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Abstract

The situation when driving in dense traffic and at low speeds is called
Stop and Go. A controller for automatic following of the car in front
could under these conditions reduce the driver’s workload and keep
a safety distance to the preceding vehicle through different choices of
gear and engine torque. The aim of this thesis is to develop such a
controller, with an additional focus on lowering the fuel consumption.
With help of GPS, 3D-maps and sensors information about the slope
of the road and the preceding vehicle can be obtained. Using this infor-
mation the controller is able to predict future possible control actions
and an optimization algorithm can then find the best inputs with re-
spect to some criteria. The control method used is Model Predictive
Control (MPC) and as the name indicate a model of the control object
is required for the prediction. To find the optimal sequence of inputs,
the optimization method Dynamic Programming choose the one which
lead to the lowest fuel consumption and satisfactory following. Simula-
tions have been made using a reference trajectory which was measured
in a real traffic jam. The simulations show that it is possible to follow
the preceding vehicle in a good way and at the same time reduce the
fuel consumption with approximately 3 %.

Keywords: Stop and Go, MPC, Dynamic programming, Fuel con-
sumption
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Thesis Outline

Chapter 2 The Vehicle Model to be Controlled The model used
for the simulations is presented. Basic mathematical relations are
described as well as simplifications that have been made.

Chapter 3 MPC Theory The control method used in this thesis is
Model Predictive Control. Here a brief theoretical description for
both linear and nonlinear MPC are given.

Chapter 4 Dynamic Programming When using MPC an optimiza-
tion problem has to be solved. In this thesis this has been made
with help of the Dynamic Programming method.

Chapter 4 Control and Optimization In this chapter the control
optimization algorithm for the special case of Stop and Go is
presented.

Chapter 5 Simulations and Results Simulations have been made
using a reference trajectory which has been obtained in a real
traffic jam. The results from these simulations are presented.

Chapter 6 Conclusions The conclusions that have been drawn from
the simulations are presented here.

Chapter 7 Further Work A discussion of possible improvements for
the controller can be found in this chapter
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Chapter 1

Introduction

The aim of this thesis is to make a controller for Stop and Go (S&G)
driving conditions based on the theory of Model Predictive Control with
Dynamic Programming and to investigate if there are any possibilities
to save fuel. The main idea of a S&G controller is to reduce the driver´s
workload in dense traffic by automatically keeping a proper distance to
the car ahead. The old cruise control systems, with the task only to
keep a predefined velocity, are becoming less meaningful as the traffic
density increases. For that reason many automotive manufactures have
produced different kinds of intelligent cruise control (ICC) systems that
can not only maintain the pre-selected velocity but also have the capa-
bility to keep a safe distance to the car ahead. With help of radar and
sensor systems the distance to the preceding vehicle can be obtained
and the controller will make necessary braking and acceleration actions.
As these systems are mainly produced for use on roads where the speed
is high, it is important to have quite a large safety distance between
the following car and the preceding car. A S&G system, on the other
hand, can be used in situations with dense traffic where one can not
keep a large distance to the preceding vehicle. Another difference of
implementing a controller for S&G compared to ICC is that the torque
converter of the transmission is assumed to be fixed for ICC and that
is not the case for the S&G controller.

1



Chapter 2

The Vehicle Model to be

Controlled

The car model used for the simulations is a Simulink model of a Mercedes-
Benz S-class with a combustion engine. Later on the model will be used
to predict future states when using the control method Model Predic-
tive Control. The model is fed with three inputs namely required engine
torque Mengine, gear i and the slope of the road γ. ”Required” means
the torque needed from the engine to propel the vehicle at certain speed.
After applying the engine torque to the model it is transferred to the
wheels via different subsystems. These subsystems will be presented in
more detail further on in this chapter. As output from the model the
velocity of the vehicle is obtained. The model is based on Newton’s sec-
ond law, F = ma, when describing the dynamics and on functions that
transfer the required engine torque to the torque acting at the wheels.
When a system modeled includes rotating parts like the wheels in this
case, Newton’s law for rotating movements can be used to express the
transfer of torque from one part of the vehicle driveline to another. It
relates the two variables torque M [Nm] and angle velocity ω [rad/s]
to each other according to

M(t) = J ·
d

dt
ω(t) (2.1)

where J is constant and denotes the moment of inertia [Nm/s2]. We
can therefore write

ω(t) =
1

J

∫ t

0

M(τ) dτ (2.2)

When no physical equation for describing a certain relationship in
the model is available, maps generated on testbeds have been used. The
maps consist of the input and output values represented by vectors.

2



2.1. Model Dynamics 3

When evaluating the output, the input signal or signals are compared
with the corresponding input vector. If the input matches a value in
the input vector, the output will simply be the corresponding value
in the output vector. Otherwise, in case of no match, interpolation is
used.

2.1 Model Dynamics

Assume that a vehicle with total mass m is driving on a road with an
incline according to Figure 2.1. The total force Ftot = mv̇ acting on
the vehicle is the sum of the drive force generated from the engine Fdf

and of different resistance forces. According to Newton’s second law
the time derivative for the velocity can be expressed as

v̇ =
1

m
Ftot =

1

m
(Fdf − Fres) (2.3)

where Fres is the sum of the resistance forces, which are:

• Air resistance, which is a function of the square of the velocity:

Fair =
1

2
ρairAfcwv2 (2.4)

Here ρair is the density of the air, Af the maximum vehicle cross
area and cw the air drag coefficient resistance. This coefficient
depends on the shape of the moving object and, in this case,
describes how big impact the design of the car body has.

• Rolling resistance is mass dependent as well as affected by the
slope of the road:

Frollingres = f(v) · mg cos(γ) (2.5)

The function f(v) is the rolling coefficient. In this model a map
is used instead of explicit function for obtaining this coefficient.

• Gravitational force:

Fincline = mg sin(γ) (2.6)

• Braking force:
Fbrake (2.7)

In a braking situation the engine will brake as much as possi-
ble. If the required braking torque exceed the maximum braking
torque for the engine, the torque caused by the brakes will be the
difference between this maximum and the desired braking torque.
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The drive force Fdf correspond to the drive torque which has been
transmitted from the engine via the driveline to the wheels. To express
this torque it is necessary to have a good model of the driveline and
it’s parts. This will be explained in the next section.

g
g

mg

Fincline

Fengine

Fair

Frollingres/f(v)

Fbrake

Figure 2.1: Forces acting on the vehicle

2.2 Driveline

When modeling a driveline for a vehicle the main parts to be modeled
are engine, clutch, transmission, propeller shaft, final drive, drive shafts
and wheels. Figure 2.2 shows where the different parts are located on
the driveline. The model used in this thesis contains some simplifica-
tions which mean that all parts in Figure 2.2 are either not modeled or
they have been assumed to behave in a way that differs from reality.
To read more about driveline modeling see [6].

2.2.1 Basic Driveline Relations

Consider the situation in Figure 2.3 describing how torque and moment
of inertia are related when using only a stiff transmission between en-
gine and wheels. The transmission has a fixed conversion ratio

i =
ωengine

ωwheel

(2.8)
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Engine Clutch Transmission Propeller shaft

Drive shaft

Final drive

Wheel

Figure 2.2: Driveline for a vehicle [6]

and an efficiency factor ηi. By considering the conversation law of
energy, the next two expression describe the relation between the torque
and moments of inertia:

M ′
wheels ωengine =

1

ηi

Mwheels ωwheels ⇔

Mwheels = ηiiM
′
wheels (2.9)

J ′
wheels ω̇engine

2
ηi =

Jwheels ω̇wheels

2
⇔

Jwheels = ηi i2J ′
wheels (2.10)

The expressions (2.9) and (2.10) play an important role when modeling
the torque flow through the different parts of the model. Figure 2.4
shows the vehicle driveline used in the model with respective torque
and angle velocity labels.
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wheelsM
engineM

engineJ
wheelsJ

enginew
wheelsw

i

wheels

engine
i h

w

w
,=

wheelsM ¢

wheelsJ ¢

Figure 2.3: Transmission

2.2.2 Model Subsystems

As mentioned before the driveline model used here is different from the
driveline shown in Figure 2.2. First of all there is no clutch. The small
amount of time that the clutch is actually engaged does not effect the
total torque flow significantly and can therefore be neglected. Instead
an automatic gear box with fixed gear ratios is used. All wheels are
also assumed to be one single wheel, placed in the middle of the vehicle,
with a mass equal to the sum of all wheels. For that reason the drive
shaft is not considered here. Furthermore the propeller shaft and final
drive is represented by a differential gear. Another simplification that
has been made is the neglection of possible torsional effects.

As mentioned in the beginning of this chapter, one of the system
inputs is the required engine torque which will be transferred via dif-
ferent subsystems. These subsystems, the parts of which this model
consist, are:

• Combustion engine. When the model is used for the simulations
further on in this thesis the input will just be the required engine
torque. It is also possible to feed this block with the angle of the
gas pedal instead of directly applying the torque. In that case the
combustion engine block calculates the required engine torque via
the current rotating speed of the engine and the throttle angle.
Since these relations are strongly nonlinear, two maps are used.
The first map describes the throttle angle α from the angle of the
gas pedal αpedal, i.e.

α = f1(αpedal) (2.11)

Another map calculates the engine torque Mengine by taking the
throttle angle and the current rotation speed as inputs, i.e.

Mengine = f2(α, ωengine) (2.12)

To avoid unrealistic large engine torques caused by the interpo-
lation or unrealistic inputs, two maps calculates the upper and
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Engine Transmission

Differential gear Wheels

Mengine

Mresistance

wengine
wtrans

wdiff

Mtrans Mdiff

MWheels

Jengine

Jtrans

itrans htrans

Jdiff

idiff hdiff
Jwheels

wtrans

Mdiff

Figure 2.4: The subsystems used in the model with torque and angle
velocity labels



8 Chapter 2. The Vehicle Model to be Controlled

lower bound for the engine torque in respect to the current rota-
tion speed, i.e

fmin(ωengine) ≤ Mengine ≤ fmax(ωengine) (2.13)

These limit values are chosen if the requested torque is out of the
bounds.

• Transmission. For every gear the transmission has a transmis-
sion ratio itrans and an efficiency coefficient ηitrans

, which con-
vert torque and moment of inertia from the engine according to
equation (2.9) and (2.10).

• Differential gear. The differential gear is between the transmis-
sion and the wheels. In the differential gear block calculations for
torque and moment of inertia at the wheels take place. They are
derived in the same manner as for the gear box with the excep-
tion that the transmission ratio idiff and the efficiency coefficient
ηidiff

, unlike the transmission, have constant values and are not
dependent on the gear.

• Wheels. In this block a new angle velocity is obtained by using
(2.2). The torque is the one coming from the differential gear
where braking and resistance torque have been subtracted, i.e.

Mwheels = Mdiff − Mbrake − Mresistance (2.14)

The total moment of inertia is the sum of the incoming moment
of inertia from the differential gear block and the total moment
of inertia caused by the wheels. Since all of the four wheels are
considered as one the contribution in moment of inertia from the
wheels is given by

J = J4 + mtotr
2 (2.15)

The constants J4 and mtot is the moment of inertia for all the
four wheels and the total mass for the vehicle respectively.

With the wheel radius of the value rwheel, equation (2.3) can be ex-
pressed as

v̇ =
1

m
Ftot =

1

m

(

1

rwheel

(Mdiff − Mbrake) −

1

2
ρairAfcwv2 − f(v)mg cos(γ) − mg sin(γ)

)

(2.16)

where Mdiff is calculated as described above.



Chapter 3

MPC Theory

Model Predictive Control (MPC) is a control technique that has be-
come very popular in the last 10 to 20 years. Several predictive control
techniques were presented more or less simultaneously under different
names [2]. An early introduction of a predictive control technique was
made by the oil company Shell in the late 70’s called Dynamic Matrix
Method (DMM). Using MPC requires big computational effort and has,
for that reason, been especially used in chemical industries where one
can find systems with large time constants. There are several reasons
why MPC has become popular in the industry. Most important point
is that MPC can handle constraints as for example limited control vari-
ables and safety limits on the outputs explicitly. Furthermore MPC is
easy to explain for those who do not have much knowledge of automatic
control theory. For a small introduction to MPC see for example [4] or
[5]. A more complete theory can be found in [2].

3.1 Introduction to Model Predictive

Control

MPC can typically be described in the following steps:

1. At time t, predict future outputs ˆ̄y(t + k|t), k = 1, . . . , N . These
outputs will depend on future control signals ū(t+j), j = 0, 1, . . . ,M
and on measurement obtained at time t.

2. Formulate some criteria J based on these variables and optimize
with respect to the control signals.

3. Feed the model with ū(t).

4. t := t + 1

9



10 Chapter 3. MPC Theory

5. Go back to 1.

The values M and N are called control and prediction horizons where
M ≤ N . The prediction horizon should be chosen in such a way that
it covers a settling time of the system, so that the system has reached
a more stable behavior. However, the prediction horizon should at the
same time not be chosen too large since it affects the computational
efforts. If there were no disturbances and no mismatches between model
and controlled system, a prediction over an infinite horizon in time
t = 0 would be enough. Then it would be possible to just apply the
control vector found in time t = 0 for all times t ≥ 0. In reality
disturbances exist, as well as a possibility that the model does not
totally describes the controlled object, which makes it necessary to
recalculate the prediction and optimal control action in the next time
step.

3.2 Linear Model Predictive Control

When explaining the theory of MPC it makes no difference if the system
has one or more inputs and outputs, therefore a multi-variable system
is assumed. The model of the object to be controlled is described with
a time discrete linear state-space system:

x̄(k + 1) = Ax̄(k) + Bū(k) (3.1a)

ȳ(k) = Cx̄(k) (3.1b)

where

ū(k) =







u1(k)
...

um(k)






, ȳ(k) =







y1(k)
...

yp(k)






, x̄(k) =







x1(k)
...

xn(k)






(3.2)

and A, B and C are matrices of proper sizes. The cost function J
that has to be minimized can be chosen in many ways depending on
the purpose of the controller. The minimization is often done under
constraints and then especially in form of limited control variables,
umin ≤ ui ≤ umax. A very common situation is that one has to follow
a predefined reference trajectory, r̄, and that the criteria punish devia-
tions in the output signal from this trajectory. In this case the criteria
can look like this1:

min
ūmin≤ū≤ūmax

J =

N−1
∑

j=0

‖ȳ(k+j+1)−r̄(k+j+1)‖2
Q1

+‖ū(k+j)‖2
Q2

(3.3)

1‖x̄‖2

Q
= x̄T Qx̄



3.2. Linear Model Predictive Control 11

In (3.3) the control signal has been added to the criteria which is com-
mon to prevent the control signals to get unrealistic values. The number
N is the prediction horizon and Q1 and Q2 are weighting matrices and
semi-positive definite. The weighting matrices and the prediction hori-
zon are tuning parameters that have to be chosen by the user. If, for
example, it is desirable to control the system to follow the reference
fast, and it is not so important to use small control inputs, then the
elements in Q1 should be chosen big and in Q2 small.

3.2.1 Prediction of Future States

When using MPC without taking disturbances and model mismatches
into account, the prediction for future states is derived in an explicit
way. If the model is used for a two-step prediction the state can be
obtained by using the model recursively. The predicted state is then
expressed as

x̄(k+2) = Ax̄(k+1)+Bū(k+1) = A2x̄(k)+ABū(k)+Bū(k+1) (3.4)

Now this process can be repeated to predict all the N future states. It
is practical to write these predictions in a compact form like

X = Hx̄(k) + SU (3.5)

where U is the future control signals and X the states that these gen-
erates, i.e.

U =











ū(k)
ū(k + 1)

...
ū(k + N − 1)











, X =











x̄(k + 1)
x̄(k + 2)

...
x̄(k + N)











(3.6)

and where

H =











A
A2

...
AN











, S =











B 0 . . . 0
AB B . . . 0
...

...
. . .

...
AN−1B AN−2B . . . B











(3.7)

3.2.2 Analytical Solution

It can be interesting to look at an example where no constraints exist
even if one of the greatest advantages in using MPC is that it can
handle constraints. The interesting aspect of this special case is that
an analytical solution can be found. With an analytic solution faster
calculations and better analysis are possible. First, introduce a vector
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R for the future reference values and a matrix C which transforms future
states into future outputs.

R =











r̄(k + 1)
r̄(k + 2)

...
r̄(k + N)











, Y =











Cx̄(k + 1)
Cx̄(k + 2)

...
Cx̄(k + N)











=











C
C

. . .

C











X = CX

(3.8)
With help of (3.5) the criteria in (3.3) can now be written in a vector
based form as

J = (C(Hx̄(k) + SU)−R)TQ1(C(Hx̄(k) + SU)−R) + UTQ2U (3.9)

where Q1 and Q2 have been defined as

Q1 =











Q1

Q1

. . .

Q1











Q2 =











Q2

Q2

. . .

Q2











(3.10)

In this case, were no constrains exist, the criteria will be minimized by
the U for which the gradient of (3.9) is zero, i.e.

2ST CTQ1(C(Hx̄(k) + SU) − R) + 2Q2U = 0 (3.11)

The resulting U is:

U = −(ST CTQ1CS + Q2)
−1ST CTQ1(CHx̄(k) − R) (3.12)

The control signal, u(t), is the first m rows in U , i.e.

ū(k) = [I 0 . . . 0]U (3.13)

3.3 Nonlinear Model Predictive Control

While the theory for linear Model Predictive Control has been examined
and advanced much the last decades, the theory for nonlinear Model
Predictive Control (NMPC) has not been paid as much attention. The
interest for NMPC is steadily increasing because the industrial pro-
cesses are running under tighter conditions and more constraints as
safety and environmental restrictions are added. To meet these de-
mands, nonlinearities often have to be taken into explicit account in
the controller which justifies the use of NMPC. Nonlinear predictive
control can be seen as an extension of linear Model Predictive Control.
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An introduction to NMPC can be found in [3]. Analogous to (3.1) a
general NMPC problem can be formulated as:

min
ū

J = min
ū

M
∑

k=1

L(x̄(k), ū(k))

x̄(k + 1) = f(x̄(k), ū(k)), x̄(0) = x̄0

ū(k + j) ∈ U , j = 0, . . . ,M − 1

ū(k + j) = ū(k + M), j ≥ M

x̄(k) ∈ X ,∀k ≥ 0

(3.14)

Here both the criteria and the system are nonlinear, which will lead to
a nonlinear controller where L is describing a nonlinear function. The
control signals after the control horizon, M , have been set to ū(k +
M). The problem with the nonlinear controller is that it can be very
hard to find an analytical solution and in most cases this does not
exist. A numerical solution is then required but can demand great
computational time, often longer than what is acceptable for on-line
applications.

One method to decrease the computational time is to linearize the
system around different working points. The linearized system can then
be used to obtain linear controllers which can control the nonlinear
plant in each working point.



Chapter 4

Dynamic Programming

Theory

Dynamic programming was first developed by R. Bellman in the 50’s
[1]. As the name indicates Dynamic Programming is a dynamic op-
timization method which means that instead of obtaining a constant
value as optimum the method gives us an optimal trajectory.

4.1 Bellman’s Optimization Principle

Assume that the optimization problem is to find a set of control signals
{ū(0), . . . , ū(p − 1)} that brings a system, x̄(k + 1) = f(x̄(k), ū(k)),
from state x̄(0) = x̄0 to x̄(p) = x̄p and at the same time minimizes a
cost criteria

J =

p−1
∑

k=0

L(x̄(k), ū(k)) (4.1)

L describes the cost of going from present state x̄(k) to the next state
by applying ū(k). The optimization principle from Bellman says that if
the total state trajectory from x̄(0) to x̄(p) is optimal, then every part
of the trajectory has to be optimal. That means that if the system in
time k1 is in the state x̄(k1) = x̄k1

the problem to be solved is to find
the inputs {ū(k1), ū(k1 +1), . . . , ū(p−1)} that minimize the sum of the
costs

J1 =

p−1
∑

k1

L(x̄(k), ū(k)) (4.2)

Note that it is not necessary to have the cost function L in (4.2) time
independent, but for the simplicity this has been assumed here. In
Figure 4.1 the optimization principle for a continues system has been

14
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reproduced. The optimal trajectory from x̄(t0) to x̄(tp) has been di-
vided into two trajectories, one from state x̄(t0) to an arbitrary state
x̄(tk) and another from x̄(tk) to x̄(tp). In Figure 4.1 these are denoted
as x̄∗

1(t) and x̄∗
2(t), respectively. The fact that the total trajectory was

optimal implicates that the rest trajectory x̄∗
2(t) has to be optimal too.

If not, another way, x̄
′

2(t) in Figure 4.1 would exist, which together
with x̄∗

1(t) would be an optimal trajectory. Since the trajectory x̄∗
1(t)

together with x̄∗
2(t) has already been stated as optimal that can not be

the case. The principle is valid even in the discrete case.

)( 0tx

)( ptx

)(*

2 tx

)(*

1 tx

)( ktx
)(´

2 tx

Figure 4.1: Bellman’s optimization principle

Now let the minimal cost for going from state x̄(k1) to x̄(p) be
represented by a remaining cost function, R(x̄(k1)). This function gives
the minimum value of (4.2), i.e.

R(x̄(k1)) ≡ J∗
1 = min

{ū(k1),...,ū(p−1)}
J1 = min

{ū(k1),...,ū(p−1)}

{

p−1
∑

k1

L(x̄(k), ū(k))

}

(4.3)
As the remaining cost in the end state has to be defined beforehand
and is therefore known, it is possible to set up a recursive formula for
calculating all the remaining costs. In the end state the remaining cost
function is

R(x̄(p)) = φ(x̄(p)) (4.4)

therefore the remaining cost in time p − 1 can be derived as

R(x̄(p − 1)) = min
ūp−1

{L(x̄(p − 1), ū(p − 1)) + φ(x̄(p))} (4.5)

Insert (4.4) into (4.5) and using x̄(p) = f(x̄(p − 1), ū(p − 1))

R(x̄(p − 1)) = min
ūp−1

{L(x̄(p − 1), ū(p − 1)) + R(x̄(p))} (4.6)
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Note that the minimization in (4.6) only is dependent on ū(p − 1)
and not on future control signals which is a consequence of Bellman’s
optimization principle. It is now possible, from (4.6), to express the
remaining cost for an arbitrary state x̄(k), i.e.

R(x̄(k)) = min
ūk

{L(x̄(k), ū(k)) + R(x̄(k + 1))} (4.7)

The remaining cost can now be calculated recursively according to (4.7)
which is known as Bellman’s equation.

4.2 Discretization and Quantization

The recursive equation (4.7) can be used with a time-discrete system,
where the control and input variables have been discretized. Since
the function for the remaining costs (4.7) is not an analytic expression
the method for finding the minimum value has to be done numeri-
cally, for example, in time k, by applying all combinations of control
inputs ūi(k), i = 1, . . . , Nū(k). These different inputs will bring the
system into one of the in time k + 1 discretized states x̄j(k + 1), j =
1, . . . , Nx̄(k + 1). The quantities Nū(k) and Nx̄(k) are the number of
discretized control signals and states in time k. With x̄i,j(k + 1) de-
noted as the state which has been reached from state x̄i(k) by applying
ūj(k), the remaining cost for going from state x̄i(k) in time k is

Jj
i (k) = L(x̄i(k), ūj(k)) + R(x̄i,j(k + 1)) (4.8)

If the system hasn’t been discretized, R(x̄i(k)) is saved as the mini-
mum value of (4.8), which is obtained when the optimal control input
ū∗(x̄i(k)) is applied. Most technical systems are time-continuous and
have to be discretized with a quantization step. The way this step
length is chosen is a balance between computational time and accuracy
for optimum. A problem that can occur when discretizing states is that
one can reach states that don’t agree with the states x̄i(k). Therefore,
in time k, R̃i,j(k+1) is used as an interpolation between the contiguous
states’ remaining costs.

When the backward calculation in (4.8) has been done, the remain-
ing costs for every state are available and a forward calculation is neces-
sary to find out the trajectory of optimal control values ū∗(k). Starting
in state x̄(0), all ūj(0) are applied to the system, which will then reach
a new state, and then the resulting costs L(x̄(0), ūj(0)) are added to
the interpolated remaining cost R̃(x̄(k + 1)). Optimal ūj(0) is the one
that minimizes this sum. This means the ū∗(k) can be calculated as
follows

ū∗(k) = arg min
ū(k)

{

L(x̄(k), ū(k)) + R̃(x̄(k + 1))
}

(4.9)



Chapter 5

Control and

Optimization

In the two previous chapters the theory of Model Predictive Control
and Dynamic Programming was presented. In this chapter the theory
will be applied to the special case of a Stop and Go controller. This
controller and different control strategies will be presented.

5.1 The Controller

The controller structure to be used in this thesis is reproduced in Figure
5.1. The algorithm for the MPC controller is implemented in C code to
be used in a Simulink S-function block. Inputs to the controller are the
current position and the velocity of the preceding and the following car.
Outputs from the control algorithm are the required engine torque and
gear. Data from the preceding car is obtained from different telematic
devices as sensors, GPS and 3D-maps. The sensors will detect the
position and the velocity of the car in front and the GPS together with
the 3D-maps deliver information about the slope of the road. In each
time step the controller will use these inputs to obtain the optimal
torque request and gear for an optimal driving strategy in respect to a
criteria, which will be explained later on.

Figure 5.2 shows the following and preceding cars with the different
labels which have been used during the optimization. The following
car, which is to be controlled by the MPC controller, is represented
here by a Simulink model of the vehicle as described in Chapter 2.
This model is a nonlinear system and for that reason nonlinear Model
Predictive Control has been used.

17
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Figure 5.1: An overview of the controller structure
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Figure 5.2: The control situation
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5.2 Optimization and Control Strategies

5.2.1 Distance Base

The velocity of the controlled vehicle has been chosen as the only state,
i.e. x̄ = v. The drawback of having the velocity as a single state is
that no other quantities than the velocity can be controlled, but on the
other hand it reduces the computational effort when using Dynamic
Programming. The system can be described with a time-based nonlin-
ear state space model

˙̄x(t) = f(x̄(t), ū(t)) (5.1a)

x̄(t) = v(t) (5.1b)

ū(t) = [Me(t), g(t)]T (5.1c)

with inputs Me, the requested engine torque, and gear g. The model
(5.1) is a time-based model. It is not suitable to use a time-based model
for this control purpose when the incline, given from the GPS and the
3D-map, isn’t dependent on time but dependent on distance. Apart
from that, a system based on distance instead of time is preferable for
the controlling actions, which will be seen later on. Using the relation

dv

ds
=

dv

dt
·

dt

ds
=

1

v
f(v,Me, g) v 6= 0 (5.2)

system (5.1) has been transformed into a distance dependent form.
This is the form that from now on will be used to represent the system
to be controlled, implemented in C and Simulink S-function.

5.2.2 Control Strategies

There are several things that have to be defined before starting the
optimization according to the theory in chapter 4. A control strategy
has to be set up as well as parameters for the optimization, which
include:

• Defining the prediction and control horizon.

• Determine the velocity that the vehicle will reach in the last pre-
diction step by defining the Mayer function.

• Defining the cost function.



20 Chapter 5. Control and Optimization

The following strategy that has been used can be formulated as follows:
when the following car reaches the position where the preceding vehicle

is at present time, it should have the same velocity as the preceding

vehicle.
That means, using the notation in Figure 5.2, when sf = sp then

v = vp. The prediction horizon has been chosen to be sp. The reason for
this is that the mayer function can then be defined so that it punishes
deviations in velocities from the preceding vehicle’s. From now on sf

is assumed to be zero and the mayer function has been chosen as:

φ(v(sp)) = Q1(v(sp) − vp(sp))
2 (5.3)

with a weighting constant Q1. Since it is difficult to determine the re-
quired velocity for a specific time it would have been harder to formulate
the mayer function (5.3) with a system depending on time instead of
position. To define the cost function L in (3.14) one has to decide what
the aim for the optimization is, i.e. what is going to be minimized?
As the aim of this thesis is to find out if the MPC approach can reach
good following and in the same time reduce the fuel consumption, the
cost function has been chosen to be

L = ffuel(n,Me)+Q2(v−vp)
2 = ffuel(C(g)·v,Me)+Q2(v−vp)

2 (5.4)

The function giving the fuel consumption is in form of a map taking
the rotation speed of the engine and the engine torque as inputs. The
present rotation speed can be expressed in velocity by multiplying with

C =
30 · idiff · itrans

π · rwheel

(5.5)

Apart from the fuel consumption a quadratic function has been in-
cluded in the cost function. This term increases the cost when the
velocity differs from the preceding vehicle’s, and with the weight Q2

one can decide what an acceptable difference in the velocities is.

5.3 The Control Algorithm

In order to use the model together with Dynamic Programming the
system has to be discretized with a distance-step size ∆s. The dis-
cretization method used in (5.6) is the Euler approximation and the
approximated distance based state space system can then be written
as

v(s + ∆s) = v(s) +
∆s

v
f(v,Me, g) v 6= 0 (5.6)

The MPC problem can now be defined according to (3.14). As the pre-
diction horizon has been chosen to be sp and the system is discretized
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with the step size ∆s, the optimization problem to solve is

min
{ū(0),...,ū(b

sp
∆s

c∆s)}







φ(v(sp)) +

b
sp
∆s

c
∑

k=0

L(v(k · ∆s),Me(k · ∆s), g(k · ∆s))







(5.7a)
subject to

v(k + 1) = v(k) +
∆s

v
f(v,Me, g) v 6= 0 (5.7b)

Me ∈ Ue, g ∈ Ug v ∈ X (5.7c)

The sum in the criteria J is called the Lagrange function. Unlike the
Mayer function it affects the criteria in every time step, (see Chapter
4). The sets Ue, Ug and X represent valid engine torques, gears and
velocities. To obtain a solution of (5.7) numerically, the engine torque,
which is limited to an upper and lower bound, has to be discretized
with a step ∆Me. The other control input is already discrete as the
vehicle always uses one of five gears. The torque bounds are evaluated
from the present velocity and gear as well as the possible gears. The
gears that can be used are dependent on the current velocity. The sets
can therefore be written as:

Ue = {Mmin(v, g),Mmin(v, g) + ∆Me, . . . ,Mmax(v, g)}

Ug ⊆ {g1, g2, g3, g4, g5}

Here Ug is dependent on the state, i.e. Ug contains the valid gears for
the specific velocity.

The MPC algorithm to obtain the optimal control signals for solving
(5.7) can be described in a few steps

1. Use the model to predict possible future velocities for every po-
sition step until the prediction horizon.

2. Apply the theory of Dynamic Programming to obtain optimal
vectors containing torque requests and gears for every position
step.

3. Take the first values in these vectors as inputs for the control
object.

5.3.1 Prediction of Future Velocities

The first step in the MPC algorithm is to predict future reachable ve-
locities, until the prediction horizon s = sp, for the car according to
the present velocity. This can be done with help of a model of the con-
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Figure 5.3: The prediction of possible future states until the prediction
horizon

trol object. This model is implemented in C code and is equal to the
Simulink model used as control object. Consequently, no disturbances
or model mismatches have been taken into account. Now assume the
situation in Figure 5.3 where the car has the initial velocity v0. By
applying maximum and minimum torque with a ”suitable” gear maxi-
mum and minimum velocity in position ∆s will be obtained. The gear
is chosen as the one which, together with the extreme torque values,
will bring the system into the maximum and minimum velocity in dis-
tance ∆s. To find the maximum velocity in s = 2∆s, maximum torque
is applied when the car has highest velocity in s = ∆s, and analogous
the minimum velocity is obtained when the minimum torque is applied
from the lowest velocity. This process is then repeated for all position
steps until the prediction horizon. Thus, all extreme values for the car’s
velocity until s = sp are known and therefore every velocity between
the maximum and minimum velocities is also reachable. In Figure 5.3
all the states are reproduced with a velocity quantization ∆v and the
set of feasible velocities is

X (k) = {vmin(k) + ∆v, . . . , vmax(k)} (5.8)
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5.3.2 Optimization

When all possible states have been obtained the next step is to find
the optimal trajectory to position s = sp with help of the Dynamic
Programming method. The optimization is performed according to
the theory in Chapter 4 and the same terminology and notation is
used. In the last step the remaining costs for all states are defined
to be R(v(sp)) = φ(v(sp)) = Q1(v(sp) − vp(sp)

2) and for every k =
sp − ∆s, . . . , 0 the following calculations are done:

1. All combinations of admissible engine torques and gears (Me, g) ∈
Ue × Ug are applied to the model (5.6) for all feasible velocities
v ∈ X (k). Every combination of control inputs will bring the
system into a new state in k = sp.

2. Interpolate the remaining costs for every new state for which the
input combinations give rise to.

3. Calculate the cost function (5.4) for all combinations and add to
the corresponding interpolated remaining cost.

4. The combination that gives the total minimum cost are the op-
timal control inputs, and the total cost is saved as the remaining
cost in k = sp − ∆s

This is then repeated for all k until k = 0, and all remaining costs
for feasible velocities have been obtained. During the prediction the
preceding car’s velocity has been assumed to be constant. To obtain
the optimal trajectory a forward calculation analogous to the backward
one is necessary. A part of the trajectory is then applied to the control
object.



Chapter 6

Simulations and Results

6.1 Reference Trajectory

To obtain a suitable reference trajectory for the preceding vehicle in a
Stop and Go situation, measurements have been done in dense traffic
during the rush hours on the highway A8 in Germany. Figure 6.1
shows a part of the obtained trajectory which was used for most of the
simulations. This trajectory was chosen because it includes different
driving actions typical for Stop and Go driving. That means periods of
relatively high and low acceleration, stops, and periods when the car is
driving at a more and less steady pace.
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Figure 6.1: One part of the measurements made in a real Stop and Go
situation
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6.1.1 Comparing the Fuel Consumption

As the aim for the optimization is to save fuel it is necessary to know
if the fuel consumption was reduced when using the Stop and Go al-
gorithm. To do that one has to compare the consumed fuel when the
fuel optimized control was used, to some reference consumption. The
comparisons were made with help of a quasi stationary model. Instead
of having the gear and engine torque as inputs to the model the quasi
stationary model takes the velocity, acceleration, and the slope of the
road as inputs. From these data the model calculates the engine torque
and engine rotation speed that corresponds to the given inputs, i.e. the
calculations are done ”backwards” compared to the model which is used
as control object. It is interesting to compare the fuel consumption with
the one that the controlled car would have if the velocity was exactly
the same as the preceding vehicle’s using the optimal gear given from
the optimization. In that case there is no chance of affecting the inputs
for the controller and for that reason no possibilities of reducing the fuel
consumption. When applying the velocity trajectory in Figure 6.1 the
reference fuel consumption obtained is 31.61l/100km. It is necessary
to express the fuel consumption as depending on the distance, because
when comparing different velocity trajectories the driven distance will
be different in each case. Due to the fact that fuel is consumed even
when the car has stopped, and is running on idle speed, it is important
that the comparisons are made with the same trajectory.

6.2 Simulations

Before starting the simulations the user has to define different param-
eters depending on what behavior one requires from the controller.
These are:

• Weighting constants Q1 and Q2

• Torque quantization ∆Me

• Distance quantization ∆s

• Velocity quantization ∆v

Apart from these parameters the sample time for the simulation also
has to be defined. A small sample time will contribute to a better
following but, on the other hand, increase the computational effort.
The discretization quantities ∆Me, ∆s and ∆v should be chosen as
small as possible to increase the accuracy in the simulations. In the
simulations later on in this chapter the values of these quantities have
been chosen smallest possible without getting to large simulation times.
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First of all, it is not obvious that the quadratic term in the cost
function (5.4) has to be included. Since the Mayer function (5.3) has
been defined in a way that the velocity will reach the preceding one’s
in the last prediction step, this should be enough. In every time step
the controlling actions that are applied to the car will try to adjust
the velocity to the preceding vehicle’s velocity. Figure 6.2 shows the
results from a simulation where the quadratic term has been neglected,
i.e. when Q2 = 0. The problem that occurs is that the following vehicle
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Figure 6.2: Simulation without taking the quadratic expression in the
cost function into account, i.e. Q2 = 0.

can not maintain a safety distance and crashes into the car ahead. Due
to the fact that the velocity of the controlling vehicle is the only state
there is no possibilities to control the distance between the cars. When
Q2 = 0 the controller will not adjust the speed during the prediction
but only in the last prediction step.

To prevent the car from crashing into the car in front Q2 has to be
chosen to a value which is not zero. In Figure 6.3 Q2 has been chosen to
0.001. When choosing Q2 6= 0 the controller will punish deviations, in
the velocity from the preceding one, during the whole prediction and
not only in the last prediction step. The result is a better following
and the controlled car is able to keep a safety distance to the preceding
vehicle. The simulation parameters used for the results seen in Figure
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6.3 are:

• Q1 = 10000, Q2 = 0.001

• Me = 1Nm

• ∆s = 0.3m

• ∆v = 0.05m/s
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Figure 6.3: Simulation with high punishment on velocities that differ
from the preceding vehicle’s. Q1 = 10000, Q2 = 0.001

The fuel consumption for this simulation was 30.70l/100km and com-
pared to the reference consumption this is a reduction of 2.9%.

A result of the fact that the simulation in Figure 6.3 has been done
with a relative high punishment on velocities that differ from the pre-
ceding vehicle’s (Q1 = 10000) is that a rather good following has been
achieved and the controlled car does not crash into the car in front.
In the optimization problem (5.7) the velocity equal to zero is not de-
fined. That means that the following car is not able to stop totally and
is for that reason approaching the preceding car when it has stopped.
This explains the ”dipping behavior” of the relative velocity as seen in
Figure 6.3. The consequences of a high punishment is that many of
the predicted states can not be chosen by the controller. Therefore the
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controller is not able to choose the inputs to the control object freely.
The punishment can be chosen to be small, as seen in Figure 6.4. Here
is Q1 = 1 and the following is still acceptable. The difference to the
simulation in Figure 6.3 is that the fuel consumption now have been
reduced to 30.41l/100km or 3.8% less then the reference consumption.
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Figure 6.4: Simulation with low punishment on velocities that differ
from the preceding vehicle’s. Q1 = 1, Q2 = 0.001

How the matrices should be chosen is a balance between the fuel
consumption and the ability to maintain an acceptable distance to the
preceding vehicle. When trying to decrease the fuel consumption more
by setting Q1 to 0.01 and giving the controller even more freedom
the behavior of the following car is not satisfactory. Figure 6.5 shows
the simulation and instead of crashing into the car in front as in the
simulation showed in Figure 6.2 this time a too big relative distance
is obtained. The examples that have been presented here show the
problem with choosing the optimal weighting constants for a specific
driving situation.

Summarizing the results from this section it has been seen that
whether a good following or low fuel consumption is desirable it can be
controlled via different weighting strategies. To achieve a good follow-
ing where the fuel reduction is not as important as keeping a proper dis-
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Figure 6.5: Simulation with very low punishment on velocities that
differ from the preceding vehicle’s. Q1 = 0.01, Q2 = 0.001
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tance to the car in front, a high punishment on velocities that differ from
the preceding one’s can bee used as seen in Figure 6.3 (Q1 = 10000,
Q2 = 0.001). On the other hand if the fuel reduction is more important
than maintaining the distance it can be done with a small punishment
instead, as for example in Figure 6.4 (Q1 = 1, Q2 = 0.001).

6.2.1 Simulation problems

During the work with the simulations different problems have occurred.
These have mainly been numerical problems in the form of oscillations
in the input signals. A consequence of this is that the input signals was
very hard to analyze. The main reason for this oscillatory behaviour is
the discretization of the input signals. The optimal input signals, which
are given from the optimization algorithm, may not correspond exactly
to any of the discretized values allowed as inputs. Thus the value of the
signal will oscillate, always trying to be as close to the optimal (non-
discretized) input as possible. Another problem is that the model that
has been used is not optimal for the purpose discussed in this thesis
and needs to be improved. This due to the model’s inability to handle
the case of zero velocity.
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Conclusions

The aim of this thesis was to obtain a controller for Stop and Go sit-
uations and investigate if there were any possibilities of saving fuel.
Real driving situations have been used and for many cases the results
are promising. The fuel consumption has been reduced which was the
main goal of the S&G algorithm and in the same time an acceptable
safety distance to the preceding vehicle is maintained. The numerical
problems that occurred in the input signals to the model have made it
difficult to evaluate how the signals are changing during the simulations
and if it would be possible to apply this input sequences to a real en-
gine. Due to the fact that the control algorithm was created using only
a one state model it has been difficult to control the distance between
the controlled and the preceding car. Therefore different optimization
criteria have been tested. The first try, with punishment only in the
last prediction step (Figure 6.2), was not enough for satisfactory fol-
lowing. When adding the quadratic term by choosing Q2 6= 0 in (5.4)
this was improved. The controller was then able to adjust the veloc-
ity during the prediction and not only in the last prediction step and
thus avoided crashing into the car in front. With help of the weighting
constants it has been seen that the controller can be tuned in differ-
ent ways depending on which purpose the controller has. Depending
on whether a good following is required or if the fuel consumption has
to be reduced as much as possible, the weighting constants are chosen
accordingly, i.e. different punishment on the deviations of the velocity
from the preceding vehicle’s are used, see Chapter 6. As seen before
the fuel consumption has been reduced with both high and low pun-
ishment. The mean reduction for these simulations have been around
3%.
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Chapter 8

Further Work

There is still room for improvements of the controller actions and con-
trol strategies in the field of automated S&G driving. During the work
with this thesis assumptions and restrictions have been made which
have influenced the behavior of the following car (the control object).
One of the first thing to do would be to try to minimize the numerical
problems in the form of oscillations in the input signals. The model
that has been used is also not optimal for the use in the simulations and
may contributed to the numerical problems. These kind of problems
are well known and have occurred in other applications similar to the
one which has been described in this thesis. A specialized model would
be required for best possible control results.

The discretization of the inputs often leads to problems during the
optimization. When the optimal inputs are not valid due to the dis-
cretization the controller has to choose inputs that differ from the opti-
mal one and oscillations occur. This problem would be one of the main
points of work when continuing this project.

The model used consists of only one state, the velocity. This is of
course a restriction in the controller and to add a state or states would
lead to a controller with more possibilities to improve the behavior
of the following car. Since adding states increases the computational
effort one has to decide if it is really necessary to add an extra state or
if the performance of the controller can be improved with help of other
control strategies.

In this thesis the aim has been the reduction of the fuel consump-
tion. This is of course not the only thing to be taken into account if
a S&G controller will be a reality in future cars. The control actions
must then also be comfortable and acceptable to the driver, which will
lead to a much wider optimization problem.
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Notation

Notation

Symbols

Af Maximum vehicle cross area
α Throttle angle
cr Rolling friction coefficient
cw Air resistance constant
Fair Air resistance
Fbrake Braking force
Fdf Drive force generated from the engine
Fincline Force on vehicle caused by the incline of the road
Fres Sum of the resistance forces acting on the vehicle
Frollingres Force on vehicle caused by the rolling resistance
Ftot Total force acting on the vehicle
g Gravitational acceleration or gear
i Gear ratio
J Moment of inertia
J4 Moment of inertia for all wheels
m Vehicle mass
M Control horizon
Mengine Engine torque
Mresistance Resistance torque
Mwheels Torque acting at the wheels
N Prediction horizon
ηi Efficiency factor of the gear
nengine rpm in engine
nwheel rpm of the wheels
Q Weighting matrix
rwheel Wheel radius
ρair Air density
s Distance
sp Position for the preceding car
v Velocity
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36 Notation

vp Velocity for the preceding car
γ Angle of incline
ω Angle velocity
ωengine Angle velocity of the engine
ωwheels Angle velocity of the wheels

Abbreviations

MPC Model Predictive Control
NMPC Nonlinear Model Predictive Control
ICC Intelligent Cruise Control
S&G Stop and Go
RPM Revolutions Per Minute
trans Transmission
diff Differential gear
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