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Abstract

Today’s society depends on complex and technically advanced mechani-
cal systems, often containing a variety of different components. Despite
careful development and construction, some of these components may
eventually fail. To avoid unnecessary damage, for example environ-
mental or financial, there is a need to locate and diagnose these faults
as fast as possible. This can be done with a diagnostic system, which
should produce an alarm if there is a fault in the mechanical system
and, if possible, indicate the reason behind it.

In model based diagnosis, a mathematical model of a fault free sys-
tem is used to detect if the monitored system contain any faults. This
is done by constructing fault indicators, called fault tests, consisting
of equations from different parts of the model. Finding these parts
is a time-consuming and demanding task, hence it is preferable if as
much as possible of this process can be automated. In this thesis an
algorithm that finds all parts of a system that can be used to create
these fault tests is presented. To make this analysis feasible, in in-
dustrial applications, a simplified version of a system model called a
structural model is used. Since the models considered in this thesis
are implemented in the mathematical software Simulink, a method for
transforming Simulink models into analytical equations and structural
models is described. As a way of increasing the diagnostic performance
for a model based diagnostic system, information about different faults,
called fault models, can be included in the model. However, since the
models in this thesis are implemented in Simulink, there is no direct
way in which this can be preformed. This thesis describes a solution
to this problem. The correctness of the algorithms in this thesis are
proved and they have been applied, with supreme results, to a Scania
truck engine model.

Keywords: Model based diagnosis, Structural methods, Diagnostic
systems, Graph theory, Decomposition
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Linköping, December 2004

Lars Eriksson

vii



viii



Contents

Abstract v

Acknowledgments vii

Notation xi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . 2

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Target Group . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . 3

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Diagnostic Theory 5

2.1 Terminology and Definitions . . . . . . . . . . . . . . . . 5

2.2 Diagnostic Systems . . . . . . . . . . . . . . . . . . . . . 6

2.3 Behavioral Modes . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Structural Models and their Properties . . . . . . . . . . 11

2.4.1 Structural Models . . . . . . . . . . . . . . . . . 11

2.4.2 Bipartite Graphs . . . . . . . . . . . . . . . . . . 13

2.4.3 Structural Properties . . . . . . . . . . . . . . . . 13

3 Algorithms for Simulink 19

3.1 Transforming Simulink Models to Analytical Equations 19

3.1.1 Simulink Simplification . . . . . . . . . . . . . . 20

3.1.2 Deriving Analytical Equations from Simulink . . 21

3.1.3 Analytical Simplification . . . . . . . . . . . . . . 24

3.2 Structural Transformation . . . . . . . . . . . . . . . . . 25

3.3 Behavioral Modes in Simulink . . . . . . . . . . . . . . . 25

3.4 Fault Modeling in Simulink . . . . . . . . . . . . . . . . 26

ix



4 Structural Algorithms 29

4.1 Steps Toward Finding All MSO Sets . . . . . . . . . . . 29
4.2 Structural Simplification . . . . . . . . . . . . . . . . . . 30
4.3 Finding All MSO Sets . . . . . . . . . . . . . . . . . . . 33

4.3.1 Basic Algorithm . . . . . . . . . . . . . . . . . . 34
4.3.2 Improvements . . . . . . . . . . . . . . . . . . . . 36

4.4 Finding All MSO Sets in a Behavioral Mode System . . 39
4.5 The Correctness of the Algorithms . . . . . . . . . . . . 41

5 An Engine Model Example 47

5.1 Algorithm Efficiency . . . . . . . . . . . . . . . . . . . . 47
5.2 MSO Validation . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusions and Future Work 52

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 53

References 55

x



Notation

Operators

|S| number of items in the set S
M model i.e. a set of equations
X set of unknown variables
varX′M set of variables in X ′ that are included in the model M
equMX ′ set of equations in M that include some variable in X ′

G(M, varX′M) bipartite graph with vertex set M and X ′

var(G) set of all variable vertices in the graph G
equ(G) set of all equation vertices in the graph G
var(γ) set of all variable vertices connected to an edge in

the edge set γ
equ(γ) set of all equation vertices connected to an edge in

the edge set γ

Abbreviations

SO Structurally Overdetermined
MSO Minimal Structurally Overdetermined
DSSM Differentiated-Separated Structural-Model
DLSM Differentiated-Lumped Structural-Model
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Chapter 1

Introduction

This master’s thesis was performed at the department of Electrical
Engineering, division of Vehicular Systems at Linköpings University as
a combined project between the department of Electrical Engineering
and Scania CV AB in Södertälje. Scania is a worldwide manufacturer of
heavy duty trucks, buses and engines for marine and industrial use. The
work was carried out for the engine software development department,
which is responsible for the engine control and the on board diagnostics
(OBD) software.

1.1 Background

Today’s society depends on complex and technically advanced mechan-
ical systems. Despite rigorous and careful development and construc-
tion, some of the components in these systems may eventually fail. To
avoid unnecessary damage there is a need to locate and diagnose these
failures as fast as possible. This can be illustrated through numerous
examples. Airplanes contain lots of safety critical systems. If a part
of an engine begin to malfunction, it is important to detect this as
soon as possible in order to carry out necessary maintenance. In the
process industry a lot of money can be saved if a faulty component
can be detected and replaced on a scheduled break in the manufactur-
ing process, without causing any unplanned stop. The construction of
diagnosis systems is therefore an important and necessary step in the
development process for a lot of industrial applications.

Diagnosis of systems has been around for as long as there have been
machines. In the beginning the diagnosis consisted in manual inspec-
tions. With the introduction of computers, new ways of checking the
correctness of systems was developed. Initially, techniques for detecting

1



2 Introduction

failures by analyzing signal levels of sensors were used. When a signal
level exceeded a predefined level at a specific working point the conclu-
sion was that a failure had occurred. In addition to that, model based
diagnosis was introduced. Model based diagnostic systems uses the un-
derlying mathematical models for the physical components to diagnose
the components. This made it possible to base the entire diagnostic
system on calculations. Using these model based diagnosis systems has
made it possible to construct even more accurate and automated kinds
of failure checking.

1.2 Related Work

This work can be seen as a link in a chain in the developing of model
based diagnosis for engine systems. The objective is to develop methods
so that the whole procedure is as automated as possible. The working
process can schematically be described by the following list.

1. Construction of an engine model in Simulink.

2. Extracting model equations from the Simulink model.

3. Finding parts of the equation system that can be used for diag-
nosis.

4. Constructing executable diagnostic tests for these parts.

The modeling work described in step (1) has been carried out in a
variety of different phases and by different persons. For modeling work
related the specific Scania truck engine mentioned in this thesis see [3].
In this thesis, the emphasis is on step (2) and (3) in the list above.
Work related to this has prior been presented by Mattias Krysander
in [7]. Parallel to this work, methods for handling step (4) has been
developed at Scania CV AB in Södertälje. For a description of this
work see [5].

1.3 Problem Formulation

Previous on-board diagnostic systems at Scania have mainly been man-
ually constructed. These have been obtained through hard testing and
sometimes an intuitive feeling of what part of an engine that can be
used in the construction of a diagnostic system. This approach is both
time consuming and ineffective. If for example a last minute change
is made in the engine, a total reconstruction of the diagnosis system
may be necessary. Since the modeling work at Scania has been success-
ful, creating models that are more and more accurate with low mean
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errors, model based diagnosis is becoming a realistic alternative to ex-
isting methods. Model based diagnosis uses a mathematical description
of the system to be diagnosed i.e. the system can be described by a
set of equations. This makes it possible to use automated tools in
the construction process of the diagnosis system. By using parts of the
equation system, sensitive to specific faults, it is possible construct fault
indicators, so-called fault tests. One problem is to find which parts of
the equation system that can be used to construct these tests. Previous
attempts to develop methods to find these parts have resulted in highly
ineffective and computably demanding algorithms. This has made it
impossible to develop model based diagnosis, in the form described by
this work, for large and highly redundant models. Even though the part
of the construction process described in this thesis do not have any real
time computation demand, it is desirable that the algorithms produce
results in matter of hours. Previous algorithms have had difficulties to
produce any results at all for the type of engine models considered in
this thesis, even if they have been running for days.

1.4 Objectives

The main objective of this thesis is to find all parts of an engine model
that can be used in order to construct a diagnostic system i.e. to
find subsets of equations in the system model that can be used to
indicate if something has failed. The existing algorithms for doing this
are inadequate since they, due to computational inefficiency, fails to
present results for certain kind of systems. Hence, there is an obvious
need to develop new versions of these algorithms. Since the model
is implemented in Matlab/Simulink there is also a need to find ways
of transforming a Simulink model into analytical equations. In order
to increase the performance of the diagnostic system the concept of
behavioral modes in Simulink will also be investigated.

1.5 Target Group

The target group of this work is primarily M.Sc./B.Sc. students with
basic knowledge in modeling work and some experience in using the
modeling and simulation software Matlab/Simulink.

1.6 Thesis Outline

This section describes the outline of this thesis.

Chapter 2 gives an introduction to diagnostic theory. In order to
increase the ability for fault tests to pin point exactly what fault
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that have occurred in a system, so-called behavioral modes will be
introduced. The concept of structural models will be introduced
as a solution to reduce the computing time for finding diagnostic
fault tests.

Chapter 3 describes a solution to how a Simulink model may be trans-
formed to model equations and how behavioral modes can be
included into a Simulink model.

Chapter 4 presents new structural algorithms for extracting parts of
a system model that can be used to construct diagnostic tests. In
the end of this chapter, these new algorithms are mathematical
verified by introducing a series of lemmas and theorems.

Chapter 5 present an industrial example with a Scania truck engine
model. Compares and verifies the new algorithms by a series of
execution tests.

Chapter 6 concludes this thesis by presenting the main results and
discussing possible future work.

1.7 Contributions

In this section the main contributions of this thesis are listed.

• An algorithm that transforms Simulink models into analytical
equations.

• A method that describes how fault models can be included graph-
ically into a Simulink model.

• An algorithm that simplifies a structural model.

• Algorithms for finding all parts of a system model that can be
used when constructing a diagnostic system.

• New mathematical properties concerning structural models and
graph theory, for example the property of overdeterminedness.

• Mathematical verification of the derived algorithms through a
number of proved theorems and lemmas.

• The algorithms in this thesis provides a foundation toward a com-
pletely automated construction process of model based diagnostic
systems.



Chapter 2

Diagnostic Theory

In this chapter some basic theory about diagnostic systems and their
properties are presented. In the first section some commonly used def-
initions regarding diagnosis will be explained. In the following section
the general concepts behind diagnosis systems and behavioral modes
are discussed. Finally in the last section the theory behind structural
methods is introduced. The theory in these sections is explained with
emphasis on what is needed for understanding the following chapters.
For a more thorough description on the subject see [4] and [2].

2.1 Terminology and Definitions

In Figure 2.1 an engine containing a diagnostic system is shown. The
engine behavior received from sensors y is compared to expected be-
havior ŷ calculated from an engine model. If these values diverge from
each other more then a predefined threshold j, the diagnostic system
signals that something is wrong.

In this section some of the terminology used in the field of diagnosis and
in this thesis are explained. The following definitions are suggested by
the IFAC (International Federation of Automatic Control) Technical
Committee SAFEPROCESS and are given in [9].

Fault: An unpermitted deviation of at least one characteristic property
or parameter of the system from the acceptable/usual/standard
condition.

Failure: A permanent interruption of a system’s ability to perform a
required function under specified operating conditions.

Disturbance: An unknown (and uncontrolled) input action on a sys-
tem.

5



6 Chapter 2. Diagnostic Theory

Engine

Engine
Model

∑ | r | > j

ŷ

y

Alarm

u
_

r Yes/No

Test

Diagnostic System

fault disturbance

Figure 2.1: An example of model based diagnosis.

Residual: A fault indicator, based on a deviation between measure-
ments and model-equation-based computations (see r in Figure
2.1).

Diagnostic Test: A binary test, designed to indicate if a residual ex-
ceeds a predefined threshold (see Test in Figure 2.1.

Fault Diagnosis: Determination of the kind, size, location and time
of detection of a fault. Follows fault detection. Includes fault
isolation and identification.

The definition fault diagnosis is in this thesis only used to denote the
actions taken by a so-called diagnostic system in order to determine the
kind and location of a fault (see Figure 2.1. The concept of diagnostic
systems is explained more thorough in the following section.

2.2 Diagnostic Systems

As mentioned in the introduction the main objective of this thesis is
to find parts of a model that can be used to construct a diagnostic
system. In this section the basic concepts of diagnostic systems will be
explained.

The general idea of a diagnostic system is to indicate if a system be-
havior diverges from the expected behavior. If, for example, a valve
in an engine gets stuck, the diagnostic system should detect this and
indicate that something has failed. In diagnostic theory this is called
fault detection. If the diagnostic system could point out exactly what
part that has failed, in this case the valve, it is called fault isolation
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Faults
Valve stuck Oil leak

Test 1 x x
Test 2 x 0

Table 2.1: An example of a decision structure for a simple diagnostic
system of an engine.

and is usually the aim of a diagnostic system.

In Figure 2.2 a schematic picture of the architecture in a diagnostic
system is shown. Given observations, i.e. sensor values and actuator
values, the diagnostic system runs a number of diagnostic tests. The
tests are checking different parts of the system and returns binary val-
ues indicating if the test detected a fault in the system or not, see Figure
2.1. Since each of these tests usually is sensitive to a number of faults,
isolation cannot directly be obtained. Therefore the results are sent to
a fault isolation function. Using the combined results from the tests
the diagnostic system tries to isolate what specific part of the system
that has failed and presents this as a diagnostic statement. In Table
2.1 a simple example of fault isolation in a diagnostic system is shown
with a decision structure [4]. If a test in the diagnostic system becomes
non-zero the structure shows possible explanation. A x in the structure
shows what faults a test may react to whereas the number 0 indicate
that the test is not sensitive to this specific fault. If for example Test 1
in Table 2.1 becomes non-zero the only possible explanations are that
there must be a stuck valve or an oil leak. If both tests signal that they
are indicating a fault, the fault isolation part of the diagnostic system
will conclude that the valve is stuck.

In order for a diagnostic system to obtain fault indication there needs
to be residuals able to indicate when a fault occur. In their simplest
form these residuals are just a set of equations that equals zero if the su-
pervised system is non-faulty. For example consider a system modeled
as

x = u
y = x

(2.1)

where u is an actuator signal, y is a sensor signal and x is an internal
variable. A residual that checks the correctness of this equation system
can then be constructed as r1 = y − u. If the system behavior do not
coincide with the system model, the residual will not equal zero and
there is said to be a faulty system. As mentioned earlier the main
goal in most diagnostic systems is to isolate faults when they occur.
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However the problem is to conclude what faults a residual is reacting
to. This can be solved by including fault behavior in the model, so-
called fault modeling. Assume that there is a need to detect bias faults
in sensor y. By adding the fault model of a bias fault θ to the sensor
equation in (2.1), the equation system can be written as

x = u
y = x + θ

(2.2)

where θ = 0 in the fault free case and θ 6= 0 when there is a bias
fault. By using this knowledge it is now possible to construct a resid-
ual r = y − x. Since r = θ the test will react when a bias fault is
present, i.e. the test is sensitive to bias faults. By using fault models
more detailed information about faults are included in the model. In
doing this the diagnosis performance may increase i.e. smaller faults
may be detected in shorter detection time.

The system (2.2) is overdetermined, i.e. more equations then unknown
variables. This is a necessary condition in order for a model to be useful
in the construction of residuals, i.e. residual generation. The reason
for this is that there must be a way of eliminating the unknown vari-
ables from the equations used in a residual. In residual r mentioned
above, the unknown signal x can be eliminated using the first equation
in (2.2). A property closely related to overdetermined systems this is
analytical redundancy [4], formally defined as follows

Definition 2.1 (Analytical Redundancy). There exists analytical re-
dundancy if there exists two or more ways to determine a variable x
by only using the observations z i.e. x = f1(z) and x = f2(z), where
f1(z) 6≡ f2(z).

In [4] it also gives that analytical redundancy is a sufficient and neces-
sary condition in order to find residuals in a model. The overdetermined
equation system (2.2) contains analytical redundancy since the variable
x can be determined by only using the observations u and y. In fact
there can be shown that this is the case for all overdetermined systems.
Analytical redundancy is an important property since it narrows down
the part of the model that can be used for constructing residuals i.e. if
there is a part of a model that is non-redundant it cannot be used in
residual generation.

2.3 Behavioral Modes

A concept deeply related to fault modeling is behavioral modes. In
equation (2.2) knowledge about how the fault θ affects the system was
included in the model i.e. a fault model was used. In order to perform
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Diagnostic

Diagnostic Test 1

Diagnostic Test n

.

.

.

Fault
Isolation

Diagnostic Test 2
Statement

Observations

Diagnostic System

Figure 2.2: The architecture of a diagnostic system.

systematic fault identification there is a need to classify and separate
different faults from each other. This can be done using so-called be-
havioral modes. For example consider the model (2.2) again. Here two
behavioral modes can be defined, no fault (NF) and bias fault (B). If
θ = 0 the system is in behavioral mode NF and if θ 6= 0 the system
is in behavioral mode B. Now assume that the system (2.2) has two
sensors y1 and y2 both measuring the signal x. Also assume that the
first sensor y1 can sustain a bias fault (B) while the other sensor y2 is
sensitive to a gain fault (G). The bias fault is in this case modeled by
the variable θ1 whereas the gain fault is model by θ2. The system can
then be written as

x = u
y1 = x + θ1

y2 = θ2x
(2.3)

By letting θ = [θ1 θ2] be a fault state vector the behavioral modes can
be defined as

Behavioral mode Fault State
NF θ = [0 1]
B θ = [θ1 1; θ1 6= 0]
G θ = [0 θ2; θ2 6= 1]

The reason for defining these modes is to be able to identify and isolate
the corresponding faults when they occur. For example consider the
residuals r1 = y1 − x and r2 = y2 − x of system (2.3). If residual r1 is
non-zero the system is said to be in behavioral mode B whereas resid-
ual r2 is reacting then the system is said to be in behavioral mode G.
If none of these tests react, then the system is in behavioral mode NF.
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Behavioral Modes
NF B G UF

r1 0 x 0 x
r2 0 0 x x

Table 2.2: Decision structure for system (2.3).

Figure 2.3: Example of a Scania truck engine.

When discussing behavioral modes, fault modes are used to denote all
behavioral modes excluding the NF case. The kind of fault modes a
model contains depends highly on the type of system. Finding all pos-
sible fault modes can be a complex and sometimes an even impossible
task. It is therefore often customary to introduce an extra fault mode
called unknown fault (UF), which covers all the unmodeled fault types.
If no other behavioral mode can explain the behavior, the system is
said to have an unknown fault i.e. it is in behavioral mode UF. The
whole diagnostic system for (2.3) presented with a decision structure is
shown in Table 2.2.
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2.4 Structural Models and their Proper-

ties

The diagnosis system is in this thesis applied to a Scania truck engine
shown in Figure 2.3. The engine model is a large and complex system,
containing eight actuator signals, four sensor signals and four states.
The whole model is expressed using approximately 280 differential-
algebraic equations. By Definition 2.1 there need to be analytical re-
dundancy in order to construct a residual, i.e. there must be a way of
eliminating the unknown variables in the equation set used for a resid-
ual. For example consider a system where u and y are known signals
and x3 = u and y = x. In order derive a residual based on these equa-
tions the unknown variable x needs to be eliminated. This is done by
first letting x = 3

√
u and then constructing the residual as

r = y − 3
√

u (2.4)

Hence all unknown variables can be eliminated and the two equations
x3 = u and y = x can be used to construct a valid residual.

While calculating the simple test in (2.4) one has to compute the cubic-
root of a variable, a fairly demanding operation to perform. In the
engine model it will not exist any tests of this simple form. In fact
experiences have shown that the residuals in a Scania truck engine will
include up to 300 equations. Due to combinatorial effects the number
of possible tests in the system will be in the range of 1000-10000. To
analytically eliminate all the unknown variables in the search for valid
residuals, like the one in (2.4), will be highly computational demanding,
if even possible. In this thesis this problem is solved by using structural
models described in the following section.

2.4.1 Structural Models

The basic idea behind structural models is presented in [6]. Instead of
looking on the whole analytical expression of an equation, a less detailed
version is used. This is done by just including information of which
variables that are present in each equation. For example, consider an
equation e1 : f(x, z) = 0, where f is the analytical function, x is an
unknown variable and z is a known variable. The structural model
corresponding to this equation will just contain information about that
variable x and z are included in equation e1, the analytical expression
of function f is ignored in the structural model. Consider the following
equation system
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e1 : ẋ1 = x2 + 3u
e2 : x1 = 4x3

2 + 5
e3 : y = x2

(2.5)

where xi are internal variables, y is a sensor signal and u actuator
signal. u and y can be considered to be known signals in this case. By
using an biadjacency matrix, see [1], the system (2.5) can be written
in its structural form as

equation unknown known
ẋ1 x1 x2 y u

e1 x x x
e2 x x
e3 x x

Table 2.3: DSSM representation of equation system (2.5)

The structural model shown in Table 2.3 is called a Differentiated-
Separated Structural-Model (DSSM) [7]. In a DSSM a variable and
its derivatives are treated as separate variables, e.g. x1 and ẋ1 in Ta-
ble 2.3. There exists an even simpler version of a structural model
called Differentiated-Lumped Structural-Model (DLSM). In a DLSM
a variable and its derivatives are treated as the same variable. This
is possible by letting the variables in a DLSM represents functions of
time rather then values. The DLSM of (2.5) is shown in Table 2.4.
A model of DSSM type contains the most information. However for
the application types used in this thesis the information loss of using
DLSMs instead of DSSMs has proven to not be substantial.

By using the structural model (2.4) of (2.5) instead of the analytical
expressions a much simpler system is obtained. Since structural models
can be represented as simple one/zero matrices, the computation time
for finding residuals can be significantly reduced compared to using the
analytical model.

equation unknown known
x1 x2 y u

e1 x x x
e2 x x
e3 x x

Table 2.4: DLSM representation of equation system (2.5)
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Figure 2.4: Equation system (2.5) as a bipartite graph.

2.4.2 Bipartite Graphs

Like biadjacency matrices mentioned above, bipartite graphs is a way
of displaying structural models. The reason for introducing them, is
that there already exists a large amount of theory concerning graphs
that will be used later in this thesis. In Figure 2.4 the system (2.5) is
shown as a bipartite graph. In the graph in Figure 2.4, e1, e2 and e3
corresponds to the equations and are called equation nodes or equation
vertices. The circles u, y, x1 and x2 represent the variables and are re-
ferred to as variable nodes or variable vertices. Between variable nodes
and equation nodes are lines, ε1,.., ε6, connecting equations to their cor-
responding variables. In graph theory these lines are called edges. A bi-
partite graph is in this thesis referred to as G(M, X), where M is the in-
cluded equation nodes and X is the variable nodes. The graph in Figure
2.4 would in this representation look like G({e1, e2, e3}, {u, x1, x2, y}).

2.4.3 Structural Properties

In order to construct a diagnostic system, it is, as mentioned earlier,
important to find what part of a model that contain analytical redun-
dancy. To make this analysis easier some structural properties need
to be defined. In this section this is done by using some properties
of bipartite graphs. First in Definition 2.2-2.4 a graph property called
matching is defined. This is later used in Definition 2.5 and Definition
2.6 in order to explain the concepts of graph paths and free nodes. Fi-
nally in Definition 2.7-2.9 this is used in order to conclude what parts
of a model that can be used in order to construct a diagnostic system.
Especially Definition 2.9 will be of interest in this thesis.

Definition 2.2 (Matching Γm). Given a graph with edges Γ a matching
is a set of edges Γm ⊆ Γ such that not two edges have a vertex in
common.

A matching will be denoted Γm. In Figure 2.4 the edge set {ε1, ε3}
is an example of an matching since they do not have any vertices in
common.
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Figure 2.5: An example of a bipartite graph with a matching shown as
thicker lines.

Definition 2.3 (Maximal Matching Γmm). Given a graph with edges
Γ a matching Γmm is a maximal matching if Γmm ⊆ Γ and Γ0 ⊆ Γ
where |Γ0| > |Γmm| implies that Γ0 is not a matching in the graph.

A maximal matching will be denoted Γmm. In Figure 2.4 the edge set
{ε1, ε3, ε5} is a matching since these edges do not have any vertices in
common. Since there only exists three equation nodes, there is no way
in which there can exist a matching containing four edges and hence
the edge set {ε1, ε3, ε5} is also a maximal matching.

Definition 2.4 (Complete Matching Γcm). Given a bipartite graph
G(M, X), a complete matching Γcm of M into X is a matching such
that all nodes in M is the endpoint of an edge. A complete matching
can equally well be a complete matching of X into M .

A complete matching will be denoted Γcm. In Figure 2.4 the edge set
{ε1, ε3, ε5} is an example of a complete matching of the equation set
{e1, e2, e3} into the variable set {u, x1, x2, y}.

In graph theory a set of connected vertices and the edges joining them
are called a path. In Figure 2.5 the edge and node set {x1, ε1, e1, ε2, x2}
is an example of a path through a part of the graph. An important
concept is an alternating path defined as follows

Definition 2.5 (Alternating Path). Consider a matching Γm in a
graph with edges Γ. Then an alternating path relative to Γm is a path
whose edges is alternately in Γm and in Γ\Γm.

In Figure 2.5 a matching is shown as thicker lines. The edge and
node set {x1, ε1, e1, ε2, x2, ε3, e2, ε4, x3} is an example of an alternating
path in this graph since the edges {ε1, ε2, ε3, ε4} is alternately in the
matching. In order to define certain properties the concept of free
equations and free variables are of use. These can be defined as follows

Definition 2.6 (Free Node). Given a graph with a matching, a node
is said to be free if it is not part of the matching.
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Figure 2.6: Schematic illustration of canonical decomposition on a
model M . The gray rectangles represent matrices that may contain
non-zero variables whereas all the entries in the white area are zero.

The main objective in this thesis is, as mentioned before, to find equa-
tion sets in a system that can be used in the construction of a diag-
nosis system. By Definition 2.1 the redundant or overdetermined part
of a model seems to be of special interest. There is in other words a
need to divide a model into different parts and in some way extract
the overdetermined one. In [8] it is proven that there always exists a
unique structurally overdetermined part in a model, a way to obtain
this part called canonical decomposition is also presented. Canonical
decomposition can be explained by the following definition

Definition 2.7 (Canonical Decomposition). Let Γmm be a maximal
matching in the bipartite graph G(M, varXM). Denote the equation
nodes and variable nodes in Γmm with Mm and Xm respectively. Then
the set of all equation nodes in M such that they are reachable via an
alternating path from M\Mm is the structurally overdetermined part
M+. The structurally underdetermined set M− is the set of all equation
nodes in M such that there is an alternating path from varXM\Xm.
The remaining part of the model is the structurally justdetermined part
denoted M0. The structurally overdetermined, justdetermined and un-
derdetermined variables are defined as
X+ = varXM+,
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Figure 2.7: Equation system (2.6) shown as a bipartite graph. A max-
imal matching is marked with thicker lines.

X0 = varXM0\X+ and
X− = varXM−\(X+ ∪ X0)
respectively.

Using Definition 2.7 it is possible to define the relation between the
number of equations and the number of variables in M+, M− and M0

as |M+| > |X+|, |M0| = |X0| and |M−| < |X−| respectively.

In Figure 2.6 a schematic illustration of some structural properties is
presented graphically. The figure shows the connection between some
graph and model properties mentioned above. The gray areas represent
matrices that may contain non-zero variables whereas all the entries
in the white area zero. For example, this figure shows that equation
nodes in M− may be connected through edges to any variable node in
X . Equation nodes in M+ on the other hand, can only be connected
to variable nodes in X+. The diagonal line in Figure 2.6 shows what
equation and variable nodes that are part of the maximal matching.
This figure also illustrates the connection between the overdetermined
part M+ of a model and the concept of an alternating path. If a equa-
tion node is, as mentioned above, reachable through an alternating
path form the maximal matching, it is in the overdetermined part M+

of the model. In order to illustrate this further consider the following
equation system

e1 : x1 = u
e2 : y = x1

e3 : x2 = x3 + 5
e4 : x4 = 4

(2.6)

where u and y are known signals. By only considering the unknown sig-
nals, the equation system can be represented with the bipartite graph
shown in Figure 2.7. In this figure edges part of the maximal matching
are marked with thicker lines. According to Definition 2.7 it should
be possible to dived the bipartite graph in Figure 2.7 into three dif-
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Figure 2.8: Equation system (2.6) divided into three parts by canonical
decomposition. Variables and equations nodes included in the maximal
matching are marked with bigger x:s.

ferent parts. The overdetermined part is all equation nodes part of an
alternating path from equation nodes outside the maximal matching,
i.e. equation nodes e1 and e2. The underdetermined part is all equa-
tion nodes part of an alternating path from variable nodes outside the
maximal matching, i.e. equation node e3. The justdetermined part is
the rest of the equation nodes in the graph, i.e. equation node e4. In
Figure 2.8 this is shown in the same format as the system in Figure 2.6
discussed above, variables and equations nodes included in the maxi-
mal matching are marked with bigger x:s.

Since the redundant part of a model is the one used to construct di-
agnostic tests, models that consist of only overdetermined parts are
of special interest. Therefore it is convenient to make the following
definitions

Definition 2.8 (Structurally Overdetermined). An equation set M is
said to be Structurally Overdetermined (SO) if M = M+.

From Definition 2.7 and Definition 2.8 it follows that if M is SO then
M− = ∅ and M0 = ∅.

In the design of a diagnostic system small overdetermined models are of
special interest [7]. This follows from the fact that it is in general easier
to construct residuals that are based on few equations and hence are
sensitive to a few number of faults. One type of sets that are especially
important in this sense, are Minimal Structurally Overdetermined sets
or MSO sets. In fact in [7] it is shown that the problem of finding all
parts of a model that can be used in order to construct residuals can,
when using structural models, be reduced to finding all MSO sets (see
Chapter 4). MSO sets are formally defined as follows

Definition 2.9 (Minimal Structurally Overdetermined). A structurally
overdetermined set is a Minimal Structurally Overdetermined set (MSO)
if none of its proper subsets are structurally overdetermined.
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An overdetermined equation system contains more equations then un-
known variables. In order to make it easier to express how many more
equations then variables there is in such a system and hence define the
degree of redundancy, the following definition is convenient

Definition 2.10 (Degree of Overdeterminedness). The degree of overde-
terminedness for an overdetermined set of equations M+ is defined as

n = |M+| − |varXM+| (2.7)

An overdetermined set of equation with a degree of overdeterminedness
n will be denoted M+n, also called a +n system. For example, the
overdetermined part M+ in Figure 2.8 should be denoted M+1, since
the set of equations in M+ got a degree of overdeterminedness equal
to one.



Chapter 3

Algorithms for Simulink

At Scania, engine models are implemented in Simulink. In order to
find parts, i.e. equation sets, of a model that can be used to construct
diagnostic test there is a need, as mentioned before, to perform analyt-
ical and structural computations on the model. Necessary calculations
can not however be performed directly in a Simulink model, since it
is presented graphically. In this chapter some newly developed algo-
rithms for handling analytical and structural transformations will be
described, as well as a method of inserting behavioral modes into a
Simulink model. First in Section 3.1 a way of transforming a Simulink
model into analytical equations is introduced. Then in Section 3.2 the
transformation from analytical equations to a structural model is de-
scribed. Finally in Section 3.3 a solution to the problem of including
behavioral modes into a Simulink model is proposed.

3.1 Transforming Simulink Models to An-

alytical Equations

This section contains a description of an algorithm that retrieves all
analytical equations from a Simulink file. Since the engine models,
treated in this thesis, are implemented in Simulink this is a necessary
step in the process of constructing a diagnostic system. The algorithm
can be summarized by the following steps.

Algorithm 3.1.

1. Simulink Simplification: Structuring the contents in the Simulink
file in order to construct a less complex Simulink model.

2. Deriving Analytical Equations: Creates an analytical model from
the structure given in step (1).

19
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Constant
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Display
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Figure 3.1: Example of a Simulink file(simex.mdl).

3. Analytical Simplification: Simplifies the analytical model in order
to decrease the complexity of the system.

In step (1) the Simulink file is parsed and the important parts, i.e. parts
that contain analytical information, are extracted and transformed into
a less complex structure. Step (2) turns the structure created in step (1)
into analytical equations. Finally in step (3) an analytical simplification
is made in order to reduce the size of the model. A more thorough
description of the individual steps in Algorithm 3.1 is given in the
sections that follows.

3.1.1 Simulink Simplification

Simulink files are stored as text files. In order to decrease the time
spent reading files, there is a need to transform these into a more com-
prehensible format.

Example 3.1

The Simulink model in Figure 3.1 is in this example first shown as
a text file and then transformed into a less complex object oriented
structure.

Model {

Name "simex"

System {

Name "simex"

Block {

BlockType Constant

Name "Constant"

Value "2"

}

Block {

BlockType Display
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Name "Display"

Ports [1]

}

Line {

SrcBlock "Constant"

SrcPort 1

DstBlock "Display"

DstPort 1

}

}

}

By parsing the file above and extracting the different levels of classes,
the model in the file can be transformed to the following, less complex,
structure.

simex.Constant.Blocktype = Constant

simex.Constant.Name = "Constant"

simex.Constant.Value = "2"

simex.Display.Blocktype = Display

simex.Display.Name = "Display"

simex.Display.Ports = [1]

simex.Line.SrcBlock = Constant

simex.Line.SrcPort = 1

simex.Line.DstBlock = "Display"

simex.Line.DstPort = 1

As shown in Example 3.1, Simulink files are built hierarchical. This
means that they are on an ideal format to be transform into a sort
of object oriented format, with super and subclasses. For example,
if a Simulink block named sum is contained in a subsystem named
subsystem1, then it is possible to transform these into a structure like
subsystem1.sum. Hence, an object oriented structure can easily be
created by parsing Simulink files and extracting blocks and lines as ex-
plained by Example 3.1. By transforming Simulink files into structures
the time spent reading files are minimized. Since file access is fairly
time demanding, the execution time is hence reduced.

3.1.2 Deriving Analytical Equations from Simulink

In a Simulink file signals are represented as lines (see Figure 3.1). These
lines are connected to blocks which, with some exceptions, execute a
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Figure 3.2: Example Simulink model with a subsystem.

computation on the signals. This process coincide with the behavior
of a mathematical function, i.e. a block can be compared with a func-
tion Y = f(X), where X is a vector of input signals and Y is a vector
with output signals. Hence, by defining the analytical function f for
each block in a model it should be possible to convert the model into
an analytical equation system. If there, for example, exists a summa-
tion block, e.g. sum in Figure 3.2, there must exist a definition that
this block corresponds to equation S1 = a1 + a2. In this thesis this
was solved by using a special definition file that contains the analyti-
cal functions for all the block types needed. Another problem is that
Simulink models often contain unnamed lines. Since this corresponds
to unnamed variables in the equation system, these need to be named
before they can be included into a model. This can however be solved
automatically by the algorithm and causes no problem. The algorithm
can now be written as follows.

Algorithm 3.2.

Input: An object oriented structure S of a Simulink model given from
step (1) in Algorithm 3.1.

1. Let B be the set of all blocks and L be the set of all lines in S.

2. For all unnamed lines in L assign a unique variable name.

3. Set i = 1.

4. Select block bi ∈ B.
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5. Let X be all input signal names and Y all output signal names
for the signals connected to bi.

6. Get the analytical function f corresponding to the block type of
bi.

7. Save the analytical function for bi as Y = f(X) together with a
unique equation name.

8. If |B| 6= i set i = i + 1 and goto step (4), otherwise exit.

Output: The analytical equations for the Simulink model given from S.

By applying Algorithm 3.2 on the Simulink model in Figure 3.2 the
following analytical equation system is obtained.

e1 Constant : a1 = 2

e2 Actuator From Workspace : a2 = u

e3 Sum : S1 = a1 + a2

e4 Sensor To Workspace : y = S2

e5 Subsystem.S1 : a4 = S1

e6 Subsystem.Constant1 : a3 = 3

e7 Subsystem.Product : a5 = a4 * a3

e8 Subsystem.S2 : S2 = a5

Note that in the equation system above the block names for the blocks
corresponding to each equation are also shown.

Special Simulink Blocks

In order for the transformation toward an analytical system model to
be correct, some special feature blocks need to be defined. These blocks
are listed below.

Subsytem Treated as container component. Do not have any block
function other then naming signals connected to its ports (see S1
and S2 in Figure 3.2).

To Workspace Treated as sensor signal in the model if the block
name is tagged with the letters Sensor (see ”Sensor To Workspace”
in Figure 3.2).

From Workspace Treated as actuator signal in the model if the block
name is tagged with the letters Actuator (see ”Actuator From
Workspace” in Figure 3.2).

The sensor and actuator blocks are important since they indicate signals
which are considered known in the model. This information is later
used when transforming the analytical model into a structural model
(see Section 3.2).
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3.1.3 Analytical Simplification

Structural methods can be an efficient tool when trying to find parts of
a model that can be used to construct diagnostic tests (see Chapter 4).
This must be kept in mind if an analytical model is simplified, other-
wise structural information may be lost. By examining the analytical
equations generated by Algorithm 3.2 above, it can be seen that it is
possible to simplify analytically. For example, a5 can easily be elimi-
nated by replacing it with S2 and hence can equation e8 be removed.
The problem that arises when doing this is to not merge equations that
can appear in different residuals. If this is done, information will be
lost and it may be impossible to structurally generate all possible tests
for a model. For example, consider the following analytical model.

e1 : y1 = x1

e2 : y2 = x2

e3 : x1 = x2

e4 : x1 = u

(3.1)

where y1, y2 and u are considered to be known variables. By doing a
correct, in the analytical sense, simplification this model can be reduced
to

{e1, e4} : y1 = u
{e2, e3, e4} : y2 = u

(3.2)

For (3.1) it is possible to structurally extract three residuals r1 = y1−u,
r2 = y2 − u and r3 = y1 − y2. However, from the ”correct” simplified
model it is only possible to structurally construct two residuals as r1 =
y1−u and r2 = y2−u, hence one residual will be lost. This follows from
the fact that the structural methods used in this thesis do not allow
known variables to be eliminated. The solution to this problem is to
just remove simple assignments of unknown variables from analytical
equation systems. By doing this, the model can be reduced without
causing the loss of structural information. For example consider the
model in (3.1). By letting x1 = x2 and then replace any occurrence of
x1 with x2 the model can be reduced to

e1 : y1 = x2

e2 : y2 = x2

e3 : x2 = x2

e4 : x2 = u

(3.3)

and hence, equation e3 can be removed without causing any information
loss. In test runs this reduced an engine model with approximately 360
equations to about 170 equations. This will later on be proven to be
extremely vital since the processing cost for finding residuals is highly
dependent on the model size (see Chapter 4).
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3.2 Structural Transformation

Earlier in Section 2.4 it was mentioned that by trying to find residuals
in a structural model instead of in an analytical model, the compu-
tation time could be significantly reduced. Hence it is essential that
equations derived from the Simulink model can be transformed to their
structural form. However, this is not difficult since the only informa-
tion that should be included is which variables each equation contains
and if they are consided to be known or unknown.

The analytical equations for the system in Figure 3.2 was presented
in Section 3.1.2. Now the equations can be transformed to the follow-
ing structural model.

equations unknown known
a1 a2 a3 a4 a5 S1 S2 u y

e1 x
e2 x x
e3 x x x
e4 x x
e5 x x
e6 x
e7 x x x
e8 x x

As mentioned in Section 3.1.2, Sensor tagged To Workspace and Ac-
tuator tagged From Workspace blocks are treated as known signals.
Hence variable u and y are shown as known variables in the structural
model.

3.3 Behavioral Modes in Simulink

The main objective in this thesis is to extract equations from a model
that later can be used to construct diagnostic tests. As explained in
Section 2.2 and 2.3 the use of fault models and behavioral modes in a
model may increase the possibility for the diagnostic systems to isolate
faults, and hence increase the diagnostic performance. Since the models
considered in this thesis are implemented in Simulink, which is based
on a graphical interface, it would be preferred if the behavioral modes
can be included directly in the visual model. This section describes a
general solution of how this can be done without changing the model
appearance significantly. Note that there is a difference between fault
simulation and fault modeling in Simulink. Since the Simulink meth-
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Figure 3.3: Example of a Simulink model.

ods described in this thesis only focus on extracting equations from
Simulink models, there is no guarantee that the fault model solutions
described in this section can run under a Simulink simulation. How-
ever, the method proposed in this section has been developed with this
in mind and a solution to the simulation problem will not be hard to
obtain.

3.4 Fault Modeling in Simulink

When modeling faults graphically in Simulink, enough information
must be included into the model so it is possible to extract all behav-
ioral modes. For example, consider the Simulink model in Figure 3.3.
The corresponding model can be written as

y = u (3.4)

where y is a sensor measuring the signal u. Assume now that the
sensor has three possible fault models: a constant bias fault (B), a
short circuit (SC) and some unknown faults (UF). Let Ω denote the set
of all behavioral modes in the system as Ω = {NF, B, SC, UF} where
NF denotes the No Fault mode. An example of how this model may
look like can be written as follows.

Ass. Equation
NF y = u
B y = u + b
SC y = 0
UF y ∈ R
Ω ḃ = 0

(3.5)

where Ass. is the behavioral mode assumption. If the system behavior
diverge for any equation above the conclusion is that the system is not
in the corresponding behavioral mode. For example, if u 6= 0 and y = 0
then the conclusion will be that that the system is not in the fault
free NF state. In order to introduce systems like (3.5) into a Simulink
model there must first be a way to include this information graphi-
cally. Algorithm 3.2, that transforms Simulink models into analytical
equations must be modified in order to connect the right equations to
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Figure 3.4: The Simulink model in Figure 3.3 with the fault models
given in (3.5).

the corresponding behavioral mode. A general way of describing model
(3.5) as a Simulink model is shown in Figure 3.4. This solution uses
a behavioral mode component (BM C1 in Figure 3.4) modeled as a
subsystem to connect the equations to their corresponding behavioral
mode. In order to separate these behavioral mode components from
ordinary subsystems they are tagged with the letters BM in the begin-
ning of their names.

When modeling faults there is a need to include information about
how unknown fault signals, see b in Figure 3.4, behaves in different
states, e.g. if they are static or if they obtain some known value in a
specific behavioral mode. For example, in order to model (3.5) prop-
erly there must be a way to express that ḃ = 0. This can be done in
many ways, in this thesis it was solved by tagging unknown fault signal
blocks with the letters UK in the beginning of their block names and
interpret the block types. If a UK tagged fault signal is given by a
constant block it is considered to be static, whereas the fault signal is
given by a form workspace block it is considered to be dynamic.

The fault modeling solution mentioned above, provides a way of con-
necting an equation to the corresponding behavioral mode as well as a
way to indicate how different fault signals behaves, hence makes it a rel-
atively general solution. Algorithm 3.2 can now be modified according
to Algorithm 3.3 in order to manage these new system types.

Algorithm 3.3.

Input: An object oriented structure S of a Simulink model.

1. Let B be the set of all blocks and L be the set of all lines in S.

2. For all unnamed lines in L assign a variable name.

3. Set i = 1.
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4. Select block bi ∈ B.

5. Let X be all input signal names and Y all output signal names
for the signals connected to bi.

6. If bi is a constant block tagged with the letters UK giving a signal
θ, save θ′ = 0 as an analytical function together with a unique
equation name.

7. If not bi is a subsystem tagged with the letters BM goto step (9).

8. For all x ∈ X save x = Y as an analytical function together with
a unique equation name and the behavioral mode name given from
bi, then goto step (11).

9. Get the analytical function f corresponding to the block type of
bi.

10. Save the analytical function for bi as Y = f(X) together with a
unique equation name.

11. If |B| 6= i set i = i + 1 and goto step (4) otherwise exit.

Output: The analytical equations for S.

The analytical equations for the Simulink model in Figure 3.4 derived
by Algorithm 3.3 together with corresponding block types is given by
the following model.

e1 From Workspace : a1 = u

e2 : b’ = 0

e3 Constant : a2 = b

e4 Sum : a3 = a1 + a2

e5 Subsystem {NF} : a4 = a1

e6 Subsystem {B} : a4 = a3

e7 Subsystem {SC} : a4 = 0

e8 Subsystem {UF} :

e9 To Workspace : y = a4

As seen Algorithm 3.3 manage to recreate the model in (3.5) from the
Simulink model in Figure 3.4.
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Structural Algorithms

As explained in Chapter 2, minimal structurally overdetermined sets
are of special interest when designing diagnostic tests, since they are
in general small and sensitive to few faults. In [7], it is shown that
by using the MSO sets contained in a model it is possible to construct
sufficiently accurate diagnostic system. Hence, in order to construct
a solid diagnostic system, just using structural models, it is essential
that all MSO sets are found. In [7], an algorithm for extracting all
MSO sets from a system model is presented. However, some of the
steps in this algorithm are highly ineffective and computational ex-
pensive for the kind of models considered in this thesis. This chapter
presents newly developed algorithms for extracting all MSO sets con-
tained in a structural model. In Section 4.1 the main objectives for
the new algorithm are given. In Section 4.2 and 4.3 a more detailed
description of the different steps in the algorithm are presented. In
Section 4.4 a partially changed algorithm for finding all MSO sets in
a system containing behavioral modes is shown. Finally in Section 4.5
the correctness of the new algorithms is proved. The input to all these
algorithms is a structural model extracted from the model equations of
the engine, see Section 3.2.

4.1 Steps Toward Finding All MSO Sets

In [7] Algorithm 8.1 introduces a way of finding all MSO sets in a
structural model. In this section a new improved and partially changed
version of this algorithm is presented. The algorithm can be described
by the following structure

29



30 Chapter 4. Structural Algorithms

Algorithm 4.1.

Input: A structural model M.

1. Removing derivatives: This algorithm does not separate a vari-
able from its derivatives, hence the structural model M must be
transformed to a DLSM (see Section 2.4.1).

2. Extracting the overdetermined part of the model: Since MSOs can
not contain any justdetermined or underdetermined parts, these
are removed (see Definition 2.8 and Definition 2.9).

3. Structural Simplification: Simplifies the model by combining equa-
tion sets that have to be used together in an MSO set. This pro-
duces a less complex model, fewer equations and unknown vari-
ables, and hence decreases the computing time in the next step.

4. Finding all MSO sets: Searching the structural model obtained
from the last step and extracting all MSO sets.

Output: All MSO sets contained in the model M.

As mentioned above Algorithm 4.1 is a modified version of an algorithm
presented in [7]. However the results given from the two algorithms are
the same. Compared to the algorithm in [7] it is mainly step (3) and
step (4) of Algorithm 4.1 that have been improved. Hence, in the
following sections a more thorough description of these steps will be
given. For more information concerning the other steps see [7].

4.2 Structural Simplification

As mentioned earlier in Section 2.4, finding all diagnostic tests for a
model is a complex task. This is still the case when using structural
methods. Hence every simplification of the structural model is helpful.
In [7] a structural simplification algorithm is introduced. The algorithm
creates a simpler model by merging those equations that must be in the
same MSO. The merging is achieved by looking for unknown variables
that are present in only two equations. If such a variable is found the
two equations are combined and the variable is removed. This can be
described according to the following

Algorithm 4.2.

Input: A structural overdetermined model M ′

1. Set X ′ = varXM ′.

2. For all variables x ∈ X ′ do step (3).
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3. If |equM ′x| = 2 merge the equations in equM ′x and remove the
variable x.

4. If any equations was merged in step (3) goto step (1) otherwise
exit.

Output: The simplified model M ′.

This algorithm can be illustrated through a simple example. Consider
the following analytical equation system

e1 : y1 = x1 + u1

e2 : y2 = x1 + u2
(4.1)

where the variables yi and ui are known while x1 are unknown. In this
case the unknown variable x1 is present in only two equations. Hence,
according to the Algorithm 4.2 the two equations can be merged and
the variable x1 removed. By doing this the following equation system
is derived

{e1, e2} : y1 − y2 = u1 − u2 (4.2)

The algorithm repeats these steps until no more simplification is pos-
sible. By applying this on structural models it produces an effective
simplification. However Algorithm 4.2 is not able to handle all struc-
tural cases. Consider the structural model describing an MSO in Table
4.1. In the first run with Algorithm 4.2 variable x3 is found to be
present in only two equations, e3 and e4. Hence x3 is removed and
equations e3 and e4 merged together. The result is shown in Table
4.2. Since there not exists any more variables contained in only two
equations Algorithm 4.2 will now exit.

equation unknown known
x1 x2 x3 y u

e1 x x x
e2 x x x
e3 x x x x
e4 x x

Table 4.1: An example of a structural model before the simplification
step.

In Table 4.1 all equations can be merged together since all equations
is needed to remove the unknown variables in the system, and hence
must be used together in an MSO. However, Table 4.2 clearly shows
that Algorithm 4.2 fails to find all possible ways of merging equations
and simplifying the model. This problem can be solved by construct-
ing a new simplification algorithm that uses the properties of canonical
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equation unknown known
x1 x2 y u

e1 x x x
e2 x x x

{e3, e4} x x x x

Table 4.2: The structural model in Table 4.1 after the simplification
made by Algorithm 4.2.

decomposition in the merging part. By Definition 2.7 a canonical de-
composition divides a model into three different parts. One structurally
overdetermined part M+, one structurally justdetermined part M0 and
one structurally underdetermined part M−. Since MSO sets by Defini-
tion 2.9 are overdetermined they can not contain any underdetermined
or justdetermined parts. This knowledge can be used in order analyze
what equations that must be grouped together when constructing an
MSO.

The basic idea behind this algorithm is to remove an equation from a
structurally overdetermined model and then, with the help of canonical
decomposition, analyze if this produce any underdetermined or justde-
termined part. If this is the case the removed equation must always
be used together with the equations in the obtained underdetermined
or justdetermined part, if included in an MSO. Consider a structurally
overdetermined model M = {e1, e2, e3, e4} with the structure shown in
Table 4.3.

equation unknown
x1 x2

e1 x x
e2 x x
e3 x
e4 x

Table 4.3: An example of a structural model.

If, for example, equation e1 is removed from M the canonical decom-
position will divide the model into M+ = {e3, e4} and M0 = {e2}.
The reason for this is that with e1 removed there is no way in which
the unknown variable x2 can be eliminated from the remaining system.
In fact the equations e1 and e2 must always be used together in order
to eliminate x2 from the model i.e. if any of e1 or e2 is included in
an MSO both equations must be included. Hence these equations can
just as well be merged together and variable x2 removed. The whole
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equation known
y u

{e1, e2, e3, e4} x x

Table 4.4: The structural model in Table 4.1 after simplification made
by Algorithm 4.3.

algorithm can now be written as

Algorithm 4.3.

Input: A structurally overdetermined set of equations M .

1. Set i = 1.

2. Select an equation ei ∈ M .

3. Set M ′ = M\{ei}.

4. Do a canonical decomposition of M ′ to get M ′+, M ′0 and M ′−.

5. Merge the equations in M\M ′+ and let them replace equation ei

in M .

6. Remove the variable sets X0 and X− from M .

7. If i 6= |M | set i = i + 1 and goto step (2) otherwise exit.

Output: The simplified model M .

The basic idea behind Algorithm 4.3 is shown in Figure 4.1. Here M
is a structurally overdetermined set of equations containing the set of
variables X . If equation e1 is removed as shown in the figure, the
equations e1, e2 and e3 will be merged and the variable sets X0 and
X− removed by Algorithm 4.3. The result of using Algorithm 4.3 to
simplify the structural model in Table 4.1 is presented in Table 4.4. It
can be seen that this algorithm manage to simplify the whole structure
to its minimal form.

4.3 Finding All MSO Sets

This step is the most important one in Algorithm 4.1 and also the most
complex problem to solve. The MSO algorithm in [7] is, as mentioned
above, quite ineffective and this step is actually the main cause of this
inefficacy. In order to find equation sets that could be used to construct
an MSO the algorithm in [7] performs a full tree search through every
equation and variable of the model, searching for sets of equation where
all unknown variables can be eliminated. For large systems this leads
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Figure 4.1: Schematic illustration of an equation system with variable
set X and equation set M . If equation e1 is removed the overdetermined
part of the model will be the white area and hence equation e1, e2, e3

will be merged.

to an enormous amount of computations in order to find the equation
sets. The new algorithm described in this section uses some properties
of MSO sets that reduce the computational cost to a minimum.

4.3.1 Basic Algorithm

In [7] the following Lemma and its proof are given

Lemma 4.1. The set of equations M is an MSO set if and only if M
is structurally overdetermined and |M | = |varXM | + 1.

Note that this is by Definition 2.10 a M+1 system. Consider now
that there exists an overdetermined set of equations M = M+4 i.e. if
there are n unknown variables, the number of equations is n + 4. By
removing equations a less overdetermined model is created from this
system. In fact, for every equation removed from an overdetermined
set of equations the degree of overdetermindness decreases with one,
for the proof of this see Lemma 4.4. This means that by removing an
equation and extracting the overdetermined part from M the system
will become a M+3 system. By repeating this procedure three times we
will get a M+1 system. As given by Lemma 4.1 above this is an MSO.
Now let E denote the set of removed equations from M+4, i.e. it will
consist of three equations. By removing different equations from M+4

it is possible to get different MSOs. Hence by selecting all combinations
of equations E to be removed, it is possible to derive all MSOs from
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M+4. This can be formalized by the algorithm that follows below. The
input to this algorithm is the simplified model derived by Algorithm
4.3.

Algorithm 4.4.

Input: A structurally overdetermined set of equations M+n = {e1, .., en}.

1. Set i = 1.

2. Select an equation ei ∈ M+n.

3. Let M+(n−1) = (M+n\{ei})+ .

4. If n − 1 6= 1 call this algorithm with M+(n−1).

5. If n − 1 = 1 save M+(n−1) as an MSO.

6. If i 6= |M+n| set i = i + 1 and goto step (2) otherwise exit.

Output: All MSO sets in M+n.

Algorithm 4.4 performs a systematical reduction of the equation set
M+n until all M+1 systems are derived. Step (2) chooses an equation
from M+n that is used in step (3) to decrease the degree of overde-
terminedness n with one. The equation set obtained is according to
Definition 2.10 a +(n − 1) system, hence the chosen notation M+n−1.
If an MSO is derived it is saved and the algorithm chooses the next
equation in the set, otherwise the algorithm calls itself with the new
M+(n−1) system. In Example 4.1 a run with this algorithm is shown.

Example 4.1

Consider the following structurally overdetermined model consisting
of four equations and two unknown variables

equation unknown
x1 x2

e1 x
e2 x x
e3 x
e4 x

Input to the algorithm: M+2 = {e1, e2, e3, e4}
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Iteration 1:
Step (1-3): M+1 = (M+2\{e1})+ = {e3, e4}.
Step (4-5): Since this is a M+1 system save {e3, e4} as an MSO.
Step (6) : Since i = 1 6= 4 = |M+2| goto step (2).

Iteration 2:
Step (2-3): M+1 = (M+2\{e2})+ = {e3, e4}.
Step (4-5): Since this is a M+1 system save {e3, e4} as an MSO.
Step (6) : Since i = 2 6= 4 = |M+2| goto step (2).

Iteration 3:
Step (2-3): M+1 = (M+2\{e3})+ = {e1, e2, e4}.
Step (4-5): Since this is a M+1 system save {e1, e2, e4} as an MSO.
Step (6) : Since i = 3 6= 4 = |M+2| goto step (2).

Iteration 4:
Step (2-3): M+1 = (M+2\{e4})+ = {e1, e2, e3}.
Step (4-5): Since this is a M+1 system save {e1, e2, e3} as an MSO.
Step 6 : Since i = 4 = |M+2| exit.

The output from this algorithm is all derived MSO sets, i.e. {e3, e4},
{e3, e4}, {e1, e2, e4} and {e1, e2, e3}. Note that the MSO set {e3, e4}
was obtained two times.

4.3.2 Improvements

The basic Algorithm 4.4 is not optimal since it for some systems may
do the same thing multiple times. However Algorithm 4.4 can be im-
proved and the performance increased for these types of systems.

Consider an overdetermined equation system M+n with k number of
equations i.e. |M+n| = k. The number of iterations executed by Algo-
rithm 4.4 can then be calculated as

(

k
n − 1

)

=
!k

(n − 1)!(k − (n − 1))!
(4.3)

Large systems, i.e. a high k, with high redundancy n will seemingly
result in a large number of iterations. However, by using information
about these systems, some improvements can be made to the algorithm
in order to elevate performance. Large systems often result in that the
same overdetermined subsystem is produced in different parts of the
algorithm. This can even be seen in the small Example 4.1 where the
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Figure 4.2: A part of an execution with Algorithm 4.4 represented as
a tree, where each node represents a set of equations M+n.

MSO {e3, e4} was derived two times. Figure 4.2 describes a run with
the algorithm presented as an execution tree, where each node repre-
sents a set of equations M+n. Assume now that the equation set b1 in
the left most path is the same as b2 in the right most path in Figure
4.2. Since these are the same it is obvious that they will result in the
same children in the execution tree, in this case c1, c2 and c3. Hence,
it is unnecessary to continue the execution in the right path after node
b2. This can be solved by keeping track of the equation sets produced
at each level in the tree and hence avoid any identical execution.

Another improvement uses the same principle as the new structural
simplification step described in section 4.2. In step (3) of Algorithm 4.4,
an equation ei is removed and a new overdetermined part is extracted
as

M+(n−1) = (M+n\ei)
+ (4.4)

Let E = M+(n−1)\M+n. According to Lemma 4.6 an equivalent E will
be derived as long as ei ∈ E in (4.4). Hence, it is unnecessary to select
more than one equation ei ∈ E, since this will produce the same re-
sult. By keeping track of equations that will produce equivalent results
in step (3) of Algorithm 4.4 the number of iterations will be reduced.
This simplification step uses the same theory as the structural simpli-
fication Algorithm 4.3. Hence, there is no need to do any structural
simplification before this new improved MSO algorithm is executed.
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Let Mso be a set containing structurally overdetermined equation sets,
the improved algorithm will then look as follows.

Algorithm 4.5.

Input: A structurally overdetermined set of equations M+n = {e1, .., en}..

1. Mso = ∅.

2. Let E = M+n.

3. Select an equation e ∈ E.

4. Let M+(n−1) = (M+n\e)+ .

5. Set E = E\(M+n\M+(n−1)).

6. If M+(n−1) already exists in Mso goto step (3) otherwise let
Mso = Mso ∪ {Mn−1}.

7. If n − 1 6= 1 call this algorithm with M+(n−1).

8. If n − 1 = 1 save M+(n−1) as an MSO.

9. If E 6= ∅ goto step (2) otherwise exit.

Output: All MSO sets in M+n.

In Example 4.2 a run with Algorithm 4.5 on the same model as in Ex-
ample 4.1 is shown.

Example 4.2

Consider the structurally overdetermined model in Example 4.1 again.

equation unknown
x1 x2

e1 x
e2 x x
e3 x
e4 x

Input to the algorithm: M+2 = {e1, e2, e3, e4}
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Iteration 1:
Step (1) : E = {e1, e2, e3, e4}.
Step (2) : Select an equation from E = {e1, e2, e3, e4}.
Step (3) : M+1 = (M+2\{e1})+ = {e3, e4}.
Step (4) : E = E\(M+2\{e3, e4}) = {e3, e4}.
Step (5) : Since M+1 has not been obtained earlier goto step (6).
Step (6-7): Since this is a M+1 system save {e3, e4} as an MSO.
Step (8) : Since E 6= ∅ goto step (2).

Iteration 2:
Step (2) : Select an equation from E = {e3, e4}.
Step (3) : M+1 = (M+2\{e3})+ = {e1, e2, e4}.
Step (4) : E = E\(M+2\{e1, e2, e4}) = {e4}.
Step (5) : Since M+1 has not been obtained earlier goto step (6).
Step (6-7): Since this is a M+1 system save {e1, e2, e4} as an MSO.
Step (8) : Since E 6= ∅ goto step (2).

Iteration 3:
Step (2) : Select an equation from E = {e4}.
Step (3): M+1 = (M+2\{e4})+ = {e1, e2, e3}.
Step (4) : E = E\(M+2\{e1, e2, e3}) = {}.
Step (5) : Since M+1 has not been obtained earlier goto step (6).
Step (6-7): Since this is a M+1 system save {e1, e2, e3} as an MSO.
Step (8) : Since E = ∅ exit.

The output from this algorithm is all derived MSO sets, i.e. {e3, e4},
{e1, e2, e4} and {e1, e2, e3}.

As seen in Example 4.2 Algorithm 4.5 manage to avoid the double
execution made by Algorithm 4.5 in Example 4.1. The number of
iterations is, in this example, reduced with 25%. In larger models the
improvements in Algorithm 4.5 shows to have an even bigger impact
on the number of iterations and hence reduces the execution times
dramatically (see Chapter 5).

4.4 Finding All MSO Sets in a Behavioral

Mode System

The insertion of behavioral modes into a model is not uncomplicated.
New problems arise such as increased execution time and the produc-
tion of invalid MSO sets. As explained in Section 3.3, behavioral modes
in this thesis appear in a system model as new equations, i.e. each be-
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Figure 4.3: Example of a behavioral mode component.

havioral mode correspond to one equation in the system model. For
example, the behavioral mode component shown in Figure 4.3 can be
translated into

NF : y = x1

B : y = x1 + 5
SC : y = 0

(4.5)

Equations connected to a specific behavioral mode component, like the
ones in (4.5), are supposed to be valid in separate fault modes. If for
example the component in Figure 4.3 is in a fault free environment
the first equation in (4.5) is valid, whereas if the component got a bias
fault of 5 the second equation is the correct one. This means that
there should not be possible to include two or more equations from the
same behavioral mode component in an MSO. In the present form the
MSO Algorithm 4.5 does not prevent this. Hence, it will produce some
invalid MOS sets if it is executed on a model, containing behavioral
modes equations like (4.5). This can easily be solved by simply re-
moving all invalid MSO sets after the algorithm has finished. However,
since new equations containing the same variables are included into the
model, when new behavior modes are added, this will make the model
more redundant. As explained in Section 4.3.2 the number of iterations
performed by Algorithm 4.5 is highly dependent on the redundancy of
the system. Introducing behavioral modes into the system will cause
the execution time to increase significantly. This problem is solved by
tagging the equations connected to a specific behavioral mode compo-
nent with the name of that behavioral mode component. Algorithm 4.5
can then be modified to disallow two equations with identical tags to
be included into the same MSO. Let equCi

(M+n) be the equations in
a structurally overdetermined set of equations M+n tagged with the
behavioral mode component Ci. Note that this is an extension of the
equX(M) notation motioned earlier. The modified version of Algo-
rithm 4.5 can then be written as follows.

Algorithm 4.6.

Input: A structural overdetermined set of equations M+n.

1. If there exists any i such that |equCi
(M+n)| > 1 select one such

Ci and let E = equCi
(M+n), else let E = M+n.
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2. Select an equation e ∈ E.

3. Let M+(n−1) = (M+n\{e})+ .

4. Set E = E\(M+n\M+(n−1)).

5. If M+(n−1) already exist in the MSO-structure goto step (2).

6. If n − 1 6= 1 call this algorithm with M+(n−1).

7. If n− 1 = 1 and there not exists any i such that |equCi
M+n| > 1

save M+(n−1) as an MSO.

8. If E 6= ∅ goto step (2).

Output: All MSO sets in M+n.

In Algorithm 4.6 step (1), (2) and (8) have been changed or added in
comparison to Algorithm 4.5. Step (1) and (2) checks if there are two
or more equations with identical behavioral mode component tags in
the model. If this is the case one of these equations is removed. Due to
the systematical reduction of the model this will lead to that every pos-
sible combination of behavioral mode equations will be included in the
MSOs as long as there never is more than one with a specific tag. Note
that Algorithm 4.6 is not general since it assumes that all behavioral
modes can be expressed with one equation. This may not necessarily
be the case when concerning models not generated thought the algo-
rithms described in this thesis. However, Algorithm 4.6 can easily be
extended to handle all model types. Algorithm 4.6 shows to be effective
even in highly redundant behavioral mode systems. Test runs of large
engine models containing behavioral modes, shows that Algorithm 4.6
finds all MSO sets more than ten times faster than Algorithm 4.5.

The algorithms presented in this chapter require some new properties
of structural models that has not previously been proved. In the fol-
lowing section some newly developed lemmas and proofs are presented
in order to analyze the correctness of the algorithms. This part of the
thesis is however quite theoretical and is possible to omit.

4.5 The Correctness of the Algorithms

In order to prove the correctness of Algorithm 4.1, in particular the
the simplification step described in Section 4.2 (see Lemma 4.6) and
the MSO algorithm presented in Section 4.3 (see Theorem 4.1), a few
supporting lemmas need to be defined.
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The following lemma provides a connection between the matching prop-
erty of bipartite graphs and structurally overdetermined models, see
Section 2.4.

Lemma 4.2. If an equation set M is structurally overdetermined then
there exists a complete matching Γcm of varXM into M in
G(M, varXM).

Proof. Consider a structurally overdetermined set of equations M and
assume that there is no complete matching of varXM into M in
G(M, varXM). Now for any maximal matching Γmm in G(M, varXM)
there must exist a free variable vertex v. Then for all e ∈ equM(v) a
path P (v, e) is an alternating path in G(M, varXM). Hence by Defin-
ition 2.7 it follows that e ∈ M−, i.e. M− 6= ∅. According to Definition
2.8 this contradicts the assumption that M is structurally overdeter-
mined.

In the next lemma an important consequence of structurally overdeter-
mined equation sets is given

Lemma 4.3. Let M be a set of equations. If M ′ ⊆ M is an SO model
then M ′ ⊆ M+.

Proof. Consider an arbitrary structurally overdetermined set of equa-
tions M ′ ⊆ M . From Lemma 4.2 it follows that there must exist a
complete matching Γcm of varXM ′ into M ′ in G(M ′, varXM ′). This
means that equ(Γcm) ⊆ M ′ and var(Γcm) ⊆ varXM ′. Set X ′ =
varXM\varXM ′ and let Γmm be a maximum matching in G(M\M ′, X ′).
Then it follows that equ(Γmm) ⊆ (M\M ′) and var(Γmm) ⊆ X ′. From
the definition of X ′ this gives that X ′ ∩ varXM ′ = ∅ which implies
that var(Γcm) ∩ var(Γmm) = ∅, i.e. the node sets of Γcm and Γmm

are disjunct. From this it follows that Γcm ∪ Γmm will be a match-
ing in G(M, varXM). Since varX′M ′ = ∅ and Γcm is maximal in
G(M ′, varXM ′) and Γmm is maximal in G(M\M ′, X ′), this implies
that Γcm ∪ Γmm will be a maximal matching in G(M, varXM).

Now take an arbitrary equation e ∈ M ′. From Definition 2.8 and given
that Γcm is a maximal matching in G(M ′, varXM ′), it follows that there
must exist an alternating path P in G(M ′, varXM ′) between e and a
free equation e′ ∈ M ′. From Definition 2.7 and given that Γcm ∪ Γmm

is a maximal matching in G(M, varXM), this also implies that P will
be an alternating path in G(M, varXM). Furthermore since e′ ∈ M ′

is a free equation in G(M ′, varXM ′) w.r.t. Γcm and given that the
node sets of Γcm and Γmm are disjunct, it follows that e′ is also a free
equation w.r.t. Γcm∪Γmm in G(M, varXM). From this, the properties
of P and Definition 2.7 it follows that e ∈ M+. Since e was arbitrary
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chosen this implies that every equation in M ′ is a part of M+ and
hence M ′ ⊆ M+.

One of the most important features in Algorithm 4.4 is included in step
(3), namely if one equation is removed from a structural overdetermined
set of equations, the degree of overdeterminedness will decrease with
exactly one. This is formalized by the following lemma

Lemma 4.4. If M is a structurally overdetermined set of equations
with the degree of overdeterminedness n and e ∈ M , then (M+n\{e})+
has degree of overdeterminedness n − 1.

Proof. Consider the structurally overdetermined set of equations M.
From Lemma 4.2 it follows that there exist a complete matching Γcm

of varXM into M in G(M, varXM). By Definition 2.3 it follows that
Γcm also is a maximal matching. According to theorem 5.1.7 in [1] a
new maximal matching is obtained with one sequence of transfers along
an alternating path if the path consists of an even number of edges.
Definition 2.7 gives that a free equation node is always reachable from
any equation in M via an alternating path in G(M, varXM). This
means that for any equation e ∈ M it is possible to find a path P in
G(M, varXM) where |equ(P )| = |var(P )| + 1. This gives that

|P | = |var(P )| + |equ(P )| − 1 = 2|var(P )| (4.6)

i.e. for all equations in a SO set of equations it is always possible to find
a path with an even number of edges. From (4.6) and theorem 5.1.7 in
[1] it now follows that if an equation e ∈ Γmm in a graph G(M, varXM)
where M is SO, then it is possible to construct a new maximal matching
Γ′

mm so that e /∈ Γ′

mm. This together with (4.6) gives that there exist a
complete matching of varXM into M\{e} where e ∈ M . By Definition
2.7 this yields that (M\{e})− = ∅ i.e.

M ′ = M ′+ ∪ M ′0 (4.7)

where M ′ = (M\{e}). Consider now that M+ is an M+n system and
M ′+ is an M ′+m system. By using Definition 2.8, Definition 2.10 and
(4.7) the degree of overdeterminedness for M ′+m can be calculated as

m = |M ′+| − |varXM ′| = |M | − |varXM | − |{e}| − |M ′0|+ |varXM ′0|
(4.8)

Definition 2.7 gives that |M ′0| = |varXM ′0| which yields that m =
n − 1 since |M | − |varXM | = n. From this it follows that M ′+m =
(M+n\{e})+ = M+(n−1).

In the next lemma and corollary some characterizations of the degree
of overdeterminedness in structural overdetermined sets of equations
will be presented.
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Lemma 4.5. Let M+m
0 and M+n

1 be two overdetermined set of equa-
tions where M+m

0 ⊆ M+n
1 then it follows that m ≤ n.

Proof. Consider the set of equations E = M+n
1 \M+m

0 . If E = ∅ then
M+n

1 = M+m
0 and hence n = m, otherwise let M2 = M+n

1 \{e} where e ∈
E. Since E and M+m

0 are two disjunctive sets and M+m
0 ⊆ M+n

1 it
follows that

M+m
0 ⊆ M2 (4.9)

Lemma 4.3 and (4.9) now gives that

M+m
0 ⊆ M+k

2 (4.10)

Using Lemma 4.4 on (4.10) it also follows that

M+k
2 = (M+n

1 \{e})+ (4.11)

where k = n − 1. Expression (4.10) and (4.11) implies that

M+m
0 ⊆ M

+(n−1)
2 (4.12)

Since E and M+m
0 are tow disjunctive sets it is possible to remove all

equations in E and from M+m
0 and still get (4.12). Hence, E 6= ∅ gives

that m < n. Since E = ∅ implies that m = n it follows that m ≤ n.

Corollary 4.1. Let M+m
0 and M+n

1 be two overdetermined set of equa-
tions where M+m

0 ⊆ M+n
1 and n = m then it follows that M+m

0 =
M+n

1 .

Proof. Let M+m
0 ⊆ M+n

1 where n = m and consider the set of equations
E = M+n

1 \M+m
0 . If not M+m

0 = M+n
1 then it follows that E 6=

∅. By using the same discussion as in the proof of Lemma 4.5 it is

then possible to show that M+m
0 ⊆ M

+(n−1)
1 and hence m < n. This

contradicts the assumption that m = n.

The simplification step presented in Section 4.2 as well as one of the
improvements to Algorithm 4.4 presented in Section 4.3.2 uses the as-
sumption that if a set of equations do not belong to the overdetermined
part in a model they can be merged. This property is concluded in the
following lemma

Lemma 4.6. Let M be a structurally overdetermined set of equations
then it follows that if

E = M\(M\{e})+ (4.13)

and
E′ = M\(M\{e′})+ (4.14)

then
E′ = E iff e′ ∈ E (4.15)
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Proof. Let M+n be an overdetermined set of equations. Consider a
equation e ∈ M+n and let e′ /∈ (M+n\{e})+. Then it follows that

(M+n\{e})+ ⊆ M+n\{e′} (4.16)

Lemma 4.3 and (4.16) implies that

(M+n\{e})+i ⊆ (M+n\{e′})+j (4.17)

where i = j = n − 1 according to Lemma 4.4. Since

(M+n\{e})+(n−1) ⊆ (M+n\{e′})+(n−1) (4.18)

Corollary 4.1 gives that

(M+n\{e})+(n−1) = (M+n\{e′})+(n−1) (4.19)

In Section 4.3 it is claimed that Algorithm 4.4 finds all overdetermined
sets M ′ ⊆ M by systematically reducing the equation set and extract-
ing overdetermined parts. In order to prove this let alg(M) denote the
set of all structurally overdetermined sets M ′ ⊆ M found by Algorithm
4.4 and let SO(M) denote the set of all structurally overdetermined sets
that actually are contained in M . Then the following theorem can be
written.

Theorem 4.1. Let M be a structurally overdetermined set of equations
then it follows that alg(M) = SO(M).

Proof. Assume that M+m
0 ∈ SO(M) is an arbitrary overdetermined sys-

tem where M = M+n so that

M+m
0 ⊆ M+n (4.20)

If M+m
0 = M+n the set is already found and there is nothing to prove,

so assume that M+m
0 ⊂ M+n. Lemma 4.5 then implies that m < n.

Using basic set operation it also follows that

M+m
0 ⊆ M+n\{e} (4.21)

if e /∈ M+m
0 . Lemma 4.3 and (4.21) gives that

M+m
0 ⊆ (M+n\{e})+ (4.22)

where e /∈ M+m
0 . By using Lemma 4.4, (4.22) this can be written as

M+m
0 ⊆ M+n−1 (4.23)

Since m < n Algorithm 4.4 give two different cases
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Case I: m = n − 1. From (4.23) it follows that M+m
0 =M+n−1 and

hence the set M+m
0 is found.

Case II: m < n − 1. Algorithm 4.4 sets M+n=M+n−1 and starts
over. According to Lemma 4.4 the overdeterminedness of M will
decrease with one step for each run by the algorithm and thus it
will eventually end in Case I.

Since M+m
0 was arbitrary chosen this gives all structural overdeter-

mined subsystem SO(M) ⊆ alg(M) is found by Algorithm 4.4. By
using canonical decomposition Algorithm 4.4 only returns structural
overdetermined sets, hence it follows from the definition of SO(M)
that alg(M) ⊆ SO(M). By using these results it follows that alg(M) =
SO(M).

Note that since MSO ⊆ SO(M), Theorem 4.1 also implies that Al-
gorithm 4.4 finds all MSO sets in a structurally overdetermined set of
equations M .



Chapter 5

An Engine Model

Example

In order to test the efficiency and, in some extent, to verify the algo-
rithms in Chapter 4 a number of execution tests were preformed. The
algorithms were tested on a variety of different engine models delivered
by Scania CV AB. In this chapter some of these tests are presented. In
Section 5.1 efficiency tests of different variants of the new algorithms
presented in this thesis in comparison to the old algorithm in [7], will
be presented. In [5] the MSO sets derived by Algorithm 4.1 has been
used to construct residuals. In Section 5.2 some of these residuals will
be analyzed as well as some of the MSO sets created by the algorithms
in this thesis.

5.1 Algorithm Efficiency

In order to verify the efficiency of the new algorithms presented in this
thesis, execution tests have been carried out. The algorithms were
tested on an engine model containing 281 differential-algebraic equa-
tions and with a degree of overdeterminedness of four. The different
algorithms tested are presented in Table 5.1. The analytical simplifica-
tion step mentioned in Table 5.1 is presented in Section 3.1.3 whereas
the structural simplification is presented in Section 4.2. In Figure 5.1
the execution times for the different versions of the MSO algorithms
are shown. Note that the execution of Algorithm a) in Table 5.1 was
aborted after 48 hours without any results. As shown in Figure 5.1
the simplification steps highly reduce the execution time. This shows
that the basic Algorithm 4.4 is extremely dependent on the model size,
completely in line with the results presented in equation (4.3).Note also
that the new improved Algorithm 4.5 without the structural simplifi-
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a) The old MSO algorithm presented in [7] with structural
simplification.

b) The old MSO algorithm presented in [7] with structural
and analytical simplification.

c) The basic MSO Algorithm 4.4 without structural and analytical
simplifications.

d) The improved MSO Algorithm 4.5 without structural and
analytical simplifications.

e) The basic MSO Algorithm 4.4 with structural but not analytical
simplifications.

f) The basic MSO Algorithm 4.4 with structural and analytical
simplifications.

g) The improved MSO Algorithm 4.5 with structural and
analytical simplifications.

Table 5.1: Different versions of the MSO algorithm.

cation step (c) has the same execution time as the basic Algorithm 4.4
including the structural simplification step. This is however quite ob-
vious since the improvement presented in Section 4.3.2 uses the same
property as the structural simplification. Hence Algorithm 4.5 has the
structural simplification directly included in the algorithm and there is
no need for any structural presimplification. As shown in Figure 5.1
the new algorithms presented in this thesis have dramatically shortened
the execution time for finding all MSO sets.

5.2 MSO Validation

As mentioned in Section 1.2 this thesis is part of a project which aims
to automatically produce a diagnostic system from an engine model.
The MSO sets derived with the help of the algorithms in this thesis
are used to construct residuals that can be executed in real time in the
engine (see [5]). The MSO sets as well as the residuals have undergone
a series of tests in order validate their correctness. In this section some
of those validations will be presented.

In Figure 5.2 a selection of MSO sets of equations derived from an
engine model with the algorithms presented in this thesis is shown.
The plot shows which equations and variables that are contained in
each MSO after an attempt to structural eliminate all unknown vari-
ables, e.g. the variable neng is contained in the first MSO equation
set since it is marked with a circle corresponding to neng in the figure.
Note that the number of equations for the different MSO sets are to
large to be fully displayed. By definition MSO sets are overdetermined
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Figure 5.2: An example of MSOs extracted from a engine model.

systems with one more equation the unknown variables. Hence, since it
is possible to structurally eliminate all unknown variables in an MSO,
the obtained MSO sets should not contain any unknown variables. If
this is the case the algorithm must be incorrect. The variables in Fig-
ure 5.2 is however known in the engine model, i.e. they are received
through sensors and actuators in the system, and hence these MSO
sets are valid. This has also shown to be the case for all MSO sets
produced, for the engine models, by the algorithms in this thesis.

As mentioned above, residuals has been created from the MSO equa-
tion sets produced by the algorithms in this thesis. These residuals
have been validated with simulation data in order to see if they behave
in the supposed way, i.e. if they really can be used to indicate faults
in an engine. This is however out of the scope of this thesis. How-
ever, in order to illustrate how this is done, one of these tests will be
used to exemplify the technique. In Figure 5.3 the residual of one of
these tests is shown. This particular residual is created from the first
MSO in Figure 5.2. Hence, since the MSO contains the variable neng,
the residual is supposed to be sensitive to faults concerning the signal
neng. The signal neng is a notation for an actuator providing the en-
gine with revolutions per minute (rpm) information. Figure 5.3 show
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Figure 5.3: An example of an residual derived form an MSO given by
Algorithm 4.5.

the residual reaction of two different types of gain faults affecting the
neng actuator after 1450 seconds of simulation. As seen the residual
clearly is sensitive to these faults. Hence, it is possible to construct a
diagnostic test for these gain faults with the help of this residual. For
more information regarding residual validations see [5].



Chapter 6

Conclusions and Future

Work

In this chapter the results and conclusions are presented in Section 6.1.
Then in Section 6.2 a possible extension to the work in this thesis is
proposed.

6.1 Conclusions

Today’s society depends on complex and technically advanced mechan-
ical systems. To design diagnostic systems for these systems are a time
demanding and complex task. Hence, it is preferable, if as much of
the construction process as possible can be automated. This thesis has
presented a number of algorithms and methods in order to make this
possible.

Since the models considered in this thesis were implemented in Simulink,
there was a need to develop an algorithm that could transform these
models into analytical equations. By treating Simulink blocks as equa-
tions and lines as variables, a transformation into analytical equations
was possible, see Section 3.1.2. Section 3.3 introduced a way in which
fault models can be included graphically directly into a Simulink model,
in order to increase the diagnostic performance of the resulting diag-
nostic system. The main objective in this thesis was to find the parts
of a model that can be used to construct diagnostic tests. It proved
to be an almost impossible task to perform this analytically, on the
models considered in this thesis. Hence, the analytical models were
transferred into a less complex mathematical format called structural
models. Structural models allow a complex analytical model to be
presented as a simple matrix, which decreases the execution times on
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certain calculations significantly. By using graph theory, it has been
shown that the task of finding all parts of a model that can be used in
the construction of a diagnostic system can be reduced to finding all
minimal structurally overdetermined (MSO) sets in these models. An
algorithm for finding all MSO sets in a structural model has been devel-
oped prior to this thesis. However, in test runs this algorithm showed
to be extremely computationally ineffective and even unable to pro-
duce results for the models considered in this work. In Chapter 4 new
algorithms for finding these MSO sets are presented. Especially the
structural simplification Algorithm 4.3 and the improved MSO finding
Algorithm 4.5, proved to be important in order to perform the extrac-
tion of the MSO sets efficiently. Test runs verified the efficiency of these
algorithms. It took less than a minute to extract all MSO sets from
the models considered in this thesis. In Section 4.5 the correctness of
the new MSO algorithms were proved mathematically. The concept of
overdeterminedness introduced in Chapter 2 proved to be essential for
developing theory concerning the correctness of the algorithms.

All algorithms in this thesis have during this work been implemented
and tested on various truck engine models provided by Scania CV AB.
The conclusion drawn from these tests is that finding all parts of a
model that can be used to construct diagnostic test, can be preformed
in an efficient and automated way. In Chapter 5 it was shown that
these MSO sets could be used to form residuals. Hence, this thesis has
constructed a foundation toward a completely automated construction
process of model based diagnostic systems. In theory this means that
a diagnostic system can be constructed from, for example an engine
model, completely automatic and in a fraction of the time it would
take to do it manually.

6.2 Future Work

The structural algorithms in this thesis only treat DLSMs (see Section
2.4.1), i.e. structural models where a variable and its derivatives are
treated as the same signal. However, in some cases simpler residuals
can be obtained form MSO sets of DSSMs, as the next example will
show. Consider the following model

e1 : y = ẋ1

e2 : ẋ1 = x1

e3 : x1 = u
(6.1)

where y and u can be considered to be known. By using a DLSM this
model can be transformed into the following structure
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equation unknown known
x1 u y

e1 x x
e2 x
e3 x x

where three MSO sets can be obtained as {e1, e2}, {e1, e3}, {e2, e3}. By
using these MSO sets three residuals can be constructed as r1 = y − ẏ,
r2 = u̇ − y and r3 = u − u̇. However, by using a DSSM instead, (6.1)
can be transformed into the following structure

equation unknown known
ẋ1 x1 u y

e1 x x
e2 x x
e3 x x

with only one MSO {e1, e2, e3}. By using this MSO it is now possible
to create a residual like r4 = y − u, and hence completely avoid any
derivatives. For some model types, using DSSMs instead of DLSMs is
therefor an advantage. This causes, on the other hand, another prob-
lem. By using the three residuals derived from the DLSM above it is
possible to separate faults in the signals y and u from each other. This
is not the case for the residual r4, which is sensitive to both faults. A
solution to this problem is to include derivatives of certain equations
into the structural model. However, when doing this new problems
arise. Firstly the structural model will become significantly larger and
secondly, it may be uncertain how many derivatives that must be ex-
tracted from a specific equation.

Seemingly, there are pros and cons with both structural model types
and today it is therefore impossible to say that one structure is better
then the other. In order to investigate this further, algorithms for han-
dling DSSMs could be seen as an extension to the work presented in
this thesis.
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se förlagets hemsida: http://www.ep.liu.se/

English

The publishers will keep this document online on the Internet - or its
possible replacement - for a considerable time from the date of publi-
cation barring exceptional circumstances.
The online availability of the document implies a permanent permis-
sion for anyone to read, to download, to print out single copies for your
own use and to use it unchanged for any non-commercial research and
educational purpose. Subsequent transfers of copyright cannot revoke
this permission. All other uses of the document are conditional on the
consent of the copyright owner. The publisher has taken technical and
administrative measures to assure authenticity, security and accessibil-
ity.
According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be
protected against infringement.
For additional information about the Linköping University Electronic
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