testing will be performed
using only RTAI. The execution times and the latencies are assumed to
be similar between RTAI and RTLinux due to the similarities between
them.

All tests were performed running X Windows except when testing
the motherboard for optimization at the bus level locking the bus.

25

26 Chapter 4. Evaluation of Prototyping System

4.1 Bus Interrupt Latency

Motherboards may have optimizations at the bus level locking the bus.
The optimizations may lock the bus for several milliseconds, making
realtime obsolete.

To check the hardware a test application, buslokchk.c, provided
with the RTAI distribution will be used. The check measures interrupt
latencies by using the CPU TSC1 on the timer interrupt. The test is
performed under heavy load and during a period of 20 hours. Latencies
of 20/30 micro seconds worst case is considered good. The system load
consisted of [22]:

• ping -f www.sunet.se

• ping -f bristol.isy.liu.se

• while ‘‘true’’; do ls -aR /; sync; done

• while ‘‘true’’; do cp /var/tmp/linux-2.4.19.tar.gz tmp;

sync; rm -f tmp; sync; done

• top -d 0.1

• while ‘‘true’’; do cat /proc/interrupts; cat /proc/rtai/*;

done

4.1.1 Results

Worst case latency during 20 hours test was 18.6 microseconds. The
result indicates that the latency in the bus level of the motherboard
is good and also the possibility to run models in frequencies up to 50
kHz.

4.2 Computation Times

The computation time for a step in a model will be measured just before
and after each step in a Simulink model. This method of measuring
introduces latencies from the system into the computation times for the
execution steps in the model. Those latencies, which can be regarded
as variations, give a good description of how the system performs in
the reality. In addition, a test will be performed testing the maximum
execution frequency of a model in the used system.

1Time Stamp Counter. The counter counts processor clock cycles since reset or
since it was programmatically zeroed.

4.2. Computation Times 27

4.2.1 Measuring

To measure the computation time of a time step in a model, two mea-
surement points was introduced in rt proc.c. One before, and one
after, the call to update the model. To get the time the function
rt get cpu time ns() was used, which returns the CPU time in nanosec-
onds whatever timer is in use. To log the time it takes to compute a
step in the model, the difference between the measuring points is writ-
ten to a realtime fifo, which then is read by a program and written to
a file, see Appendix F and Figure 4.1.

Step
Computation

TSC1 nsTSC2

Figure 4.1: To measure the computation time for a given step in a
model, the time TSC2 - TSC1 is calculated and stored into a file. The
measured time may be extended by interrupt latencies both before and
after the computation step of the model.

4.2.2 Algorithms

To get an estimate of the computation time used in a model two dif-
ferent algorithms, see Appendix F, was used:

• Bubble sort2, see Figure 4.2.

• A bubble sort performing a floating point calculation in each step
of the sorting process.

bubble_sort

S−Function BuilderRandom
Number

MAT−>FIFO

Figure 4.2: A Simulink model using bubble sort.

The complexity of both algorithms are O(n2). That can be com-
pared to the complexity of the FFT3 algorithm: O(n log n).

2An algorithm used for sorting.
3Fast Fourier Transform.

28 Chapter 4. Evaluation of Prototyping System

4.2.3 Results

The tests were conducted with the sample time set to 1 millisecond and
run for approximately 2 minutes each. Table 4.2.3 and Table 4.2.3 sum-
marizes the measured computation times, including interrupt latencies.

n Min Max Variation4 Mean Std dev5

[µs] [µs] [µs] [µs] [µs]
1 0.6170 8.1400 7.5230 0.8956 0.2717

10 0.9410 8.6040 7.6630 1.2337 0.2925
100 26.8230 38.0810 11.2580 27.3315 0.9131
500 631.4320 642.5030 11.0710 631.8040 0.6840

Table 4.1: The minimum, maximum, variation, mean and standard de-
viation of computation times for the bubble sort algorithm, using n = 1,
10, 100, and 500. The computation times are quadratic to the size of n,
and the variation and the standard deviation of the computation times
are not related to the size of n. The mean computation times are close
to the minimum computation times, indicating quite low frequency of
longer latencies.

n Min Max Variation Mean Std dev
[µs] [µs] [µs] [µs] [µs]

1 0.6170 7.8310 7.2140 0.8841 0.2780
10 1.1650 11.1290 9.9640 1.4528 0.3495

100 49.2470 58.0280 8.7810 49.5763 0.3663

Table 4.2: The minimum, maximum, variation, mean and standard de-
viation of computation times for the bubble sort algorithm with floating
point operations, using n = 1, 10, and 100. The computation times are
quadratic to the size of n, and the variation and the standard devia-
tion of the computation times are not related to the size of n. The
mean computation times are close to the minimum computation times,
indicating quite low frequency of longer latencies.

To show the distribution of computation times histograms are used.
As can be seen in Figure 19 to Figure 4.5, n = 1, 10 and 100, the
computation times are related to the complexity of the model executed,
and the latencies are independent of the complexity. With n = 500, see
Figure 4.6, it’s only possible to run the bubble sort algorithm, though
the used sample time gives < 1000 microseconds of execution time.

Running bubble sort with n = 1 and assuming worst case latency <

20 microseconds, an execution frequency of 50 kHz would be possible.
A test, run for 30 minutes, confirmed this. As can be seen, for exam-
ple in Table 4.2.3, added complexity to a model rapidly decreases the
execution frequency.

5The difference between the maximum and minimum of computation times.
5Standard deviation.

4.2. Computation Times 29

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8
x 10

4 Bubble sort, n = 1

Microseconds

N
um

be
r

of
 c

om
pu

ta
tio

ns

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8
x 10

4 Bubble sort + floating point operations, n = 1

Microseconds

N
um

be
r

of
 c

om
pu

ta
tio

ns

Figure 4.3: Histograms showing the variation of computation times
needed for the algorithms bubble sort and bubble sort with floating
point operations; where n = 1, sample time = 0.001 seconds, and the
duration of the test = ∼2 minutes.

0 2 4 6 8 10 12
0

2

4

6

8

10
x 10

4 Bubble sort, n = 10

Microseconds

N
um

be
r

of
 c

om
pu

ta
tio

ns

0 2 4 6 8 10 12
0

2

4

6

8

10
x 10

4 Bubble sort + floating point operations, n = 10

Microseconds

N
um

be
r

of
 c

om
pu

ta
tio

ns

Figure 4.4: Histograms showing the variation of computation times
needed for the algorithms bubble sort and bubble sort with floating
point operations; where n = 10, sample time = 0.001 seconds, and the
duration of the test = ∼2 minutes.

30 Chapter 4. Evaluation of Prototyping System

30 35 40 45 50 55
0

2

4

6

8
x 10

4 Bubble sort, n = 100

Microseconds

N
um

be
r

of
 c

om
pu

ta
tio

ns

30 35 40 45 50 55
0

2

4

6

8
x 10

4 Bubble sort + floating point operations, n = 100

Microseconds

N
um

be
r

of
 c

om
pu

ta
tio

ns

Figure 4.5: Histograms showing the variation of computation times
needed for the algorithms bubble sort and bubble sort with floating
point operations; where n = 100, sample time = 0.001 seconds, and the
duration of the test = ∼2 minutes.

630 632 634 636 638 640 642 644
0

2

4

6

8

10
x 10

4 Bubble sort, n = 500

Microseconds

N
um

be
r

of
 c

om
pu

ta
tio

ns

Figure 4.6: Histogram showing the variation of computation times
needed for the algorithm bubble sort; where n = 500, sample time
= 0.001 seconds, and the duration of the test = ∼2 minutes.

4.3 Simulink Test Applications

To test the system in the automotive engine laboratory three different
models have been used:

• a cylinder air-mass flow observer

• an adaptive catalyst model for control

• a modeling and control of torque in an SVC6 engine

6SAAB Variable Compression.

4.3. Simulink Test Applications 31

The last model is the only model of the test models making use of
an output signal to control one of the engines in Vehicular Systems’
automotive engine laboratory.

4.3.1 Cylinder Air-Mass Flow Observer

The model estimates the air-mass flow to a cylinder [23] from the mea-
surable signals, see Figure 4.7:

• air-mass flow

• intake manifold pressure

• intake manifold temperature

• pressure after intercooler

• throttle plate angle

• engine speed

Air to Cylinder Observer

304

temp
RTL In

p_i

RTL In

Throttle alpha

pt2kelvinu0 y0

S−Function Builder2

RTL In

Pressure after intercooler

mHat

mDotA

p_a

Tman [K]

p_e

dpe

Pe Estimator

alpha [deg]

N [RPM]

T_i [K]

p_intercooler [Pa]

T_intercooler [K]

p_i_meas [Pa]

Kp

Km

p_i hat [Pa]

m_hat [kg]

pred p_i hat [Pa]

Wth [kg/s]

W_c [kg/s]

W_c pred [kg/s]

prediction time [s]

Observer

RTL In

N

MAT−>FIFO

RTL In

Intake Manifold Temp

5

Gain7

−K−

Gain6

.5

Gain5

−K−

Gain4
−K−

Gain3

−K−

Gain2

−K−

Gain1

−K−

Gain

f(u)

Fcn

0

Clock

100

Ambient
pressure

kPa]

RTL In

Air Mass Flow mDotA

mDotAprediction time [s]

p e [kPa]

dpe [kPa]

p i[Pa]

Figure 4.7: A model estimating the air-mass flow to the cylinder.

32 Chapter 4. Evaluation of Prototyping System

4.3.2 Adaptive Catalyst Model for Control

A model of the catalyst system aiming at control by an MPC7 [24], see
Figure 4.8. The input signals are:

• Lambda trail, from a discrete EGO8 sond

• Lambda front, from a UEGO9 sond

MATLAB
Function

Tillstand och LMS

skattningLMS2

S−Function

MAT−>FIFO

RTL In

Lambda_t

RTL In

Lambda_f

1

Gain

Figure 4.8: A linear adaptive model of a catalyst system.

4.3.3 Modeling and Control of Torque in an SVC

Engine

The model is estimating the torque from the measurable signals:

• compression ratio

• engine speed

• intake manifold temperature

• air-mass flow

The controller is fed by the difference between a reference signal and
the estimate. The output signal controls a throttle plate angle. See
Figure 4.9. The model and the controller is an outcome of a master’s
thesis [25].

4.3.4 Results

After minor modifications of the models to adapt them to Real-Time
Workshop, all models run without problem. The Cylinder Air-Mass
Flow Observer was also run under RTLinux.

The runnings of those models gave valuable knowledge about how
less experienced users were able to handle the system. At the same time
the users could, as in the case with the SVC engine, quickly evaluate
different solutions.

7Model Predictive Control.
8Exhaust Gas Oxygen, or binary oxygen sensor.
9Universal EGO, or wideband oxygen sensor.

4.4. Comparison of RTAI and RTLinux Interfaces 33

RTL In

rc

In1 Out1

kg/s2volt

RTL Out

dotm atref

1e4

Volt2rpm

In1 Out1

Volt2ratio

In1 Out1

Volt2kg/s

In1 Out1

Volt2kelvin

num(s)

den(s)

Transfer Fcn

RTL In

N

MAT−>FIFO

N

T_man

dotm_at

dotm_ac

P_man

Intake manifold

RTL In

Intake Manifold Temp

r_c

N

dotm_ac

P_man

M

Combustion

RTL In

Air Mass Flow

60/70

RTL In

0/1

Figure 4.9: A model estimating the torque in an SVC engine and feeding
a controller with the estimate.

4.4 Comparison of RTAI and RTLinux In-

terfaces

The main difference in the user interfaces when using RTAI or RTLinux
is that RTAI make use of the C API, see section 3.2.4, while RTLinux
uses the external mode, see section 3.2.3. In Table 4.3 differences and
similarities are presented. A lack in the use of RTW-RTAI-4.65.3, see
section 3.4, is that it is not possible at the moment to change parameters
in a model while the model is running, see Appendix E.

34 Chapter 4. Evaluation of Prototyping System

Capability RTAI RTLinux

User Interface Making use of the C
API

Making use of the
external mode

Changing Parame-
ters

Not possible while
the model is run-
ning

May be changed
while the model is
running

Scopes Only one scope, but
many signals, at a
time can be used
to display, or store,
signals

At most seven
scopes can be used

Logging Uses realtime FIFOs for data logging
I/O Makes use of a Comedi device driver
Model Execution The code is generated in Simulink and

compiled and run in a terminal window

Table 4.3: Differences and similarities between RTAI and RTLinux.

Chapter 5

Conclusions

Both implemented systems, RTLinux and RTAI, have been used in
Vehicular Systems automotive engine laboratory with success. Signals
have been measured and a control signal has been applied to regulate
the amount of throttle plate angle needed in an engine.

Users of the systems have managed to handle the systems by them-
selves after a shorter introduction, approximately 30 minutes. Also
master’s students, with less experience of Real-Time Workshop, have
successfully used the systems.

The specification part, in Chapter 1, has been fulfilled:

• The system has an interface to Matlab/Simulink, i.e. a model is
constructed in Simulink in an ordinary way, with only posing a
few restrictions on the model, see Chapter 2.

• From Simulink models C code is automatically generated for a
hard realtime operating system, RTAI or RTLinux.

• The system, with the used hardware, is capable of execution fre-
quencies up to 50 kHz, depending of the complexity of the exe-
cuted code.

• Only ordinary PC hardware have been used, see Appendix A.

• A standard data acquisition card, National Instruments’ NI 6035E,
has been used.

• The system is easily extendible with most data acquisition cards
through the amount of device drivers provided by Comedi. The
use of open source software and ordinary PC hardware will add
maintainability to the system.

- For the possibility to use a CAN bus, there is at least two
possible ways to do this. First, it is possible to use of the

35

36 Chapter 5. Conclusions

Comedi concept to develop a device driver for a CAN de-
vice. Second, to look at the rtcan1 project. rtcan is a set of
functions allowing realtime CAN messages to be sent using a
system running RTAI. Message sending and receiving func-
tions can be called from within RTAI threads. rtcan is based
on Ocan2, a pure Linux CAN device driver. rtcan uses the
TQM8xxL board as the target architecture, and, according
to the information on the homepage for the rtcan project, it
should be trivial to port the software to any of:

∗ PC-104 cards built by EuroTech

∗ PC-ECAN ISA devices

∗ GEA-Automotive devices

∗ Applied Data Systems’ Graphics Client Plus

5.1 Future advice

The new RTAI distribution, release 24.1.11, includes Real-Time Work-
shop support with RTAI-Lab. The approach taken is similar to RTW-
RTAI-4.64.3, it uses the C API mode. The advantage of using RTAI-
Lab is the continued support. It also has Simulink library support of
the NI 6035e data acquisition card, making use of the Comedi device
driver concept. Both STRTL M6.5 and RTW-RTAI-4.65.3 lacks fur-
ther support and are therefore less suitable to continue working with.

1rtcan – realtime CAN. See http://www.peak.uklinux.net/gnulin.php, the
homepage will soon move to SourceForge.net.

2Ocan – Open-CAN – is a device driver for the Intel 82527 CAN controllers.

References

[1] Björn Rudin. Realtidsegenskaper hos Windows NT. Master’s the-
sis LiTH-ISY-EX-2027-990329, Department of Electrical Engineer-
ing, Linköpings Universitet, Linköping, Sweden, March 1999.

[2] Ismael Ripoll, Pavel Pisa, Luca Abeni, Paolo Gai, Agnes Lanusse,
and Sergio Saez. RTOS State of the Art Analysis. OCERA.
http://www.mnis.fr/opensource/ocera/rtos/book1.html, March
2003.

[3] Real Time Linux Foundation, Inc. Variants.
http://www.realtimelinuxfoundation.org/variants/variants.html.

[4] Tim Bird. Comparing two approaches to real-time Linux.
http://www.linuxdevices.com/articles/AT7005360270.html, De-
cember, 21 2000. CTO of Lineo.

[5] L. H. Seawright and R. A. Mackinnon. VM/370 – A Study of Mul-
tiplicity and Usefulness. IBM Systems Journal, (18):4–17, 1978.

[6] Victor Yodaiken and Michael Barabanov. A Real-Time Linux.
New Mexico Institute of Technology.

[7] Victor Yodaiken. The RTLinux Manifesto. Department of Com-
puter Science New Mexico Institute of Technology Socorro NM
87801.

[8] Ismael Ripoll, University of Valencia, Spain. Earliest Dead-
line First Scheduler. http://bernia.disca.upv.es/∼iripoll, 1998.
Technical report.

[9] Patricia Balbastre & Ismael Ripoll. Integrated Dynamic Prior-
ity Scheduler for RTLinux. Department of Computer Engineering
(DISCA).

[10] Victor Yodaiken, Finite State Machine Labs Inc. FSMLabs Lean
POSIX for RTLinux.
http://www.fsmlabs.com/articles/posix/posix.htm, 2000.

37

38 References

[11] Paolo Mantegazza et al. Lineo Inc. DIAPM, RTAI Programming
Guide 1.0. http://www.rtai.org, September 2000.

[12] The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA. USA. Real-
Time Workshop User’s Guide, updated for version 5.0 (release 13)
edition, July 2002. Online only.

[13] Raul Murillo Garcia, Glasgow Caledonian University. Simulink
Target for RT-Linux.
http://www.sesd.gcal.ac.uk/raulm/St-rtl.htm, March 2003.

[14] Roberto Bucher, University of Applied Sciences of Southern
Switzerland (SUPSI) Dept. of cs and ee (DIE). Interfac-
ing Linux RTAI with Matlab/simulink/RTW and Scilab/Scicos.
http://a.die.supsi.ch/ bucher/.

[15] David Schleef, Frank Hess, and Herman Bruyninckx. Comedi Doc-
umentation.
http://www.comedi.org/doc/index.html#AEN22.

[16] The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA. USA. Get-
ting Started with Real-Time Workshop, first printing edition, July
2002. Online only.

[17] Real-Time Workshop User’s Guide, chapter 6. 3 Apple Hill Drive,
Natick, MA. USA, July 2002. Online only.

[18] Real-Time Workshop User’s Guide, chapter 14, pages 77–92. 3
Apple Hill Drive, Natick, MA. USA, July 2002. Online only.

[19] The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA. USA. Real-
Time Workshop Release notes, updated for version 5.0 (release 13)
edition. Online only.

[20] Real-Time Workshop Release Notes, chapter 1, Upgrading from
an Earlier Release, pages 32–35. 3 Apple Hill Drive, Natick, MA.
USA. Online only.

[21] Real-Time Workshop User’s Guide, page 10. 3 Apple Hill Drive,
Natick, MA. USA, July 2002. Appendix C.

[22] E. Bianchi, L. Dozio, Dipartimento di Ingegneria Aerospaziale,
Politecnico di Milano, Italy. Some Experiences In Fast
Hard-Heal Time Control In User Space With RTAI-LXRT.
http://www.linuxdevices.com/articles/AT9601485147.html.

[23] Per Andersson. Intake Air Dynamics on a Turbocharged SI-
Engine with Wastegate. Licentiate thesis, Linköpings Universitet,
Linköping, Sweden, 2002.

References 39

[24] Erik Sunneg̊ardh. Adaptive Catalyst Model for Control. Mas-
ter’s thesis LiTH-ISY-EX-3249-2002, Department of Electrical En-
gineering, Linköpings Universitet, Linköping, Sweden, December
2002.

[25] Andreas Bergström. Modeling and Control of Torque in a SVC
Engine. Master’s thesis LiTH-ISY-EX-3421-2003, Department of
Electrical Engineering, Linköpings Universitet, Linköping, Swe-
den, May 2003.

[26] The Mathworks, Inc. Real-Time Workshop, tutorial 5. Included
in application. Version 6.5.

[27] Real-Time Workshop User’s Guide, chapter 6, page 28. 3 Apple
Hill Drive, Natick, MA. USA, July 2002. Online only.

40

Notation

Acronyms

API Application Program Interface
CAN Controller Area Network
Comedi Linux control and measurement device interface
DAQ Data Acquisition
RTAI RTOS using Linux
RTLinux RTOS using Linux
RTOS Realtime Operating System
RTW Real-Time Workshop
STRTL Simulink Target for RTLinux
STRTL M6.5 STRTL for Matlab version 6.5

Definitions

Realtime Throughout the writing of this master’s thesis the spelling
of realtime will be as is, i.e. not real-time. A Google3 search with
the parameter ‘‘real-time’’ gives about 6,360,000 hits4, filter-
ing out both real-time and real time. A similar search with
the parameter realtime gives about 996,000 hits, indicating the
use of the chosen spelling is fairly common; even though realtime

is overrepresented in the digital world; some kind of apartheid
against white spaces; or, in an evolutionary mind, not so fit to
the environment. The probable cause of the chosen spelling might
be tracked down to Swedish heritage5.

Typeface The typeface typeface indicates a file, a directory or a
command.

3An Internet search engine, www.google.com.
4Every identified Internet page meeting the search criteria is considered a hit.
5In the Swedish language it’s preferred many times to write two words, making

up something new, into one word, some kind of inventing new words.

41

42

Appendix A

Hardware

Listing of hardware used:

Processor Athlon 1900+

Motherboard Asus

Chipset VIA KT333

Memory 256 MB DDR

Graphic card nVidia GeForce 2 MX 32 MB

Hard drive WDC WD400EB-00CPF0 40 GB

Ethernet card VIA VT86c100A Rhine-II PCI

DAQ NI 6035e

43

44

Appendix B

Software

Listing of software used:

Matlab version 6.5

Simulink version 5.0

Real-Time Workshop version 5.0

STRTL M6.5 Simulink Target for RTLinux, using Matlab 6.5

RTW-RTAI-4.65.3 Targeting RTAI, using Matlab 6.5

RTLinux version 3.2pre1, using patched Linux kernel 2.4.18

RTAI version 24.1.10, using patched Linux kernel 2.4.19

Comedi comedi-0.7.65 and comedilib-0.7.19

Workstation Redhat 8.0

45

46

Appendix C

External Mode

Configuration and

Execution

The setup of the model and code generation parameters required for ex-
ternal mode compatible programs will be explained; and further how to
generate the code, build the target executable and run the application.

C.1 Setting Up the Model

The information used in this section is mostly an excerpt from [26].

• In the Simulation Parameters dialog box, on the Solver pane,
set the Solver options Type to Fixed-step, set the step time,
and select the discrete solver algorithm.

• On the Workspace I/O pane, clear the Time and Output check
boxes. (RTLinux can’t log data to the workspace or to a MAT-
file.)

• On the Real-Time Workshop pane, select Target configuration
from the Category menu. If RTLinux is not selected, click the
Browse button and select the RTLinux target from the System
Target File Browser.

• Select GRT code generation options from the Category menu
and select the External mode option. This enables generation
of external mode support code.

47

48 Appendix C. External Mode Configuration and Execution

• On the Advanced pane, make sure that the Inline Parameters
option is not selected. External mode supports inlined parame-
ters, but Simulink Target for RTLinux does not.

The External Mode Control Panel lets you configure host and
target communications, signal monitoring, and data archiving. It also
lets you connect to the target program and start and stop execution of
the model code.

• The Target interface button opens the External Target in-
terface dialog box. This dialog box configures the external mode
interface options.

- The MEX-file for external interface field specifies the
name of a MEX-file that supports host and target commu-
nications on the host side. The default is ext comm, a MEX-
file provided by Real-Time Workshop. When using Simulink
Target for RTLinux the ext comm rtl will be used.

- The MEX-file arguments field specifies arguments, such
as a TCP/IP server port number, to be passed to the exter-
nal interface program, e.g. ’bristol.isy.liu.se’ or ’130.236.50.228’
(don’t forget the single quotes). Note that these arguments
are specific to the external interface file used. For more in-
formation on the arguments see [27].

• In the External Mode Control Panel select the Signal &
Triggering button and make sure that:

- Trigger Source is set to manual

- Trigger Mode is set to normal

- Arm when connect to target is selected

C.2 Generating Code

Before generating the code, make sure the model is properly setup:

• In the Simulation Parameter on the Real-Time Workshop
pane, check the Generate Code Only option.

• To generate code and create a target program, click the Build
button on the Real-Time Workshop pane.

The generated code will exist in a subdirectory of the current work-
ing directory, i.e. pwd/<model> rtl/.

C.3. Running the Application 49

C.3 Running the Application

The code must be generated before the application can be run. If
Simulink is not run on the RTLinux machine, the generated code has
to be copied to the RTLinux machine. On the RTLinux machine do
the following:

• Change to the directory . . . /<model> rtl and execute make -f
<model>.mk

Now Simulink can connect to the application:

• From the simulation mode pull-down menu, select External

• Then select Connect to target from the same pull-down menu.

Watch window for messages, such as connect.

50

Appendix D

Installation

The software will reside on bristol.isy.liu.se.

D.1 System

This example installation will describe an installation of a real time
rapid prototyping development platform, except for the installation of a
Linux distribution and Matlab (Simulink, Real-Time Workshop), which
is assumed to be preinstalled.

The distribution used is Redhat 8.0, and the Matlab version is R13.
The software to install is the Linux kernel, version 2.4.19, RTAI,

version 24.1.11 pre release 3, COMEDI, for device driver support, ver-
sion 0.7.65, and FLTK, for graphical rtailab support, version 1.1.3.

The software is assumed to reside in different subdirectories to the
directory /home/Realtime/.

$ cd /usr/src

$ tar xzf /home/RealTime/Misc/fltk-1.1.3-source.tar.gz

$ cd fltk-1.1.3

$./configure --enable-threads1

$ make

$ make install

$ cd /usr/src

$ tar xzf /home/RealTime/comedi/comedilib-0.7.65.tgz

$ mkdir rtai

$ cd rtai

$ tar xzf /home/RealTime/linux-kernels/linux-2.4.19.tar.gz

$ tar xzf /home/RealTime/linux-real-time-extensions/rtai-24.1.11-pre3.tgz

$ cd linux-2.4.19

1Other necessary options might be, e.g., CC=gcc295 CXX=g++295.

51

52 Appendix D. Installation

$ patch -p1 < ../rtai-24.1.11-pre3/patches/patch-2.4.19-rthal5g

Now might be a good time edit the Makefile, and set the CC to an
appropriate compiler2

$ cp /home/RealTime/dot-config-files/rtai/linux-2.4.19/.config .

$ make oldconfig3

$ make dep

$ make bzImage

$ make modules

$ make modules install4

$ make install

Now you have to restart the computer with the newly made kernel.

$ cd /usr/src/rtai/rtai-24.1.11-pre3

Edit the Makefile.modbuild, i.e. set the CC and CXX macros. In
comedi lxrt/Makefile and comedi lxrt/lib/Makefile set the path to the
comedi directory.

$ make menuconfig

$ make dep

$ cd /usr/src/comedi/comedi-0.7.65

$ make

$ make

$ cd /usr/src/rtai/rtai-24.1.11-pre3

$ make

$./setsched up

$ make install

$ make dev

$ cd /usr/src/comedi/comedi-0.7.65

$ make install

$ make dev

D.2 Installation of Simulink Target for RTLinux

In order to use RTLinux as a rapid prototyping target for Real-Time
Workshop, the following must be done:

2In /home/RealTime/rpms/ the rpm’s for gcc295 and g++295 reside.
3You might want to run make menuconfig or make xconfig after make oldconfig.
4Not sure this is necessary.

D.3. Comedi 53

• The directory STRTL M6.5 and its subdirectories contains the
Real-Time Workshop source files. This directory structure has to
be copied to the RTLinux machine.

• The directory rtlinux has to be copied to the host machine
(Simulink), and the path of the directory added to the Matlab
search path. (Make sure not to add this directory within the
Matlab directory structure, i.e. in the obvious place as a parallell
directory to other Real-Time Workshop targets, in a UNIX en-
vironment, thus Matlab will not be able to add the new system
target file.)

• The definition of the macro MATLAB ROOT in the template
makefile rtlinux.tmf must point to the STRTL M6.5 direc-
tory.

• In order to build the MEX-file, the directory src within the di-
rectory structure STRTL M6.5 has to be present on the host
machine (Simulink).

To build the MEX-file in a UNIX environment:

$ cd MATLAB_ROOT/toolbox/rtw

$ mex STRTL_M6.5_ROOT/rtlinux/ext_comm_rtl.c \

MATLAB_ROOT/rtw/ext_mode/ext_convert.c \

MATLAB_ROOT/rtw/ext_mode/ext_transport \

-I/STRTL_M6.5/rtw/c/src \

-IMATLAB_ROOT/rtw/ext_mode

In a Microsoft environment:

$ cd MATLAB_ROOT\toolbox\rtw

$ mex STRTL_M6.5_ROOT\ext_comm_rtl.c \

MATLAB_ROOT\rtw\ext_mode\ext_convert.c \

MATLAB_ROOT\rtw\ext_mode\ext_transport.c \

-I\STRTL_M6.5_ROOT\rtw\c\src \

-IMATLAB_ROOT\rtw\ext_mode \

COMPILER_LIBRARY_PATH\wsock32.lib

After the MEX-file been generated, move it to the rtlinux direc-
tory.

D.3 Comedi

The Comedi software package is assumed to reside on bristol.isy.liu.se.
The directory to install into is only a suggestion.

54 Appendix D. Installation

$ cd /usr/src/

$ mkdir comedi

$ cd comedi

$ tar xzf /home/Realtime/comedi/comedi-0.7.65.tgz

$ cd comedi-0.7.65

And continue with reading

$ less INSTALL

The same steps applies to /home/Realtime/comedi/comedilib-0-7.19.tgz.

Appendix E

Frequently Asked

Questions

E.1 STRTL M6.5

How many scopes can be used in a model? At most seven scopes
can be used in a model.

What about common.h? There are a few things that might be of
interest:

DATA LOG If set to TRUE scope data is stored in files for
post processing1.

DATA LOG NAME A user defined name of the logging file(s)
can be entered here, the default name is ”data”. A file will
be created for each sample rate in the model, and the file
extensions will be .001, .002, . . .

DATA LOG RES Number of decimals for the data logged.

FINAL TIME

• 0 – The model runs continuously.

• A positive real – Overrides the final time in Simulink.

• -1 – Keeps the final time defined in Simulink.

E.2 RTW-RTAI-4.65.3

Can I enhance the number of signals displayed on a scope? Yes,
the following must be done:

1Data logging is only possible in external mode.

55

56 Appendix E. Frequently Asked Questions

• In rt proc.h (/usr/local/rtai/) change the value of the con-
stant N CHANNELS to the new value.

• rtai lib.mdl (MATLAB ROOT/toolbox/rtai/) has to be mod-
ified according to the changes.

• In scope.c change the constant N CHANNEL to the new
value. Compile the file and move it to /usr/local/bin/.

• In rtplot.h change theX in pt old[X], pt new[X] and pen c[X]
to the new value and update rtplot.cpp and rtppltfrm.ui ac-
cording to the changes. Compile rtplot and rtppar and move
the executables to /usr/local/bin/.

Can I change the resolution of the logged signals? Yes, in scope.c
look for the fprintf and make the desired changes. Compile the
file and move it to /usr/local/bin/.

I have problem running scope, rtplot or rtppar This might be due
to that gcc 2.9x compiled applications have problems work/link
with gcc 3.x compiled Qt. Solution, recompile scope.c, rtplot.cpp
and/or rtplot.cpp.

I have problem running changertpar. No solution is available to
fix this problem at the moment.

E.3 rtailab-24.1.11-pre2

Can I enhance the number of signals displayed on a scope? Yes,
in rtailab.h change the constant MAX CHANNELS to the desired
number of signals and make clean; make in the rtailab directory.

Appendix F

Test Code

To measure and log the computation times the file rt proc.c was mod-
ified to write the computation times to a realtime fifo, and a C program
was written to read from the realtime fifo and store the computation
times in a file.

To estimate the computation times a bubble sort and a bubble sort
with floating point operations was used.

F.1 Modified rt proc.c

To measure the computation time, for a given time step in a model,
some modifications to rt proc.c was made:

A function was added:
void write fifo long(int fifo id, long long messg)

{
rtf put(fifo id, &messg, sizeof(long long));

}

The function fun() was modified:
long long tsc1; * added line *\
long long tsc2; * added line *\

while(1){
if(parData->op) checkParam();
tsc1 = rt get cpu time ns(); * added line *\
update rtw();
tsc2 = rt get cpu time ns(); * added line *\
write fifo long(63, tsc2 - tsc1); * added line *\
rt task wait period();
}

57

58 Appendix F. Test Code

Initialization of fifo in init module():
ini fifo(63,1); * added line *\

Cleaning up of fifo in cleanup module():
clean fifo(63); * added line *\

F.2 Logging of Computation Times

To log the computation times, the following C program was used:

#include ‘‘stdio.h’’

#include ‘‘unistd.h’’

#include ‘‘sys/types.h’’

#include ‘‘sys/mman.h’’

#include ‘‘sys/stat.h’’

#include ‘‘fcntl.h’’

#include ‘‘signal.h’’

#define DATA FILE ‘‘computation-times.dat’’

static int end;

static void endme(int dummy) end=1;

int main(int argc, char** argv)

{
int fifo;

FILE * fd=NULL;

int flag=0;

int i;

long long msg;

char device[]=‘‘/dev/rtf63’’;

if(argc==2) device[8]=argv[1][0];

if((fifo=open(device,O RDONLY | O NONBLOCK)) < 0){
fprintf(stderr,‘‘Error opening /dev/rtf0\n’’);
exit(1);

}

fd=fopen(DATA FILE,‘‘w’’);

signal(SIGINT,endme);

F.3. Bubble Sort 59

while(!end){
if(read(fifo,&msg,sizeof(msg))!=-1) {
fprintf(fd,‘‘%d\n’’,msg);

}
}

if(fd!=NULL) fclose(fd);

return 0;

}

F.3 Bubble Sort

The source code, for the bubble sort algorithm, used in the S-Function
Builder. The SIZE is defined in the includes, on the Library pane.

static double a[SIZE];

static double b[SIZE];

int i;

int j;

double tmp;

a[0] = u0[0];

for(i = SIZE; i > 0; i--){
for(j = 1; j < i; j++){

if(a[j] < a[j-1]){
tmp = a[j];

a[j] = a[j-1];

a[j-1] = tmp;

}
}

}
y0[0] = a[SIZE / 2];

F.4 Bubble Sort + Floating Point Opera-

tions

The source code, for the bubble sort algorithm and the floating point
operations, used in the S-Function Builder. The SIZE is defined in the
includes, on the Library pane.

static double a[SIZE];

static double b[SIZE];

60 Appendix F. Test Code

int i;

int j;

double tmp;

a[0] = u0[0];

for(i = SIZE; i > 0; i--){
for(j = 1; j < i; j++){
if(a[j] < a[j-1]){
tmp = a[j];

a[j] = a[j-1];

a[j-1] = tmp;

}
b[j] = a[j] * a[j];

}
}
b[0] = a[0] * a[0];

y0[0] = b[SIZE / 2];

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ick-
ekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.
Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den
omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna
sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i
sådant sammanhang som är kränkande för upphovsmannens litterära eller konst-
närliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsidahttp://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring excep-
tional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose. Sub-
sequent transfers of copyright cannot revoke this permission. All other uses of
the document are conditional on the consent of the copyright owner. The pub-
lisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its WWW home page:http://www.ep.liu.se/

© [Författarens för- och efternamn]

	Firstpage
	Abstract
	Preface and Acknowledgment
	Introduction
	Objectives
	Methods
	Specifications
	Reader's Guide
	Thesis outline

	System Analysis for Rapid Prototyping
	Hard Realtime Linux
	RTLinux
	RTAI

	Real-Time Workshop
	Targeting RTLinux
	Targeting RTAI

	Device Drivers
	Comedi

	Development of Prototyping System
	System Components
	Real-Time Workshop
	Target Language Compiler
	Template Makefiles
	External Mode
	C API

	Targeting RTLinux
	STRTL
	STRTL_M6.5

	Targeting RTAI
	Device Driver Blocks in Simulink

	Evaluation of Prototyping System
	Bus Interrupt Latency
	Results

	Computation Times
	Measuring
	Algorithms
	Results

	Simulink Test Applications
	Cylinder Air-Mass Flow Observer
	Adaptive Catalyst Model for Control
	Modeling and Control of Torque in an Engine
	Results

	Comparison of RTAI and RTLinux Interfaces

	Conclusions
	Future advice

	References
	Notation
	Hardware
	Software
	External Mode Configuration and Execution
	Setting Up the Model
	Generating Code
	Running the Application

	Installation
	System
	Installation of Simulink Target for RTLinux
	Comedi

	Frequently Asked Questions
	STRTL_M6.5
	RTW-RTAI-4.65.3
	rtailab-24.1.11-pre2

	Test Code
	Modified rt_proc.c
	Logging of Computation Times
	Bubble Sort
	Bubble Sort + Floating Point Operations

	copyright_uppsats.pdf
	Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god...
	In English
	The publishers will keep this document online on the Internet - or its possible replacement - for...
	The online availability of the document implies a permanent permission for anyone to read, to dow...
	According to intellectual property law the author has the right to be mentioned when his/her work...
	For additional information about the Linköping University Electronic Press and its procedures for...

