
Diagnosis System Conceptual Design
Utilizing Structural Methods

– Applied on a UAV’s Fuel System

Master’s thesis performed at:
Division of Vehicular System

Department of Electrical Engineering
Linköpings Universitet

Tobias Axelsson

Reg nr: LiTH-ISY-EX-3552-2004

Supervisors: Lic.Eng. Mattias Krysander, Division of Vehicular Systems,
LiTH
Lic.Eng. Martin Jareland, Saab AB

Examiner: Assistant Prof. Erik Frisk, Department of Electrical
Engineering, LiTH

Avdelning, Institution
Division, Department

Institutionen för Systemteknik
581 83 LINKÖPING

Datum
Date
2004-08-26

Språk
Language

Rapporttyp
Report category

ISBN

 Svenska/Swedish
X Engelska/English

 Licentiatavhandling
X Examensarbete ISRN LITH-ISY-EX-3552-2004

 C-uppsats
 D-uppsats Serietitel och serienummer

Title of series, numbering
ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/isy/2004/3552/

Titel

Title

Användande av strukturella metoder vid design av koncept till diagnossystem -
Tillämpat på bränslesystemet i en UAV.

Diagnosis System Conceptual Design Utilizing Structural Methods – Applied on a UAV’s Fuel
System

Författare
 Author

Tobias Axelsson

Abstract

To simplify troubleshooting and reliability of a process, a diagnosis system can supervise the process and
alarm if any faults are detected. A diagnosis system can also identify one, or several faults, i.e. isolate faults,
that may have caused the alarm. If model-based diagnosis is used, tests based on observations from the pro-
cess are compared to a model of the process to diagnose the process. It can be a hard task to find which tests
to be used for maximal fault detection and fault isolation. Structural Methods require not very detailed
knowledge of the process to be diagnosed and can be used to find such tests early in the design of new pro-
cesses. Sensors are used to get observations of a process. Therefore, sensors placed on different positions in
the process gives different possibilities for observations. A specific set of sensors are in this work called a
sensor configuration.

This thesis contributes with a method to predict and examine the fault detection and fault isolation possibility.
By using these two diagnosis properties, a suitable sensor configuration is computed and tests to be used in a
future diagnosis system are suggested. For this task an algorithm which can be used in the design phase of
diagnosis systems, and a Matlab implementation of this algorithm are described.

In one part of this work the Matlab implementation and the algorithm are used to study how a model-based
diagnosis-system can be used to supervise the fuel system in an Unmanned Aerial Vehicle (UAV).

Nyckelord
model-based diagnosis, sensor configurations, structural methods, fuel system, MSS sets

Abstract

To simplify troubleshooting and reliability of a process, a diagnosis system
can supervise the process and alarm if any faults are detected. A diagnosis
system can also identify one, or several faults, i.e. isolate faults, that may have
caused the alarm. If model-based diagnosis is used, tests based on observa-
tions from the process are compared to a model of the process to diagnose the
process. It can be a hard task to find which tests to be used for maximal fault
detection and fault isolation. Structural Methods require not very detailed
knowledge of the process to be diagnosed and can be used to find such tests
early in the design of new processes. Sensors are used to get observations of a
process. Therefore, sensors placed on different positions in the process gives
different possibilities for observations. A specific set of sensors are in this
work called a sensor configuration.

This thesis contributes with a method to predict and examine the fault detec-
tion and fault isolation possibility. By using these two diagnosis properties, a
suitable sensor configuration and tests to be used in a future diagnosis system
are computed. For this task an algorithm which can be used in the design
phase of diagnosis systems, and a Matlab implementation of this algorithm are
described.

In one part of this work the Matlab implementation and the algorithm are used
to study how a model-based diagnosis-system can be used to supervise the
fuel system in an Unmanned Aerial Vehicle (UAV).

Acknowledgements

This master’s thesis was performed during the spring and the summer 2004 at
the Department of Simulation and Thermal Analysis (TDGT), Saab Aerosys-
tems, Saab AB and at the Division of Vehicular System, Linköpings Univer-
siy.

I would like to thank a number of people for supporting me during this work:

My supervisors Martin Jareland (Saab AB) and Mattias Krysander (LiTH),
thank you for guidance, help and discussions.

Birgitta Lantto (Saab AB) and Erik Frisk (LiTH) for making this thesis possi-
ble.

My colleagues at Saab AB and at Division of Vehicular System for all support
and for a great time during and between the coffee breaks.

I would also like to thank my Family and numbers of friends which have
encourage and supported me during the work of this thesis and during my
years at LiTH.

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 2
1.3 Outline . 2

2 Introduction to Fault Diagnosis 5
2.1 Basic Definitions . 5
2.2 The History of Fault Diagnosis . 6

2.2.1 Limit Checking . 7
2.2.2 Hardware Redundancy . 7

2.3 Use of Diagnosis . 8
2.3.1 Man and Machine Protection . 8
2.3.2 Availability and Cost Reduction . 8

2.4 Model-Based Diagnosis . 9
2.4.1 Structure of Model-Based Diagnosis-Systems 9
2.4.2 Advantages of Model-Based Diagnosis 10

2.5 Structural Methods . 10
2.5.1 Introduction to Structural Methods . 10
2.5.2 Product Development Process utilizing Structural Methods . 11

3 Modeling Methods 13
3.1 Introduction to the Modeling Methods . 13
3.2 Structural Models . 14

3.2.1 Structural Model with Analytical Model Available 14
3.2.2 Structural Model Without Analytical Model Available 15

3.3 Study of the Refueling Process in a Conceptual UAV 15
3.3.1 Example Description . 16
3.3.2 Included Variables . 16
3.3.3 Equations used in the Model . 18
3.3.4 Structural Model . 23

3.4 Introduction to MSS Sets . 24
3.4.1 Structural Singular . 25
3.4.2 Minimal Structural Singular (MSS) . 25
3.4.3 The Use of MSS Sets . 26

4 Algorithm used to find MSS Sets 27
4.1 Differentiate the Model . 28

4.1.1 Example of a Differentiated Model . 30
4.2 Simplify the Model . 32
4.3 Search for MSS sets . 33
4.4 Analysis of Isolability . 34
4.5 Decouple Faults . 36
4.6 Summary of the Structural Algorithm . 36

5 Optimizing Sensors Configurations 39
5.1 Fault Classification . 39

5.1.1 Properties of Fault Classification . 40
5.1.2 Demands for the Fault Classification 41

5.2 Sensor Configurations . 41
5.2.1 Sensor Configuration Optimization . 42

5.3 Algorithm used to Examine Sensor Configurations 42
5.4 Optimization Strategies using a Fault Isolability Matrix 44

6 Matlab Implementation 45
6.1 Graphic User Interface . 45

6.1.1 Definition of Variables . 45
6.1.2 Definition of Equations . 46

6.2 Objects representing Structural Models and Isolability Matrices . . 48
6.2.1 SM Objects . 48
6.2.2 SMSS Objects . 50
6.2.3 FM objects . 51

6.3 Functions used in the Matlab Implementation 51
6.3.1 Basic Functions for the MSS Algorithm 51
6.3.2 Functions used to Merge and Change Structural Models . . . 52
6.3.3 Functions for Visualization . 52
6.3.4 Functions for Analysis of MSS sets 53

6.4 Utilizing Matlab Implementations for Structural Analysis 53

7 UAV Fuel System Concept 57
7.1 Introduction to Conceptual UAV . 57

7.1.1 The Fuel Pump System . 58
7.1.2 The Tank Pressurization System . 59

7.2 Structural Analysis Strategy . 61
7.2.1 Modeling Conditions . 61

7.3 Model of the Fuel Pump System . 62
7.3.1 Models of the Tanks . 63

7.4 Structural Model of the Fuel Pump System 65
7.4.1 Limitations in the Structural Analysis 65
7.4.2 Unknown Variables . 66
7.4.3 Sensor Signals . 66
7.4.4 Fault Variables . 68
7.4.5 Control Signals . 69

7.5 System Equations . 70
7.5.1 Control Signals Included in the System Equations 71
7.5.2 Faults Included in the System Equations 72
7.5.3 Perfect Matching . 74

7.5.4 Sensor Equations . 75
7.5.5 Fault Model Equations . 77

7.6 Analysis of Sensor Configurations . 78
7.6.1 Sensor Classification . 79
7.6.2 Fault Classification . 80
7.6.3 Evaluation of Sensor Configurations 83
7.6.4 Conclusions related to Normal Flight Mode 87

7.7 Summary of the Structural Analysis . 88

8 Discussion and Conclusions 89
8.1 Discussion . 89

8.1.1 Discussion Related to the Matlab Implementation 89
8.1.2 Discussion Related to Structural Analysis 90

8.2 Conclusions . 90
8.3 Future Work . 91

Bibliography 93

 Appendix A 95

 Appendix B 107

1

1
Introduction

This master’s thesis has been carried out in cooperation with Saab AB. Saab
AB is one of the world's leading high-technology companies, with its mainop-
erations focusing on defence, aviation, and space. The company is active both
in civil and military industry. This thesis is performed at Saab Aerosystems in
Linköping Sweden at the Department of Simulation and Thermal Analysis of
General Systems.

1.1 Background

Today many technical processes have one ore more diagnosis systems. A
diagnosis system can supervise a process and alarm if a fault appears. It is also
common that diagnosis systems can identify and point out one, or several
faults. Modern processes do often have a high complexity and diagnosis sys-
tems make troubleshooting easier when a process has failed. It is a very com-
plicated and time demanding task to design a diagnosis system. Obviously it is
desirable to construct tools to simplify and automate this assignment.

Mattias Krysanders Licentiate thesis “Design and Analysis of diagnosis Sys-
tems Utilizing Structural Methods”, which can contribute to this research area,

Introduction

2

was presented in 2003 [1]. In his work Krysander describes among others an
algorithm to analysis the structure of the processes to be diagnosed. The algo-
rithm is based on graph theory and has also been implemented in Matlab to
allow studies and research of large models. The purpose with this method is to
find key relations in a process that can be used to derive tests with a high diag-
nosis capability.

1.2 Objectives

The principal aims with this master thesis are:

• To present a method utilizing structural methods in the early design
phase of new products, to simplify and improve design of diagnosis sys-
tems.

• To develop a Matlab implementation which can simplify the use of the
algorithms and methods used in this work. Since many algorithms
already have been implemented in Matlab most of this work aims
towards finding a user orientated interface and complement the existing
core with new functionality.

• To perform a structural analysis on the fuel system in an Unmanned
Aerial Vehicle (UAV) concept to show how structural methods can be
used to predict the isolability possibilities for a future diagnosis system.

The Expectations on this thesis are that the reader gets a view over how struc-
tural analysis can be used to improve the development of new processes.

1.3 Outline

The work in this thesis will be presented as follows:

Chapter 2 is an introduction to the subject diagnosis where also some benefits
of Structural Analysis are described.

Chapter 3 is an introduction to the modeling framework which is used in the
thesis. There is also an example which shows a part of the process, when a
structural analysis is performed.

Chapter 4 briefly describes an algorithm used to find key relations between
variables. The algorithm is taken from Mattias Krysanders Lic thesis “Design

Introduction

 3

and Analysis of diagnosis Systems Utilizing Structural Methods” which can
be studied for a full description.

Chapter 5 describes a Method which can be used to evaluate which condi-
tions different sensor configurations gives for a future diagnosis system. As a
part of this process a framework which can be used to compare different sen-
sor solutions is introduced.

Chapter 6 is an introduction and description of the Matlab implementations
which has been put together to simplify the work with Structural Analysis.

Chapter 7 describes how Structural Analysis can be used to determine the
possibilities for a future diagnosis system in the fuel system of a UAV con-
cept.

In Chapter 8 some conclusions and possibilities for future work are pre-
sented.

Introduction

4

5

2
Introduction to Fault Diagnosis

This chapter is an introduction to fault diagnosis topics which are handled in
this thesis. It also provides some common definitions which are used later in
this work.

2.1 Basic Definitions

To simplify the description of Fault Diagnosis it is necessary to introduce
some basic definitions [2]:

• Fault
Unpermitted deviation of at least one characteristic property or variable
of the system from acceptable/usual/standard/nominal behavior.

• Failure
A fault that implies permanent interruption of a systems ability to per-
form a required function under specified operating conditions.

• Disturbance
An unknown and uncontrolled input acting on a system.

Introduction to Fault Diagnosis

6

• Fault Detection
To determine if one or several faults are present in the system and usually
also to determ when the present fault have occurred.

• Fault Isolation
Determination of the location of a present fault, e.g. which component or
components that have failed.

• Diagnosis
Diagnosis systems produce diagnoses. A diagnose is a conclusion of
what faults that can explain the present process behavior, if the process
behavior diverges from the normal behavior.

• Active Diagnosis
When the diagnosis is performed by actively exciting the system so that
possible faults are revealed.

• Passive Diagnosis
When the diagnosis is performed by passively studying the system with-
out affecting its operation.

• Consistency Relations
A consistency relation is any relation between known variables that, in
the fault free case, always holds.

2.2 The History of Fault Diagnosis

Modern systems often have computers for control, but the computers can also
be used to record and evaluate data about running processes. This data can
then be used to decide if the process is running normally or if there are any
present faults in the process. Such information can be valuable for safety rea-
sons, e.g. to avoid or immediately detect faults which can result in serious
damages to humans, nature, or equipment. Faults can also be detected before
they are serious enough to prevent a process to fulfil a task, e.g. a degraded
bearing can be detected before it break down by detecting disturbances in the
friction. This can be used to optimize maintenance by replacing components
in a system just when it is necessary instead of replacing them according to a
maintenance plan.

A support system that gives possible explanations to which fault that has
occurred is called a diagnosis system. Diagnoses from the diagnosis system
can be used to simplify repair by shorten the time for troubleshooting. Figure
2.1 shows the general structure of a diagnosis application. The diagnosis sys-
tem takes observations of the process to be diagnosed and computes diagnoses
by comparing expected behaviors with the expected behavior. The process can

Introduction to Fault Diagnosis

 7

be influenced by control signals, disturbances and faults. If the diagnosis sys-
tem is correctly designed, it can deliver a diagnosis which tells if any fault has
occurred in the process to be diagnosed.

Figure 2.1: Structure of a diagnosis application.

2.2.1 Limit Checking

Traditionally diagnosis of technical systems has been performed by limit
checking. Limit checking means that an alarm is generated when a signal
leaves its normal operating range. The normal range is here predefined and the
limits must be chosen according to a worst case scenario or different limits
must be used for different operating conditions. This implies to that some
faults are not discovered during normal operating conditions. There are also
faults which just can be detected as abnormal conditions between different
values, e.g. if the temperature in an engine is close to the maximum allowed
temperature when it is running at 10% of its capability no alarm is generated
from a limit check, despite that probably something is wrong with e.g. the
cooling system. Another disadvantage with this method is the lack of knowl-
edge about how different faults affect the system, which makes it hard to iso-
late a present fault.

2.2.2 Hardware Redundancy

In aircraft hardware redundancy is common, hardware redundancy means that
some important components are duplicated or even triplicated. For example
two or more sensors can be used to measure the same quantity. Hardware
redundancy is easy to implement and can also be necessary in some processes

Disturbances

Control Inputs FaultsProcess

 Diagnosis
 System

Observations

Diagnose

Introduction to Fault Diagnosis

8

for safety or legal reasons. Three problem areas with hardware redundancy is
higher weight, higher space demands and higher costs for hardware. However
hardware redundancy contributes with big opportunities to construct a solid
diagnosis system since many test quantities are measured.

2.3 Use of Diagnosis

Today diagnosis systems are used in many different areas e.g. vehicles and
process facilities. Here follows some applications where diagnosis systems
are used:

• Power plants
• Aircraft including all sub-systems
• Industrial robots
• Process facilities

Two main reasons to incorporate diagnosis systems are Man and Machine
protection and Availability which are discussed in the next two sections.

2.3.1 Man and Machine Protection

A fault in a process can sometimes cause damage both to the process and to
associated humans and the nature. Man and Machine protection is especially
important in safety critical systems like nuclear power plants and aircraft. In
this type of systems it is important that faults are detected very quickly. In best
cases some faults can be predicted and avoided. For example in automobiles a
diagnosis system can detect a fault in the brakes, Anti Blocking System (ABS)
and alarm. This type of fault is often not detected without a diagnosis system
and can then cause or aggravate accidents.

2.3.2 Availability and Cost Reduction

Due to a long startup time it is obvious that some applications like power
plants or paper mills must be running continuously. Today it is a common
trend that also other systems like for example trucks, aircraft and robots are
supposed to run more or less continuously, it is then desirable to have a diag-
nosis system which can isolate and point out faults that occurs, to simplify
troubleshooting. Since processes often have to be stopped during service it is
also desirable that the diagnosis system can help to decide what type of main-
tenance to be done during a planned stop to avoid future failures and unneces-
sary maintenance. Without this type of system, maintenance must be done

Introduction to Fault Diagnosis

 9

more frequently due to that the maintenance intervals must short to prevent
failures and unplanned stops.

2.4 Model-Based Diagnosis

As an alternative to traditional approaches like e.g. limit checking, model-
based diagnosis have shown to be useful [2]. A model-based diagnosis system
compares a process actual behavior with different models of the process like
e.g. a model for the normal process and models which includes different faults
in the process. The models used can for example be differential equations or
logic based models.

2.4.1 Structure of Model-Based Diagnosis-Systems

If the diagnosis system detects that the actual behavior of a process to be diag-
nosed deviates from the expected behavior estimated from a model of the fault
free process, an alarm is generated. By also including information of different
fault behaviors in the diagnosis system it is possible to find one or several pos-
sible explanations for the actual behavior, which then can be used to explain
which fault that caused the alarm.

Figure 2.2: Principle of model-based diagnosis.

Figure 2.2 shows a general structure for a model-based diagnosis-system. In
Figure 2.2 the process is controlled by a control signal u(t), and the output sig-
nal is y(t). The diagnosis system includes models of the process, the fault free
model and models for the process with different faults included. The models
can be used to predict the output by using u(t). The predictions of is a

Process

Models
ŷ t() r̂ t()

u t() y t()

Faults Disturbances

Analysis Diagnosis

Diagnosis System

y t() y t()

Introduction to Fault Diagnosis

10

vector denoted . By analyzing deviations between y(t) and from
the model of the fault free process, a fault can be detected. As long as the
behavior of the process matches the behavior of the model of the fault free
process no alarm is generated, but if a fault occurs it can be isolated and
announced by finding the model corresponding to the present fault. This since

 and y(t) are similar when the model corresponding to the actual process
behavior is chosen.

2.4.2 Advantages of Model-Based Diagnosis

Model-based diagnosis has advantages compared to traditional methods like
e.g. limit checking. Model-based diagnosis can be performing over a large
operating range, without defining worst case limits. This improves the diagno-
sis performance and smaller faults can be detected. Model-based diagnosis
needs no extra hardware and can be applied to more kinds of component than
hardware redundancy. A disadvantage with model-based diagnosis is the need
for reliable models of the process to be diagnosed. The design procedure of
the diagnosis system might also be very complicated and time demanding, if
model-based diagnosis is to be used.

2.5 Structural Methods

The Structural Methods used in this thesis aims to simplify the analysis task,
during use of models for diagnosis purposes. Structural methods focus on that
there is a relation between variables, instead of examine the analytical proper-
ties of the relation.

2.5.1 Introduction to Structural Methods

Structural Methods can be used instead of exact models and simulations dur-
ing the early design phase of a new product. Structural methods use a special
type of model for the process. This type of model is called a Structural Model
and contains only which variables that are included in each equation, in order
to find elimination schemes. Elimination schemes are used to eliminate
unknown variables to derive overdetermined equation systems. These overde-
termined equations can then be used to derive consistency relations which can
be used to implement tests in a diagnosis system, see e.g. [5]. Consistency
relations are relations between known and measured variables that in the fault
free case, always holds.

ŷ t() r̂ t() ŷ t()

ŷ t()

Introduction to Fault Diagnosis

 11

2.5.2 Product Development Process utilizing Structural Methods

To be able to start the design of the diagnosis systems early in the design
phase of a new process, the design of the diagnosis system cannot be based on
a detailed model of the final process concept. Figure 2.3 shows how the total
development time can be shorten by starting the design of the diagnosis sys-
tem early in the product development. If the diagnosis aspects not are consid-
ered during the early design phase. It can in a worst case scenario be necessary
to redesign the product or parts of the product in which processes are to be
diagnosed.

Figure 2.3: Product development utilizing structural methods.

Structural Methods is a solution to these problems since it can be used early in
the design phase. Since the product development time then can be shorten,
money is to be saved. Figure 2.4 shows how structural methods can be used in
the product development process of products which need a diagnosis system.
When a concept is obtained a structural analysis can be used to predict the
diagnosis possibilities utilizing the suggested concept. This analysis can be
used improving the concept, to prevent expensive modifications later in the
development process.

time/money

Design of System

Design of Diagnosis system

Design of Diagnosis system

Design of System
using structural methods

traditionally

Introduction to Fault Diagnosis

12

Figure 2.4: Product development utilizing structural methods.

Structural
Model

Structural
Analyse

Improvements

Concept
Analysis

13

3
Modeling Methods

Since models fill a main part in this thesis this chapter will briefly describe
different aspects of structural and analytical models. There is also a short
introduction to a specific type of key relations which can be obtained from
structural models.

3.1 Introduction to the Modeling Methods

The behavior of a process depends on in which mode the process is running,
e.g. “flying” or “refueling”. For model-based diagnosis it is therefore impor-
tant to have a accurate model of the process for each mode. If a fault appears it
can affect the process in different ways. To each fault a corresponding behav-
ior mode is defined. Examples of behavior modes can be e.g. no-fault mode
and sensor fault mode. The behavioral modes and their corresponding behav-
iors are in this work described with a diagnosis model [1]. This model consist
of five different parts {M,X,Y,F,B}, which are described in Table 3.1.

Modeling Methods

14

Table 3.1: Example of a diagnosis model.

3.2 Structural Models

In a structural model the analytical equations are replaced by the knowledge
of which variables that are included in each equation. Structural models can
then be represented by an incidence matrix. An incidence matrix is a matrix
where the rows corresponds to the equations and the columns corresponds to
the variables in the model. If variable j is included in equation i, position (i,j)
in the incidence matrix is marked with an X. In Table 3.2 the incidence matrix
corresponding to the model described in Table 3.1 is shown.

Table 3.2: Incidence matrix corresponding to the example in Table 3.1.

3.2.1 Structural Model with Analytical Model Available

It is simple to derive a structural model from an available analytical model. It
is just to replace the analytical equations with structural equations. The struc-

Name Description Example

M set of all available equations M = {e1, e2, e3, e4}=...
{y1 = a1x1+f1, x1 = a3,...
y2 = a2x2+f2, x2 = a4}

X all unknown variables, e.g. internal
states

X = {x1, x2}

Y all known variables, e.g. sensor and
control signals

Y = {y1, y2}

F all fault variables, e.g. leakages or
disturbances caused by faults

F = {f1,f2}

B set of behavioral modes B = 0 (no fault)

constants a1,a2

x1 x2 y1 y2 f1 f2
e1 X X X

e2 X

e3 X X X

e4 X

Modeling Methods

 15

tural model obtained can then be used to find consistency relations in order to
design a diagnosis system.

3.2.2 Structural Model Without Analytical Model Available

Structural models are far less detailed compared to analytical models, e.g. val-
ues of constants are not necessary for a structural model. This implicates that
no simulation work is necessary and therefore structural models can be
obtained much earlier in the design phase. In diagnosis system design a struc-
tural model can be used to perform an early isolability analysis, which means
an analysis of which faults that can be isolated. This analysis can be per-
formed with only little information about the process available. The structural
model used can be obtained using known insights about which variables that
have to be included in each equation through physical relations or through
previous experiences. If the process to be diagnosed includes several similar
components a structural model for one of these components can be used for all
of them.

3.3 Study of the Refueling Process in a Conceptual UAV

A concept study describing a part of a UAV during refueling is now used to
show how a structural model can be obtained without any analytical model
available. This example describes one wing tank during refueling and is an
introduction to the full UAV study which is performed in Chapter 7. Figure
3.1 shows a schematic view of the wing tank. The upper unit in Figure 3.1 is
the wing tank from its upside and the lower unit is the ventilation system.
Only the units used in the refueling process are shown. During refueling, fuel
is pressed into the tank through the refueling pipe and the refueling valve,
while the air in the tank is ventilated through the ventilation system. Five sen-
sor are used during the refueling. These are two pressure sensors one in the
wing tank and one in the ventilation tank, two fuel probes, which are sensors
that measure the fuel level in the wing tank and one fuel sensor which indi-
cates if it is fuel in the ventilation system.

Modeling Methods

16

.

Figure 3.1: An Example of a wing tank in a UAV.

3.3.1 Example Description

Fuel is pressed into the tank through the refueling valve in the right part of
Figure 3.1. At the same time air flows out to the ambient air through the venti-
lation pipes. Two fuel probes are used to measure the fuel level in the tank and
the high level sensor indicates if it is fuel in the ventilation system. The fully
mechanical negative-g valve in Figure 3.1 is placed in the top if the wing tank
and closes if it is exposed to negative-g values, to prevent that fuel flowing
into the ventilations pipes e.g. during flight upside-down. In this example
there are also two pressure sensors one measures the pressure in the wing tank
and one the pressure in the ventilation system.

3.3.2 Included Variables

All variables in X,Y and F in {M,X,Y,F,B} that are used to describe the process
shown in Figure 3.1 are described in Table 3.3.

Unknown Variables

The unknown variables, X included in this example are the fuel level in the
tank, the fuel level in the ventilation system, the air pressure in the tank, the
air pressure in the ventilation tank, the air pressure in the ambient air and the

Fuel Probe

Fuel Probe

refueling
Valve

Pressure Sensor

Pressure Sensor

Refueling
Pipe

Negative G Valve

Ventilation Pipes

High Fuel
 Level Sensor

Modeling Methods

 17

fuel flow into the tank. These variables all represents physical quantities in the
model.

Known Variables

All sensor and control signals are known variables, Y in this example.

Fault Variables

Totally 10 different faults typical for this type of processes are included in F.
A fault variable is assumed to be zero in absence of the corresponding fault.
Notice that some abnormal fuel flows like e.g. fOFT which is a fuel flow
through a ventilation pipe, are considered as fault variables instead of
unknown variables.

Table 3.3: Variables used to describe the UAV wing tank during refueling.

Label Description

Unknown Variables

air pressure in tank

fuel level in tank

air pressure in ventilation system

fuel level in ventilation system

air pressure in the ambient air

fuel flow into the tank

Known Variables

pressure sensor in tank

pressure sensor in ventilation system

fuel probe 1 in tank

fuel probe 2 in tank

high-fuel level-sensor in ventilation system

ambient air pressure

control signal for the refueling valve

XPT

XFT

XPV

XFV

XPA

FIN

yPST

yPSV

yFS1

yFS2

yHFLS

yPSA

uRV

Modeling Methods

18

3.3.3 Equations used in the Model

When the equations to be used in the model, M of the wing tank are derived,
there are two different alternatives which must be examined to find the most
appropriate relations to use in the structural analysis.

1. The first alternative is to use equations where the fuel level and the
pressure behavior in the tank are connected. This can be done since
the pressure build up depends of the total volume of air in the tank.

2. The second alternative is to use that the pressure in the tank system is
almost equal to the ambient air pressure in the fault free case.

A small analysis can be performed to examine which alternative to be used.
This analysis shows what behavior to expect for the pressure in the tank. Fig-
ure 3.2 shows a simple tank model. Fuel is pressed into the tank and air is
flowing out from the tank. The total tank volume, is 0,5 m3.

Fault Variables

Fault of pressure sensor in tank

Fault of pressure sensor in ventilation system

Fault of fuel probe 1

Fault of fuel probe 2

Fault of high fuel level sensor in ventilation sys-
tem

Fault of ambient air pressure signal

Fault in the refueling valve

Overfilled tank, e.g. fuel flow into the ventilation
system

leakage from tank

Clogging in the large ventilation pipe which is
connected to the ambient air

fPST

fPSV

fFS1

fFS2

fHFLS

fPSA

fRV

fOFT

fLT

fVP

Vtank

Modeling Methods

 19

Figure 3.2: Tank model for examination of pressure build up.

The airflow out from the tank is:

(3.1)

Where A is the opening area of the connection between the tank and the ambi-
ent air and is the loss coefficient, which depends on what type of orifice
there is. Ptank is the pressure inside the tank, Pambient is the pressure in the
ambient air, R is the ideal gas constant and T is the temperature.

Introducing the efficient opening area as:

(3.2)

The air volume in the tank decreases during refueling and since the fuel flow
to the tank is constant, the air volume in the tank Vair decreases constantly
when the fuel volume Vfuel increases:

(3.3)

(3.4)

Inside the tank the pressure is described with the ideal gas law:

(3.5)

m· air

m· fuel
Vair

Vfuel

Tank

m· air

Pambient Ptank
2 ξR

A
2

------m· air
2

T– m· air Ptank
2 Pambient

2 A
2

TξR
----------–=⇒=

ξ

Aeff
A

ξ
-------=

Vair Vtank Vfuel–=

V
·

air V
·

fuel–
m· fuel

ρfuel
------------–= =

PtankVair m· airRT=

Modeling Methods

20

The ideal gas law is differentiated and an approximation of can be esti-
mated as.

(3.6)

Equations (3.2) and (3.6) imply.

(3.7)

Figure 3.3 shows the pressure in the tank described in Figure 3.2 during refu-
eling using equations (3.3), (3.4) and (3.7), with an effective area equal to
1 cm3 and a fuel flow , into the tank constantly equal to 10 kg/s, which is
a very high value for this type of application. The tank is empty when the refu-
eling begins and is filled up to 90% in 45 seconds. The tank pressure first
increases from the ambient pressure which is set to 101.3 kPa up to a maxi-
mum pressure of 101.94 kPa. As seen from Figure 3.3 the pressure increases
fast when the refueling begins and decreases back to the ambient air pressure
even faster when the refueling ends. This arises from that the total volume of
air in the tank is much smaller at the end of the refueling process.

P
·

tank

P
·

tank m· air
RT
Vair
---------– mairRT 1–() V

·
air

V2
air

------------+ m· air
RT
Vair
---------–

Ptank

Vair
------------V

·
air–= =

P
·

tank A– eff

Ptank
2 Pambient

2–()RT

Vair

Ptank

Vair
------------V

·
air–=

Aeff
m· fuel

Modeling Methods

 21

Figure 3.3: Estimated tank pressure in the wing tank during refueling.

Since the pressure differences in Figure 3.3 is very small, it can be very hard
to measure and design tests for the pressure changes over time in this type of
tank. Therefore the first alternative can not be used to derive a model of the
wing tank, and instead the second alternative where the pressure in the wing
tank is assumed to be almost equal to the ambient air pressure must be used.

System Equations

Table 3.4 shows the system equations used for the structural model of the
wing tank during refueling. System equations are equations which are used to
describe the process and can be e.g. the ideal gas law. Since Figure 3.3 shows
that the size of the pressure difference between the tank and the ambient air is
very small compared to sensor noise and model uncertainties, the pressure dif-
ferences in the tank can be considered to be zero.

0 5 10 15 20 25 30 35 40 45 50
1.013

1.014

1.015

1.016

1.017

1.018

1.019

1.02
x 10

5 Tank Pressure during Refueling

time [s]

ta
nk

 p
re

ss
ur

e
[P

a]

Modeling Methods

22

Table 3.4: System equations in the wing tank model.

Equation e1 describes the fuel flow to the wing tank, e2 describes the flow
from the wing tank to the ventilation tank if the wing tank is overfilled, e3 and
e4 describes that the pressure is almost constant in the whole system and the
ambient air as long no tank is overfilled or clogging has occurred in the venti-
lation pipe and e5 describes the flow to the tank from the refueling valve

Sensors Equations

Sensor equations are used to introduce the sensor signals in the structural
model, M. During refueling the UAV is standing on a plain ground. Therefore
the fuel level is constant in the tank and can be measured without further
knowledge of e.g. the angle of the fuel surface.

Table 3.5: Sensor and signals equations.

Equation e6 and e7 describes the fuel level measurements in the wing tank, e8
and e9 describes the pressure measurement in the wing tank and in the ventila-

EQ Expression

e1

e2

e3

e4

e5

EQ Expression

e6

e7

e8

e9

e10

e11

e1 FIN X
·

FT fOFT fLT, , ,() 0=

e2 X
·

FV fOFT,() 0=

e3 XPT XPV fOFT, ,() 0≈

e4 XPV XPA fVP, ,() 0≈

FIN uRV fRV+– 0=

XFT yFS1 fFS1+– 0=

XFT yFS2 fFS2+– 0=

XPT yPST fPST+– 0=

XPV yPSV fPSV+– 0=

XPA yPSA fPSA+– 0=

yHFLV

0 fHFLS+ if XFV 0=

1 fHFLS– if XFV 0>



=

Modeling Methods

 23

tion tank, e10 describes the ambient air pressure signal and e11 describes the
high fuel level sensor in the ventilation system.

Fault Models

Two equations are introduced to describe the sensor faults in the fuel probes.

Table 3.6:Fault model equations.

Equations e12 and e13 describes the sensor faults for sensors fFS1 and fFS2 as
offset faults.

3.3.4 Structural Model

The set of equations in Table 3.4, Table 3.5 and Table 3.6 can be replaced with
a structural model, which is shown in Table 3.7. This type of models will be
one input to the analysis presented later in Chapter 4, 5 and 7.

EQ Expression

e12

e13

f·FS1 0=

f·FS2 0=

Modeling Methods

24

Table 3.7: Structural model of wing tank during refueling.

3.4 Introduction to MSS Sets

Since Structural methods focus on that there is a relation between variables,
instead of examine the art of the relation, see section 2.5. A method can be
used to find out which relations, that are appropriate to use for a diagnosis sys-

e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 1
0

e 1
1

e 1
2

e 1
3

XPT X X

XFT X X

X

X XPV X X X

XFV X X

XPA X X

FIN X X

yPST X

yPSV X

yFS1 X

Y yFS2 X

yHFLS X

yPSA X

uRV X

fPST X

fPSV X

fFS1 X

X

fFS2 X

F X

fHFLS X

fPSA X

fRV X

fOFT X X X

fLT X

fVP X

e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 1
0

e 1
1

e 1
2

e 1
3

X
·
FT

f·FS1

f·FS2

Modeling Methods

 25

tem. A type of equations sets called Minimal Structural Singular (MSS) sets
have shown to be useful for design of diagnosis systems [1]. In this work all
MSS sets in a structural model, (SM) are used to predict the maximum fault
detection and fault isolability which can be obtained from a future diagnosis
system.

First some basic definition must be introduced to describe MSS sets. For a
more detailed description of MSS sets see [1] or [4].

3.4.1 Structural Singular

A set of equations are structural singular if the number of equations are big-
ger than the number of unknown variables in this set of equations. All struc-
tural singular sets of the equations from Table 3.2 are listed in Table 3.8

Table 3.8: Structural singular sets.

3.4.2 Minimal Structural Singular (MSS)

A structural singular set of equations is a minimal structural singular (MSS)
set if none of its proper subset are structural singular. All MSS sets of equa-
tions from Table 3.8 are listed in Table 3.9.

Table 3.9:Minimal structural singular sets.

Equations Unknown variables

{e1,e2} {x1}

{e1,e2,e3} {x1,x2}

{e1,e2,e4} {x1,x2}

{e1,e2,e3,e4} {x1,x2}

{e3,e4} {x2}

{e1,e3,e4} {x1,x2}

{e2,e3,e4} {x1,x2}

Equations Unknown variables

{e1,e2} {x1}

{e3,e4} {x2}

Modeling Methods

26

3.4.3 The Use of MSS Sets

Since MSS sets are equations without unknown variables these can be used to
find tests to implement in a diagnosis system. When MSS sets are used to
implement tests each test are sensitive to the fault variables included in the
MSS used for that test. Since MSS sets have shown to contribute with high
fault detection and fault isolation capability the use of MSS sets has shown to
be a good way to find test quantities [1].

27

4
Algorithm used to find MSS Sets

This thesis is partly founded on an algorithm for finding MSS sets. Each MSS
set represent a relations between variables and can be used to implement tests
in a Diagnosis System. The algorithm, Figure 4.1 can be described in a few
steps, Differentiation, Simplification, Search for MSS sets, Analysis of the
diagnosability, Decouple of faults and Selection MSS sets of a Structural
Model. All steps are briefly described in this chapter. For a full description of
the use and further properties of MSS sets it is appropriate to study “Design
and Analysis of diagnosis Systems Utilizing Structural Methods” [1].

Algorithm used to find MSS Sets

28

Figure 4.1: Schematic view over the algorithm used to find MSS sets.

4.1 Differentiate the Model

Sometimes it is possible to get more information out from a set of equations if
differentiation is considered. First two examples will show why differentiation
can contribute to make elimination of unknown variables possible.

Example 1:

Consider the set

of equations. An algorithm that consider derivatives of variables as com-
pletely different variables and that is not capable to differentiate equations can
obviously not eliminate from e2. In general all derivatives of an equation
must be considered to achieve the best possible elimination of unknown vari-
ables.

Example 2:

Now consider the differentiated set

Differentiate
Model

Simplify
Model

MSS Search

Analyse
Diagnosability

Decouple
faults

Select MSS
sets

2.

3.

4.

6.

1.

5.

E e1 e2 e3, ,{ } y1 x y2, x· y3, x2= = ={ }= =

x·

Algorithm used to find MSS Sets

 29

of the equations from example 1. This set of equations shows that variables
are handled differently depending on if they are linearly or nonlinearly con-
tained in an equation, notice e.g. how x2 in e3 is handled. This implicates that
information about which variables that are linear contained and which that are
nonlinear contained in each equation must be included in the structural model.
This makes it possible to define a structural differentiation that produces a
correct structural representation of differentiated equations. This can be
defined in the following way:

• If x is linearly contained in an equation e, then is linearly contained in

.

• If x is nonlinearly contained in e, then x and are nonlinearly contained

in .

Since each differentiation of an equation implies a new equation, it will be
infinity many equations if the equations are differentiated infinity many times.
A limit which corresponds to the highest order of derivative that can be esti-
mated for each known variable prevents the introduction, of derivatives of a to
high order which can not be estimated. Since faults and unknown variables
not correspond to signals which must be estimated, they can be differentiated
arbitrary many times and therefore no limits are needed for these kind of vari-
ables.

It is a complex task to find the differentiated model with the optimal possibili-
ties for elimination of unknown variables. Since the algorithm must prevent
introduction of more or equally many unknown variables than introduced
equations. For closer view at this step of the algorithm see [1].

E
·

e·1 e·2 e·3, ,{ } y·1 x· y·2, x·· y·3, 2xx·= = ={ }= =

x·

e·

x·

e·

Algorithm used to find MSS Sets

30

4.1.1 Example of a Differentiated Model

A short example will show how the differentiation step works on a small
model.

Figure 4.2: Pumping fuel out from a tank.

Figure 4.2 shows a small process where a pump is pumping fuel out from a
tank. Inside the tank there is a fuel probe yFST which measures the amount of
fuel XFT in the tank constantly. The flow out from the pump FFO is measured
with a flow sensor yFFS and the pump is controlled by a control signal uP.
There are also three possible faults, a pump fault fP and two sensor faults fFST
and fFFS in the system. The signals from the known variables yFST, yFFS and
uP are assumed to be possible to derivative one time, meaning that just single
derivatives can be used. Derivatives of higher order can be hard to use due to
noise.

Table 4.1: Small model over fuel transfer from tank.

Table 4.1 shows all equations used to describe the fuel transfer described in
Figure 4.2, e1 describes the fuel quantity, e2 the pump, e3 the fuel probe, e4 the
fuel flow sensor and e5 that the fuel probe just can have a offset fault. Figure
4.3 shows a structural model obtained from the Matlab implementation
described in Chapter 6. Note that FFO in e2 are marked with a cross instead of
a dot, which indicates that FFO not is linear.

EQ Expression

e1

e2

e3

e4

e5

Pump

Flow SensorFuel Probe

Fuel Flow

X
·
FT FFO+ 0=

uP FFO
2– fP+ 0=

yFST XFT– fFST+ 0=

yFFS FFO– fFFS+ 0=

f·FST 0=

Algorithm used to find MSS Sets

 31

Figure 4.3: Structural model corresponding to Table 4.1

Figure 4.4 shows the differentiated structural model achieved, when the dif-
ferentiate step of the algorithm operates on the structural model in Figure 4.3.
Since is an unknown variable included in e1, e3 must be differentiated if

 is to be eliminated. Equation e2 and e4 are differentiated one time since
one new unknown variable, and two new equations and are intro-
duced during that procedure. Note that both and are included in
since is nonlinear included in e2. All steps in this process are handled by
the Matlab implementations described in Chapter 6.

FFO XFT XFT´ fP fFFS fFST fFST´ UP YFFS YFST

{e1}

{e2}

{e3}

{e4}

{e5}

Structural Model

X
·

FT

X
·

FT

F
·

FO e·2 e·4

FFO F
·

FO e·2

FFO

Algorithm used to find MSS Sets

32

Figure 4.4: Differentiated structural model corresponding to Table 4.1.

4.2 Simplify the Model

To reduce the time for the computions done later in the algorithm, it is desir-
able to simplify the differentiated model from step 1. This simplification step
is computational cheap compared to if the MSS search should operate directly
on the differentiated model. Therefore by simplifying the model first the total
computational complexity in the algorithm decreases a lot [4]. In the simplifi-
cation step all equation that includes any variable that are impossible to elimi-
nate are removed from the model, since they cannot be part of any MSS. This
can be done with canonical decomposition, see [1].

The equations which must be used together, to eliminate unknown variables
they have in common, are merged to reduce the complexity in the following
steps. This is done by finding and eliminating subsets of unknown variables
that are included in exactly one more equation than the number of the vari-
ables. The result after applying the simplification step to the structural model
in Figure 4.4 is shown in Figure 4.5.

FFO FFO´ XFT XFT´ fFFS fFFS´ fFST fFST´ fP fP´ UP UP´ YFFS YFFS´ YFST YFST´

{e1}

{e2}

{e2´}

{e3}

{e3´}

{e4}

{e4´}

Differentiated Structural Model

Algorithm used to find MSS Sets

 33

Figure 4.5: Simplified structural model corresponding to Table 4.4.

In Figure 4.5 and have been merged since they must be used together if
 is to be eliminated and for the same reason and are merged to elim-

inate . The only unknown variable left to be eliminated after the simplifi-
cation step is FFO.

4.3 Search for MSS sets

This step in the algorithm finds all MSS sets in a structural model. For a full
description of how this step works see [1]. Figure 4.6 shows all MSS sets
which were found in the model described in Figure 4.5. The six MSS sets
found represent all different possibilities to eliminate FFO after the simplifica-
tion step in Figure 4.5. The search for MSS sets can be computational heavy
and it is important to first perform the simplification step.

FFO fFFS fFFS´ fFST fFST´ fP fP´ UP UP´ YFFS YFFS´ YFST YFST´

{e4}

{e2}

{e3´,e1}

{e4´,e2´}

Simplified Structural Model

e1 e·3

X
·

FT e·2 e·4

F
·

FO

Algorithm used to find MSS Sets

34

Figure 4.6: MSS sets found in the simplified structural model in Figure 4.5.

4.4 Analysis of Isolability

In this step the isolability for the MSS sets found in step 3 are analysed. Table
4.2 shows which faults that are included in each MSS set.

Table 4.2: Faults included in MSS sets.

Since , see Table 4.1, Table 4.2 must be modified to achieve the right
fault sensitivity of each MSS set. The result after this modification is showed
in Table 4.3.

MSS Set Included faults

FFO XFT UP UP´ YFFS YFFS´ YFST YFST´ fP fP´ fFFS fFFS´ fFST fFST´

{e2,e4}

{e1,e2,e3´}

{e1,e3´,e4}

{e2,e2´,e4´}

{e2´,e4,e4´}

{e1,e2´,e3´,e4´}

MSS Sets

e2 e4,{ } fP fFFS,{ }

e1 e, 2 e3,{ } fP f·FST,{ }

e1 e·, 3 e4,{ } fFFS f·FST,{ }

e2 e·2 e4, ,{ } fP f·P f·FFS, ,{ }

e2 e4 e·4, ,{ } f·P fFFS f·FFS, ,{ }

e1 e·2 e·3 e4, , ,{ } f·P f·FFS f·FST, ,{ }

f·FST 0=

Algorithm used to find MSS Sets

 35

Table 4.3: Faults included in MSS sets after modification.

Table 4.3 shows that and can be detected and isolated if a diagnosis
test is designed by using the second and the third MSS sets, and

. This since a test based on the second MSS only reacts if
affects from zero and a test based on the third MSS only reacts if
affects from zero. Since not is included in any MSS set can not be
detected or isolated. It is therefore possible to run out of fuel without notice, if
that sensor fault occurs.

Figure 4.7: Isolability matrix corresponding to Figure 4.6.

Figure 4.7 shows a isolability matrix obtained from the Matlab implementa-
tions described in Chapter 6, corresponding to the MSS sets in Figure 4.6. A

MSS Set Included faults

e2 e4,{ } fP fFFS,{ }

e1 e, 2 e3,{ } fP{ }

e1 e·, 3 e4,{ } fFFS{ }

e2 e·2 e4, ,{ } fP f·P f·FFS, ,{ }

e2 e4 e·4, ,{ } f·P fFFS f·FFS, ,{ }

e1 e·2 e·3 e4, , ,{ } f·P f·FFS,{ }

fP fFFS

e1 e, 2 e3,{ }
e1 e·, 3 e4,{ } fP{ }

fFFS{ }
fFST fFST

fFST

fP

fFFS

N
F

fF
S

T

fP fF
F

S

Algorithm used to find MSS Sets

36

marking on row i in column j in the isolability matrix means that if the fault
corresponding to row i is present it can not be isolated from the fault corre-
sponding to column j. If there is a mark in the first column (NF) of any row,
the fault corresponding to that row can not be isolated from the NF mode, i.e.
the fault can not be detected.

A quick view at Figure 4.7 shows that fP and fFFS can be detected and isolated
if they occur, while fFST can not be detected.

4.5 Decouple Faults

If the diagnosability of the isolability matrix in Figure 4.7 must be improved it
is possible to run the algorithm again, with one or several fault treated as
unknown variables, this is called Fault Decoupling. If a fault is decoupled this
implicates that the MSS sets found not is sensitive to this fault, and can there-
fore contribute to isolate different faults from each other, see [1] or [2].

4.6 Summary of the Structural Algorithm

Here follows a short summary of all steps in the algorithm used to find the
MSS sets:

1. Differentiate the model: Sometimes more information and relations
can be obtained from a structural model if the structural model is dif-
ferentiated. If differentiation is to be used it is important to find and
differentiate just equations which are meaningful to differentiate for
finding MSS sets. Differentiation must not be used, but is always
used in this thesis. If differentiation not is used step two in this algo-
rithm will be the first step.

2. Simplify the model: Remove all equations which not can be used in
any MSS set, from the equations found in step 1. Merge sets of equa-
tions that have to be used together in each MSS set. With this simpli-
fication step the time used for this step and the third step in the
algorithm can be decreased, compared to if a full MSS search is done
directly in the differentiated model from step 1.

Algorithm used to find MSS Sets

 37

3. Search for MSS sets: Search for MSS sets, this step finds all MSS
sets in the model from step 2.

4. Analysis of diagnosability: Examine the fault detection and the fault
isolation capability of the MSS sets found in step 3. This examination
is done by creating a fault isolability matrix from the MSS sets
achieved in step 3. In this work all MSS sets found in step 3 are used,
but it is also possible to use subsets of them. This might however
result in less fault detection and fault isolation compared to if all MSS
sets are used. In the Matlab implementations described in Chapter 6
this can be handled.

5. Decouple faults: If the diagnosability in step 4 not is enough, faults
can be decoupled. To decouple faults, return to step 1 and consider
these faults as unknown variables. From this step new MSS sets can
be obtained and used together with the MSS sets from step 4. This
step can be repeated for all combinations of faults. In this work all
single faults are decoupled in all analysis.

6. Select MSS sets: Select the MSS sets to be used in the diagnosis sys-
tem to get the desired diagnosability. In this work are always all MSS
sets found after step 5 used. But it can be appropriate to use just a
subset of the MSS sets since some of them can be to complex to use,
depending on the number of variables included in a MSS set or how
hard it is to design a test for the actual MSS.

Algorithm used to find MSS Sets

38

39

5
Optimizing Sensors Configurations

When a process is to be designed, different possible faults in the process can
be considered already during the design of the process, to increase the reliabil-
ity and safety of the process. In some processes one or several sensors are
used to control and supervise the process. This chapter shows how different
sensor configurations can be examined and optimized to fulfill the require-
ments on a diagnosis system, using the algorithm described in Chapter 4. This
method is later used in Chapter 7.

5.1 Fault Classification

When a diagnosis system for a process is to be designed, it is necessary to
decide what fault detection and isolability to require from the diagnosis sys-
tem.

Optimizing Sensors Configurations

40

Figure 5.1: Requirements of a diagnosis system.

Figure 5.1 illustrates how the requirements of the process must be transferred
to requirements on the diagnosis system. In big processes, this is a big task
involving e.g. examinations of necessary process reliability and failure rates
of different components in the process.

The approach used in this work is to divide all faults F in a process to be diag-
nosed into three groups:

1. Faults which have to be uniquely isolated, FI.

2. Faults which have to be detected, FD

3. Faults which not have to be detected or isolated, i.e. not prioritized
faults FN.

This can be described like where, I stand for Isolated, D for
Detected and N for Not Prioritized.

5.1.1 Properties of Fault Classification

Table 5.1 shows a typical isolability matrix that satisfies the given classifica-
tion that is defined above. The isolability matrix in Table 5.1 shows that all
faults in FI, (fI1, fI2 and fI3) can be isolated and that all faults in FD, (fD1, fD2
and fD3) can be detected. All faults in FN,(fN1, fN2 and fN3) can not be isolated
from NF and it is therefore not sure that they are detected. However since
these faults belong to FN they are subjects to no isolability requirements.

Demands of the Process.

-Reliability

-Availability

Requirements of the
Diagnosis System.

-Fault Detection

-Fault Isolation

F FI FD FN∪ ∪=

Optimizing Sensors Configurations

 41

Table 5.1: Isolability matrix where the included faults are classified.

5.1.2 Demands for the Fault Classification

This classification is important and must be well substantiated to prevent time
demanding modifications later. Since this analysis has a great impact on the
design of the diagnosis system. It is important to consider many different
aspects like e.g. how hard it is to troubleshoot and find a fault, if the fault can
cause damage to man or machine. For this work it is appropriate to find or
develop a reliable method. Some inputs to such work can be found in Method
for Diagnosis System Requirement’s Prioritization [6].

5.2 Sensor Configurations

The choice of sensor configuration used in a process can be optimized in dif-
ferent ways, in this work to minimize the number of sensors that are needed to
fulfill the isolability requirements. It is possible to focus on other properties
e.g. the price or the quality of different sensors, to minimize a special type of
sensors or to minimize the total costs for the sensors. Note that introduction of
extra sensors can result in decreasing fault isolability. This because of that
adding a new sensor often also implicates adding a new sensor fault.

FI FD FN
N

F

f I1 f I2 f I3 f D
1

f D
2

f D
3

f N
1

f N
2

f N
3

fI1 X

FI fI2 X

fI3 X

fD1 X

FD fD2 X X

fD3 X X

fN1 X X X X X X X X X X

FN fN2 X

fN3 X X X X X X X X X X

Optimizing Sensors Configurations

42

5.2.1 Sensor Configuration Optimization

To simplify the work of finding sensor configurations which are possible to
use in the diagnosis system, all sensors YS can be divided into two groups:

1. Sensors which have to be included e.g. for control or legal reasons,
YSR.

2. Sensors which not have to be included, YSO.

This can be described like: where, S stand for Sensor, R for
Required and O for Optional.

All possible sensor configurations must contain all sensors i YSR, this can
reduce the number of possible sensor configurations heavily. The set

 is the set of all possible sensor configurations Yi such
that (1) and (2) is fulfilled for the classification of YS.

A full analysis can then be applied on the structural model for each remaining
sensor configuration Yi, to exam which configurations that have enough isola-
tion and detection capability, to fulfill the demands.

5.3 Algorithm used to Examine Sensor Configurations

The algorithm used to find sensor configurations in this work is described in
Figure 5.2. The objectives with this algorithm are to find the sensor configura-
tion or sensor configurations, with least number of sensors, which can fulfill
the requirements, put on a diagnosis system. The input to the algorithm are a
structural model SM with all possible sensors categorized and
a fault classification . The result after the algorithm is a
structural model, all MSS sets found in the structural model and a isolability
matrix for each sensor configuration which fulfills the diagnosis task.

Since the total number of sensor configurations is growing exponential to the
number of optional sensors this analysis can be time demanding, e.g. if there
are five optional sensors to be tested the algorithm must be called 25 = 32
times. Since the time required for this analysis grows exponential, first all sin-
gle combination of sensors can be studied. If one or several of them fulfils the
demands it is not necessary to study configurations with more sensors.

YS YSR YSO∪=

Yi YSR Yi YSR YSO∪⊆ ⊆{ }

YS YSR YSO∪=
F FI FD FN∪ ∪=

Optimizing Sensors Configurations

 43

Figure 5.2: A schematic view of the examination of different sensor configurations.

1. Examine the maximal fault detection: First a structural analysis is
performed with all sensors YS included, to determine the maximal
fault detection which can be obtained in the process. For this analysis
a full structural model of the process including all sensors YS is used.
If this maximal sensor configuration can fulfill the fault detection

Differentiate
Model

Simplify
Model

MSS Search

Analyse
Diagnosability

Decouple
faults

Evaluate
Configuration

Select new
Configuration

Find Sensor
Configurations

Examine the
maximal fault
Detection

YSR YSO∪
FI FD FN∪ ∪

SM

Out

In
1.

3.

4.

2.

: SM(Yi), MSS(Yi), FM(Yi)Yi Yconfig∈∀

Yconfig

SM(Yi)

MSS(Yi)

FM(Yi)

Optimizing Sensors Configurations

44

requirements put on the diagnosis system, it is possible to examine if
the requirements can be fulfilled also with other sensor configura-
tions including fewer sensors.

2. Find all possible sensor configurations: Since all sensors of the
type YSR must be included in each sensor configuration the configura-
tions which must be further examined is the configuration which only
includes all sensors of type YSR and all uniquely configurations which
include all sensors of type YSR and one or more sensors of type YSO.

3. Perform the full MSS algorithm: To evaluate all possible sensor
configurations the full MSS algorithm described in chapter 4 is per-
formed for each sensor configuration from step 2.

4. Examine if the MSS sets found can fulfill the diagnosis task:
Examine if the present sensor configuration can fulfil all detection
and isolability demands by using an isolability matrix where the
included faults are classified, see Table 5.1. This examination can be
simplified by using functions in the Matlab implementations, which
are described in Chapter 6.

5.4 Optimization Strategies using a Fault Isolability Matrix

The fault isolability matrix described in Table 5.1 can be used in different
ways to optimize, evaluate, and examine fault isolability matrices. Since fault
isolability matrices can be achieved from the Matlab implementations
described in Chapter 6 this analysis can be powerful and flexible. In “Method
for Diagnosis System Requirement’s Prioritization”[6] further inputs to this
optimization can be found.

45

6
Matlab Implementation

A Matlab implementation of the algorithms in Chapter 4 and in Chapter 5 is
described in this Chapter. The implementation consists of several independent
functions which perform the different steps of the algorithm used in this work.
The functions can then be used in e.g. a Matlab m-file to perform structural
analysis using the different parts from the algorithms.

6.1 Graphic User Interface

A graphic user interface (GUI) is used to simplify the implementation of
structural models in Matlab. The GUI consist of two parts one for defining
included variables, Figure 6.1 and another for defining included equations,
Figure 6.2.

6.1.1 Definition of Variables

To define all variables in a structural model, the GUI shown in Figure 6.1 is
used. In Matlab the GUI is called with the command:

define_variables('savefile')

Matlab Implementation

46

It is then easy to define each variable with name and type. The name is typed
in the input field for variables name and the type is chosen by marking the
right box. Finally the variables can be confirmed and saved by clicking “Add
Variable”.

Figure 6.1: GUI for definition of variables.

To redefine a variable, the same variable name can be used again. The variable
file is saved in the present working directory.

6.1.2 Definition of Equations

To define all equations in a structural model, the GUI in Figure 6.2 is used. In
Matlab the GUI is called with the command:

define_equations('variablefile','savefile')

The first argument “variablefile” is a predefined file, for example generated
by the command define_variables, with all variables which are to be used in
the model. In this GUI it is easy to name and define all equations in the model.

Input field for variable
name.

Select type of variable

Confirm and add
variable

Matlab Implementation

 47

Figure 6.2: GUI for definition of equations in a structural model.

The different objects in the GUI described in Figure 6.2 are:

1. Derivative Field: This field is used for input of
derivative order when a variable is to be added
into 11. Zero represent a non differentiated vari-
able.

2. Name Field: This field is used to name the struc-
tural model.

3. Equation Name Field: This field is used to name
the present equation.

4. Variable Field: This field shows all variables
which can be used.

5. Linear Box: This box is marked if a variable is to
be linearly included into the equation.

6. Add Variable Button: Add the selected variable
in 4 to the present equation in 11.

7. Clear Button: Clear field 11 from all variables.
8. Add Equation Button: Add the present equation

in 11 to the model.

2 3

9

10

11

7
12

1

4

6

5

8

Matlab Implementation

48

9. Build Button: Builds an SM object and saves it to
a file in the present Matlab working directory.

10. Info Field: This field shows the properties for
the selected variables in 11, first line shows the
variable type, second line the derivative order, and
third line shows if the variable is linearly or not
linearly included in the equation.

11. Equation Field: This field shows all variables
included in the present equation. Variables can be
added to this field from 4 by using 6 and removed
from the field with 7.

12. Clear all Button: This button clears all equa-
tions from the model.

By pressing “Build” the model is saved as an SM object in a file named after
the second input argument, 'savefile'.

6.2 Objects representing Structural Models and Isolability
Matrices

Different objects are used to represent structural models and isolability matri-
ces.

6.2.1 SM Objects

In this implementation structural models are represented as SM objects. Table
6.1 shows an SM object as it is shown in Matlab. Most functions in the imple-
mentation takes SM objects as arguments.

Matlab Implementation

 49

Table 6.1: The structure of an SM object.

• SM.m
SM.m is a matrix where the rows represent the structural equation and
the columns the variables in a structural model. If variable j is included in
equation i element (i,j) in the matrix is set to one if the variable is linear
included or two if the variable is nonlinear included in the equation. If
variable j is not included element (i,j) is zero. Differentiated variables are
treated equal to normal variables.

• SM.e
SM.e consists of cells with the names and the order of derivative for all
relations included in SM, like e.g. {{‘e1’,[1]},{‘e2’,[0]}}. The cell on
position i in SM.e consist of the name and order of derivative for the
relation represented on row i in SM.m.

• SM.v
SM.v consists of cells with the names and the derivative order of all vari-
ables included in SM, like e.g. {{‘PA’,[1]},{‘PVU’,[0]}...}. The cell on
position j in SM.v consists of the name and order of derivative for the
variable represented in column j in SM.m.

• SM.type
SM.type shows information of what type of structural model it is, e.g.
Differentiated Structural Model or Simplified Structural Model. This
information depends on which functions that previous has been perform
on the model.

SM =

m: [15x28 double]

e: {1x15 cell}

v: {1x28 cell}

type: ‘Original Structural Model'

name: 'demo UAV'

mode: {}

x: {'PA' 'PVU' 'PVT' 'PngT' 'PT3R' 'PT3L' 'PT2' 'PT1'}

y: {'Pamb' 'PsVU' 'PsVT' 'PsT3R' 'PsT3L' 'PsT2' 'PsT1'}

f: {1x13 cell}

ylimit: [1 1 1 1 1 1 1 1]

flimit: 0

xlimit: 0

Matlab Implementation

50

• SM.name
SM.name is the name of the model.

• SM.mode
SM.mode defines the fault mode of the model by a set of fault variables
that are considered to be unknown variables.

• SM.x
SM.x is a list with names of all unknown variables in the model.

• SM.y
SM.y is a list with names of all known variables in the model.

• SM.f
SM.f is a list of all fault variables in the model.

• SM.ylimit
SM.ylimit is a list with information about the highest allowed derivative
for each known variable in the model. Each element in the matrix corre-
sponds to a known variable in SM.y.

• SM.flimit
SM.flimit is not used in this version.

• SM.xlimit
SM.xlimit is not used in this version.

6.2.2 SMSS Objects

For some functions in the Matlab implementation Sortable MSS (SMSS)
objects are used. SMSS objects are transformations of SM objects with
another structure.

Table 6.2: The structure of an SMSS object.

SMSS objects consists of two matrices A and B for each SM Object. The
matrices represents the equations and the variables included in an MSS set.
Table 6.2 illustrates an SMSS object. Matrix A shows that equation 2, equa-
tion 4 and equation 9 in SM.e are used. Matrix A also shows that equation 4 is
differentiated one time and equation 9 differentiated 2 times. Matrix B shows
that variable 3 and variable 7 in SM.v are used and that variable 7 is differen-

Equations Variables

Equations/
Variables

A= 2 4 9 B= 3 7

derivative 0 1 2 0 2

Matlab Implementation

 51

tiated 2 times. Since SMSS objects just contains the positions of the equations
and the variables, elements in SM.e and elements in SM.v. It is necessary to
have access to the same SM object which were used to transform the MSS set
to an SMSS, when an SMSS is to be transformed back to an SM object.

6.2.3 FM objects

Fault isolability matrices are saved as FM objects,Table 6.3 in the Matlab
implementations. These contains of a isolability matrix, FM.m and the names
of all faults, FM.f.

Table 6.3: The structure of a FM object.

6.3 Functions used in the Matlab Implementation

Here follows a description of some functions used in the Matlab implementa-
tion. A full description of more functions in the Matlab implementation can be
found in Appendix A:

6.3.1 Basic Functions for the MSS Algorithm

This functions performs the different steps in the algorithm described in Chap-
ter 4 which is used to find MSS sets.

• GetSMDecoupling()
Performs the decoupling step of the algorithm.

• Differentiate()
Performs the differentiation step of the algorithm described in Chapter 4.

• OverDetSM()
Finds the over determined part of a structural model.

• SimplifiedSM()
Performs the simplification step of the algorithm.

FM =

m: [15x15 double]

f: {1x15 cell}

Matlab Implementation

52

• FindMSSsets()
Performs the find MSS step in the algorithm.

6.3.2 Functions used to Merge and Change Structural Models

This functions can be used for modifications of structural models to examine
different sensor configurations and to merge MSS sets.

• MakePowerSet()
Takes one or two arguments, one argument generates all possible fault
modes, a second arguments sets a limit for how big fault modes that must
be included.

• mergeMSS()
Merges two MSS sets to one.

• Eliminatevar()
Eliminates a variable and all equations which are dependent to that vari-
able in an SM object.

• removeeqSM()
Removes a equation from an SM object.

• removevarSM()
Removes a variable from an SM object without removing the equations
which are dependent of the variable, e.g. to eliminate a fault.

• makeSMSS()
Transforms an MSS set to an SMSS object.

• getbackMSS()
Transforms an SMSS model to an MSS model.

6.3.3 Functions for Visualization

These functions can be used to plot structural models and fault isolability
matrices.

Matlab Implementation

 53

• PlotSM()
Plots an SM object

• PlotFM()
Plots a fault matrix

• PlotFMCat()
Plots a fault classification isolability matrix as it is described in Chapter
5.

6.3.4 Functions for Analysis of MSS sets

• getFaultmatrix()
Generates a fault incidence matrix from an SM object with MSS sets.

6.4 Utilizing Matlab Implementations for Structural Analysis

Since the Matlab implementation, consists of several independent functions
the use of the implementation can be flexible. This also means that a user must
have some basic knowledge about the algorithms used.

Matlab Implementation

54

Figure 6.3: Example of how the Matlab implementation can be used.

Figure 6.3 shows how a Matlab m-file and some functions of the Matlab
implementation can be used to perform the algorithm described in Chapter 4
and Figure 4.1.

Row 1 in Figure 6.3 clear all variables in Matlab. On row 2 a structural model
(SM-object) is loaded from a file named “pumpmodel”. On the rows 4-9 in
Figure 6.3 the steps (1)-(4) of the algorithm in Figure 4.1 are performed. On
row 10 all fault modes which are to be decoupled are defined, using the Make-
PowerSet function which is described in Appendix A. On the rows 13-22 in
Figure 6.3 the decoupling of all fault modes are performed. Notice how all the
present MSS sets are merged together with all previously found MSS sets on
row 20.

Matlab Implementation

 55

Figure 6.4: Example of found MSS sets.

Figure 6.4 shows the Matlab Plot which is done on row 24 in Figure 6.3.
Obviously no unknown variables (qh,q2 and q1) can be included in the MSS
sets since they have to be eliminated. In Figure 6.4 the structural properties of
all MSS sets found in the structural model (SM) can be seen.

Further examples of how the Matlab implementation can be used are found in
Chapter 7.

qh q2 q1 yf yf´ yh yh´ u fyf fyf́ fc fc´ fyh fyh´ fu

{e3,e4,e6}

{e1,e2,e3´,e6}

{e3´,e4´,e6,e6´}

{e1,e2,e3,e3´,e4}

{e1,e2,e3´,e4´,e6´}

{e1,e2,e4´,e6,e6´}

{e3,e3´,e4,e4´,e6´}

{e1,e2,e3,e4,e4´,e6´}

{e1,e2,e3´,e4´,e6´,e7}

{e3,e3´,e4,e4´,e6´,e7}

{e1,e2,e3,e4,e4´,e6´,e7}

{e3,e3´,e4,e4´,e5,e6,e6´}

{e1,e2,e3,e3´,e4,e4´,e5,e6´}

{e1,e2,e3,e4,e4´,e5,e6,e6´}

{e1,e2,e3,e3´,e4,e4´,e5,e6´,e7}

Matlab Implementation

56

57

7
UAV Fuel System Concept

Most aircraft’s fuel systems consist of several tanks due to e.g. center of grav-
ity management, safety, space and slosh reasons. It is also easier to measure
the fuel level in a small tank compared to a large. A general layout consists of
one or more boost pumps that feed the engine from a tank close to the center
of gravity [3]. However, the fuel system has two main tasks, in a safe way pro-
vide the engine with fuel under all flight conditions and to keep the center of
gravity at a constant optimal position.

7.1 Introduction to Conceptual UAV

In this chapter the fuel system in a UAV concept is studied. This UAV, Figure
7.1 has stealth capabilities on the upper side and must therefore be able to fly
long distances upside-down to avoid radar detection. Therefore the fuel sys-
tem must include a negative-g compartment, which is a tank from which fuel
can be taken during inverted flight. The fuel system includes two subsystems,
a Fuel Pump System and a Tank Pressurization System.

UAV Fuel System Concept

58

Figure 7.1: UAV with stealth capabilities at one side.

7.1.1 The Fuel Pump System

Figure 7.2 shows the wing tanks, tank 1 and tank 2 in the conceptual UAV fuel
system. Fuel to feed the engine is always taken from the negative g compart-
ment in tank 1. During normal flight, fuel is flowing into the negative-g com-
partment from the upper part of tank 1, but fuel can not flow back from the
negative-g compartment to the upper part in tank 1, if the UAV is flying
upside-down, since the transfer pipes ends over the fuel level.

UAV Fuel System Concept

 59

Figure 7.2: Schematic view of UAV fuel system concept.

Fuel pumps in the fuel system make it possible to transfer fuel between differ-
ent tanks and to the engine. The system shown in Figure 7.2 consists of three
transfer pumps, one in each wing tank and one in tank 2. There is also a dou-
ble ended boost pump not shown in Figure 7.2 to feed the engine. All pumps
are controlled by control signals. Fuel can be transferred to tank 1 from the
wing tanks and from tank 2, but during flight upside-down fuel can only be
transferred from tank 2 to tank 1. Fuel transferred to tank 1 is always placed in
the negative g compartment to maximize the amount of fuel that can be used
during long time flight upside-down.

7.1.2 The Tank Pressurization System

There are mainly two reasons for tank pressurizations. It prevents cavitations
at high attitudes and damages to the tanks caused by high pressure differences
between the tanks and the ambient air. The tank pressurization system must
expel air during climb or refueling and add pressure during dive or fuel trans-
fer. All tanks stand normally under some extra effective pressure by adding
compressed air from the engine compressor. All tanks can be pressurized from

Tank 1

Tank 2

UAV Fuel System Concept

60

the bottom or from the top depending on if the UAV is flying normal or
upside-down.

The Combined Over and Under Pressure Valve

Figure 7.3: Schematic outline of combined over and under pressure valve

The tank pressure is controlled by a combined over and under pressure valve
which is connected to the tanks and to the ambient air thorough the ventilation
tank, see Figure 7.3. The over pressure valve opens if the tank pressure
exceeds the ambient air pressure with a certain value. If the tank pressure
instead sinks below the ambient air pressure the under pressure valve opens.
This process is totally mechanical and no control signals are used. Instead the
over pressure valve opens when the pressure difference between the tank sys-
tem and the ambient air overcomes the pressure added from a spring. The
amount of compressed air from the engine compressors is normally large
enough to hold the over pressure valve open during flight. The over and under
pressure valve is also dimensioned to take care of surplus fuel if a refueling
valve fails to close. This to secure that the refueling pressure not damages the
tanks if one or several tanks are overfilled.

Negative-G Valves

All ventilation pipes are equipped with valves to prevent fuel finding its way
into them. These valves are called negative-g valves and closes when they are
exposed to negative loads, e.g. during flight upside down. The valves work
fully mechanically and are not controlled by any signal or supervised with any
sensor. Despite the valves some fuel might find its way into the pipes and end
up in the ventilation tank or in some other tank. Since all tanks are directly
connected through the pressurization system it is not possible to control the
tank pressure individually for any tank. This also implicates that the pressure
is supposed to be constant in the whole system as long no fault has occurred.

Compressed air from
engine compressor

Connection to
ventilation tank

Compressed air
to the tanks

UAV Fuel System Concept

 61

The Pressure Regulator

A pressure regulator, controls the bleed air into the tank pressurization system,
to prevent to high pressure and damages in the tanks. The pressure regulator
can also shut off the tank pressurization.

7.2 Structural Analysis Strategy

To find relations between the different variables in the fuel system it is appro-
priate to analyse three types of equations, physical, signal, and boundary
equations. The physical represents e.g. fluxes and pressure equations. Signal
equations have to do with for example signals from sensors and control sig-
nals to different parts of the system. The boundary relations set the limits for
the problem and can be both analytical and logical formulas e.g. that a sensor
fault appears as a constant offset value.

7.2.1 Modeling Conditions

First an attempt to find solid relations between the fuel level and the tank pres-
surization was performed. Several interviews with experts at Saab Aerosys-
tems in Linköping Sweden were performed to examine the possibilities for a
relation between pressure and fuel levels in the tanks. A model over a typical
UAV tank was implemented in EASY5, which is a modeling tool that can be
used for e.g. pressure and flow simulations. The EASY5 model and the wing
tank analysis in Chapter 3 showed together with the interviews that it was not
appropriate to use relations between the fuel level and the pressure in the
tanks, like e.g. the ideal gas law, in the structural analysis of the fuel system.
This since these type of relations probably can not be used in a future diagno-
sis system and therefore can give a to optimistic view at the fault isolation
possibilities of a future diagnosis system.

The Pressurization System

Today Saab Aerosystems uses only pressure switches, which indicates if the
pressure in the fuel system exceeds or is below a certain reference value.
However, in the future more advanced pressure sensors which measure pres-
sure continuously and present a value can be used instead. These sensors are
more expensive to use since more hardware and software is needed and since
the sensors are more expensive to buy compared to pressure switches.

UAV Fuel System Concept

62

Since all tanks in the fuel system used in the conceptual UAV, studied in this
work, are connected to each other and to the ambient air, one pressure sensor
can be placed in the ventilation tank showed in Figure 7.2. This sensor can
then supervise the pressure in the whole fuel system as long as no negative-g
valve is stuck closed or clogging appears in a ventilation pipe. This together
with that no relation between the pressure and the fuel level can be used leads
to that the pressurization system is not more examined in this work. A similar
fuel system design is used in Saab 105/SK 60 which has been flying without
any of these problem since 1963.

The Fuel Pump System

In the fuel pump system there are opportunities for a model-based diagnosis
system which can supervise the fuel transfers in the system. Such a system can
contribute with information about the system both during flight and during
maintenance. The case studied in this thesis is if the pump sensors after the
transfer pumps can be eliminated and replaced with a model of how the fuel
level changes in the different tanks. Since a normal transfer-pump sensor just
is a switch which indicates if the pump works or not there is no possibilities to
detect if the flow from the pump is just little lower than normal. Such informa-
tion can be used to optimize maintenance and to replace pumps with small
defects. However the fuel levels in the tanks can not be measured very exact,
during steady flight the measure accuracy is at least 5% in a tank with a geom-
etry which is easy to measure in, but the fault can be much larger if the tank is
almost empty and fuel just splaches around. In other tanks e.g. wing tanks the
measure fault can be very large also when the tanks are filled since they often
have a complex geometry. Since the measurement is so uncertain it is maybe
impossible to expel the transfer-pump sensors due to security reasons, but in
this thesis it is assumed that the fuel measurements can be used if the fuel
level is studied over a long time.

7.3 Model of the Fuel Pump System

The first task was to decide how detailed the structural model could be to pre-
vent introduction of connections impossible to use. A first objective was to
exam if the ideal gas law could be used to study the relation between the fuel
level and the pressure in the tanks. One idea was to examine if the pressure
variations over time was significant dependent to the air volume inside the
tanks. But since this not was possible, see 7.2.1 no such relation are intro-
duced.

UAV Fuel System Concept

 63

7.3.1 Models of the Tanks

During normal flight, fuel is transferred from the wing tanks and tank 2, into
tank 1. The diagnosis system is supposed to be active only when the UAV is
flying steady without any exceptional maneuvers. The purpose of the struc-
tural analysis for this mode is to examine the possibilities for a diagnosis sys-
tem to supervise the fuel pump system. All tanks in the fuel system are
described separately to simplify the analysis. Help variables like fluxes
between the tanks and states like e.g. fuel levels in the tanks and pressure in
the tanks are described for each tank. Notice that all variables which are con-
sidered as fault variables are represented with findex and normal flows are rep-
resented as unknown variables Findex.

Wing Tanks

In Figure 7.4 and in Table 7.2 a wing tank is described schematic with, fuel
probes (FP), a refueling valve (RV) a pump, a fuel pipe and different fuel
flows like e.g. FPWL. Since the two wing tanks are similar, just one figure is
showed. Note that the indexes in Table 7.1 introduces notation for variables
describing both the left and the right wing tank.

Figure 7.4: Schematic view of the Wing Tanks.

The refueling valve in left/right wing tank can have a leakage, fRVWL,R. The
transfer pump in left/right wing tank has one possible fault fPWL,R and is con-
trolled by a signal uPWL,R. The pump is supervised with a sensor, yPPWL,R
which can have a sensor fault fPPSWL,R. Fuel level sensors in the tank measure
the fuel quantity and are represent with a sensor signal yFPWL,R1,2, and a sen-
sor fault fFPWL,R1,2.

FWL,R1

fLWL,R

FPWL,R

RV
FP FP

Pump

UAV Fuel System Concept

64

Tank 1

Figure 7.5 shows a schematic view over tank 1 with fuel probes (FP), a nega-
tive g valve (NGV) and a refueling valve (RV). Fuel is transferred from tank
2, F21 and from the wing tanks, FV1 to tank 1 through fuel pipes. During flight
is fuel transferred from tank 1 to the engine, F1E with the boost pump. The
boost pump is controlled by a sensor signal uBP and is shown in the lower left
corner in Figure 7.5. If the boost pump has a failure, fuel is transferred directly
to the engine, fEE but in this analysis of the process during normal flight this
fault is not considered. The boost pump is supervised with a pressure sensor,
yBPS and six other sensors yFP1,1-6 are used to measure the fuel level in the
tank.

Figure 7.5: Schematic view of Tank 1.

The lower part of tank 1 is the negative-g compartment which makes it possi-
ble to fly upside-down, since the fuel stops in this part of the tank and can be
transferred to the engine with the upper end of the boost pump in Figure 7.5.
The two parts of tank 1 are connected with a big pipe so that the fuel can flow
into the negative-g compartment during normal flight. The ventilation pipe,
which can not be seen in Figure 7.2 is used to allow air to stream out, when
the fuel flows in, to the negative g compartment.

fL1

FP

FP

FP

FP

NGV

F1E

F21

FV1

RV

fEE

F1

FG

FW1

UAV Fuel System Concept

 65

Tank 2

Figure 7.6 shows a schematic view over tank 2, fuel probes (FP), a refueling
valve (RV), the refueling connection (RC), a pump and fuel pipes. Fuel can be
transferred from tank 2 to the negative-g compartment in tank 1 during flight
upside-down. Therefore, the transfer pump, which is controlled by uP2, must
have inlet pipes both in the bottom and in the top of the tank. The transfer
pump is supervised with a pressure sensor, yPS2 and two other sensors yFP21,2
are used to measure the fuel level in the tank. Since it is necessary to prevent
the pump from sucking air, the two pipes are equipped with negative-g valves.

Figure 7.6: Schematic view of Tank 2.

7.4 Structural Model of the Fuel Pump System

All models of the different part of the fuel pump system can now be put
together. It is also necessary to include fault variables, control signals and sen-
sor signals used by a the diagnosis system concept.

7.4.1 Limitations in the Structural Analysis

The structural analysis in this Chapter includes some limitations:

• All relations used in the structural model are considered to be linear. This
is motivated since the speed of the fuel flows in the system are slow.

• Only single faults are examined, e.g. just one fault at the time occurs in
the process to be diagnosed.

RC

F21

fL2

FP2A

RV

NGV
1

FP FP

Pump

NGV
2

FP2B

UAV Fuel System Concept

66

7.4.2 Unknown Variables

All unknown variables which are included in the structural model of the fuel
pump system are described in Table 7.1. The unknown variables are here fuel
levels and flows.

Table 7.1: Unknown variables used to describe the fuel system.

7.4.3 Sensor Signals

All sensor signals used in the structural model of the fuel pump system during
normal flight are shown in Table 7.2. Only derivatives of first order are
allowed for the known variables during analysis of the structural model, since
derivatives of higher order are assumed to be impossible to estimate.

Variable Description

FWL1 Fuel flow from left wing tank to tank 1

FWR1 Fuel flow from right wing tank to tank 1

F21 Fuel flow from tank 2 to tank 1

FW1 Total fuel flow from the wing tanks

F1 Total fuel flow from the wing tanks and from tank 2 to tank 1

F1T Fuel flow into tank 1

F1E Fuel flow to the engine

FPWL Fuel flow from the pump in left wing tank

FPWR Fuel flow from the pump in right wing tank

FP2A Fuel flow from the pump in tank 2

FP2B Fuel flow from the pump in tank 2, after the refueling valve

XFWL Fuel level in left wing tank

XFWR Fuel level in right wing tank

XF1 Fuel level in tank 1

XF2 Fuel level in tank 2

UAV Fuel System Concept

 67

Table 7.2: Sensor Signals used in the fuel pump system.

Note the that the load in x,y,z direction is merged to one variable, since no
exact model is used for the fuel level in relation to the load in this work. All
fuel probes are described with just a sensor signal. This is schematic correct
but in reality many different disturbances must be considered. The fuel probes
used consist of a small cylinder inside of a bigger cylinder which are placed in
the tank, see Figure 7.7. The capacitance between the two cylinders is related
to how high the fuel level is and can be measured.

Variable Description

yPPSWL Pump pressure sensor in left wing tank

yPPSWR Pump pressure sensor in right wing tank

yPPS2 Pump pressure sensor in tank 2

yBPS Pump pressure sensor after the boost pump

yFP1WL Fuel Probe 1 in left wing tank

yFP2WL Fuel Probe 2 in left wing tank

yFP1WR Fuel Probe 1 in right wing tank

yFP2WR Fuel Probe 2 in right wing tank

yFP11 Fuel Probe 1 in tank 1

yFP12 Fuel Probe 2 in tank 1

yFP13 Fuel Probe 3 in tank 1

yFP14 Fuel Probe 4 in tank 1

yFP15 Fuel Probe 5 in tank 1

yFP16 Fuel Probe 6 in tank 1

yFP21 Fuel Probe 1 in tank 2

yFP22 Fuel Probe 2 in tank 2

yV(x,y,z) Load in x,y and z direction during flight

UAV Fuel System Concept

68

Figure 7.7: A Schematic view of a Fuel Probe in a tank.

7.4.4 Fault Variables

All fault variables used in the structural model are shown in Table 7.3. A fault
variable is zero as long as the corresponding fault not has occurred.

Table 7.3: Fault Variables used in the structural model.

Fault Description

fPWL Pump failure in left wing tank

fPWR Pump failure in right wing tank

fP2 Pump failure in tank 2

fBP Boost pump failure

fRVWL Leakage in the refueling valve in the left wing tank

fRVWR Leakage in the refueling valve in the right wing tank

fRV2 Leakage in the refueling valve in tank 2

fRC Leakage in the refueling connection

fLWL Leakage from left wing tank

fLWR Leakage from right wing tank

fL1 Leakage from tank 1

fL2 Leakage from tank 2

fBPS Sensor fault of boost pump pressure sensor in tank 1

fFP1WL Sensor fault of fuel probe 1 in left wing tank

fFP2WL Sensor fault of fuel probe 2 in left wing tank

fFP1WR Sensor fault of fuel probe 1 in right wing tank

fFP2WR Sensor fault of fuel probe 2 in right wing tank

UAV Fuel System Concept

 69

7.4.5 Control Signals

The fuel pumps are represented with the control variables in Table 7.4, these
variables are known variables in the structural analysis. All pumps are
described with just a control signal and the flow delivered from the pump. In
reality the flow from a pump is depending on the pressure and the pump char-
acteristics.

fFP11 Sensor fault of fuel probe 1 in tank 1

fFP12 Sensor fault of fuel probe 2 in tank 1

fFP13 Sensor fault of fuel probe 3 in tank 1

fFP14 Sensor fault of fuel probe 4 in tank 1

fFP15 Sensor fault of fuel probe 5 in tank 1

fFP16 Sensor fault of fuel probe 6 in tank 1

fFP21 Sensor fault of fuel probe 1 in tank 2

fFP22 Sensor fault of fuel probe 2 in tank 2

fPPSWL Sensor fault of pump pressure sensor in left wing tank

fPPSWR Sensor fault of pump pressure sensor in right wing tank

fPPS2 Sensor fault of pump pressure sensor in tank 2

UAV Fuel System Concept

70

Figure 7.8: Pump Characteristic Curves for two different pumps.

Figure 7.8 shows the pump characteristic curves for two different pumps, with
the pump pressure on the y-axis and flow on the x-axis. However a relation
between the control signal and the flow from the pump can be estimated, by
include a model if the pump characteristic in a future diagnosis system, which
is enough to use the relation in a structural model.

Table 7.4: Control signals used to supervise the fuel pump system.

7.5 System Equations

The relations between the variables that describes the fuel system are consid-
ered as system equations. In this UAV fuel system, the system equations repre-
sent the relations between the fuel flows and the fuel levels in the system.

Variable Description

uPWL Control signal to the pump in left wing tank

uPWR Control signal to the pump in right wing tank

uP2 Control signal to the pump in tank 2

uBP Control signal to the boost pump in tank 1

UAV Fuel System Concept

 71

Table 7.6 shows a structural model including all system equations used for the
model of the fuel pump system. All flows that are used in the structural model
are represented by just a variable, e.g. F21. In a future diagnosis system, pipe
friction, orifices and pressure differences must be considered.

7.5.1 Control Signals Included in the System Equations

The control signals in Table 7.4 and the unknown variables in Table 7.1 are
used to obtained structural system equations, Table 7.5.

Table 7.5: Basic process equations used in the structural model.

Name Equation

e1 e1(uPWL, FPWL) = 0 Left Wing Tank

e2 e2(FPWL, FWL1) = 0

e3 e3(FWL1, FWL) = 0

e4 e4(uPWR, FPWR) = 0 Right Wing Tank

e5 e5(FPWR, FWR1) = 0

e6 e6(FWR1, FWR) = 0

e7 e7(uP2, FP2A) = 0 Tank 2

e8 e8(FP2A, FP2B)= 0

e9 e9(FP2B, F21)= 0

e10 e10(F21, F2) = 0

e11 e11(FW1, FWR1, FWL1) = 0 Transfer Flows

e12 e12(FW1, F21, F1) = 0

e13 e13(F1, F1T)= 0

e14 e14(F1T, F1E, F1) = 0 Tank 1

e15 e15(uBP, F1E) = 0

x·

x·

x·

x·

UAV Fuel System Concept

72

The equations in Table 7.5 describe the fuel pump system, without sensors and
faults, and can be considered as a model of the basic process. The first six
equations, e1 to e6, in Table 7.5 describe the fuel flows in the left and in the
right wing tank, the equations e7 to e10 describe the fuel flows in tank 2 and
equations e14 and e15 the fuel flows in tank 1. Equation e11, e12 and e13 in
Table 7.5 describe the transfer flows between the tanks in the fuel pump sys-
tem. Note that equations e3, e6 and e10 describe the fuel flow out from each
tank. An analytical model of the pump equations, e.g. e1 can be implemented
as linear equations:

uPWL -FPWL = 0 (7.1)

if no fault is present. The fuel flow equations like, e.g. e2 and e3 can also be
linear modeled, like e.g.

FPWL - FWL1 = 0 (7.2)

and

FWL1 - FWL = 0 (7.3)

if no faults are considered. However, if structural analysis are to be used this
modeling must be well founded to prevent introduction of relation which not
holds in the process to be analysed.

7.5.2 Faults Included in the System Equations

Different fault variables are now introduced in the system equations to
describe different fault behaviors of the fuel pump system.

x·

UAV Fuel System Concept

 73

Table 7.6: Equations including faults used in the structural model.

The first six equations, e1 to e6, in Table 7.6 describe the fuel flows in the left
and in the right wing tank including two pump faults fPWL, fPWR, two refueling
valve faults fRVWL, fLWR and leakages in each wing tank fLWL and fLWR. Equa-
tions e7 to e10 describe the fuel flows in tank 2 with a pump fault fP2, a refuel-
ing valve fault fRV2, a leakage from the refueling connection fRC and a leakage
from the tank fL2. Equations e14 and e15 describe the fuel flows in tank 1,
including a boost pump fault, fBP. Equation e11, e12 and e13 in Table 7.6
describe the transfer flows between the tanks in the fuel pump system. Note
that equations e3, e6 and e10 describe the fuel flow out from each tank.

Name Equation

e1 e1(uPWL, FPWL, fPWL) = 0 Left Wing Tank

e2 e2(FPWL, FWL1, fRVWL) = 0

e3 e3(FWL1, FWL, fLWL) = 0

e4 e4(uPWR, FPWR, fPWR) = 0 Right Wing Tank

e5 e5(FPWR, FWR1, fRVWR) = 0

e6 e6(FWR1, FWR, fLWR) = 0

e7 e7(uP2, FP2A, fP2) = 0 Tank 2

e8 e8(FP2A, FP2B, fRV2)= 0

e9 e9(FP2B, F21, fRC)= 0

e10 e10(F21, F2, fL2, fRC) = 0

e11 e11(FW1, FWR1, FWL1) = 0 Transfer Flows

e12 e12(FW1, F21, F1) = 0

e13 e13(F1, F1T)= 0

e14 e14(F1T, F1E, F1, fL1) = 0 Tank 1

e15 e15(uBP, F1E, fBP) = 0

x·

x·

x·

x·

UAV Fuel System Concept

74

7.5.3 Perfect Matching

The unknown variables in the system equations can be examined to see if the
fault free model has equally many equations as unknown variables.

Figure 7.9: Structural model of the unknown variables in the system equations.

The equations in Figure 7.9 are similar to the equations used for the structural
model of the system equations in Table 7.5, but only the unknown variables
are included. This implies that only relations between the fuel flows and the
fuel levels are studied.

A Dulmage-Mendelsohn (DM) permutation is used to return a row permuta-
tion p so that if matrix A has full column rank, A(p) is square with non-zero
diagonal. This is also called a maximum matching.

{e1}

{e2}

{e3}

{e4}

{e5}

{e6}

{e7}

{e8}

{e9}

{e10}

{e11}

{e12}

{e13}

{e14}

{e15}

X
F

2

X
F

2´

X
F

1

X
F

1´

X
F

W
R

X
F

W
R

´

X
F

W
L

X
F

W
L´

F
P

2B

F
P

2A

F
P

W
R

F
P

W
L

F
1

E

F
1

T

F
1

F
W

1

F
2

1

F
W

R
1

F
W

L1

System Equations

Left Wing Tank

Right Wing Tank

Tank 2

Transfer Flows

Tank 1

UAV Fuel System Concept

 75

Figure 7.10: Dulmage-Mendelsohn permutation of system equations.

Figure 7.10 shows the structural model from Figure 7.9 of the system equa-
tions after the DM permutation. No consideration is taken to derivatives since
derivatives of variables can be eliminated just like normal variables. The DM
permutation is used to determine that all equations in the physical model are
related and the non-zero diagonal shows that the structure of the model has a
perfect matching.

7.5.4 Sensor Equations

In this analysis the sensor signals are assumed to represent the physical value
of the measured quantity, e.g. if it is 80 kg fuel in a wing tank the value of the
sensor signal from the fuel probe is 80 kg. This means the sensor signals can
be linear included in the structural analysis.

{e14}

{e13}

{e12}

{e9}

{e8}

{e7}

{e10}

{e6}

{e3}

{e11}

{e5}

{e4}

{e2}

{e1}

{e15}
X

F
1

F
1

T

F
1

F
2

1

F
P

2B

F
P

2A

X
F

2

X
F

W
R

X
F

W
L

F
W

1

F
W

R
1

F
P

W
R

F
W

L1

F
P

W
L

F
1

E

Dulmage-Mendelsohn Permutation

UAV Fuel System Concept

76

Table 7.7: Sensor equations for the sensors used to supervise the pumps.

Equations e16 to e19 in Table 7.7 describe the sensors used to supervise the
pumps. Each equation is a relation between the sensor signal, e.g. yPWL the
actual flow, FPWL and a sensor fault fPPSWL. An analytical model of a sensor
equation is

yPPSWL - FPWL - fPPSWL = 0 (7.4)

which means that the sensor signal has the same value as the flow if no sensor
fault is present. The pressure after the pump is measured with a pressure sen-
sor. The sensor value and the pump characteristic is used to estimate the flow
from the pump.

Table 7.8: Sensor equations for the fuel probes used to measure the fuel levels.

Name Equation

e16 e16(yPPSWL, FPWL, fPPSWL) = 0

e17 e17(yPPSWR, FPWR, fPPSWR) = 0

e18 e18(yPPS2, FP2, fPPS2) = 0

e19 e19(yBPS, F1E, fBPS) = 0

Name Equation

e20 e20(yFP1WL, XFWL, fFP1WL, yV(x,y,z)) = 0

e21 e21(yFP2WL, XFWL, fFP2WL, yV(x,y,z)) = 0

e22 e22(yFP1WR, XFWR, fFP1WR, yV(x,y,z)) = 0

e23 e23(yFP2WR, XFWR, fFP2WR, yV(x,y,z)) = 0

e24 e24(yFP11, XF1,fFP11, yV(x,y,z)) = 0

e25 e25(yFP12, XF1, fFP12, yV(x,y,z)) = 0

e26 e26(yFP13, XF1, fFP13, yV(x,y,z)) = 0

e27 e27(yFP14, XF1, fFP14, yV(x,y,z)) = 0

e28 e28(yFP15, XF1, fFP15, yV(x,y,z)) = 0

e29 e29(yFP16, XF1, fFP16, yV(x,y,z)) = 0

e30 e30(yFP21, XF2, fFP21, yV(x,y,z)) = 0

e31 e31(yFP22, XF2, fFP22, yV(x,y,z)) = 0

UAV Fuel System Concept

 77

The equations, e20 to e31, in Table 7.8 describe the fuel measurements in the
tanks for each fuel probe. Note that a sensor fault and the load on the aircraft,
yV(x,y,z) is included in each equation. All equations are relations between the
sensor signal from the fuel probe, the fuel level, a sensor fault, and the load in
x,y and z direction, yV(x,y,z).

7.5.5 Fault Model Equations

A sensor fault can be both static e.g. an offset fault and dynamic e.g. a time
delay. In this example the fuel level can not be measured with a very high
accuracy. This means that the measurement must take place during a long time
and therefore are just offset faults interesting. It is therefore appropriate that
the derivative of all sensors faults are set to zero, see Table 7.9.

UAV Fuel System Concept

78

Table 7.9: Fault model equations of sensor faults.

7.6 Analysis of Sensor Configurations

To examine the fault detection and fault isolation possible to achieve by using
a diagnosis system to supervise the fuel pump system a structural model over
the full process, including all sensors is implemented in Matlab, see Figure
7.11.

Name Equation

e32 FP1WL = 0

e33 FP2WL = 0

e34 FP1WR = 0

e35 FP2WR = 0

e36 FP11 = 0

e37 FP12 = 0

e38 FP13 = 0

e39 FP14 = 0

e40 FP15 = 0

e41 FP16 = 0

e42 FP21 = 0

e43 FP22 = 0

e44 PPSWL = 0

e45 PPSWR = 0

e46 PPS2 = 0

e47 BPS = 0

f·

f·

f·

f·

f·

f·

f·

f·

f·

f·

f·

f·

f·

f·

f·

f·

UAV Fuel System Concept

 79

Figure 7.11: Structural model of the fuel pump system, including all sensors.

7.6.1 Sensor Classification

For analysis of different sensor configurations, all sensors are divided into two
sets according to the algorithm in Chapter 5, required sensors YSR and optional
sensors YSO.

Required Sensors

In the structural analysis all fuel probes are considered to be required sensors,
because they must be used to measure the fuel level. The boost pump pressure
sensor is also required since a boost pump failure is critical and must be
detected immediately. This means that YSR is the set of sensors:

{yFP1WL, yFP2WL, yFP1WR, yFP2WR, yFP11, yFP12, yFP13, yFP14, yFP15, yFP16,
yFP21, yFP22, yBPS}

Optional Sensors

Since a transfer pump failure in tank 2 or in the wing tanks not immediately
causes a critical situation, the transfer pump sensors are considered as optional
sensors for the diagnosis system. This means that YSO is the set of sensors:
{yPPSWL, yPPSWR, yPPS2}

{e1}
{e2}
{e3}
{e4}
{e5}
{e6}
{e7}
{e8}
{e9}

{e10}
{e11}
{e12}
{e13}
{e14}
{e15}
{e16}
{e17}
{e18}
{e19}
{e20}
{e21}
{e22}
{e23}
{e24}
{e25}
{e26}
{e27}
{e28}
{e29}
{e30}
{e31}
{e32}
{e33}
{e34}
{e35}
{e36}
{e37}
{e38}
{e39}
{e40}
{e41}
{e42}
{e43}
{e44}
{e45}
{e46}
{e47}

nz = 0

X
F

2
X

F
2´

X
F

1
X

F
1´

X
F

W
R

X
F

W
R

´
X

F
W

L
X

F
W

L´
F

P
2B

F
P

2A
F

P
W

R
F

P
W

L
F

1E
F

1T
F

1
F

W
1

F
21

F
W

R
1

F
W

L1
fB

P
S

fB
P

S
´

fP
P

S
2

fP
P

S
2´

fP
P

S
W

R
fP

P
S

W
R

´
fP

P
S

W
L

fP
P

S
W

L´
fF

P
22

fF
P

22´
fF

P
21

fF
P

21´
fF

P
16

fF
P

16´
fF

P
15

fF
P

15´
fF

P
14

fF
P

14´
fF

P
13

fF
P

13´
fF

P
12

fF
P

12´
fF

P
11

fF
P

11´
fF

P
2W

R
fF

P
2W

R
´

fF
P

1W
R

fF
P

1W
R

´
fF

P
2W

L
fF

P
2W

L´
fF

P
1W

L
fF

P
1W

L´
fB

P
fP

2
fP

W
R

fP
W

L
fL2
fL1
fLW

R
fLW

L
fR

C
fR

V
2

fR
V

W
R

fR
V

W
L

V yF
P

22
yF

P
21

yF
P

16
yF

P
15

yF
P

14
yF

P
13

yF
P

12
yF

P
11

yF
P

2W
R

yF
P

1W
R

yF
P

2W
L

yF
P

1W
L

uB
P

uP
2

uP
W

R
uP

W
L

yB
P

S
yP

P
S

2
yP

P
S

W
R

yP
P

S
W

L

UAV Fuel System Concept

80

Figure 7.12: Implementation of the sensor configurations in a Matlab m-file.

Rows 9 to 14 in Figure 7.12 shows how the sensor configurations and the
associated sensor faults are implemented in Matlab. The MakePowerSet
function returns all subsets of optional sensors, YO.

7.6.2 Fault Classification

First the algorithm described in Chapter 5 is used to get a incidence matrix for
a sensor configuration with all required and optional sensors included. Figure
7.11 shows the structural model of the fuel pump system, including this sensor
configuration, i.e. .YSR YSO∪

UAV Fuel System Concept

 81

Figure 7.13: The isolability matrix related to the structural model of the fuel pump system
during normal flight with all possible sensors included.

Figure 7.13 shows the fault isolability matrix obtained from the structural
model of the fuel pump system with all sensors included. In this model there
are 3564 MSS sets, when all sensors are included. The isolability matrix
shows that all faults can be detected since the first column representing the NF
mode is empty. However some sensor faults can not be fully isolated, like e.g.
fFP1WL and fFP2WL which can not be isolated from each other.

Faults to be Isolated

It is important to know if a transfer pump in any tank breaks down since no
fuel can be transferred from the actual tank if that happens. Therefore a pump
fault must be isolated if it occurs. Hence pump faults are prioritized and
placed in FI during the structural analysis, i.e.

FI = {fPWL, fPWR, fP2, fBP}.

The faults to be isolated are placed first in the isolability matrix showed in
Figure 7.13 like in the fault classification described in Chapter 5.

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2

fR
C

fLW
L

fLW
R

fL1

fL2

fB
P

S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13

fF
P

14

fF
P

15

fF
P

16

fF
P

21

fF
P

22

fP
P

S
W

L

fP
P

S
W

R

fP
P

S
2

UAV Fuel System Concept

82

Faults to be Detected

A fault in a refueling valve or a leakage can lead to loss of fuel and must
therefore be detected. But since a fault of this kind compared to a pump fault,
not must imply a direct loss of all fuel in a tank, it is enough to detect the fault.
Therefore all faults connected to valves and all leakages are included in FD,
i.e.:

FD = {fRVWL, fRVWR, fRV2, fRC, fLWL, fLWR, fL1, fL2, fBPS, fFP1WL, fFP2WL,
fFP1WR, fFP2WR, fFP11, fFP12, fFP13, fFP14, fFP15, fFP16, fFP21, fFP22}

The faults to be detected are placed in the middle section of the isolability
matrix showed in Figure 7.13.

Not Prioritized Faults

Sensor faults of optional sensors must not be prioritized since these sensors
fill no function except to be a part of the diagnosis system. If an not prioritized
sensor fault can not be detected the corresponding sensor is unnecessary, since
the sensor is not used in any test. Therefore all sensor faults corresponding to
optional sensors are handled like not prioritized fault in the structural analysis,
i.e.:

FN = {fPPSWL, fPPSWR, fPPS2}

The not prioritised faults are placed last in the isolability matrix showed in
Figure 7.13.

It is important that the corresponding sensor faults are removed from a struc-
tural model if a sensor is removed, e.g. if sensor yPPSWL is removed from a
structural model fPPSWL must also be removed. This can be done using the
function Eliminatevar in the matlab implementation.

UAV Fuel System Concept

 83

Figure 7.14: A fault classification implemented in Matlab.

Figure 7.14 shows how the fault classification can be implemented in Matlab
and later this .m file is used to obtain fault isolability matrices with the
PlotFMCat function.

7.6.3 Evaluation of Sensor Configurations

The full algorithm described in Chapter 5 was used to analyse how different
sensor configuration affected the maximal fault detection and fault isolation
which could be obtained in the fuel pump system.

UAV Fuel System Concept

84

Figure 7.15: Implementation of the algorithm from Chapter 5.

Figure 7.15 shows how the different functions in the Matlab implementation
described in Chapter 6 are used to perform the algorithms from Chapter 4 and
Chapter 5. All possible sensor configurations Yconfig are examined and all sin-
gle fault, modes which can be seen on row 29, are decoupled in each sensor
configuration. The result is a fault matrix, row 47 and the corresponding MSS
sets, row 48, to each sensor configuration. The fault isolability matrices
related to each sensor configuration is to be found in Appendix B. Figure 7.16
shows e.g. that fPWL on row 1 can be isolated from all other fault since only
the column representing fPWL is marked in row 1, but fP2 on row 3 can not be

UAV Fuel System Concept

 85

isolated from fRV2 since column 4, fP2 and column 8, fRV2 both are marked on
row 3.

Figure 7.16: Isolability matrix with the optional sensors yPPSWL and yPPSWR included.

The isolability matrix in Figure 7.13 shows that all requirements of the diag-
nosis system can be fullfilled if all pump pressure sensors, YO are included.
All faults in FI in Figure 7.13 are isolated since the isolability matrix only
have crosses in the diagonal at the first 4 rows which corresponds to the faults
in FI. All faults in FD are detected since they can be isolated from the NF
mode.

The Isolability matrix in Figure 7.16 shows that the requirements can not be
fulfilled if the pump pressure sensor in tank 2, fPPS2 is not included, since fP2
on row 3 can not be isolated from fRV2. However all other requirements are
fulfilled since fPWL, fPWR and fBP in FI can be isolated and all faults in FD can
be detected.

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2

fR
C

fLW
L

fLW
R

fL1

fL2

fB
P

S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13

fF
P

14

fF
P

15

fF
P

16

fF
P

21

fF
P

22

fP
P

S
W

L

fP
P

S
W

R

fP
P

S
2

UAV Fuel System Concept

86

Figure 7.17: Isolability matrix with the optional sensors yPPSWL and yPPS2 included.

The isolability matrix in Figure 7.17 shows that the requirements can not be
fulfilled if the pump pressure sensor in the right wing tank, fPPWR is not
included, since fPWR on row 2 can not be isolated from fRVWR. However all
other requirements are fulfilled since fPWL, fPW2 and fBP in FI can be isolated
and all faults in FD can be detected.

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2

fR
C

fLW
L

fLW
R

fL1

fL2

fB
P

S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13

fF
P

14

fF
P

15

fF
P

16

fF
P

21

fF
P

22

fP
P

S
W

L

fP
P

S
W

R

fP
P

S
2

UAV Fuel System Concept

 87

Figure 7.18: Isolability matrix with no optional sensor included.

The isolability matrix in Figure 7.18 shows that the requirements can not be
fulfilled if no optional sensors are included. But fBP is isolated from all other
faults and all faults in FD are detected. The only faults which can not be iso-
lated from each other are the transfer pump faults, fPWL, fPWR and fP2 which
can not be isolated from the transfer valve faults in the same tank.

7.6.4 Conclusions related to Normal Flight Mode

Since the analysis of the different sensor configurations showed that the trans-
fer pump faults and the refueling valve faults in each tank not could be iso-
lated there are three different possibilities:

• Include all pump pressure sensors to get desired fault isolation. This is
the only option which fulfills the diagnosis system requirements.

• Accept that transfer pump faults and refueling valve leakages can not be
isolated. This alternative can be acceptable here since the two types of
faults result in the same type of problem, i.e. disturbances in the fuel

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2
N

F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2

fR
C

fLW
L

fLW
R

fL1

fL2

fB
P

S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13

fF
P

14

fF
P

15

fF
P

16

fF
P

21

fF
P

22

fP
P

S
W

L

fP
P

S
W

R

fP
P

S
2

UAV Fuel System Concept

88

transfer from the actual tank.

• Chose another design of the system which separates the pumps and the
refueling valves. This option connects to Figure 2.4 and illustrates how
structural analysis can be used to improve the possibilities to design
diagnosis systems in new product.

7.7 Summary of the Structural Analysis

This chapter shows how a rough structural analysis contributes with knowl-
edge about which possibilities there are for model-based diagnosis when a
new process is to be constructed, already early in the design phase. One of the
most important thing handled in the chapter is the choice of relations to be
included in the structural analysis, which must secure that no relations impos-
sible to use in a future diagnosis system are introduced.

In this chapter the fault models are included like fault variables in the struc-
tural models. The analysis in this chapter shows that simple fault models can
contribute to determine isolability possibilities. However if structural analysis
is to be used in large scale product development it is probably necessary to
obtained one sub model for each fault, since fault sometimes can affect the
process in different ways.

89

8
Discussion and Conclusions

The objectives with this thesis are to present ideas for use of structural analy-
sis in the early design phase of a new product, to develop a Matlab implemen-
tation for structural analysis and to perform a structural analysis of the fuel
system in a UAV concept.

8.1 Discussion

During the work with the different parts of this master’s thesis several deci-
sions were to be made. In this section some of these questions are discussed.

8.1.1 Discussion Related to the Matlab Implementation

During the work with the Matlab implementations some questions to be
answered were:

• How can structural models be implemented in Matlab?
• Which functionality is to be required from the Matlab implementation?
• How can the Matlab implementation be put together?

Discussion and Conclusions

90

Since many algorithms already were implemented in Matlab most of the work
with the Matlab implementation focused towards completing the existing code
with new functionality. A GUI was made to simplify the implementation of
Structural Models in the implementation. This GUI fits the previously imple-
mented code. The functions in the implementation are made as independent
Matlab functions and can be used for different parts of the algorithms
described in this thesis and in [1]. This means that the user can combine func-
tions to perform structural analysis. It is also easy to complete the implemen-
tation with new functions if that is required. However this also requires that
the user has some knowledge about the algorithms.

8.1.2 Discussion Related to Structural Analysis

During the work with the structural analysis of the fuel system, the most
important questions were:

• How detailed can the structural model of the fuel system be?
• Which faults are to be detected in the process?

It is important that no relations impossible to use in a future diagnosis system
are introduced during the structural analysis. If this happens the structural
analysis can give a to optimistic view of the diagnosis possibilities and harm
the design of the diagnosis system.

Another hard task is to identify all faults that must be considered in a future
product already in a early structural model. This probably means that some
basic knowledge about similar products is required if structural analysis is to
be used successful.

8.2 Conclusions

This master’s thesis gives an introduction and hopefully further ideas to how
structural analysis can be used in the design phase of model-based diagnosis-
system. A framework which is described in Chapter 5 is created to specify the
requirement of a diagnosis system and to examine which sensors that are nec-
essary to fulfill these requirements. The Matlab implementation described in
Chapter 6 contributes with tools for all steps in the algorithms. By utilizing the
Matlab implementation structural analysis can easily be used. Chapter 7 sum-
marizes how structural analysis, the framework in Chapter 5 and the Matlab
implementations in Chapter 6 can be used in a large industrial example, a
UAV concept. By utilizing methods from the thesis, different sensor configu-

Discussion and Conclusions

 91

rations in the fuel system are examined, to decide if any sensors can be
removed. This decision is handled with the fault isolability matrix where all
faults are classified, described in Chapter 5. The analysis shows that it is pos-
sible to use the methods presented in this thesis for examination of sensor con-
figurations, and gives a unambiguous answer to which faults that can be
detected and isolated by use of a specific sensor configuration. The result in
this analysis was that no sensors can be removed if the original requirements
put on the diagnosis system must be fulfilled. However, the structural analysis
also gives ideas to how the design of the UAV’s fuel system can be modified
to allow reduction of sensors.

8.3 Future Work

Here follows some ideas to future work:

• To find a good method to decide which MSS sets to be used in a diagno-
sis system. In this thesis all MSS sets in a model are used to examine the
fault isolation and the fault detection. But since it can be thousands of
MSS sets, it might not be possible to implement them all in a diagnosis
system.

• The fault classification isolability matrix used in this work can be
replaced with a matrix which contains “points” at each position in the
isolability matrix, to rank the different faults. The matrix can then be
used to find a sensor configuration with the highest score.

• The algorithms and the Matlab implementation used in this thesis might
have to be improved, if the method is to be used in future large scale
projects.

Discussion and Conclusions

92

93

Bibliography

[1] Krysander, M.: Design and Analysis of diagnosis Systems Utilizing
Structural Methods, ISBN 91-7373-733-X, 2003.

[2] Nyberg, M, Frisk, E: Model Based diagnosis of Technical Pro-
cesses, Linköping University, 2003.

[3] Gavel, H,: Aircraft Fuel System Conceptual Design, LiTH-IKP-
R1330, 2004.

[4] Krysander, M. and Nyberg, M.: Structural Analysis for Fault Diag-
nosis of DAE Systems Utilizing Graph Theory and MSS Sets, LiTH-
ISY-R-2410, Linköping University, Linköping, 2002.

[5] Kensing, V: Black-Box Model Development of the JAS 39 Gripen
Fuel Tank Pressurization System, LiTH-ISY-EX-3294-2002, 2002.

Bibliography

94

[6] Åman, M: Method for Diagnosis System Requirement’s Prioritiza-
tion-A Case Study on the Fuel System of JAS 39 Gripen, LiTH-IKP-
Ex-2102, 2003.

95

 Appendix A

This appendix contains a description of the functions and data types imple-
mented in this thesis, some of this information is taken from Chapter 6. All
functions are implemented in Matlab and can be used for all steps in the algo-
rithm described in Chapter 4 and Chapter 5. Further information of the Matlab
implementation can also be found in Chapter 6 and Chapter 7.

A.1 Objects

Here follows some types of objects used in the matlab implementation.

SM Objects

Structural Models and MSS sets are saved as SM Objects in the Matlab imple-
mentation.

96

Figure A.1: The structure of an SM object.

• SM.m
SM.m is a matrix where the rows represent the structural equation and
the columns the variables in a structural model. If variable j is included in
equation i element (i,j) in the matrix is set to one if the variable is linear
included or two if the variable is nonlinear included in the equation. If
variable j is not included element (i,j) is zero. Differentiated variables are
treated equal to normal variables.

• SM.e
SM.e consists of cells with the names and the order of derivative for all
relations included in SM, like e.g. {{‘e1’,[1]},{‘e2’,[0]}}. The cell on
position i in SM.e consist of the name and order of derivative for the
relation represented on row i in SM.m.

• SM.v
SM.v consists of cells with the names and the derivative order of all vari-
ables included in SM, like e.g. {{‘PA’,[1]},{‘PVU’,[0]}...}. The cell on
position j in SM.v consists of the name and order of derivative for the
variable represented in column j in SM.m.

• SM.type
SM.type shows information of what type of structural model it is, e.g.
Differentiated Structural Model or Simplified Structural Model. This

SM =

m: [15x28 double]

e: {1x15 cell}

v: {1x28 cell}

type: ‘Original Structural Model'

name: 'demo UAV'

mode: {}

x: {'PA' 'PVU' 'PVT' 'PngT' 'PT3R' 'PT3L' 'PT2' 'PT1'}

y: {'Pamb' 'PsVU' 'PsVT' 'PsT3R' 'PsT3L' 'PsT2' 'PsT1'}

f: {1x13 cell}

ylimit: [1 1 1 1 1 1 1 1]

flimit: 0

xlimit: 0

 97

information depends on which functions that previously has been per-
form on the model.information depends on which functions that previous
has been perform on the model.

• SM.name
SM.name is the name of the model.

• SM.mode
SM.mode defines the fault mode of the model by a set of fault variables
that are considered to be unknown variables.

• SM.x
SM.x is a list with names of all unknown variables in the model.

• SM.y
SM.y is a list with names of all known variables in the model.

• SM.f
SM.f is a list of all fault variables in the model.

• SM.ylimit
SM.ylimit is a list with information about the highest allowed derivative
for each known variable in the model. Each element in the matrix corre-
sponds to a known variable in SM.y.

• SM.flimit
SM.flimit is not used in this version.

• SM.xlimit
SM.xlimit is not used in this version.

SMSS Objects

For some functions in the Matlab implementation Sortable MSS (SMSS)
objects are used. SMSS objects are transformations of SM objects with
another structure.

Figure A.2: The structure of an SMSS object.

SMSS objects consists of two matrices A and B for each SM Object. The
matrices represents the equations and the variables included in an MSS set.

Equations Variables

Equations/
Variables

A= 2 4 9 B= 3 7

derivative 0 1 2 0 2

98

Figure A.2 illustrates an SMSS object. Matrix A shows that equation 2, equa-
tion 4 and equation 9 in SM.e are used. Matrix A also shows that equation 4 is
differentiated one time and equation 9 differentiated 2 times. Matrix B shows
that variable 3 and variable 7 in SM.v are used and that variable 7 is differen-
tiated 2 times. Since SMSS objects just contains the positions of the equations
and the variables, elements in SM.e and elements in SM.v. It is necessary to
have access to the same SM object which were used to transform the MSS set
to an SMSS, when an SMSS is to be transformed back to an SM object.

FM Objects

Fault isolability matrices are saved as FM Objects in the Matlab implementa-
tions. These contains of an isolability matrix, FM.m and the names of all
faults, FM.f.

Figure A.3: The structure of a FM object.

A.2 Functions

Here follows a description of the functions in the Matlab implementation. The
functions can be merged together in a Matlab m-file.

FM =

m: [15x15 double]

f: {1x15 cell}

name outarg1=addMSS(inarg1, inarg2)

input arguments inarg1: SMSS object, inarg2: SMSS object

output arguments outarg1: SMSS object

description The function merges two SMSS objects, inarg1 and
inarg2 and returns an SMSS object, outarg1 which con-
tains the set of all MSS sets in the two input arguments
without doublets. This function is called by mergeSM.

 99

name [outarg1, outarg2]=checker(inarg1, inarg2)

input arguments inarg1: SMSS object, inarg2: double

output arguments outarg1: list of strings, outarg2: list of doubles

description The function can be used to examine which variables
that are included in an equation. The function Plots all
variable names and derivatives, outarg1 and outarg2,
included in an equation (inarg2) of an SM object
(inarg1) in the Matlab window.

name name define_equations(inarg1, inarg2)

input arguments inarg1: Matlab file (string), inarg2: string

output arguments

description The function opens a GUI and makes it possible to
define a structural model. Inarg1 is a matlab .mat-file
from the function define_variables. The variables are
stored to a file named after inarg2.

name name define_variables(inarg1)

input arguments inarg1: string

output arguments

description The function opens a GUI and makes it possible to
define variables to be used in define_equations. The
variables are stored to the file named after inarg1.

name outarg1=Differentiate(inarg1)

input arguments inarg1: SM object

output arguments outarg1: SM object

description The function performs the differentiation step described
in Chapter 4 on a structural model, inarg1 and returns a
differentiated structural model, outarg1.

100

name outarg1=dmpermSM(inarg1)

input arguments inarg1: SM object

output arguments outarg1: SM object

description The function performs a DM permutation, described in
Chapter 7 to a structural model, inarg1 and returns a
structural model under the permutation, outarg1.

name outarg1=eliminatevar(inarg1, inarg2)

input arguments inarg1: SM object, inarg2: string

output arguments outarg1: SM object

description The function eliminates a variable, inarg2 and all equa-
tions which contains the variable from an SM object,
inarg1 and returns an SM object, outarg1.

name [outarg1, outarg2]=ExamineIsolability(inarg1, inarg2,
inarg3)

input arguments inarg1: SM object, inarg2: double, inarg3: double

output arguments outarg1: SM object, outarg2: FM object

description The function perform the full MSS algorithm described
in Chapter 4 to a structural model, inarg1, with inarg2
as power sets to be decoupled and inarg3 as search
depth in the findMSSsets function, e.g.

ExamineIsolability(SM, 2,10) returns a all MSS sets
and the isolability matrix from a structural model SM,
with all double and single faults decoupled and the
search depth set to 10 in the MSS search.

 101

name outarg1=FindMSSsets(inarg1, inarg2)

input arguments inarg1: SM object, inarg2: double

output arguments outarg1: SM object

description The function performs the search for MSS step
described in chapter 4 and returns a differentiated Struc-
tural Model. inarg2 is the maximal number of equations
included in an MSS set to be merged with another MSS
set, this reduces the possible MSS sets and not all are
found.

name outarg1=getbackMSS(inarg1, inarg2)

input arguments inarg1: SMSS object, inarg2: SM object

output arguments outarg1: SM object

description The function converts an SMSS, inarg1 object to an SM
object outarg1. an SM object, inarg2 is used as refer-
ence to get the variable and equations names. Obviously
the same SM object, inarg2 which was used when the
SMSS object was created with the makeSMSS function
must be used in getbackMSS.

name outarg1=getFaultmatrix(inarg1)

input arguments inarg1: SM object (MSS set)

output arguments outarg1: FM object

description The function returns a fault isolability matrix, outarg1
without the NF mode from an MSS set, inarg1.

102

name outarg1=getFaultmatrix2(inarg1, inarg2)

input arguments inarg1: SM object (MSS set), inarg2: double

output arguments outarg1: FM object

description The function returns a fault isolability matrix, outarg1
without NF mode from a subset of the MSS sets, inarg1
related to first “inarg2” number of MSS sets.

name outarg1=getFaultmatrix3(inarg1)

input arguments inarg1: SM object (MSS set)

output arguments outarg1: FM object

description The function returns a fault isolability matrix, outarg1
including the NF mode from an MSS sets, inarg1.

name outarg1=GetNondiffSM(inarg1)

input arguments inarg1: SM object

output arguments outarg1: SM object

description The function takes an SM object (inarg1) and returns an
SM object (outarg1) where no difference between dif-
ferent derivatives of the same variable is made.

name outarg1=GetSMDecoupling(inarg1, inarg2)

input arguments inarg1: SM object, inarg2: list of strings

output arguments outarg1: SM object

description The function performs the decoupling step described in
Chapter 4 to an SM object, inarg1 and returns an SM
object, outarg1 with the decoupled faults, inarg2 trans-
ferred from SM.f to SM.x.

 103

name outarg1=MakePowerSet(inarg1, inarg2)

input arguments inarg1: cell, inarg2: double (optional)

output arguments outarg1: cell

description The function takes a cell including strings, inarg1 and
returns a cell, outarg1 including the power set of strings
in inarg1. If a second argument, inarg2 is used the
outarg1 only contains the power set, with strings of
length inarg2. The function is used to find all sensor
configurations.

name outarg1=makeSMSS(inarg1, inarg2)

input arguments inarg1: SM object, inarg2: SM object

output arguments outarg1: SMSS object

description The function transforms SM objects, inarg1 to SMSS
objects, outarg1, using an SM object (inarg2) as refer-
ence, see also getbackMSS.

name outarg1=mergeSM(inarg1, inarg2, inarg3)

input arguments inarg1: SM object, inarg2: SM object, inarg3: SM
object

output arguments outarg1: SM object

description The function merges two SM objects (inarg1 and
inarg2) to one SM object (outarg1). The function uses
an SM object (inarg3) which must contain all variables
used in the two SM objects to be merged as reference.
The function uses the functions makeSMSS and get-
backMSS.

104

name outarg1=OverDetSM(inarg1)

input arguments inarg1: SM object

output arguments outarg1: SM object

description The function returns the part of the SM object (inarg1)
that is overdetermined.

name PlotFM(inarg1)

input arguments inarg1: FM object (without NF mode)

output arguments

description This function plots a fault isolability matrix in a new
window.

name PlotFMCAT(inarg1,inarg2)

input arguments inarg1: FM object (from getFaultmatrix), inarg2: fault
classification

output arguments

description This function plots a fault isolability matrix with the
faults classified after the pattern described in Chapter 5.

name PlotFMNF(inarg1)

input arguments inarg1: FM object (with NF mode)

output arguments

description This function is used to plot FM objects from the func-
tion getFaultmatrix3. The fault isolability matrix
includes the NF mode.

 105

name PlotSM(inarg1)

input arguments inarg1: SM object

output arguments

description This function plots an SM object, inarg1.

name PlotSM2(inarg1, inarg2)

input arguments inarg1: SM object inarg2: int

output arguments

description This function plots the first inarg2 equations in an SM
object, inarg1.

name PlotSMV(inarg1)

input arguments inarg1: SM object

output arguments

description This function plots an SM object in a new window, with
the names of the variables (x-axis) vertical.

name outarg1=removeeqSM(inarg1, inarg2)

input arguments inarg1: SM object, inarg2: ‘string’

output arguments SM object

description This function removes an equation from an SM object,
inarg1. The name of the equation to be removed is
taken as inarg2.

106

name outarg=removevarSM(inarg1, inarg2)

input arguments inarg1: SM object, inarg2: ‘string’

output arguments SM object

description This function removes a variable from an SM object
without removing any equations. This can be used to
e.g. remove a fault.

107

 Appendix B

This appendix contains fault isolability matrices for all possible sensor config-
urations examined in Chapter 7. The faults are categorized to fit the algorithm
in Chapter 5. There is also information about how many MSS sets that were
used to get each isolability matrix. Since differentiating is used in the algo-
rithm to find MSS sets new derivatives of equation can be introduced in the
differentiating step. This means that the differentiated structural model of a
sensor configurations with one or more sensors are removed, can not be seen
as subsets of the differentiated model for the sensor configuration with all sen-
sors included. This means that it is possible that more MSS sets can be found
in a smaller model, a model with one ore more sensors removed.

108

Figure B.1: Isolability matrix with all optional sensors included, totally 3564 MSS sets
were found for this sensor configuration.

Figure B.2: Isolability matrix with optional sensors yPPSWL and yPPSWR included, totally
2597 MSS sets were found for this sensor configuration.

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2
fR

C

fLW
L

fLW
R

fL1

fL2
fB

P
S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13
fF

P
14

fF
P

15
fF

P
16

fF
P

21
fF

P
22

fP
P

S
W

L

fP
P

S
W

R
fP

P
S

2

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2
fR

C

fLW
L

fLW
R

fL1

fL2
fB

P
S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13
fF

P
14

fF
P

15
fF

P
16

fF
P

21
fF

P
22

fP
P

S
W

L

fP
P

S
W

R
fP

P
S

2

 109

Figure B.3: Isolability matrix with optional sensors yPPS2 and yPPSWL included, totally
2597 MSS sets were found for this sensor configuration.

Figure B.4: Isolability matrix with optional sensors yPPS2 and yPPSWR included, totally
2597 MSS sets were found for this sensor configuration.

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L
fP

W
R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2
fR

C
fLW

L
fLW

R
fL1
fL2
fB

P
S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11
fF

P
12

fF
P

13
fF

P
14

fF
P

15
fF

P
16

fF
P

21
fF

P
22

fP
P

S
W

L
fP

P
S

W
R

fP
P

S
2

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2
fR

C

fLW
L

fLW
R

fL1

fL2
fB

P
S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13
fF

P
14

fF
P

15
fF

P
16

fF
P

21
fF

P
22

fP
P

S
W

L

fP
P

S
W

R
fP

P
S

2

110

Figure B.5: Isolability matrix with optional sensor yPPSWL included, totally 17206 MSS
sets were found for this sensor configuration.

Figure B.6: Isolability matrix with optional sensor yPPSWR included, totally 17206 MSS
sets were found for this sensor configuration.

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2
fR

C

fLW
L

fLW
R

fL1

fL2
fB

P
S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13
fF

P
14

fF
P

15
fF

P
16

fF
P

21
fF

P
22

fP
P

S
W

L

fP
P

S
W

R
fP

P
S

2

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2
fR

C

fLW
L

fLW
R

fL1

fL2
fB

P
S

fF
P

1W
L

fF
P

2W
L

fF
P

1W
R

fF
P

2W
R

fF
P

11

fF
P

12

fF
P

13
fF

P
14

fF
P

15
fF

P
16

fF
P

21
fF

P
22

fP
P

S
W

L

fP
P

S
W

R
fP

P
S

2

 111

Figure B.7: Isolability matrix with optional sensor yPPS2 included, totally 32118 MSS sets
were found for this sensor configuration.

Figure B.8: Isolability matrix with no optional sensor included, totally 14455 MSS sets
were found for this sensor configuration.

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2

fR
C

fLW
L

fLW
R

fL1

fL2

fB
P

S

fFP
1W

L

fFP
2W

L

fFP
1W

R

fFP
2W

R

fFP
11

fFP
12

fFP
13

fFP
14

fFP
15

fFP
16

fFP
21

fFP
22

fP
P

S
W

L

fP
P

S
W

R

fP
P

S
2

fPWL

fPWR

fP2

fBP

fRVWL

fRVWR

fRV2

fRC

fLWL

fLWR

fL1

fL2

fBPS

fFP1WL

fFP2WL

fFP1WR

fFP2WR

fFP11

fFP12

fFP13

fFP14

fFP15

fFP16

fFP21

fFP22

fPPSWL

fPPSWR

fPPS2

N
F

fP
W

L

fP
W

R

fP
2

fB
P

fR
V

W
L

fR
V

W
R

fR
V

2

fR
C

fLW
L

fLW
R

fL1

fL2

fB
P

S

fFP
1W

L

fFP
2W

L

fFP
1W

R

fFP
2W

R

fFP
11

fFP
12

fFP
13

fFP
14

fFP
15

fFP
16

fFP
21

fFP
22

fP
P

S
W

L

fP
P

S
W

R

fP
P

S
2

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring excep-
tional circumstances. The online availability of the document implies a perma-
nent permission for anyone to read, to download, to print out single copies for
your own use and to use it unchanged for any non-commercial research and edu-
cational purpose. Subsequent transfers of copyright cannot revoke this permis-
sion. All other uses of the document are conditional on the consent of the
copyright owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility.According to intellectual prop-
erty law the author has the right to be mentioned when his/her work is accessed
as described above and to be protected against infringement.For additional infor-
mation about the Linköping University Electronic Press and its procedures for
publication and for assurance of document integrity, please refer to its WWW
home page: http://www.ep.liu.se/

© Tobias Axelsson

