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Abstract

New and exciting possibilities in vehicle control are rdeeey the consider-
ation of topography through the combination GPS and thneedsional road
maps. This thesis explores how information about futurel dapes can be
utilized in a heavy truck with the aim at reducing the fuel somption over
a route without increasing the total travel time.

A model predictive control (MPC) scheme is used to contrel ltngi-
tudinal behavior of the vehicle, which entails determinancrelerator and
brake levels and also which gear to engage. The optimizat@ccomplished
through discrete dynamic programming. A cost function isdu® define the
optimization criterion. Through the function parametéistiser is enabled to
decide how fuel use, negative deviations from the refergatmity, velocity
changes, gear shifts and brake use are weighed.

Computer simulations with a load of 40 metric tons shows thatfuel
consumption can be reduced with 2.5% with a negligible ckangtravel
time, going from Linkping to dnkdping and back. The road slopes are
calculated by differentiation of authentic altitude measoents along this
route. The complexity of the algorithm when achieving thessilts allows
the simulations to run two to four times faster than real tonea standard
PC, depending on the desired update frequency of the caidpuhls.

Keywords: topography,MPC,dynamic programming
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This thesis completes my studies for a Master of ScienceedegrApplied
Physics and Electrical Engineering. The thesis work has bednteresting
and rewarding effort that | have enjoyed much.

The use of modern technology, control theory and mathesadienable
more efficient utilization of energy resources is a worthgt #illing motive.
My thesis explores a possibility of using GPS, three dimamali road maps
and on line computers with the aim at reducing the fuel comion in a
heavy truck without increasing the total travel time.

Outline

The purpose and method of the thesis are presented in tbeutory chap-
ter. In the following chapter a vehicle model is derived tisaised for evalu-
ating control strategies but is also the basis for the mosietiun the control
algorithm. The obtained model can be characterized as achgystem.

The third chapter contains a review of optimal control mdthfwr hybrid
systems. The review leads to conclusions about how to apipribee prob-
lem at hand. Chapter four shortly presents the mathemdtioadation of
dynamic programming.

The control algorithm is introduced in chapter five. A modeddictive
control (MPC) scheme is used where the optimization is edrout through
discrete dynamic programming. In chapter six simulatiGults are reported.
Results from both artificial and authentic road maps areudised and illus-
trated. Artificial road sections are used to illustrate fjpbehavior of the
controller whereas authentic sections primarily are usezhbw the magni-
tude of effects on fuel consumption and travel time.

In the seventh chapter conclusions are drawn from the asthisssults.
The final chapter indicates future work and extensions tathbsis.
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Chapter 1

Introduction

Use of GPS in a vehicle combined with three dimensional roagsrcan
give information about the road ahead. These data presenpossibilities
in vehicle control. For example, with information on futuad slopes, the
future longitudinal load can be predicted. The predictioas then be used
in a control system that optimizes the control signals withdim at reducing
the fuel consumption. This thesis explores this concept.

A typical scenario is where the vehicle is kept at a constaférence
velocity by a cruise controller. If the velocity is allowed vary along the
road, potential for saving fuel is revealed. The velocityldofor example
be lowered when there is a downhill slope ahead in which thnécie will
accelerate to a velocity above the set point. This would &#sleand possibly
also brake use. If the road slope is sufficient, using therakgar will allow
the vehicle to accelerate faster and by that increase tha nedacity over a
route. If a considerable uphill is ahead, it may be advamag¢o accelerate
before the hill is reached. This increases the mean velaaity may also
reduce the time needed running on a lower gear. All in alkgli®a potential
of saving fuel and at the same time not affect the travel timthe same
amount.

1.1 Purpose

The goal of this thesis is to assess possible fuel savinds stiiategies for
adaptive cruise control that make use of topographic in&tion. Vehicle
models are obtained and used in deriving control strategjieisto evaluate
their impact on vehicle dynamics and fuel consumption. Awation envi-
ronment is built to facilitate the assessment of contraiteties.



2 Introduction

1.2 Method

A longitudinal vehicle model is first derived. This has twdde of appli-
cation. First, to be able to evaluate vehicle dynamics artidansumption,
the model is implemented in MatLab/Simulink. Control alans are im-
plemented in C++ or MatLab m-scripts and run as so callechstions in
Simulink. Second, the model with simplifications is usedlgoathms when
predicting the vehicle dynamics and the fuel consumptian would be the
effect of a specific set of control signals.

A survey of relevant literature is made. Optimal control loé tlass of
systems that the vehicle model belongs to are reviewed iardaldecide
how to approach the problem. A control algorithm is then tmyed and
evaluated.

Evaluation of control algorithms is made with both artifi@ad authentic
road maps. Short artificial and selected parts of autheofids are used to
study the controller behavior in detail. Longer authentiads are used to
assess the magnitude of effects on the fuel consumption.

The road slopex is defined as

VR
AL py—pr’

«

see figure 1.1. Note that positive road slope; 0, means an uphilh, > hq,
and conversely.

Ah

Altitude [m]

h AL

Py Py
Position [m]

Figure 1.1: Artificial road section with one hill.

By varying the slope and length of the hill in figure 1.1, a sesimple
sections is created.

In order to receive a closer to reality road section than ttevith con-
stant slope, the slope is let to vary linear with positionisTdreates a depres-
sion if the slope increases from a negative value. A crestdsived if the
slope decreases from a positive value. An example of a dapres shown
in figure/ 1.2. The lengtlL is 500m and the slope increases from -2% to 2%.
The lengthL and the start and end points of the slope are varied to create
different sections.
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Figure 1.2: Artificial road section with one depression.

In order to receive a good assessment of the fuel consumptibra con-
trol strategy, a longer road section than the ones mentiahede is needed.
This section should also in its configuration be close to @ mhere the ve-
hicle typically travels. In this thesis, measurements @nrtiad between the
Swedish cities of Linkping and dnkoping have been used for this purpose.
In figure 1.3 the altitudes above sea level along this roadzoan.

300~

250

Altitude [m]
= [N)
(4] o
o o

[
o
o

o
o

0 1 1 1 1 1 1
0 20 40 60, .. 80 100 120
Linképing Position [km] Jonkoping

Figure 1.3: The road between Lidging and dnkdping



Chapter 2

Modeling

A model for the longitudinal dynamics of the vehicle is ob&d. The torque
generation in the engine is modeled with a set of simple fanst Drive-
line models are derived with elementary mechanics. Fyrthedongitudinal
forces acting on the vehicle are modeled. These steps tiasaltcomplete
basic driveline model.

Driveline modeling is well covered in Nielsen and Kienck®@®) and
Nielsen and Eriksso (2003) and are the foundation of traptr.

2.1 Engine

The process in an internal combustion engine produces pamgeemissions
from fuel and air. In the application at hand, only the getestgpower and
consumed fuel are of interest. With this aim, a rectangulgiree map with
torque and fueling bounds is used to model the process. Tapsisimade
up of steady state measurements. This means among othgs thiat the
internal friction from the engine is included in the map. Iguiie/ 2.1 the

20001

1500 -

Engine torque [Nm]
5
o
o

o
=}
=)

=)

-500

500 1000 2000 2500

1500
Engine speed [rpm]

Figure 2.1: An engine map
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used engine map and bounds are shown. Each dot represesteady state
measurement with constant engine sp@édnd constant engine fueling
The map can be expressedlas,, (N, §). CurveAis the upper torque bound
Timaz(N). CurveB shows idle operation. Finally, cunv@ is valid during
engine overrun, which is when the engine is pulled by theclehiThis torque

is denoted ad7y,q4(/N), the drag torque. An upper limit that restricts the
possible fueling is finally introduced and denotag,,. (N).

For control purposes a pedBland a gear signak are introduced. The
pedal signal is seen as normalized fueling and is thereésteicted to values
between zero and one. The gear signal is a number in the setitdlde
gearsH that maps to gear parameters which are introduced laterciioee
[2.2. For now it is sufficient to notice that neutral gear isrgeamber zero.

With use of the presented control signals the fueling fuomcéi is con-
structed as
Popax(N) G#0

Oidle G=0 (1)

0(N,P,G) = {
whered, g is the idle fueling. It is assumed that the fueling becomesdte
fueling immediately when the gear signal becomes zero. Tigine torque
T, can now be expressed as

T(N,P) P>0,G#0
T.(N,P,G) ={ Turag(N) P<0,G#0 (2.2)
0 G=0

whereTm(N, P) = min {Tmap (Na Popmax (N)) s Trmaa (N)}

The process is now described by a set of functions. The fivie harsc-
tions are
Tnap(N,0) Rectangular engine map
Trnaz(N) Upper torque bound
Tarag(N) Drag torque
Omaz(N) Upper fueling bound

and by introducing the control signals

P €[0,1] Pedal signal, normalized fueling
GeH Gear number

the following functions are defined

d(N,P,G)  Fueling function
T.(N,P,G) Engine torque

The operating range of the engine in terms of the spééiset toV € [600, 2500]
rpm. These functions are defined on this range.
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2.1.1 Approximations

The set of functions above originates from measurementsaentherefore
sets of discrete values. To deal with the system analyidals useful to
describe the functions as continuous rather than discréis.is achieved by
fitting the data to polynomial functions of varying degre@be coefficients
are calculated with the least square method. The calculatkebs of the
coefficients are to be found in appendix A.

The engine map is fairly linear i&v and . Therefore, the following
approximation is chosen

T"LGP(N7 6) = aeN + be5 + Ce (23)

This approximation provides a good agreement with the nreasent data.
A model for the drag torqu&, ., (N) = Trnap (N, 0) is obtained using only
measurements when the fuelifigs zero. As seen in figufe 2.1 (cur®, a
linear model seems sufficient. Accordingly, set

Tirag = agN + by (2.4)

The upper torque and fueling bounds appear to be well appiadrid by

Trmae(N) = apN?+brN +cp (2.5)
gmaw(N) = CI,5N2 + b5N + ¢s (26)

as can be seen in figure 2.2. To further simplify the expresiio engine

."‘ B = Approximation = Approximation

200

1500

150

[Nm]

1000

T
max
max [mg/stroke]
o
1)
3

3

500

0 0
600 1000 1500 2000 2500 600 1000 1500 2000 2500
N [rpm] N [rpm]

Figure 2.2: Upper torque and fueling bounds.

torgue in equation (2.2), the upper torque bound can be cteglelt is thus
assumed that
Tm“P(N’ 6ma$ (N)) = Tma:c (N) (27)

holds for all V. The agreement of this equality is shown in figure 2.3.
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Figure 2.3: Left: The left and right hand side bf (2.7). Rigfhe error of
this assumption.

By using equations$ (2/1) and (2.3) to (2.7), (2.2) can nowdpe@imated
as

A aeN + bePépap(N)+cc P>0,G#0
T.(N,P,G) = agN + by P<0,G#0 (2.8)
0 G=0

2.2 Driveline

A vehicular driveline with torque and angle labels is showfigure 2.4. The
driveline is assumed stiff. The transmission is modeledverg simple way
with a gear ratio and efficiency.

Engine The set of functions in the previous section modeélsthe produced
torque in the combustion and the internal friction from thgiae. The
external load arise from the clutch,. Newton’s second law of motion
gives
The mass moment of inertia of the enginejisand the angle of the
flywheel isd,.

Clutch The clutch is assumed stiff, which yields

. = T,

Transmission Transmission inertia is disregarded. A gear nuntbenaps to
two parameters, the conversion rati@nd an efficiency), that models
energy losses. This gives

Ttitnt = Tp
D (o
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T,
) .9 : g
Engine Clutch [ [ Tras?::'s
T. TN 7,
4 9 4
l:@ Propeller [/ ’ [ Final :@ 4
shaft N drive
Tp Tf Td
9
4 Drive / ‘gd 19W
[ | Wheel
shaft N

T

T

fric,w

Figure 2.4: A vehicular driveline. Figure adapted from Neei and Eriksson
2003, p. 110)

wherei; is the current gear’s conversion ratio.
Propeller shaft The propeller shaft is presumed stiff, which gives
T, = Ty
Y = U,

Final drive In like manner as for the transmission, inertia is neglected
losses are modeled by an efficiengy: This brings forth

Tyigny = Ta
Up = gy
wherei s is the conversion ratio in the final drive.

Drive shafts The drive shafts is assumed stiff and therefore

Wheel Neglecting the wheel frictiofft,.,.,, then

Jobw = Tu—kyB —ryFy
9y = Uy

where J,, is the wheel inertia and,, is the wheel radius.F,, is the
resulting friction force at the wheel. The brake torque my mod-
eled ask, B whereB, B € [0, 1] is the brake control signal arid is a
constant parameter.
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2.3 Longitudinal forces

The vehicle is affected by the following longitudinal fosce

Aerodynamic drag F, is estimated by
1
F, = §CwAapa'U2

wherec,, is the air drag coefficient4,, is the maximum cross section
area of the vehiclep,, is the air density ana is the velocity of the
truck.

Rolling resistance F;. is modeled as being proportional, with the rolling re-
sistant coefficient,., to the normal force of the vehicle on the titEs.
This gives
Fr = CTFN

whereFy = mgcos

The road slope is: andm is the mass of the truck.
Gravitational force F, is simply
Fy =mgsina
whereq is the road slope anah is the mass of the truck.
Newton'’s second law now yields
mo = F, — F, — F, — F,

whereF, is the resulting friction force at the wheel.

2.4 Complete driveline model

Assume that the current geéft is another than neutral gear. The vehicle
velocity v is then

. Tw -
v = 'lgwrw = = 196
1lf

wherer,, is the wheel radius. With this identity, the equations i tthapter
can be combined to yield

Tw

1']_

= — wunei T (v, P,G
Juw +mrd 4 npigng Je (nt sty )

1
—kyB — Echaparwv2 — mgry (¢ cos @ + sin @) >

whereT is the engine torque.
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When neutral gear is used, no torque is fed to the transmissidrcom-
bining the equations yields

Tw

1}: —
Jw +mr2,

1
(—ka - §chaparwv2 — mgry, (¢ cosa + sin a))
A comparison between the two equations above reveals thétahgear is
equivalent to a conversion ratip which is zero. Neutral gear will therefore
be assigned a ratio of zero.
The relationship between the engine speed and vehicleitelsdefined

as )
. 30 itif
N — @ﬁe — T Tw v G 7& 0
T Nidie G=0

(2.9)

where N4 is the idle engine speed. It is assumed that the engine speed
becomes the idle speed immediately when the gear signairieecpero.
A complete driveline model can now be stated as

 Jw A+ mrd - npignei Je

0 <7)timfifT(v, P,G)

1
—kyB — §chaparwv2 — mgry (¢ cos @ + sin @) )
whereT (v, P,G) = T, (N, P,G) with the engine speel according to[(2.9).
The engine torqué’, is described by equatioh (2.2) or the approximation in
(2.8). The control signals are shown in tdble/2.1. A gear rem@bmaps to a

Variable | Description
P €]0,1] | Pedal signal, normalized fueling.
B € [0,1] | Brake signal.
G € H | Gear signalH is the set of available gears.

Table 2.1: Control signals in the driveline model.

conversion ratia; and an efficiency),. Gear number zero represents neutral
gear and has a ratio of zero.

2.5 Cruise control

The cruise controller is made up of two PI controllers. Onetfe pedal
signal P and one for the brake sign&l. The benefit of this is that it's possible
to have different set points. Since the speed is allowedd®ase above the
referencey,..y, it's not desirable to brake until the maximum allowed vétipc
Umaz 1S reached. With the actual speed labelgd the pedal signal can be
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stated as
0 fe(t) <0
P(t)y={ fp(t) 0< fp(t) <1 (2.10)
1 fe(t) >1
t
WherefP(t) - KP (Urej Uact + IP Urej 'Uact dt
0
and the brake3 signal as
0 fe(t) <0
B(t)=1{ fs(t) 0< fs(t) <1 (2.12)
1 fa(t) =1

t
WherefB (t) - KB (vm,ax - Uact) + IB/ ('Umar - Uact) dt
0

When implementing the cruise controller, care should bertégrevent
integrator wind-up. Wind-up is always an issue when dealiitly controllers
including integrator states, but with the configurationwbtPl controllers
it is easy to realize that it becomes even more important. oig las the
accelerator controller is active, the integrator statdeflirake controller will
decrease and vice versa. The integrator states are thessfturated.

Gear selection is simply made based upon the current engéeesls For
each gear, two engine speed values are stored. The lowerigahe thresh-
old where the next lower gear is chosen. When the upper engeezls/alue
is reached, the next higher gear will be used. In figure 2 Beéghgine speed
is plotted against the vehicle velocity for the six highesaig. The engine’s
operating range is between 600 and 2500 rpm. The first geféinghpoints
are marked in the figure by arrows.

MAX

2500

N
o
o
o

1500 -

Engine speed [rpm]

1000 [

MIN
500 i i i i i i
40 50 60 70 80 90 100
Velocity [km/h]

Figure 2.5: Gear selection
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2.6 Fuel consumption

The mass flow of fueli ¢ [g/s] is determined by the fueling[mg/stroke] in
equation(2.1) and the engine spe€drpm]. The mass flow in [g/s] is then

Thf(N,(S) = CfN(S (2.12)
- 1 Neyl
T 510%

wheren,,; is the number of cylinders and, is the number of crankshaft
revolutions per stroke. With (2.13) and the fueling acoogdio equation
(2.1) the fuel consumption model is

m(N,P,G) = /mf(N,P,G) dt

¢/ NPSpas(N) G#0
cfNigiedigte G =0

where N, 4. is the idle engine speed awdg;. is the idle fueling. With[(2.9)
the consumption model is made dependent on the velocibstead of the
engine speed.

rs (N, P,G) = { (2.13)

2.7 Model implementation

The model equations are implemented in MatLab/Simulinke Tbmplete
driveline model in[(2.10) is used together with the engineort&2). Fur-
ther, the approximations of the upper torque bound (2.8Jirfg bound|(2.6)
and the drag torque (2.4) are used. The vehicle is contrbiethe cruise
controller in [(2.10) and (2.11). Gear selection is made asrilged above
in section 2.5. The fuel consumption is modeled accordinfPib3). See
appendix A for details.



Chapter 3

Control of a hybrid system

This thesis explores the explicit use of topographic infation in a controller.
A prerequisite is that the choice of route is known. This infation must be
given by the driver or be guessed by the system. A route i®septed by a
finite set of information. The problem at hand is thus a cdmgroblem over
a finite horizon.

It is assumed that the vehicle model is deterministic andrtfiemation
about the route is exactly known. With sensor errors, ingztrfopographic
information, model errors and other disturbances uncesgtas however in-
troduced. In this thesis the disturbances is assumed toyexamately zero
in order to simplify matters. Robustness is neverthelessnpbrtance and
should be investigated when a controller is designed. Onetwaandle a
situation where the calculated control signals not arebiétfor direct use, is
to let the optimal controller only generate reference ti@jges. An external
controller that are more robust against disturbances is tised to carry out
tracking of these trajectories.

In this chapter, methods for optimal control of hybrid sysseare re-
viewed. Modeling of hybrid system is first shortly discusséthe core is
a survey of different control approaches. Finally, conicins are made that
lead to the choice of course taken in this thesis.

3.1 Modeling

The vehicle model in chapter 2 is a hybrid system, which méfaasit is a
dynamic system with both continuous and discrete parts. pos#ion and
velocity make up two continuous states. Accelerator an#teébtavels are
continuous input signals. The gear signal is discrete.heuiit the evolution
of the velocity state non-linear.

The approach taken when formulating a mathematical modelhyforid
system should, as in all modeling, depend strongly on theqae of the

13



14 Chapter 3. Control of a hybrid system

model. Hybrid automata have been the common approach inoting@uter

science community to model a hybrid system. By letting cardgus dynam-
ics evolve within each of the states, the automata modelteneed to deal
with hybrid systems. In automatic control, a more algebegiproach has
commonly been used. The discrete parts are described Hyralgequations
and constraints. (Camacho and Bordons, 2004; Hedlund,)2003

3.2 Optimal control

A general way of tackling a control problem is to seek the mraw that
is optimal according to some stated criteria. It is howeviegrodifficult to
quantify the value of controller performance. Optimal ¢ohis a method to
achieve an optimal controller in a systematic way. The éegiroperties are
mathematically stated in a cost function. It can depend ersthte variables
and the control signals in the system. The control law thaimmzes the cost
function subject to system constraints is the optimal ailer. The resulting
mathematical problem can however be hard to solve. It issthez com-
mon with various approximations, for example simplificataf the original
problem formulation.

3.2.1 Variational methods

For continuous system the maximum princiﬂ)le (Ljung and Gmm)ja) state
necessary optimality conditions. In Piccoli (1999); Suasm (1999) the
maximum principle is extended to hybrid systems where therdte switch-
ing is autonomous. The maximum principle is however limii@te used on
the continuous evolution of the system during time inteswvethen no discrete
switching occur.

3.2.2 Dynamic programming

The basis for dynamic programming (DP) is the principle diraglity. For
a discrete dynamic system, the DP algorithm, stated in@eét2, finds the
optimal control policy. For a deterministic finite-stat@plem, the DP prob-
lem is equivalent with a shortest path problem in a directegly. (Bellman,
1957; Bertsekas, 1995)

The continuous counterpart of the DP algorithm is the Hamillacobi-
Bellman (HJB) equation. This is a partial differential egol that state
constraints on the optimal value function and the corredjpgncontrol sig-
nal. The equation can be used to give sufficient conditiomsofdimal-
ity (Bertsekas, 1995; L'|un$ and Glad, 2003). In Bensoussar\enaldi
1997); Branicky and Mitter (1995) the HJB equation for hHglsystems is

formulated.
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With DP, analytical solutions can be obtained but it oftequiges rather
simple models. In many realistic problems the viable apgtaa a numeric
solution. Unfortunately, the number of calculations nectly a complete
solution is often far too great for a usable algorithm. Belintalled thighe
curse of dimensionalityThe curse lies in that, with a forthright approach, the
required amount of computations grows exponentially withdimensions of
the state, control and disturbance spaces. In order to emdtha tractable
algorithm, a suboptimal method is thus generally neces&are should then
be taken to find an acceptable balance between algorithm legitypand
performance. In contrast, the power of DP is its wide scopapplicability
in that it manages complex constraint sets such as integdisorete sets.

dBertsekg , 1995)

3.2.3 Model Predictive Control

Model predictive control (MPC) make use of a model of the pescto predict
future outputs as a function of possible control signalse ddntrol signal that
is optimal according to a criterion is then chosen. Formétly methodology
used by a MPC controller is as follows:

1. The process model is used at each instdatpredict future outputg
for a determined prediction horiza/. The outputgy(t + k|t), k =
1... M depends on future control signalét + k|t), k = 1... N for
a determined control horizoN and the measurable disturbances that
are know at time.

2. Formulate a criterion based on predictions, control agand mea-
surements. Optimize with respect to the control signals.

3. Send the optimal control signa(t|¢) to the process and disregard from
the rest of the calculated control signals.

4. Atthe next sample hit, repeat from step 1.

All but the first calculated control signal is rejected besmat the next sample
hit, step one is repeated an¢t + 1|t + 1) will then in general be different
from (¢ + 1[t) owing to the fact that new information will be available.
(Camacho and Bordons, 2004; Ljung and Glad, 2003)

The fundamental parts of MPC are the process model and thmipjpig
algorithm. The model must be accurate enough for the pied&gand at the
same time simple enough for a simple and fast implementafidgre crite-
rion, or cost function, together with the chosen model issiee for which
algorithm to use.

In Bemporad and Morari (1999) the algebraic modeling apgtaaen-
tioned above in section 3.1 is used when proposing a MPC sef@mmixed
logical dynamical (MLD) systems. A MLD system is describgdibear dy-
namic equations and linear inequalities containing redliateger variables.
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A linear hybrid system is one example of a MLD system. With adratic
cost function the optimization is carried out through mixetgger quadratic
programming (MIQP).

Another method of modeling a hybrid system is by piecewifiea@bys-
tems (PWA) \(Camacho and Bordons, 2\004). The state and ¢t@pace is
partitioned and in each subset the system is described me dffinctions,
that is the sum of a linear function and a constant. Integeabies are then
used to switch among the models. In Heemels et al. (2001)dhizalence
of different hybrid dynamical models is shown. Among the esdire MLD
and PWA systems. It is thus possible to transfer tools forabass of systems
to another.

The system at hand is a non-linear hybrid system. It is pessdmodel
the hybrid nature and to approximate the non-linearitiéstrary well with
a PWA description. As mentioned above a PWA system is e@rivdb a
MLD, and MIQP can be used for optimization. A PWA descriptiminthe
vehicle system should contain a number of regions corretipgro velocity
intervals for each one of the gears. With 3 speed interval§ fpears, there
are 18 regions. A sampling interval in the region of secomakaprediction
horizon of probably more than ten steps are needed. SolMitig@ problem
with horizon N with a PWA model withS regions using MIQP renders a
maximum number of QP problems 6f", which is the same as the number
of combinations for the integer variables used to switch efmdh the PWA
description (Camacho and Bordons, 2004). In this exambé,would give
1810 ~ 3.6 - 10'2 QP problems which is too many for a real time controller.
It is thus necessary to reduce the number of combinatiorfseahteger vari-
ables. In PBa et al.m@ the reachable regions in the next few sarimpst
from the current regions are determined. This makes a rieaiuict the num-
ber of QP problems to solve.

The MPC scheme does not specify the optimization algorithase. For
a non-linear hybrid system, the optimization can be chareetd as dynamic
mixed-integer optimization (MIDO). The most frequent appeel approach
to solutions of MIDO problems are based on decompositionciles. One
method is to convert the MIDO problem into a mixed-integeniaear pro-
gram (MINLP). The MINLP can then be solved by means of a stethdko-
rithm, such as branch and bound, outer-approximation dinguplane meth-
ods. (Bansal et al., 2003; Biegler and Grossmann, 2@04a,b)

3.3 Conclusions

When formulating the vehicle model in chagter 2 the algebraideling ap-
proach is chosen.

Solving an optimal control problem for a hybrid system is enfmlable
task. All DP algorithms suffer from the curse of dimensidtyalvhich means
that the complexity grows exponentially with the problermdnsions. The
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approach with a PWA description and a MIQP solver is inténgdbut it is

feared that the complexity, which is roughly estimated &avould be too
great for the current application. MIQP is an extension oNMP methods
(Biegler and Grossmann, 20®4b) and therefore general MINEEhods are
also suspected to lead to algorithms that are too complex.

It is not anticipated that a control law can be computed at @ztant, for
the entire information horizon that is present. This leadsdlving smaller
problems repeatedly and the MPC scheme is thus chosen.

All mentioned algorithms are suspected to render into greatplexity.
Therefore it is expected that whatever the method, the gbatés searched
for an optimal solution needs to be reduced. DP handles reontst on the
state and control spaces easily. In the beginning of thiptehat was stated
that all but the disturbances that are measurable are nedle€ the system
is discretized, the assumption about the disturbancessigfessible to for-
mulate the DP problem as a shortest path problem. Restrictin the search
space are then imposed with easiness.

The approach taken in this thesis is a MPC scheme with des@Btas
optimizer.




Chapter 4

Dynamic Programming

The mathematical foundation of dynamic programming (DFhiartly pre-
sented in this chapter. The ideas that lie behind DP are oloweder, it
was Bellman with his works, published in 1957 and 1962, theted to uni-
form the theory and showed the wide scope of applicabilitypBf Besides

the books by Bellman, more recent publicatidns (Bertsékﬁ9$; Denardo,
1982) have formed the basis for this chapter.
4.1 System
A discrete dynamic system is described as
‘rk+1:fk(xkaukawk)7 k:O7177N_1 (41)

T, € S, isthe state
ur € U, is the control
wy € Dy, is the random disturbance

The statery, is said to belong to stage
A policy
™= {M()nuh s a/j/Nfl}

is considered to be a sequence of functions that transf@tesst, into con-
trolsuy, that is

ug = px ()
The sefll contains policies for which

pr(xg) € Up Vg, k

holds. A policyr € 11 is called an admissible policy.
Weighting functions(, (x where

Ck(xk,uk,wk), k=0,1,...,N—1 and(N(xN)

18
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are used to define the cost of a policy.
With an initial stater, together with an admissible poliey < 11, the cost
is
N—-1

Tr(w0) = (@) + D Gk (@, (), ) (4.2)

k=0

This quantity is to be minimized. The policy that achieves th called
an optimal policyr*. With an initial stater, this means that

I (z0) = grnelqul Jr(20)
and the optimal cost is

J*(wo) = min Jx (o)

4.2 Algorithm

The foundation for dynamic programming is a simple prineighd it is stated
below.

Principle of Optimality

Let m* = {u§, pi, ..., wi_, } be an optimal policy for the system in
(4.1) and assume that has been used up to stageThus, the state is
x; and the subproblem to minimize tleest-to-gofrom stagei to N is

faced.
N—-1

Tr = Cn (@) + Y G (s (k) wie) -

k=i

Then the truncated policy .}, 1}, ..., 1y_1 } is optimal for this
subproblem.

To draw a parallel with the application in this thesis, assuhat the op-
timal policy for controlling a vehicle on the track from Litging to Uppsala
is sought. If the optimal policy going from Stockholm to Upfssis known,
that policy is also optimal on this part of the route from Liypkng to Uppsala.
The problem faced is then to find an optimal policy betweerktyping and
Stockholm to receive a policy for the entire route.

The quantityJi (xy) is interpreted as the optimal cost for the subproblem
having (N — k) number of stages, starting af and ending inxy. The
entity Jy (z1) will be called the cost-to-go at stagg, stepk. Following the
principle above, a simple and intuitive algorithm can berfolated. It starts
with the subproblem containing the two last stagés; 1 andN. Solving this
subproblem giveg},_; and the cost-to-go from stagé — 1. Henceforth the
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remaining stages are included one by one in the subprobléis.algorithm
is stated below.

DP Algorithm

1. LetJy(zy) = Cn(zn).
2. Letk =N — 1.

3. Findu} = pj(z) that satisfies
Je(zr) = mérll] {Gr(@p, g, wi) + Jir (fr(@r, ug, wy))}
ug
Letk = k — 1.

If £ > 0 goto 3.

For every initial state;, the optimal cost ig*(xo) = Jo(xo).

N g &

The policyr™ = {u, . ..., piy_, } is optimal.

The optimality of the algorithm can be proved by inductis,
1995).

The system (4.1) is deterministic if the random disturbamgecan take
only one value. The evolution of the system is then exactidjtable and
there is no gain in using feedback. The minimization coultsthe done over
sequences of control vectors rather than over admissiltilEgs (Bertsekas,
1995)

The evolution of a deterministic problem with a finite stgpase, under
the influence of different control signals, can be represgin a directed
graph. An arc represents a transition between states iessige stages and
is associated with a cost for this transition. The cost ofrarcan be viewed
as the length of that arc. Through this, the deterministablam is made
equivalent with a shortest path problem in a graph. The fitagesis handled
by a virtual terminal node and connecting each statg; in stage/N with
arcs having a cost afy (zx).

The DP algorithm for this formulation is stated below (BeklasS).
The new notation introduced is

ay’ = transition cost at step from statei € Sj, to statej € Sy

a’l = terminal cost of state€ Sy.
The costa)” is equal toy (i, u}” , wy), whereu;” is the control that cause
the transition from statéto j. The terminal cost of stateis equal togy (7).



4.2. Algorithm 21

An example network is depicted in figure 4.1.

Shortest path DP Algorithm

1. LetJn(i) = a%f, i € Sn.
2. Letk=N —1.
3. Let .
Ji(i) = 7&%1721 {aij + JkH(j)}, i€ Sk.

4. Repeatstep3fdr=N—-2,N—3,...,1.

5. The optimal cost igy(s) which is equivalent to the length of the
shortest path from to ¢.

6. The control sequence along the shortest path is optimal.

ali @<

0 1 2 . N Stage

Figure 4.1: Evolution of a deterministic system depicted &ransition graph.



Chapter 5

Control algorithm

This chapter explains the design of the algorithm to be useateaoptimiza-
tion component in a MPC-scheme. The objectives of the cthetrand the
constraints on the solution are first identified. Furtherrisefort made to
reduce the search space for dynamic programming. A fun@didefined that
weigh control actions versus their consequences. Thisfeostion is deci-
sive for which state trajectory that is rated as optimal. algerithm is finally
summarized.

An overview of the controller structure is seen in figure Sriput to the
controller is feedback from the vehicle and informatiomfra database. The
most important information the database contains is rogusnmecluding cal-
culated road slopes along the way. Besides this knowletigepbssible to

Vehicle

Accelerator, ll ll .

Current
brake and speed
gear selection and load

Optimisation
algorithm
Road
slope and
reference
Position 3D-map, speed
GPS reference speed map,

telematics

Figure 5.1: The controller structure.

get more information that is useful as well, with aid of thesition feedback
from the GPS. With a reference speed map, the velocity seat pan be ad-
justed automatically. If the curvature of the road is knowd atored, it can
be used to lower the reference speed in road segments wighahivature.

22
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Information about the current traffic situation could fomexple be retrieved
and also be used in determining the set point. In this thhsigdcus is how-
ever on utilizing the road slope information.

5.1 Objective and constraints

The main objective of the system is to keep the vehicle in bowald range
of velocities with a minimum use of fuel. Denote the refeerelocityv,.
[km/h]. The vehicle velocity is allowed to decrease with. and increase
with v, from v,.¢. The constraint on the vehicle speed¢an then be ex-
pressed as

Uref — VUdec <v< Uref + Vine (51)

The lower limit will be denotedv,,;, = vrer — vaee and the upper limit
Umax = Uref + Vine-

It can not be expected that a heavy truck can be kept aboveittiemom
allowed speed,,;,,, on all possible road configurations. The lower bound
therefore treated as a soft constraint. This means thabthgan will not be
infeasible if the constraint does not hold but violationl\w# penalized.

The brake system is assumed to be effective enough for tdeatwsad and
the upper bound is thus treated as a hard constraint that &llowed to be
broken. Brake use should further at least not increase cadpa traditional
cruise control.

Gear switching is a process that takes an amount of time ghaitineg-
ligible. During the shifting process the engine can not pidpe vehicle
and kinetic energy is then lost. Because of the required, tfreguent gear
changing is neither possible nor desirable. The model ad kaes not, for
simplicity reasons, contain these dynamics. A limit to thitisg frequency
is therefore needed.

S

5.2 Problem representation

To model the vehicle, the complete driveline modelin (2l the approx-
imation (2.8) of the engine torque is used. The fuel consiongs mod-
eled according td (2.13) together with the approximatiothefupper fueling
bound in[(2.6). This gives a state description with veloai$ythe only state,
three control signals and the slope as one measurableldisite. The output
signals are the velocity and the fuel flow.

v = fl(’l},u7a)
o= u=[PBG|" (5.2)
yo = fa(v,u, )

The road profile map is position dependent rather than tirpemigent, as
is the vehicle model. This is handled by transforming thiefab a position
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dependent model by the following simple rewrite.

dv  dvds dv dv  1dv
The event of a vehicle stop,= 0, is not included in the problem formulation.
Itis thus presumed that it is possible to keep a velocitytgreaan zero at all
time.

The optimization problem at hand is to be solved numeridaylyneans
of dynamic programming (DP). A discrete model is therefazeded.

The stage grid in DP is set 1 [m]. Divide S into M parts. Leth = 2
and denotey, = v(kh). Itis further assumed that the inputs and the distur-
bance is constant during, that is

gg; =% s e [k, (k+ )|

Euler's numerical integration method with step lengthnd the velocity as-
sumption then gives

h
V1 = Uk + v—fl(vk,gk,ak) k=0,1,...,M v, >0Vk (5.4)
k

To determine the fuel mass consumed the output signal integrated. Ap-
plying Euler's method again with the step lengtlyields

h
My k1 = Mfk + U—fg(vk,gk,ak) k=0,1,...,Mv, >0Vk (5.5)
k

See appendix B concerning accuracy and stability issuabdarse of Euler’s
method on the vehicle model.

A stiff driveline and a transmission modeled with a ratio ancefficiency
are assumed. The dynamics in a gear change is neglectedr shige#s then
only an instantaneous shift of the ratio and efficiency patans.

5.3 State augmentation

A limit on the maximum possible gear shifting frequency isnteal. The
bound is denoted;;,,, and defined in terms of stages, of lengththat must
pass before a change of gear is allowed. This restrictiomcesithe available
control actions, but raises the need for information in testahis is achieved
by expanding the state vector. The gear that has broughtygters to the
current state is included. A counter that keeps track of timaber of stages
passed since the last gear change is stored in a state togétthnehe state
vector. The constraint is then easily imposed by not allgvargear shift if
the counter is less than the lindif;,,, .
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The enlarged discrete system description is then

h

Vg1 = U+ afl(vkaﬁkaak)
gk+1 = UGk
A 1+co , gus1 =90

* 1 s gM+1 7 9o

h
Mpkt1 = Mypp+ an(Uka@kaak)
ko= 01,....Mu,>0Vk (5.6)

whereg denote the gear number aathe counter.

5.4 Determining the search space

Due to the curse of dimensionality, it is important to redtiesearch space.
The search space consists of the values of velocities aritbtsignals which
are considered by the DP algorithm.

The allowed velocities, specified in (5.1), are a first liida. The lower
bound is however treated as soft, and therefore it may beseaceto take
additional velocities into account. The initial state isokm and with this
information the first part of the search space can be redbeaduse it is not
certain that all of the allowed velocities are reachablere step. If con-
straints are set on possible final states the possible tielcian be restricted
further.

The set of gears can be limited by introducing an allowed ediog the
engine speed. The brakes will only be applied if the uppentday, . oth-
erwise would be reached. The pedal signal will be calculattider than
discretized.

The rest of this section explains in detail how the searcleespmdeter-
mined.

5.4.1 Gear selection

A gearbox in a heavy truck can have more than ten gears. Bhtangfiven
velocity only a subset of these are applicable. With a cairgton the engine
speedN it is possible to select a set of usable gears in a state. A@@éaa
number that maps to a conversion rati@and an efficiencyy;. In a state with
the velocityvy, the set of usable geafs,, is then defined as

Gvk = {G | Npin < N(Uk’7 G) < Nmux} U {O} (57)

whereN (vg, G) is the engine speed at vehicle velocity and gear number
G with parametergi;, n: },
N(vy,G) = @’:ivk, G#£0
-

w
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whereiy is the final drive ratio and,, the wheel radius. Note that neutral
gear is gear number zero and modeled by a rigatiwhich equals zero.

5.4.2 Considered velocities

In order to determine the velocities to consider the redehaddocities, with
consideration of the allowed range, from the initial stdtag the horizon is
first calculated. This gives an interval of velocities fockeatage. The lower
bound in the last stage is then increased to the referenoeityeb,. ¢, or set
equal to the higher bound if that goes below . This is done in order to
prevent the solutions of always ending in a state with a \gldower than
the set point. In general, that would save fuel but it is natsirghble behavior.
With this restriction it is possible to go through the intrackwards from
the last stage and remove states from where it is not pogsilbéach one of
the allowed velocities in the last stage. An example is showiigure[5.2.
The gray area is the part of the state space that will be cerexddd The darker
area is the velocities that are removed when going backwesds the last
stage.

velocity

Vo

0 1 N-1 N Stage

Figure 5.2: The velocity state space

For a fix initial velocity and gear it is clear that maximumling, P = 1
gives the highest end velocity. Which gear that lead to thiedsgspeed is not
as evident. It can however easily be determined by simgjatiret a vector
vp_, contain these simulated velocities. The highest reachsigedv™ is
then the maximum of the speeds attained with each of the gediB = 1.

vt = max {vp_,}

If brake use is disregarded, the lowest speedthat can be attained is
when the pedaP is zero. The drag torque is modeled as linear in engine
speed. The gear with the highest ratio gives the higheshergpeed and
hence the greatest drag torque and the lowest vehicle speed.
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The set of reachable velocities is accordingly,v*]. The constraints
on the velocity, specified in (5.1), must then be imposed. diethe set of
velocities that are to be considered,.,, viign]. The higher limitvy,; g, is

Uhigh = min {07, Umaz }

If the high limit exceeds the minimum allowed speed, thenloheer bound
is set to

Vjow = Min {max {via vmin} ) vmam} 3 ’UJF 2 Umin

That is, the limit is set ta— as long as it not violates the boundg;, and
Umaz- It IS however a possibility that™ < v,,;,, and then the lower limit
is set to the minimum of the speedsg_, that was attained with maximum
fueling.

Vjow = Min {QP:1} , vt < Umin

The intervalv;,., vnign] is first calculated for each stage, starting at the
initial state in the first stage. The lower bound in the laagsetis increased
to the reference velocity,.;, or set equal to the higher bound if that goes
belowwv,.s. The intervals are then processed once again, startingt ol a
new lower bound in the last stage. The lower bound in the ptevstage is
increased to the minimum velocity required to reach the newnld in the last
stage. This calculation is then repeated backwards thraligtages.

There is now, for each stage, a set of velocities which are tobsidered,
[Viow, Vnign). This is a subset of the reachable velocities. The set iredtég
discretized in constant steps@fThis make up a sét;,

Vk = {UZOUM Viow + 51 Viow + 253 ce avhigh} (58)

5.4.3 Pedal and brake selection

The algorithm will generate grid points in neighboring a@nd try to find
feasible control actions between all of these, see sectién &rid points
consist of velocity and gear values. The subproblem is fosreo find a
feasible control action, if possible, between two specisiedes.

Assume that the grid point in the current stagéuis, go } and{v;, g;} in
the next stage. The required pedal sighatan then be computed from the
system equation (5.4). If

—e<P<l+4e¢e>0

holds, a feasible control action is found? is then limited to the interval
0 < P < 1. With the calculated value aP, the system (5.6) is simulated
with initial velocity vy and geaw;. This gives the fuel mass required for this
choice of pedal level which is used to calculate the cost.
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If no feasible pedal level is found and; — v,,q.| < d, a brake level
is computed. The brake level that transforms the system frgito v, is
calculated from the system equation (5.4).

The parametet determines the values of the calculated pedal level that
are treated as minimun®(= 0) and maximum P = 1) fueling respectively.
It is set by the user. Details about the preceding calculatare found in
appendix B.

5.5 Cost function
With basis of the objectives, the weighting functignis set to

my

r(er)e,?
Che (Vs Uk 15 U Up g 1> k) = [Q1, Q2, Q3, Qu, Qs |k — Ug41]
K(|Gr — Gral)
By,

(5.9
whereej, = vy, — vrer,; @aNdx is a step function
1, t>0

K(t) = { 0 t<0 (5.10)

First, the required fuel mass . is included(Q:). Only velocities above
the reference speed is penalizégh). It is desirable that the speed increases
above the reference in order to gain kinetic energy, if thativantageous in a
long view. Velocity changes are penalizgds) in order to receive a smooth
control. Besides the shifting limkt;,,,, gear changes are penalized in the cost
function as well(Q4). A big k.., increases the risk of not finding a feasible
solution, see section 5.6 below. With an extra cost on getissthe need of
a largek;;,,, is reduced. Finally is the brake level penaliZ&gh). The effect
of the penalizing factors is stated in table]5.1 for clarity.

Factor | Penalizes
Q1 Fuel use
Q> Negative deviation from the reference velocity
Q3 Velocity changes
Qa4 Gear shifts
Qs The use of brakes

Table 5.1: Penalizing factors

The terminal cost is set to zero

(Nv=0
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The set of velocities that are considered in the last stagjenited, as de-
scribed in sectioh 5.4. It is not necessary nor desirabletalize these al-
lowed states. It is preferred to end up in a velocity gredtantthe lowest
allowed, if that is advantageous considering the entirezbor

5.6 Algorithm

The algorithm is started once eve$ymeter. When the vehicle has travelgéd
meter, the calculated optimal control signal is appliedhéf vehicle position
is s, the algorithm calculates the control signal to apply when[s + S, s +
2S]. The time available for the computation is the transporetinhens €
[s,s+ S].

The first step is to predict the vehicle velocity aftérmeter with the
current control signals. This predicted initial state iedias the starting point
when determining the velocity randé. which is to be considered in each
stagek, as it is described in section 5.4 above.

Because of the principle of optimality, see chapter 4, ardftict that
the MPC scheme only uses the first control of the calculated,oih is not
necessary to store any information about subsequent sidgpesthe optimal
costs has been computed for the states in a stage. This siates ememory,
especially if the number of steps is great.

A statei is made up of a velocity and a gear number, i = {v,g}. The
counterc is merely used to make sure that the limyif,, is not violated. The
possible states< Sy, in stagek will be generated from the velocity randé
and the set of geals,

Sk = {{'U,g} |U € Vkag € Gv}

The counters in the states of the last sta@g,j € Sy, are set tdk;,,. For
each state in stagg feasible control actions are sought which transforms the
system into the states in staget 1. The feasible control action with the
lowest cost is the optimal control from the current state.

The initial node is denotegland the terminal node The notation for the
costs is

ay/ = transition cost at step from statei € S}, to statej € Sy

a’}l = terminal cost of state€ Sy.
The costa};’ is equal toCy (i, j, ul”, o), defined in[(5.9). The contral}’
causes the transition from statéo j with a road slope ofy;. The terminal
cost of state is equal togy (i) which is set to zero according to (5.10). If
there is no control that transforms the system from stétg at stagek, a;”
is set to infinity. With a numerical approach, an infinite cosans a very
large number in comparison with other transition costs.

The algorithm is summarily stated below.
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DP algorithm

1. LetJn(i) = ayl = 0.
2. Letk =N —1.

3. Let N
%@=1m1@y+hﬂm}we&.

JESk+1

A control action up’ that transforms the system from state
{v',g'},i € Sy to a state{v’, g7}, j € Si41 is only allowed

if g' = ¢’ or (1 + ;1) = kiim- The counter of statg cj; is set

to (14 ¢, ,)if g* = g7 and1 otherwise.

4. Repeatstep3fdr=N—-2,N—-3,...,0

5. The optimal cost ig/y(s) and the sought control is the optimal
control set froms.

When the sets of considered velocitiés £ = 1,..., N — 1 are deter-
mined, the counter of the initial stat€, is taken into account. It not possible
to regard the shifting limit in stages, wherek > (ki + ¢f), because it
is not known beforehand if and where the optimal path costaigear shift.
This introduces a risk of not finding a feasible solution. Plossibility is of
course increased with a shifting limit of many stages. If easible solution
is found, the controller outputs the last feasible control.

The behavior of the algorithm is controlled by a number ofapaeters.
These are summarized in table5.2.

Parameter] Function
S The stage gridim)|
N The number of steps of lengthtaken in the algorithm
h The step length used to integrate the system equdtions
) Velocity discretizatior[km/h]
€ Accuracy used when calculating a pedal level
Vine Maximum increase above the reference sgéed/ 1]
Vdee Minimum decrease below the reference spged/ h]
Kiim Minimum number of steps of lengthl before a gear shift
Npvin Lower bound on the operating range of the endinen|
Ninaz Upper bound on the operating range of the engipe:]

Table 5.2: User parameters
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5.7 Complexity

During the first phase of the algorithm, the set of velocit@be considered
is determined. This requires the horizon to be searche@tWiwo velocities
are calculated at every step. This action is thus linear thighnumber of
steps.

A state has a unique combination of a velocity and gear numbbe
possible number of states is thus dependent on the rangewédlvelocities,
the discretizatiod and the number of gears. The range is

Umaz — Umin = Vine T Udec

at the most according to section 5.4. The maximum numbertést is then

n— kg (LvincgvdecJ + 1>

wherek, is the maximum number of gears that is applicable at one sTdue
limit on gear shifting frequencly,;,,, reduces the possible number of states but
this is not taken into account.

The minimization of the cost function in the DP algorithm Ivat every
stepi process every combination of states in stagedi + 1. The number
of possible combinations is the product of the numbers désta the two
stages. At every step, the number of operations will theedfe proportional
to the square of the number of staté’s The total number of operations for
the minimization over a horizon d¥ steps is then proportional t§n2.

The preceding reasoning leads to that the compleéXitis function of the
number of step®V can be approximated by

2
O(N) = kNn? = kNk,>? (Lv”;”’dj + 1) (5.11)

wherek is a constant. The complexity is linear with the horizon kngd his
is a direct consequence of the fact that the allowed vetscénd thereby the
number of states are limited.

Assume that the parameters. andv,.. are determined buv andJ are
not yet chosen. Let there be two different set of paramedérs; and N, ds.
The complexity ratio oD (N;) andO(Nz) is

(5.12)

2
VinctVdec
O(Ny)  Nikky’ (LTdJ + 1) Ny (62>2
Ny

O(NQ) NzkaQ (Lvinc;;vdecj + 1) 01
If the velocity discretization is made twice as accuratehiiezon must then

be made four times as short in order to achieve the same catignal com-
plexity.
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Including the neutral gear in the set of gears that can beecholsviously
increases the complexity due to the fact that the possibhebeun of states
increases. To estimate the magnitude of the raise, let tinplexity function
depend on the parametey. If k, is increased byn, the complexity ratio is

Olhy +m) _ Nk(hy +m) ? (|Zacpiae | £ 1)> (

2
m
- 1+ ) (5.13)
O(ky) Nk (| netvee | 4 1)

kg

With aid of figurg 2.5 the number of gears that is applicablegighborhood
of one velocity is estimated to three. The complexity inseeaccording to
(5.13) withm = 1 then becomes

O(ky +1) 1\> 16
2T (142) ==~
+3 5 8

A rather large increase is the result. The gear shiftingtlii,, has been
neglected and therefore the value can be seen as an uppet todtine com-
plexity increase. IfV is much larger that;;,, the ratio will be closer to the
approximated value than if the values@fandk;;,, are more alike.

The stage gridb' do not directly affect the complexity of the algorithm but
will of course increase the computational effort neededfeMPC controller
by determining how often the algorithm is started.



Chapter 6

Simulations

In this chapter the results of a number of simulations orediffit road sec-
tions are reported. First the used parameters values acelmis and then
results from both artificial and authentic road maps areudised and illus-
trated. The magnitude of the gain in the possibility of udimg neutral gear
is investigated. Finally, the the computational complexit the algorithm is
examined.
To assess the performance on different road sections, ldié/eediffer-

ence in the fuel consumptiah fuel and the travel timé\¢ime are calculated
as follows

fuelyrpe — fuelpy

fuelpr
timeMpc — timep]

A fuel

Atime =

timePI

where the subscript refers to the respective controller.

When studying the computational complexity a ratis determined be-
tween the required computer time and the time simulateahduhiat time.

__ computer time
1= Simulated time

If it takes the computet;s to simulatel,s, the ratio isy = % A ratio of
one thus means that the simulation precisely runs in real. tiratio greater
than one means that the simulation demands more time thacthal time
simulated and conversely.

Simulation times reported are relative to a PC with a Intéé@m 2.6GHz
processor and 480Mb of RAM running Windows XP SP2. The Mattetb
sion used is 6.5.1, Release 13.

33
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6.1 Parameters

The resolution in position of the road measurements is 25mhwis about
the length of a heavy truck. This length is used as basis whensing the
stage gridS. Simulations with a grid of 10, 25 and 50m are reported. The
step length used to integrate the system equatiasiset toS and in appendix

[B the accuracy in predicted velocities with these step lengte discussed.
This discussion is the basis for selecting the velocity réiszation. When
studying controller behavior in detail, a prediction honizof 1000m is used.
When varying the prediction horizon it appears that a lendthG®0m is
necessary to achieve satisfactory results, see séction 6.5

The algorithm parameters that are used if nothing else isifegs, are
found in tableé 6.1. The minimum number of steps before a deiftris al-
lowed, k;;,,, is adjusted with the stage griel so thatS - k;;,,, equals 200m.
Only one step is taken when using the Euler method to intedhat system
equations which means that the step lerigth set equal to the stage grid

Parameter] Function Value
SN Horizon = Grid x Steps 1000m
h Step length when integrating S

0 Velocity discretization 0.10r0.2
Accuracy when calculating a pedal level 0.1
Vine Max. increase above the reference 5km/h
Vdee Min. decrease below the reference 5km/h
kiim Min. number of steps before a gear shift %
Noin Lower bound on engine operating range| 1000rpm
Nonaa Upper bound on engine operating range| 2000rpm

Table 6.1: User parameters

The values of the penalization factors are not easily detextn The
used values have been chosen by simulating simple roadissets a straight
road and the artificially created road maps described insett2 and tuning
the parameters to get satisfactory behavior of the coetrolVhen a set of
values have been determined through these simple sectlmmgontroller
performance is checked on pieces of the authentic road nvagalsde. The
process is repeated until the performance is good enoudhpeAhlization
factors and their values used in simulations are statela/@&2.

The results and the values of the penalization factors allyulepends
on the vehicle parameters used. The most important paraisetee mass
of the vehicle. The vehicle mass has been chosen to 40 metiscand the
reference velocity is set to 85km/h in all simulations. Tlenplete set of
vehicle parameters and their values are to be found in ajppénd
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Factor| Penalizes Value
Q1 Fuel use 2
Q2 Negative deviation from the reference speef (if §=0.1) or 7 (if§=0.2)
Qs Velocity changes 15
(on Gear shifts 15
Qs The use of brakes 100

Table 6.2: Penalization factors

6.2 Constant slope

Artificial road sections with one ascent or descent are etealhe section
begins with 500m straight road followed tiym with constant slope and is
finally ended with another 1500m straight road, see figure Sitnulations
are run on sections where the lendttand slopex are varied. The results
are shown in figure 6.2. In ascents ¢ 0), the effect on fuel consumption

La

Altitude [m]

500m

0 >

0 500 500 + L 2000 + L
Position [m]

Figure 6.1: Artificial road section with one hill.
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Figure 6.2: The effect on fuel consumption and travel timaseents and
descents with varying slope and length.

is small but the travel time is reduced. The mean velocithistincreased.
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The increase grows with the length of the Hiland the main cause of this in
the longer hills is that the controller accelerates thealetiefore the uphill.
An example of this effect in the section with = 500m anda = 3.5% is
shown in figuré 6.3. With the extra fuel used for the acceilendbefore the
hill it is possible to keep a higher velocity throughout teeent and the time
required on a lower gear is reduced. This behavior is prigndetermined
by the ratio between the penalization of fuel u€gand negative deviation
from the reference velocity],) in the cost function, see (5.9) in sectjon|5.5.

The controller only accelerate the truck before the theihitlis steep
enough. In figuré 6.4 the length is still 500m as in the formemeple, but
the slope is only 2%. The sole difference between the MPC andrRroller
appear after the hill and is due to the fact that the integnadot of the Pl
controller is saturated (with its maximum value). This effss also seen in
the previous example in figure 6.3.

The use of fuel is noticeably reduced in descents<( 0) according to
figure[6.2. The reduction increases with steeper and longggeathts and the
main cause of this is that the controller lets the velocibkdielow the ref-
erence before the descent. The travel time is generallftiligncreased
because of the lower velocity before the downhill. If the imaxm velocity
is reached going downhills, the need of braking is lowerethguo the lower
velocity. The relationship in the cost function, see (5®}kection 5.5, be-
tween the penalization of fuel us@{), negative deviation from the reference
velocity (@Q)2) and brake use(fs) is primarily decisive of when to lower the
velocity.

Examples of descents with slope= —3% and lengthsL of 300 and
500m are seen in figurés 6.5 dnd 6.6. In the short downhillfigaee6.5,
neutral gear is used from about 200m before to 200m afteratvakiill slope.
The gain in form of kinetic energy is evidently greater tHamfuel used to run
the engine on idle. If the neutral gear was disengaged in@densdownhill,
see figuré 6.6, the maximum velocity would be reached eatidrincrease
the need for braking. In both examples the brake use is laiveoenpared
to the Pl-controller. The difference between the MPC anddntroller after
the descent is owing to the fact that the integrator part@Rhcontroller is
saturated (with its minimum value).
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Afuel = 0.26 % Atime = -1.56 %
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Figure 6.3: A 500m ascent with slope of 3.5%. The MPC corgraktceler-
ates the vehicle before the ascent.
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Figure 6.4: A 500m ascent with slope of 2%. The differenceus tb a
saturation effect in the Pl controller.
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Afuel = -8.70 % Atime = 0.44 %
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Figure 6.5: A 300m descent with slope of -3%. Fuel and brakasi®wered
by the MPC controller by letting the vehicle slow down beftite descent.
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Figure 6.6: A 500m descent with slope of -3%. Fuel and brakesi®wered
by the MPC controller by letting the vehicle slow down beftite descent.
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6.3 Crest and depression

As described in sectidn 1.2, artificial crests and depressioe created by
letting the slope vary linear with position. The crest orm@sgion isL m long
and starts with 500m and ends with 1000m straight road. Kliyge increases
linear with position froma to 5 whereaw < 0 andg > 0, a depression is
received. If the slope decreases linear with position feota 5 wherea > 0
and( < 0, a crest is created. The absolute values@ind 5 are set equal

andg =

| is then varied together with the lengthin order to create a set

of different road sections. A positive value @therefore means a depression
and a negative value means a crest, see figure 6.7. The higdstapplied
to a set of these sections and the results are shown in fig8ire The fuel

Altitude

Depression, >0 Crest, <0
500m L 1000m
- = i 0%

~B/2%

BI2%

Altitude

500m L 1000m

Afuel

500 00 + L 1500 + L 0 500 . 00 + L 1500 + L
Position ?m? Position Fm?

Figure 6.7: Artificial road section with a depression or astre
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Figure 6.8: The effect on fuel consumption and travel timergsts and de-
pressions with varying slopes and lengths.

consumption is reduced in both crests and depressions #ldpe is greater
than 1% or less than -1% and the lendtls longer than about 1000m. The



40 Chapter 6. Simulations

travel time is rather moderatly affected. The greatesechifice occurs in long
and steep depressions according to figure 6.8.

Figurd 6.9 and 6.10 shows a crest and a depression, each@hi1&0gth.
The neutral gear is used in both cases. On the top of the arigtire 6.9, the
vehicle is run on neutral gear until the road is straight.h&t top the velocity
sinks below the reference but as the downhill slope getpstabe vehicle
accelerates back to the reference velocity on neutral ¢redine depression,
neutral gear is used from the beginning to the bottom of tipeedssion. This
allows the vehicle to accelerate faster than running orctuethich can be
seen in figure 6.10.

The use of neutral gear is mainly governed by the relatignbbiween
the penalizing factors for fuel us€(), negative deviation from the reference
velocity (Q2) and gear shifts@,) in the cost function, see (5.9) in section
5.5.

In figures 6.11 and 6.12, the previous crest and depressianade twice
as steep. This evidently reveals a greater potential fongduel.

In the the crest, figure 6.11, the controller acceleratevehécle before
the uphill begins. This leads to a higher velocity from thetfto the top of
the crest. Before the top is reached, the accelerator Iewiedreased despite
that the velocity is much below the reference. The coming rdolivwill
accelerate the vehicle above the reference anyway andwlee \e@locity on
the top of the crest will reduce the need for braking. The logear is kept
throughout the crest to further reduce the need of brakinlge Viehicle is
finally let to slow down to the reference velocity on the naligrear. Neutral
gear makes the retardation slightly smaller.

In the depression in figure 6.12, the vehicle is let to slownibefore the
downhill begins. This saves fuel and the need for brakingugeted later in
the downhill . The controller increases the pedal level atlibttom of the
depression, despite that the velocity is above the refereFiuis acceleration,
in the MPC case, allows the truck to keep a higher velocitgughout the
downhill on the same gear whereas the PI controller shifis kmwver gear
when the uphill gets steep.

The acceleration before an ascent and retardation befoescent as it
appear in the crest and depression in figures/6.11 and 6. f2esame effects
as described above in the case of a constant slope, see g8€s5 and 6.6.
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Figure 6.9: A 1500m crest. The MPC controller lets the vehiah on neutral
gear as the downhill slope gets steeper.
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Figure 6.10: A 1500m depression. The MPC controller usesralegear to
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Figure 6.11: A 1500m crest. The MPC controller acceleratesvehicle
before the crest and lets it slow down at the top.
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Figure 6.12: A 1500m depression. The MPC controller lets/etecle slow
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Figure 6.13: A section on the road from Lidying to dnkdping. The section
begins 97km from Linkping and ends 21km fronddkodping. Acceleration
prior a steep ascent is seen at 3km. Retardation prior a meiscgeen at 2,
4 and 5km. A lower gear is used to reduce the load on the braiterag
between about 6 and 8km. Neutral gear is finally used at atlontt8 slow

down to the reference velocity after the steep descent.
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Afuel = -2.26 % Atime = -1.77 %
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Figure 6.14: A section on the road froidnkoping to Linkbping. The section
begins 21km from @nkdping and ends 97km fronddkoping. Acceleration
prior a steep ascent is seen at 1,4 and 6km. Retardatiorgiescent is seen
at 5 and 7km. A lower gear is used to reduce the load on the lsngdtems
between about 5.5 and 6km. Between about 7 and 8km, the tsuek io
accelerate on neutral gear. When the slope lessens and tkedtards, the
twelfth gear is engaged when the reference velocity is mdch
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6.4 Authentic road sections in detall

A portion of the road between Liidlping and dnkdping is selected. Simula-
tions are made with this section in both directions. Theltesue shown in

figured 6.13 and 6.14. The effects discovered in the arfificéd sections are
also found in these simulations with authentic sections.

In figurg 6.13, acceleration prior a steep ascent is seematRetardation
prior a descent is seen at 2, 4 and 5km. A lower gear is useditceethe
load on the brake systems between about 6 and 8km. Brake hewéver
mostly lowered by the retardation before the descent. Tk fis let to slow
down to the reference velocity on neutral gear after a stespeaht at about
8km.

In figure[6.14, acceleration prior a steep ascent is seertar 6km.
Retardation prior a descent is seen at 5 and 7km. A lower geasdd to
reduce the load on the brake systems between about 5.5 andB8&ke use
is however mostly lowered by the retardation before the el@scBetween
about 7 and 8km, neutral gear is used and the the truck aatederWhen
the slope lessens and the truck retards, the twelfth geagsged when the
reference velocity is reached.

The use of fuel is greatly reduced (-12.73%) in the first sacshown in
figurel6.13. The reduction is mainly made through the retauds before the
downhill slopes at about 2, 4 and 5km. The acceleration phieruphill at
3km leads to that the twelfth gear is used for about 200m loagé a higher
velocity is maintained throughout the hill compared to the&se. The higher
velocity in the uphill between 3 and 4km lessens the increéde travel time
that is a result of the retardations. The change in traves fion this section
then becomes negligible (+0.07%). The magnitude of thedarsumption
reduction is of course dependent on the fact that the adtinlmbve sea level
decreases with almost 1200m over the 9km in figure 6.13. Horveteen this
section is used in the other direction, figure 6.14 showsallacent reduction
of the fuel consumption still can be achieved (-2.26%).

Figure[6.14 shows the section where the altitude increaisalout
100m over 9km. Fuel is primarily saved through the retaaetibefore the
downhill slopes at 5 and 7km. In this case, the accelerapions ascents ev-
idently increases the mean velocity more than the retamasprior descents
decreases it, resulting in a travel time reduction (-1.7.7%)
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Figure 6.16: The effect on fuel consumption and travel timettee road
Linkoping to &nkodping. The stage grid is 25m and the velocity discretiza-
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6.5 From Link 0ping to Jonkoping and back

The altitudes above sea level and the road slopes are shofiguie[6.15.

The entire distance is about 127km. The slope varies betaleeut -4% and
+3%. Simulations are made with the road in both directiort®e prediction

horizon is varied between 25m and 3000m. Stage d¢¥idé25 and 50m are
used in conjunction with velocity discretizatiof®f 0.1 and 0.2 km/h.

The effects on the fuel consumption and the travel time whiea 25m
andé equals 0.1 and 0.2km/h are shown in figure 6.16. It is seertlieat
are only small differences betweén= 0.1 andj = 0.2 when the horizon is
more than 1000m.

The fuel consumption is at best reduced with about 2% in trextion to-
ward bnkdping and about 3% toward Liklping. The altitude above sea level
is around 60m higher indhkodping than in Linkping, see figure 6.15. Go-
ing toward dnkoping thus in general means facing more uphill than downhill
slope, which may explain most of this difference.

The travel time is moderately affected and the magnitude doe vary
much with the horizon according to figure 6.16. The fuel ushdwever
clearly dependent on the horizon. A horizon longer than 208@ems ab-
solutely superfluous and good results are achieved withtdl9Om, at least
for this road configuration.

The effects on the fuel consumption and the travel time whiea 50m
andé equals 0.1 and 0.2km/h are shown in figure 6.17. The solutiotins
0 = 0.1 are poorer with at least half a percent, with equal regardu& f
use and travel time, than when = 0.2. It may be unexpected that the
higher accuracy gives somewhat poorer performance. THisates that a
smallerd will not always give better solutions. In appendix B the mean
ror in predicted velocities with = S = 50m and N=20(1000m) on the road
Linkoping to &nkdping are estimated to be about 0.1km/h which is the size of
the smalle. This may suggest that it is not beneficial to use a disctéiza
too close to the mean error.

6.6 Neutral gear

The use of neutral gear adds another degree of freedom irrdfséem. To
estimate the magnitude of the gain that is achieved throlighgimulations
are made where neutral gear is disallowed. The stageSgisd25m, the ve-
locity discretizatiorny is 0.2km/h and the penalization fact@x is set to 7.
A comparison between figures 6.16 and 6.18 reveals the ffdcaveling
toward Hnkoping, the fuel consumption reduction is only lessened tuab
half a percent. The travel time is however increased halfragm. This
increase does of course contribute to the relatively sniahge in the fuel
consumption. If fuel use and travel time are given the samghtiethe so-
lutions become about two times poorer compared to when aleggiar was
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Linkoping - Jonkoéping Jonkoping - Linképing

— Afuel — Afuel
c Atime 3 c Atime

R X

000 3000 - 0 000 3000

0 2 0 2
Horizon [m] Horizon [m]
Figure 6.18: The effect on fuel use and travel time on the taakloping to
Jonkoping. Use of neutral gear is disallowesl= 25, § = 0.2 andQ, = 7.

used

The most evident difference appears in the direction tovi@meoping.
The change in travel time is similar but the fuel use is reduaieout three
times more when neutral gear is allowed than when it is diget. The
altitude above sea level is around 60m higheitinkdping than in Linkping,
see figureé 6.15. Neutral gear is as expected most useful vileea is more
downhill than uphill slope.

6.7 Complexity

The ratioq tells the required computer time to simulate the system ene s
ond. A ratio of one means that the simulation precisely carubgeal time.
A ratio greater than one means that the simulation demands timoe than
the actual time simulated and conversely.

In order to assess the computational complexity and to aadithe ap-
proximation in[(5.11) the ratiq is determined for varying step lengtti for
a stage grid of 25 and 50m and velocity discretizations ofabd 0.2km/h.
The results are shown in figure 6.19. The test track &pikg to Hnkodping
is used in these simulations. The linear dependence of thizondength ap-
pears clearly in all figures. With = 25, 6 = 0.1 (upper left figure) a horizon
of about 750m allows the simulation precisely to be run intieze. Accord-
ing to (5.12) the same computational complexity is achiew&t a horizon
four times as long if the discretizatiohis doubled. WithS = 25, § = 0.2
the simulation should thus run in real time up to a horizorgtherof about
7504=3000m which the upper right figure confirms. Doubling tragstgrid
S will lead to half as many algorithm runs on the same distaid® same
horizon length is further achieved with half as many step&iwhalves the
complexity. In total it should thus be four times as demagdisingS = 25m
thanS = 50m which is confirmed by comparing the upper and lower figures.
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_ __computer time
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Figure 6.19: The ratiq tells the required computer time to simulate the sys-

tem one second. Simulations are made on the roadpimg to Hnkdping.
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Conclusions

The scenario in this thesis has been a heavy truck travelirggroad with a
constant reference velocity and where small deviations tios reference are
allowed. The aim was to reduce the fuel consumption with atmo increase
in the travel time. The fuel use can effortlessly be lowergd bbwered mean
velocity but the travel time will then obviously increasen dimulations a
5km/h positive and negative deviation from the referendecity is allowed.
Simulations on the test track Libking to ®nkdping and back with a load of
40 metric tons reduces the fuel consumption with 2.5%, 2%éndirection
toward Hnkdping and 3% going back toward Lidging, whereas the travel
time only is insignificantly changed. These results areeaedd provided that
more than 1500m of the road ahead is take into considerat@mfigures 6.16
and 6.17). The reductions are achieved through rathetiirgctions.

Simulations show that the greatest fuel use reductions ademvhen a
downhill with sufficient slope is ahead. The vehicle velpditlowered before
the downhill and the truck is then let to accelerate in thedes(see figure
[6.6). Slowing down before a steep downhill will further inngeal lower the
need for braking.

When there is a steep uphill ahead, it may be favorable to exatelbe-
fore the hill. A higher velocity reaching the uphill can lessthe need for
lower gears (see figure 6.3). This action do not decreasesthefiiuel of no-
ticeable amounts, it may even slightly increase it. Sinoihest show that the
travel time is, by the higher mean velocity, shortened ofeatgr magnitude
than the change in fuel consumption. Considering a rougetithe decrease
will however counterbalance the time increases introdwdeetre the vehicle
velocity is lowered prior a descent.

The neutral gear can finally be used in order to gain kinetezgynfrom
the torque otherwise used to pull the engine. On artificiatlreections sim-
ulations shows that the fuel consumption can be fairly cesd whereas the
travel time only is slightly affected (see figufes 6.9 and0p.10n a route
with more downhill than uphill slope, the use of neutral gesems to be the
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most potent way of reducing fuel use. When going back thiserant mostly
going uphill, a clever choice of the pedal level appear touse¢ §s important
(compare figurels 6.16 and 6.18). On the test track dyikg to Hnkdping
the solutions became two to three times better, with equgrceto fuel use
and travel time, with the possibility of using neutral gear.

The limited range of allowed velocities results in the rath#ractive
property that the computational complexity of the algaritts linear in the
horizon length. The complexity however increases with thease of the
number of possible states in a stage. Horizons of more th@@ri@roduce
the best results amongst the simulations made. With a stadjefgoOm and
a velocity discretization of 0.2km/h results close to thetlmnes is achieved
with a horizon of 2000m (see figure 6.17). This simulatiorsrfour times as
fast as real time which means that simulating one secondgrescpne fourth
of a second of computer time (see figure 6.19). A stage gricbof and the
same discretization gives about the same result with admiz 1500m (see
figure/6.16). These simulation runs about twice as fast dsinea



Chapter 8

Future work and extensions

Any controller that make use of topographic informationépendent on the
road maps being reasonably accurate and that the vehidteopads robustly
determined. This is obviously of importance and a contrislleobustness
against the inevitable errors in the information must bestigated. In the
case of a MPC controller, the performance further reliesihean the model
which is used.

The repeated computation in the control algorithm is ratieenanding.
This is a drawback which is not easy to circumvent. In theofeihg ap-
proaches to this problem are presented.

An much simpler and more ad hoc algorithm could be developeadhis
ing the discovered actions as starting points. At regul@rials calculations
could be made deciding if it is favorable to slow down, acake or using
neutral gear. The ordinary cruise controller is used if nohthese actions
are rated as beneficial. The calculations should probakéydaleast 1000m
of the road ahead into account according to the results iptehé.

If a simple logic is established that determines which geaist in a state
and the use of neutral gear is disallowed, the complexitydcba reduced
up to sixteen times (sét, = 4 andm = —3 in (5.13)). In case this logic
resembles an existing automatic gear selection systemyiB@ algorithm
could for example be used on-line to generate referencectmjes that can
be fed to a feedbacked cruise controller.
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Appendix A

Simulink model

The implementation structure follows the standard forrreddy the Center
for Automotive Propulsion Simulation (Eriksson et al., 2D0Due to the fact
that the Center is in its startup phase, few complete modelaailable and
therefore only templates have been used. In figure A.1 thetsie of the
truck model is shown.

diver cmd in vericte b out (T

driver cmd in vehicle fb out

sensor in cmd out

controller

<final_drive>| <chassis>
chassis

Lplcma in sensor out

—— ] Lm n arsor |
lemd in sensor out emd in sensor out

power in [Nm] mech power out [Nm] - power in [Nm]  mech fb out [rad/s]

(#{mech fo n [radis] mech power out [N] power in [Nm] mech power out [Nm]

Imech fb in [radis]  mech fb out [rad/s]

clutch_and_gearbox \

ice_model

final_drive

[T vvv¥

v vV

mech fbin [rads]  mech fb out [radis] -‘ chassis model

Figure A.1: Truck model structure

Tablel A.1 state the values of the vehicle parameters intediin chap-
ter[2. The engine map used and other vehicle parameters ppesad to
resemble a typical Scania heavy truck.
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Parameter Value Unit
Engine

Inertia J, 3.5 kgm?
Number of cylindersi,, 6 -
Number of rev. per stroke,. 2 -
Engine map 7,4,

ae -3.3010°3 J,VT;T
be 9.16 NanStrOke
Ce -82.53 N an
Fuel flow limit 8,4z

as -1.59107* | —=ree
b5 0.42 rpmm;?roke
Cs ) -57.05 Shrore
Drag torque Tiqq4

aq -8.80102 %—m
ba -51.51 Nm
Idle values

Engine idle speed; ;. 600 rpm
Idle fueling ;4. 10.44 sioke
Final drive

Ratioi ¢ 3.27 -
Efficiencyn ¢ 0.97 -
Longitudinal forces

Wheel inertiaJ,, 32.9 kgm?
Rolling resistance coefficient. 71073 -
Gravity constany 9.81 =
Air drag coefficientz,, 0.6 -
Max. cross section ared, 10 m?
Air density p,, 1.29 kg
Wheel radius-,, 0.52 m
Brakes

Maximum torquek 20-10° Nm

Table A.1: Vehicle parameters
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The ratiosi; and efficiencies); for the gearbox are stated in table A.2.
The ratios are chosen on the pattern of the Scania GRS900Boged he ef-
ficiencies are however only made up and do not come from measunts.
These have been chosen so that the efficiencies increashe &aatib de-
creases.

Gear selection is made as described in section 2.5. Thehthidssare
shown in tablé A.B. The cruise controller parameters ardlfipeesented in
table A.4.

Gear| Ratio | Efficiency | | Gear| Ratio | Efficiency

1 11.27 0.88 7 3.01 0.94
2 9.14 0.89 8 2.44 0.95
3 7.17 0.90 9 1.91 0.96
4 5.81 0.91 10 | 1.55 0.97
5 4.62 0.92 11 | 1.23 0.98
6 3.75 0.93 12 1 0.99

Table A.2: Gearbox parameters

Gear| Down | Up | | Gear| Down | Up
1 - 1800 7 1300 | 1800
2 1300 | 1800 8 1300 | 1800
3 1300 | 1800 9 1300 | 1800
4 1300 | 1800 10 1300 | 1800
5 1300 | 1800 11 1300 | 1700
6 1300 | 1800 12 1300 -

Table A.3: Engine speed thresholds for gear shifting [rpm].

Pedal controller

Proportional constank p 1.845
Integrator constantp 0.2
Saturation value 30
Brake controller

Proportional constank s 0.3
Integrator constants 0.02
Saturation value 30
Thresholdv,, .. [km/h] Vpef + 5

Table A.4: Pl controller parameters



Appendix B

Calculations

In this appendix various calculations are performed. THheoke model is first
given a more compact description by the introduction of @parameters. It
is further shown how the pedal and brake levels used in theaaigorithm
are computed. Finally, the numerical stability and acopcd&uler's method
applied to the vehicle model is investigated.

B.1 Vehicle model

The complete driveline model is stated(in (2.10). With theniity
¢rcosa+sina = /1 + ¢2sin(a + arctan c,.)

the equation becomes

Tw

- Jw +mre + nfi?ntifJe

1
—k,B — §chaparwv2 — mgryy/1 + ¢ sin(a + arctan cr)) .

0

(thtanfT(U7 P7 G)
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Introduce the parameters

Tw
. = - -
! Juw +mrd +ngigngitJe
1
Co = §CwAapaTw
c3 = Ningif
30 441
cy = = 2t
T Tw
s = 1 Nyl
6-104 n,
g = mgry/ 1+ c?
cy = arctanc,

and the driveline model can be written as
v =c (03T(U,P, G) — kyB — cov* — cgsin(a + 07)) (B.1)

The engine speed is

_f v G#O0
N_{ Niage G =0

The mass flow of fuel inl (2.13) becomes

csNPbpaz(N) G #0

B.2
csNiaredigze G =0 (B-2)

(N, P,G) :{

The engine torqud” is approximated according to (2.8) and the upper
fueling bounds,,,,. according to (2.6). The equations are repeated below for
convenience.

aeN 4 bePopas(N) +cc. P >0, G#0

Te(vavG) = agN + by PSO’G#O
0 G=0
gma."c(N) = aéN2+béN+65

B.2 Pedal and brake level

The problem faced is to calculate a pedal or brake level thasforms the
system from a velocity, to another velocity; using the geay; when the
road slope igv. We assume that another gear than neutral is aativg ().
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The problem is represented according to (5.4) wWith= 1, which means
that the step length used for integration is set equal to the stage grid'he
equation then becomes

h
vy = vy + U*f1(vo»% a) vy > 0Vk (B.3)
0

whereu = [P BG]" andf, = ¢ using[(B.1).
When calculating a pedal levél it is assumed thaP > 0 which means
that the engine torque is

Te(Na P7 G) =a.N + bf’PgmGT(N) + Ce (B4)

If then
—e<P<l+4e¢e>0

holds, a feasible pedal level is found. The parameveitl thus determine the
values of the pedal level that are treated as minim&m=(0) and maximum
fueling (P = 1) respectively. The brake levél is assumed to be zero. Insert
(B.4) in (B.3) with N = cyv andu = [P0 G ]". Solving for P yields

—c1e3¢eh — acciczeahvg — vE + creahvd + vov + crcghsin(a + c7)

P p—
becicsh (cs + bscavg + cia,gvg)

(B.5)
When calculating a brake levé it is assumed thaP = 0 which means
that the engine torque is the drag torque

T.(N, P, C) =aqglN + by (B.6)

If then
0<B<I1

holds, a feasible brake level is found. Insért (B.6) in (BM@h N = c4v and
u=1[0BG]". Solving for B yields

bacicsh + ageicseahvg + v3 — c1cahvd — vou1 — crcgh sin(a + c7)

B
cikyh

(B.7)

B.3 Numerical stability of Euler's method

The system equations are integrated with Euler’'s methad{%4d) and (5.5).
The velocity function is linearized and then stability vii# investigated using
the linearized system. The fuel flow function (B.2) is onlya@ymomial of
the velocity. If the calculation of the velocity is stableetcomputation of the
flow will also be stable.
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B.3.1 Linearization

The rewrite[(5.3) is used to replace the time dependencepwithion depen-
dence. With[(B.1) the system becomes

dv
f(vaﬂaa) - % -
%1 (3T (v, P,G) — ky B — c2v* — cgsin(a + 7))

The system can be linearized around a singular point whexg v, o) = 0
and written on the form

Z=az+Bw, z=v—1v9, wW=1u— Y

0 . 0
wherea = —f|vo_u and the the row vector B are given by—= —f|v0 “
v 0 Ou; 0

(Ljung and Glad, 2003).

The eigenvalue of the system matrixdgnd it is interesting when inves-
tigating system properties. In tables B.1 and B.2, the eigjeles for three
different stationary points and two vehicle masses are showhe vehicle

Vo ‘ Po ‘ Bo ‘ (7)) ‘ A

85 | 0.443 0 0.00% | -0.238103
90 0 0.0490| -4.00% | -0.22410~3
85 0 0 -1.25% | -0.1921073

Table B.1: Eigenvalues at different stationary points. The velocity is in
km/h. The mass is 40 metric tons.

Vo ‘ PO ‘ Bo ‘ (67} ‘ A

85| 0.331 0 0.00% | -0.45%10~°
90 0 0.0153| -4.00% | -0.44510~3
85 0 0 -1.80% | -0.38210°3

Table B.2: Eigenvalues at different stationary points. The velocity is in
km/h. The mass is 20 metric tons.

parameters besides the mass are found in appendix A.

B.3.2 Test problem

To study the stability for the numerical method, the follogitest problem
can be used (Ekh and Wittmeyer-Koch, 1996; Ljung and Glad, 2004)

&= Az, 2(0) = xg
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Applying Euler’'s method yields
Tpt1 = Tp + Az, = (14 kM),
The solution to the difference equation is
Tp = xo(1+ hA)"

The number sequence must be decreasing to regard the metistabée. It
is easy to see that the solution above is decreasing if

1+hA\ <1 —2<hA<0

holds. A stable differential equation has< 0 and because of > 0, the
step length must be chosen as

2
h < —
Al

to receive a decreasing solution.

B.3.3 Conclusions

The reasoning about the test problem can directly be usebeolinearized
system. The absolute values of the eigenvalues for theéiffgoints are all
less than}10~3, see tablels B.1 and B.2. This indicates a rather slow system.
Comparing the two tables also show that the eigenvaluehipdguble when
the mass halves. The Euler method is thus stable for stethiengpre than
ﬁ = 4000m. Such long step lengths are not reasonable considering

the truncation errors. The global truncation error in Eslenethod is, as
well known, O(h) {Eldén and Wittmeyer—Koéﬁ, 1996). Accuracy is thus a
greater concern when choosing the step length. See thevfioticsection for

a discussion about the truncation error.

B.4 Accuracy in Euler's method

The error sources when integrating differential equationmerically are
truncation and rounding errors.

A floating point representation with bagendt fraction numbers leads to
a relative rounding error less th%rﬁ—t dEIdén and Wittmeyer—KoéIh, 1996).
MatLab on a PC uses binary representatios: 2 and double precision (64
bits) t = 52 according to the IEEE floating point standard. The relative
rounding error is thus less than

1
52—52 ~1.1-10716
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The pedal and brake levels that are used in the algorithnepted in
chaptef 5 are calculated as described in detail in sectidmBove. The sys-
tem equations are solved with aid of Euler's method with @ $agthh
equal to the stage grifl. Levels are further kept constant durifgnm. If the
relatively small rounding errors are neglected the ernoi®duced by these
calculations come from truncation errors in Euler’s methdd investigate
the magnitude of these errors computed pedal and brakes lavelused for
open-loop control. First are the levels calculated aceayth (B.5) and (B.7).
The levels are then applied to the system equations whichaved with a
higher accuracy than the accuracy used in the calculatibe.pFedicted ve-
locity which was used in the level calculation can then be garad to the
velocity obtained when solving the system with the higheuaacy. This is
done in the following using the road Lidking to &nkdping and compar-
ing predicted velocities to actual velocities obtained whagplying Euler’s
method with a step length éf = 2m. A step of 2m corresponds to a sam-
ple time OfWQM ~ 0.08s when traveling in 85km/h. In the calculations the
aim has been to calculate a pedal level that maintains tleeerafe velocity
(85km/h) or a brake level such that the maximum velocity (A0K is kept.
Gear selection is made based upon current engine speedcabeesn sec-
tion[2.5.

In figure[B.1 the errors made in one step are shown for diffeséep
lengthsh. The errors are all rather small. The greatest errors ocbenwhe
altitude is changing quickly. When the slope lies betweeruakd and 2%
the erros are as smallest.

It is also interesting to compare the errors using diffestap lengthg:
and a number of step¥ such that:- N equals the same length. In figlre B.2
the errors made wheln- NV equals 1000m are shown.

B.4.1 Conclusions

The errors made with Euler's method are naturally decreadesh shorter
step lengths are used. The magnitude of the errors on onesemdidn can
be seen in figure B.1. It is however also worthwhile to comsaep lengths
when predicting the velocity over a fixed total length as inifeB.2.

According to figuré B.2 the maximal error of usingsteps ofim roughly
increases with 50% wheh doubles andV halves. The available measure-
ments give one slope value each 25m. Using a step lengthegtéan 25m
will skip some slope measurements whereas a step lengtths®r equal
to 25m will ensure that every measurement is taken into adchwnger step
lengths will therefore render into additional errors. With= 50m it seems
however that this effect is negligible owing to the fact ttia maximal er-
rors do not noticeably increase with another proportiongarmad to the step
lengths 10 and 25m. The main source of error is then stilltleduracy in
Euler's method.
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Figure B.1: The error made in one step of lengtivhen using calculated
pedal and brake levels which are constant during the lehgtA pedal or
brake level is repeatedly computed and applied to the sydteimg the length
h. The predicted end velocity is then compared to a more atxaiaulated
velocity of the vehicle.
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Link6ping — Jonkdping
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Figure B.2: The error made withV steps of lengthh when using calculated
pedal and brake levels which are constant during the lelngithe error is the
difference between the velocity that is predicted thronghkteps of lengtth

and a more accurate simulated velocity.
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It is beneficial to compare the magnitude of the errors in &gBu2 with
the velocity discretizatiod used in the DP algorithm, see chapter 5. If the
errors are smaller thahalong the horizon the vehicle will reach the predicted
states and the optimal path will not change due to theseserfidre optimal
path can however change in subsequent samples with coastieof the
additional slope values at the end of the horizon.

Studying figure B.2 thus give hints about what velocity disizationd
that are suitable to use in conjunction with a given steptlenglt is unnec-
essary to increase the complexity by using a discretizatiaamuch higher
accuracy than the accuracy in the velocity predictions. iN@K twice as
accurate will increase the computational complexity fammess, according to
section 5.7.

Sensor errors, imperfect slope measurements, model amdrsther dis-
turbances will make the difference between predicted amgbbweelocities
greater. With additional errors such as these, the benedisbbrter distance
between computations of control signals increases as ltce=dthe time of
open-loop control and increases the feedback. The reasamihis section

therefore sets a upper bound to the accuracy achievable ivelbcity pre-
dictions.
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