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Linköpings universitet

Examiner: Professor Lars Nielsen
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Linköping, 21st February 2005





Avdelning, Institution
Division, Department

Datum
Date

Språk
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Abstract

New and exciting possibilities in vehicle control are revealed by the consider-
ation of topography through the combination GPS and three dimensional road
maps. This thesis explores how information about future road slopes can be
utilized in a heavy truck with the aim at reducing the fuel consumption over
a route without increasing the total travel time.

A model predictive control (MPC) scheme is used to control the longi-
tudinal behavior of the vehicle, which entails determiningaccelerator and
brake levels and also which gear to engage. The optimizationis accomplished
through discrete dynamic programming. A cost function is used to define the
optimization criterion. Through the function parameters the user is enabled to
decide how fuel use, negative deviations from the referencevelocity, velocity
changes, gear shifts and brake use are weighed.

Computer simulations with a load of 40 metric tons shows thatthe fuel
consumption can be reduced with 2.5% with a negligible change in travel
time, going from Link̈oping to J̈onköping and back. The road slopes are
calculated by differentiation of authentic altitude measurements along this
route. The complexity of the algorithm when achieving theseresults allows
the simulations to run two to four times faster than real timeon a standard
PC, depending on the desired update frequency of the controlsignals.

Keywords: topography,MPC,dynamic programming
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The use of modern technology, control theory and mathematics to enable
more efficient utilization of energy resources is a worthy and thrilling motive.
My thesis explores a possibility of using GPS, three dimensional road maps
and on line computers with the aim at reducing the fuel consumption in a
heavy truck without increasing the total travel time.

Outline

The purpose and method of the thesis are presented in the introductory chap-
ter. In the following chapter a vehicle model is derived thatis used for evalu-
ating control strategies but is also the basis for the model used in the control
algorithm. The obtained model can be characterized as a hybrid system.

The third chapter contains a review of optimal control methods for hybrid
systems. The review leads to conclusions about how to approach the prob-
lem at hand. Chapter four shortly presents the mathematicalfoundation of
dynamic programming.

The control algorithm is introduced in chapter five. A model predictive
control (MPC) scheme is used where the optimization is carried out through
discrete dynamic programming. In chapter six simulation results are reported.
Results from both artificial and authentic road maps are discussed and illus-
trated. Artificial road sections are used to illustrate specific behavior of the
controller whereas authentic sections primarily are used to show the magni-
tude of effects on fuel consumption and travel time.

In the seventh chapter conclusions are drawn from the achieved results.
The final chapter indicates future work and extensions to thethesis.
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Chapter 1

Introduction

Use of GPS in a vehicle combined with three dimensional road maps can
give information about the road ahead. These data present new possibilities
in vehicle control. For example, with information on futureroad slopes, the
future longitudinal load can be predicted. The predictionscan then be used
in a control system that optimizes the control signals with the aim at reducing
the fuel consumption. This thesis explores this concept.

A typical scenario is where the vehicle is kept at a constant reference
velocity by a cruise controller. If the velocity is allowed to vary along the
road, potential for saving fuel is revealed. The velocity could for example
be lowered when there is a downhill slope ahead in which the vehicle will
accelerate to a velocity above the set point. This would savefuel and possibly
also brake use. If the road slope is sufficient, using the neutral gear will allow
the vehicle to accelerate faster and by that increase the mean velocity over a
route. If a considerable uphill is ahead, it may be advantageous to accelerate
before the hill is reached. This increases the mean velocityand may also
reduce the time needed running on a lower gear. All in all, there is a potential
of saving fuel and at the same time not affect the travel time of the same
amount.

1.1 Purpose

The goal of this thesis is to assess possible fuel savings with strategies for
adaptive cruise control that make use of topographic information. Vehicle
models are obtained and used in deriving control strategiesand to evaluate
their impact on vehicle dynamics and fuel consumption. A simulation envi-
ronment is built to facilitate the assessment of control strategies.

1



2 Introduction

1.2 Method

A longitudinal vehicle model is first derived. This has two fields of appli-
cation. First, to be able to evaluate vehicle dynamics and fuel consumption,
the model is implemented in MatLab/Simulink. Control algorithms are im-
plemented in C++ or MatLab m-scripts and run as so called s-functions in
Simulink. Second, the model with simplifications is used in algorithms when
predicting the vehicle dynamics and the fuel consumption that would be the
effect of a specific set of control signals.

A survey of relevant literature is made. Optimal control of the class of
systems that the vehicle model belongs to are reviewed in order to decide
how to approach the problem. A control algorithm is then developed and
evaluated.

Evaluation of control algorithms is made with both artificial and authentic
road maps. Short artificial and selected parts of authentic roads are used to
study the controller behavior in detail. Longer authentic roads are used to
assess the magnitude of effects on the fuel consumption.

The road slopeα is defined as

α =
∆h

∆L
=

h2 − h1

p2 − p1

,

see figure 1.1. Note that positive road slope,α > 0, means an uphill,h2 > h1,
and conversely.
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Figure 1.1: Artificial road section with one hill.

By varying the slope and length of the hill in figure 1.1, a set of simple
sections is created.

In order to receive a closer to reality road section than the hill with con-
stant slope, the slope is let to vary linear with position. This creates a depres-
sion if the slope increases from a negative value. A crest is received if the
slope decreases from a positive value. An example of a depression is shown
in figure 1.2. The lengthL is 500m and the slope increases from -2% to 2%.
The lengthL and the start and end points of the slope are varied to create
different sections.
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Figure 1.2: Artificial road section with one depression.

In order to receive a good assessment of the fuel consumptionwith a con-
trol strategy, a longer road section than the ones mentionedabove is needed.
This section should also in its configuration be close to a road where the ve-
hicle typically travels. In this thesis, measurements on the road between the
Swedish cities of Link̈oping and J̈onköping have been used for this purpose.
In figure 1.3 the altitudes above sea level along this road areshown.
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Figure 1.3: The road between Linköping and J̈onköping



Chapter 2

Modeling

A model for the longitudinal dynamics of the vehicle is obtained. The torque
generation in the engine is modeled with a set of simple functions. Drive-
line models are derived with elementary mechanics. Further, the longitudinal
forces acting on the vehicle are modeled. These steps resultin a complete
basic driveline model.

Driveline modeling is well covered in Nielsen and Kiencke (2000) and
Nielsen and Eriksson (2003) and are the foundation of this chapter.

2.1 Engine

The process in an internal combustion engine produces powerand emissions
from fuel and air. In the application at hand, only the generated power and
consumed fuel are of interest. With this aim, a rectangular engine map with
torque and fueling bounds is used to model the process. This map is made
up of steady state measurements. This means among other things that the
internal friction from the engine is included in the map. In figure 2.1 the
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Figure 2.1: An engine map
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used engine map and bounds are shown. Each dot represents onesteady state
measurement with constant engine speedN and constant engine fuelingδ.
The map can be expressed asTmap(N, δ). CurveA is the upper torque bound
Tmax(N). CurveB shows idle operation. Finally, curveC is valid during
engine overrun, which is when the engine is pulled by the vehicle. This torque
is denoted asTdrag(N), the drag torque. An upper limit that restricts the
possible fueling is finally introduced and denotedδmax(N).

For control purposes a pedalP and a gear signalG are introduced. The
pedal signal is seen as normalized fueling and is therefore restricted to values
between zero and one. The gear signal is a number in the set of available
gearsH that maps to gear parameters which are introduced later in section
2.2. For now it is sufficient to notice that neutral gear is gear number zero.

With use of the presented control signals the fueling function δ is con-
structed as

δ(N,P,G) =

{

Pδmax(N) G 6= 0
δidle G = 0

(2.1)

whereδidle is the idle fueling. It is assumed that the fueling becomes the idle
fueling immediately when the gear signal becomes zero. The engine torque
Te can now be expressed as

Te(N,P,G) =







Tm(N,P ) P > 0, G 6= 0
Tdrag(N) P ≤ 0, G 6= 0

0 G = 0
(2.2)

whereTm(N,P ) = min {Tmap (N,Pδmax (N)) , Tmax (N)}

The process is now described by a set of functions. The five basic func-
tions are

Tmap(N, δ) Rectangular engine map
Tmax(N) Upper torque bound
Tdrag(N) Drag torque
δmax(N) Upper fueling bound

and by introducing the control signals

P ∈ [0, 1] Pedal signal, normalized fueling
G ∈ H Gear number

the following functions are defined

δ(N,P,G) Fueling function
Te(N,P,G) Engine torque

The operating range of the engine in terms of the speedN is set toN ∈ [600, 2500]
rpm. These functions are defined on this range.
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2.1.1 Approximations

The set of functions above originates from measurements andare therefore
sets of discrete values. To deal with the system analytically it is useful to
describe the functions as continuous rather than discrete.This is achieved by
fitting the data to polynomial functions of varying degrees.The coefficients
are calculated with the least square method. The calculatedvalues of the
coefficients are to be found in appendix A.

The engine map is fairly linear inN and δ. Therefore, the following
approximation is chosen

T̂map(N, δ) = aeN + beδ + ce (2.3)

This approximation provides a good agreement with the measurement data.
A model for the drag torqueTdrag(N) = Tmap(N, 0) is obtained using only
measurements when the fuelingδ is zero. As seen in figure 2.1 (curveC), a
linear model seems sufficient. Accordingly, set

T̂drag = adN + bd (2.4)

The upper torque and fueling bounds appear to be well approximated by

T̂max(N) = aT N2 + bT N + cT (2.5)

δ̂max(N) = aδN
2 + bδN + cδ (2.6)

as can be seen in figure 2.2. To further simplify the expression for engine
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Figure 2.2: Upper torque and fueling bounds.

torque in equation (2.2), the upper torque bound can be neglected. It is thus
assumed that

T̂map(N, δ̂max(N)) = T̂max(N) (2.7)

holds for allN . The agreement of this equality is shown in figure 2.3.
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Figure 2.3: Left: The left and right hand side of (2.7). Right: The error of
this assumption.

By using equations (2.1) and (2.3) to (2.7), (2.2) can now be approximated
as

T̂e(N,P,G) =







aeN + beP δ̂max(N) + ce P > 0, G 6= 0
adN + bd P ≤ 0, G 6= 0

0 G = 0
(2.8)

2.2 Driveline

A vehicular driveline with torque and angle labels is shown in figure 2.4. The
driveline is assumed stiff. The transmission is modeled in avery simple way
with a gear ratio and efficiency.

Engine The set of functions in the previous section modelsTe, the produced
torque in the combustion and the internal friction from the engine. The
external load arise from the clutch,Tc. Newton’s second law of motion
gives

Jeϑ̈e = Te − Tc

The mass moment of inertia of the engine isJe and the angle of the
flywheel isϑe.

Clutch The clutch is assumed stiff, which yields

Tc = Tt

ϑe = ϑc

Transmission Transmission inertia is disregarded. A gear numberG maps to
two parameters, the conversion ratioit and an efficiencyηt that models
energy losses. This gives

Ttitηt = Tp

ϑc = itϑt
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Engine

eT

e

cT

Clutch

c

tT

Transmis

sion

t

pT

t

pT

Propeller

shaft

p

fT

Final

drive

f

dT

f

dT

Drive

shaft

d

wT

Wheel

w

w wr F

fric,w
T

Figure 2.4: A vehicular driveline. Figure adapted from Nielsen and Eriksson
(2003, p. 110)

.

whereit is the current gear’s conversion ratio.

Propeller shaft The propeller shaft is presumed stiff, which gives

Tp = Tf

ϑt = ϑp

Final drive In like manner as for the transmission, inertia is neglectedand
losses are modeled by an efficiencyηf . This brings forth

Tf ifηf = Td

ϑp = ifϑf

whereif is the conversion ratio in the final drive.

Drive shafts The drive shafts is assumed stiff and therefore

Tw = Td

ϑf = ϑd

Wheel Neglecting the wheel frictionTfric,w, then

Jwϑ̈w = Tw − kbB − rwFw

ϑd = ϑw

whereJw is the wheel inertia andrw is the wheel radius.Fw is the
resulting friction force at the wheel. The brake torque is simply mod-
eled askbB whereB, B ∈ [0, 1] is the brake control signal andkb is a
constant parameter.
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2.3 Longitudinal forces

The vehicle is affected by the following longitudinal forces.

Aerodynamic drag Fa is estimated by

Fa =
1

2
cwAaρav2

wherecw is the air drag coefficient,Aa is the maximum cross section
area of the vehicle,ρa is the air density andv is the velocity of the
truck.

Rolling resistance Fr is modeled as being proportional, with the rolling re-
sistant coefficientcr, to the normal force of the vehicle on the tiresFN .
This gives

Fr = crFN

whereFN = mg cos α

The road slope isα andm is the mass of the truck.

Gravitational force Fg is simply

Fg = mg sin α

whereα is the road slope andm is the mass of the truck.

Newton’s second law now yields

mv̇ = Fw − Fa − Fr − Fg

whereFw is the resulting friction force at the wheel.

2.4 Complete driveline model

Assume that the current gearG is another than neutral gear. The vehicle
velocityv is then

v = ϑ̇wrw =
rw

itif
ϑ̇e

whererw is the wheel radius. With this identity, the equations in this chapter
can be combined to yield

v̇ =
rw

Jw + mr2
w + ηf i2fηti2t Je

(

ηtitηf ifT (v, P,G)

−kbB −
1

2
cwAaρarwv2 − mgrw (cr cos α + sin α)

)

whereT is the engine torque.
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When neutral gear is used, no torque is fed to the transmissionand com-
bining the equations yields

v̇ =
rw

Jw + mr2
w

(

−kbB −
1

2
cwAaρarwv2 − mgrw (cr cos α + sin α)

)

A comparison between the two equations above reveals that neutral gear is
equivalent to a conversion ratioit which is zero. Neutral gear will therefore
be assigned a ratio of zero.

The relationship between the engine speed and vehicle velocity is defined
as

N =
30

π
ϑ̇e =

{

30

π
itif

rw
v G 6= 0

Nidle G = 0
(2.9)

whereNidle is the idle engine speed. It is assumed that the engine speed
becomes the idle speed immediately when the gear signal becomes zero.

A complete driveline model can now be stated as

v̇ =
rw

Jw + mr2
w + ηf i2fηti2t Je

(

ηtitηf ifT (v, P,G)

−kbB −
1

2
cwAaρarwv2 − mgrw (cr cos α + sinα)

)

whereT (v, P,G) = Te(N,P,G) with the engine speedN according to (2.9).
The engine torqueTe is described by equation (2.2) or the approximation in
(2.8). The control signals are shown in table 2.1. A gear numberG maps to a

Variable Description
P ∈ [0, 1] Pedal signal, normalized fueling.
B ∈ [0, 1] Brake signal.
G ∈ H Gear signal.H is the set of available gears.

Table 2.1: Control signals in the driveline model.

conversion ratioit and an efficiencyηt. Gear number zero represents neutral
gear and has a ratio of zero.

2.5 Cruise control

The cruise controller is made up of two PI controllers. One for the pedal
signalP and one for the brake signalB. The benefit of this is that it’s possible
to have different set points. Since the speed is allowed to increase above the
referencevref , it’s not desirable to brake until the maximum allowed velocity
vmax is reached. With the actual speed labeledvact the pedal signalP can be
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stated as

P (t) =







0 fP (t) ≤ 0
fP (t) 0 < fP (t) < 1

1 fP (t) ≥ 1
(2.10)

wherefP (t) = KP (vref − vact) + IP

∫ t

0

(vref − vact) dt

and the brakeB signal as

B(t) =







0 fB(t) ≤ 0
fB(t) 0 < fB(t) < 1

1 fB(t) ≥ 1
(2.11)

wherefB(t) = KB (vmax − vact) + IB

∫ t

0

(vmax − vact) dt

When implementing the cruise controller, care should be taken to prevent
integrator wind-up. Wind-up is always an issue when dealingwith controllers
including integrator states, but with the configuration of two PI controllers
it is easy to realize that it becomes even more important. As long as the
accelerator controller is active, the integrator state of the brake controller will
decrease and vice versa. The integrator states are therefore saturated.

Gear selection is simply made based upon the current engine speed. For
each gear, two engine speed values are stored. The lower value is the thresh-
old where the next lower gear is chosen. When the upper engine speed value
is reached, the next higher gear will be used. In figure 2.5 is the engine speed
is plotted against the vehicle velocity for the six highest gears. The engine’s
operating range is between 600 and 2500 rpm. The first gear shifting points
are marked in the figure by arrows.
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2.6 Fuel consumption

The mass flow of fuel̇mf [g/s] is determined by the fuelingδ [mg/stroke] in
equation (2.1) and the engine speedN [rpm]. The mass flow in [g/s] is then

ṁf (N, δ) = cfNδ (2.12)

cf =
1

6 · 104

ncyl

nr

wherencyl is the number of cylinders andnr is the number of crankshaft
revolutions per stroke. With (2.13) and the fueling according to equation
(2.1) the fuel consumption model is

mf (N,P,G) =

∫

ṁf (N,P,G) dt

ṁf (N,P,G) =

{

cfNPδmax(N) G 6= 0
cfNidleδidle G = 0

(2.13)

whereNidle is the idle engine speed andδidle is the idle fueling. With (2.9)
the consumption model is made dependent on the velocityv instead of the
engine speedN .

2.7 Model implementation

The model equations are implemented in MatLab/Simulink. The complete
driveline model in (2.10) is used together with the engine map (2.2). Fur-
ther, the approximations of the upper torque bound (2.5), fueling bound (2.6)
and the drag torque (2.4) are used. The vehicle is controlledby the cruise
controller in (2.10) and (2.11). Gear selection is made as described above
in section 2.5. The fuel consumption is modeled according to(2.13). See
appendix A for details.



Chapter 3

Control of a hybrid system

This thesis explores the explicit use of topographic information in a controller.
A prerequisite is that the choice of route is known. This information must be
given by the driver or be guessed by the system. A route is represented by a
finite set of information. The problem at hand is thus a control problem over
a finite horizon.

It is assumed that the vehicle model is deterministic and theinformation
about the route is exactly known. With sensor errors, imperfect topographic
information, model errors and other disturbances uncertainty is however in-
troduced. In this thesis the disturbances is assumed to be approximately zero
in order to simplify matters. Robustness is nevertheless ofimportance and
should be investigated when a controller is designed. One way to handle a
situation where the calculated control signals not are suitable for direct use, is
to let the optimal controller only generate reference trajectories. An external
controller that are more robust against disturbances is then used to carry out
tracking of these trajectories.

In this chapter, methods for optimal control of hybrid systems are re-
viewed. Modeling of hybrid system is first shortly discussed. The core is
a survey of different control approaches. Finally, conclusions are made that
lead to the choice of course taken in this thesis.

3.1 Modeling

The vehicle model in chapter 2 is a hybrid system, which meansthat it is a
dynamic system with both continuous and discrete parts. Theposition and
velocity make up two continuous states. Accelerator and brake levels are
continuous input signals. The gear signal is discrete. Further is the evolution
of the velocity state non-linear.

The approach taken when formulating a mathematical model ofa hybrid
system should, as in all modeling, depend strongly on the purpose of the

13
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model. Hybrid automata have been the common approach in the computer
science community to model a hybrid system. By letting continuous dynam-
ics evolve within each of the states, the automata model is extended to deal
with hybrid systems. In automatic control, a more algebraicapproach has
commonly been used. The discrete parts are described by algebraic equations
and constraints. (Camacho and Bordons, 2004; Hedlund, 2003)

3.2 Optimal control

A general way of tackling a control problem is to seek the control law that
is optimal according to some stated criteria. It is however often difficult to
quantify the value of controller performance. Optimal control is a method to
achieve an optimal controller in a systematic way. The desired properties are
mathematically stated in a cost function. It can depend on the state variables
and the control signals in the system. The control law that minimizes the cost
function subject to system constraints is the optimal controller. The resulting
mathematical problem can however be hard to solve. It is therefore com-
mon with various approximations, for example simplification of the original
problem formulation.

3.2.1 Variational methods

For continuous system the maximum principle (Ljung and Glad, 2003) state
necessary optimality conditions. In Piccoli (1999); Sussmann (1999) the
maximum principle is extended to hybrid systems where the discrete switch-
ing is autonomous. The maximum principle is however limitedto be used on
the continuous evolution of the system during time intervals when no discrete
switching occur.

3.2.2 Dynamic programming

The basis for dynamic programming (DP) is the principle of optimality. For
a discrete dynamic system, the DP algorithm, stated in section 4.2, finds the
optimal control policy. For a deterministic finite-state problem, the DP prob-
lem is equivalent with a shortest path problem in a directed graph. (Bellman,
1957; Bertsekas, 1995)

The continuous counterpart of the DP algorithm is the Hamilton-Jacobi-
Bellman (HJB) equation. This is a partial differential equation that state
constraints on the optimal value function and the corresponding control sig-
nal. The equation can be used to give sufficient conditions for optimal-
ity (Bertsekas, 1995; Ljung and Glad, 2003). In Bensoussan and Menaldi
(1997); Branicky and Mitter (1995) the HJB equation for hybrid systems is
formulated.
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With DP, analytical solutions can be obtained but it often requires rather
simple models. In many realistic problems the viable approach is a numeric
solution. Unfortunately, the number of calculations needed for a complete
solution is often far too great for a usable algorithm. Bellman called thisthe
curse of dimensionality. The curse lies in that, with a forthright approach, the
required amount of computations grows exponentially with the dimensions of
the state, control and disturbance spaces. In order to end upwith a tractable
algorithm, a suboptimal method is thus generally necessary. Care should then
be taken to find an acceptable balance between algorithm complexity and
performance. In contrast, the power of DP is its wide scope ofapplicability
in that it manages complex constraint sets such as integer ordiscrete sets.
(Bertsekas, 1995)

3.2.3 Model Predictive Control

Model predictive control (MPC) make use of a model of the process to predict
future outputs as a function of possible control signals. The control signal that
is optimal according to a criterion is then chosen. Formally, the methodology
used by a MPC controller is as follows:

1. The process model is used at each instantt to predict future outputsy
for a determined prediction horizonM . The outputsy(t + k|t), k =
1 . . . M depends on future control signalsu(t + k|t), k = 1 . . . N for
a determined control horizonN and the measurable disturbances that
are know at timet.

2. Formulate a criterion based on predictions, control signals and mea-
surements. Optimize with respect to the control signals.

3. Send the optimal control signalu(t|t) to the process and disregard from
the rest of the calculated control signals.

4. At the next sample hit, repeat from step 1.

All but the first calculated control signal is rejected because at the next sample
hit, step one is repeated andu(t + 1|t + 1) will then in general be different
from u(t + 1|t) owing to the fact that new information will be available.
(Camacho and Bordons, 2004; Ljung and Glad, 2003)

The fundamental parts of MPC are the process model and the optimizing
algorithm. The model must be accurate enough for the predictions and at the
same time simple enough for a simple and fast implementation. The crite-
rion, or cost function, together with the chosen model is decisive for which
algorithm to use.

In Bemporad and Morari (1999) the algebraic modeling approach men-
tioned above in section 3.1 is used when proposing a MPC scheme for mixed
logical dynamical (MLD) systems. A MLD system is described by linear dy-
namic equations and linear inequalities containing real and integer variables.
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A linear hybrid system is one example of a MLD system. With a quadratic
cost function the optimization is carried out through mixedinteger quadratic
programming (MIQP).

Another method of modeling a hybrid system is by piecewise affine sys-
tems (PWA) (Camacho and Bordons, 2004). The state and control space is
partitioned and in each subset the system is described by affine functions,
that is the sum of a linear function and a constant. Integer variables are then
used to switch among the models. In Heemels et al. (2001) the equivalence
of different hybrid dynamical models is shown. Among the models are MLD
and PWA systems. It is thus possible to transfer tools for oneclass of systems
to another.

The system at hand is a non-linear hybrid system. It is possible to model
the hybrid nature and to approximate the non-linearities arbitrary well with
a PWA description. As mentioned above a PWA system is equivalent to a
MLD, and MIQP can be used for optimization. A PWA descriptionof the
vehicle system should contain a number of regions corresponding to velocity
intervals for each one of the gears. With 3 speed intervals for 6 gears, there
are 18 regions. A sampling interval in the region of seconds and a prediction
horizon of probably more than ten steps are needed. Solving aMPC problem
with horizonN with a PWA model withS regions using MIQP renders a
maximum number of QP problems ofSN , which is the same as the number
of combinations for the integer variables used to switch models in the PWA
description (Camacho and Bordons, 2004). In this example, that would give
1810 ≈ 3.6 · 1012 QP problems which is too many for a real time controller.
It is thus necessary to reduce the number of combinations of the integer vari-
ables. In Pẽna et al. (2003) the reachable regions in the next few sample times
from the current regions are determined. This makes a reduction in the num-
ber of QP problems to solve.

The MPC scheme does not specify the optimization algorithm to use. For
a non-linear hybrid system, the optimization can be characterized as dynamic
mixed-integer optimization (MIDO). The most frequent appeared approach
to solutions of MIDO problems are based on decomposition principles. One
method is to convert the MIDO problem into a mixed-integer non-linear pro-
gram (MINLP). The MINLP can then be solved by means of a standard algo-
rithm, such as branch and bound, outer-approximation or cutting plane meth-
ods. (Bansal et al., 2003; Biegler and Grossmann, 2004a,b)

3.3 Conclusions

When formulating the vehicle model in chapter 2 the algebraicmodeling ap-
proach is chosen.

Solving an optimal control problem for a hybrid system is a formidable
task. All DP algorithms suffer from the curse of dimensionality, which means
that the complexity grows exponentially with the problem dimensions. The
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approach with a PWA description and a MIQP solver is interesting but it is
feared that the complexity, which is roughly estimated above, would be too
great for the current application. MIQP is an extension of MINLP methods
(Biegler and Grossmann, 2004b) and therefore general MINLPmethods are
also suspected to lead to algorithms that are too complex.

It is not anticipated that a control law can be computed at each instant, for
the entire information horizon that is present. This leads to solving smaller
problems repeatedly and the MPC scheme is thus chosen.

All mentioned algorithms are suspected to render into greatcomplexity.
Therefore it is expected that whatever the method, the spacethat is searched
for an optimal solution needs to be reduced. DP handles constraints on the
state and control spaces easily. In the beginning of this chapter, it was stated
that all but the disturbances that are measurable are neglected. If the system
is discretized, the assumption about the disturbances makes it possible to for-
mulate the DP problem as a shortest path problem. Restrictions on the search
space are then imposed with easiness.

The approach taken in this thesis is a MPC scheme with discrete DP as
optimizer.



Chapter 4

Dynamic Programming

The mathematical foundation of dynamic programming (DP) isshortly pre-
sented in this chapter. The ideas that lie behind DP are old. However, it
was Bellman with his works, published in 1957 and 1962, that started to uni-
form the theory and showed the wide scope of applicability ofDP. Besides
the books by Bellman, more recent publications (Bertsekas,1995; Denardo,
1982) have formed the basis for this chapter.

4.1 System

A discrete dynamic system is described as

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (4.1)

xk ∈ Sk is the state
uk ∈ Uk is the control
wk ∈ Dk is the random disturbance

The statexk is said to belong to stagek.
A policy

π = {µ0, µ1, . . . , µN−1}

is considered to be a sequence of functions that transform statesxk into con-
trolsuk, that is

uk = µk(xk)

The setΠ contains policies for which

µk(xk) ∈ Uk ∀xk, k

holds. A policyπ ∈ Π is called an admissible policy.
Weighting functions,ζk, ζN where

ζk(xk, uk, wk), k = 0, 1, . . . , N − 1 andζN (xN )

18
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are used to define the cost of a policy.
With an initial statex0 together with an admissible policyπ ∈ Π, the cost

is

Jπ(x0) = ζN (xN ) +

N−1
∑

k=0

ζk (xn, µk(xk), wk) (4.2)

This quantity is to be minimized. The policy that achieves this is called
an optimal policyπ∗. With an initial statex0 this means that

Jπ∗(x0) = min
π∈Π

Jπ(x0)

and the optimal cost is

J∗(x0) = min
π∈Π

Jπ(x0)

4.2 Algorithm

The foundation for dynamic programming is a simple principle and it is stated
below.

Principle of Optimality

Let π∗ =
{

µ∗

0, µ
∗

1, . . . , µ
∗

N−1

}

be an optimal policy for the system in
(4.1) and assume thatπ∗ has been used up to stagei. Thus, the state is
xi and the subproblem to minimize thecost-to-gofrom stagei to N is
faced.

J∗

xi
= ζN (xN ) +

N−1
∑

k=i

ζk (xn, µk(xk), wk) .

Then the truncated policy
{

µ∗

i , µ
∗

i+1, . . . , µ
∗

N−1

}

is optimal for this
subproblem.

To draw a parallel with the application in this thesis, assume that the op-
timal policy for controlling a vehicle on the track from Linköping to Uppsala
is sought. If the optimal policy going from Stockholm to Uppsala is known,
that policy is also optimal on this part of the route from Linköping to Uppsala.
The problem faced is then to find an optimal policy between Linköping and
Stockholm to receive a policy for the entire route.

The quantityJk(xk) is interpreted as the optimal cost for the subproblem
having (N − k) number of stages, starting atxk and ending inxN . The
entity Jk(xk) will be called the cost-to-go at stagexk, stepk. Following the
principle above, a simple and intuitive algorithm can be formulated. It starts
with the subproblem containing the two last stages,N−1 andN . Solving this
subproblem givesµ∗

N−1 and the cost-to-go from stageN −1. Henceforth the
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remaining stages are included one by one in the subproblem. This algorithm
is stated below.

DP Algorithm

1. LetJN (xN ) = ζN (xN ).

2. Letk = N − 1.

3. Findu∗

k = µ∗

k(xk) that satisfies

Jk(xk) = min
uk∈U

{ζk(xk, uk, wk) + Jk+1 (fk(xk, uk, wk))} .

4. Letk = k − 1.

5. If k ≥ 0 goto 3.

6. For every initial statex0, the optimal cost isJ∗(x0) = J0(x0).

7. The policyπ∗ =
{

µ∗

0, µ
∗

1, . . . , µ
∗

N−1

}

is optimal.

The optimality of the algorithm can be proved by induction (see Bertsekas,
1995).

The system (4.1) is deterministic if the random disturbancewk can take
only one value. The evolution of the system is then exactly predictable and
there is no gain in using feedback. The minimization could thus be done over
sequences of control vectors rather than over admissible policies. (Bertsekas,
1995)

The evolution of a deterministic problem with a finite state space, under
the influence of different control signals, can be represented in a directed
graph. An arc represents a transition between states in successive stages and
is associated with a cost for this transition. The cost of an arc can be viewed
as the length of that arc. Through this, the deterministic problem is made
equivalent with a shortest path problem in a graph. The final stage is handled
by a virtual terminal nodet and connecting each statexN in stageN with
arcs having a cost ofgN (xN ).

The DP algorithm for this formulation is stated below (Bertsekas, 1995).
The new notation introduced is

ai,j
k = transition cost at stepk from statei ∈ Sk to statej ∈ Sk+1

ai,t
N = terminal cost of statei ∈ SN .

The costai,j
k is equal toζk(i, ui,j

k , wk), whereui,j
k is the control that cause

the transition from statei to j. The terminal cost of statei is equal togN (i).
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An example network is depicted in figure 4.1.

Shortest path DP Algorithm

1. LetJN (i) = ai,t
N , i ∈ SN .

2. Letk = N − 1.

3. Let
Jk(i) = min

j∈Sk+1

{

ai,j
k + Jk+1(j)

}

, i ∈ Sk.

4. Repeat step 3 fork = N − 2, N − 3, . . . , 1.

5. The optimal cost isJ0(s) which is equivalent to the length of the
shortest path froms to t.

6. The control sequence along the shortest path is optimal.

StageN210

t

kj

s

k,t
Na  

i,ja  1

i

Figure 4.1: Evolution of a deterministic system depicted asa transition graph.



Chapter 5

Control algorithm

This chapter explains the design of the algorithm to be used as the optimiza-
tion component in a MPC-scheme. The objectives of the controller and the
constraints on the solution are first identified. Further is an effort made to
reduce the search space for dynamic programming. A functionis defined that
weigh control actions versus their consequences. This costfunction is deci-
sive for which state trajectory that is rated as optimal. Thealgorithm is finally
summarized.

An overview of the controller structure is seen in figure 5.1.Input to the
controller is feedback from the vehicle and information from a database. The
most important information the database contains is road maps including cal-
culated road slopes along the way. Besides this knowledge, it is possible to

Optimisation

algorithm

3D-map,

reference speed map,

telematics

GPS

Accelerator,

brake and

gear selection

Current

speed

and load

Road

slope and

reference

speedPosition

Vehicle

Figure 5.1: The controller structure.

get more information that is useful as well, with aid of the position feedback
from the GPS. With a reference speed map, the velocity set point can be ad-
justed automatically. If the curvature of the road is known and stored, it can
be used to lower the reference speed in road segments with a high curvature.

22



5.1. Objective and constraints 23

Information about the current traffic situation could for example be retrieved
and also be used in determining the set point. In this thesis the focus is how-
ever on utilizing the road slope information.

5.1 Objective and constraints

The main objective of the system is to keep the vehicle in an allowed range
of velocities with a minimum use of fuel. Denote the reference velocityvref

[km/h]. The vehicle velocity is allowed to decrease withvdec and increase
with vinc from vref . The constraint on the vehicle speedv can then be ex-
pressed as

vref − vdec ≤ v ≤ vref + vinc (5.1)

The lower limit will be denotedvmin = vref − vdec and the upper limit
vmax = vref + vinc.

It can not be expected that a heavy truck can be kept above the minimum
allowed speedvmin, on all possible road configurations. The lower bound is
therefore treated as a soft constraint. This means that the solution will not be
infeasible if the constraint does not hold but violation will be penalized.

The brake system is assumed to be effective enough for the road ahead and
the upper bound is thus treated as a hard constraint that is not allowed to be
broken. Brake use should further at least not increase compared to traditional
cruise control.

Gear switching is a process that takes an amount of time that is not neg-
ligible. During the shifting process the engine can not propel the vehicle
and kinetic energy is then lost. Because of the required time, frequent gear
changing is neither possible nor desirable. The model at hand does not, for
simplicity reasons, contain these dynamics. A limit to the shifting frequency
is therefore needed.

5.2 Problem representation

To model the vehicle, the complete driveline model in (2.10)with the approx-
imation (2.8) of the engine torque is used. The fuel consumption is mod-
eled according to (2.13) together with the approximation ofthe upper fueling
bound in (2.6). This gives a state description with velocityas the only state,
three control signals and the slope as one measurable disturbance. The output
signals are the velocity and the fuel flow.

v̇ = f1(v, u, α)
y1 = v
y2 = f2(v, u, α)

u = [P B G ]
T (5.2)

The road profile map is position dependent rather than time dependent, as
is the vehicle model. This is handled by transforming the latter to a position
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dependent model by the following simple rewrite.

dv

dt
=

dv

ds

ds

dt
=

dv

ds
v ⇒

dv

ds
=

1

v

dv

dt
, v 6= 0 (5.3)

The event of a vehicle stop,v = 0, is not included in the problem formulation.
It is thus presumed that it is possible to keep a velocity greater than zero at all
time.

The optimization problem at hand is to be solved numericallyby means
of dynamic programming (DP). A discrete model is therefore needed.

The stage grid in DP is set toS [m]. Divide S into M parts. Leth = S
M

and denotevk = v(kh). It is further assumed that the inputs and the distur-
bance is constant duringS, that is

u(s) ≡ uk

α(s) ≡ αk
∀s ∈ [kS, (k + M)S[

Euler’s numerical integration method with step lengthh and the velocity as-
sumption then gives

vk+1 = vk +
h

vk
f1(vk, uk, αk) k = 0, 1, . . . ,M vk > 0 ∀k (5.4)

To determine the fuel mass consumed the output signaly2 is integrated. Ap-
plying Euler’s method again with the step lengthh yields

mf,k+1 = mf,k +
h

vk
f2(vk, uk, αk) k = 0, 1, . . . ,M vk > 0 ∀k (5.5)

See appendix B concerning accuracy and stability issues forthe use of Euler’s
method on the vehicle model.

A stiff driveline and a transmission modeled with a ratio andan efficiency
are assumed. The dynamics in a gear change is neglected. A gear shift is then
only an instantaneous shift of the ratio and efficiency parameters.

5.3 State augmentation

A limit on the maximum possible gear shifting frequency is wanted. The
bound is denotedklim and defined in terms of stages, of lengthS, that must
pass before a change of gear is allowed. This restriction reduces the available
control actions, but raises the need for information in a state. This is achieved
by expanding the state vector. The gear that has brought the system to the
current state is included. A counter that keeps track of the number of stages
passed since the last gear change is stored in a state together with the state
vector. The constraint is then easily imposed by not allowing a gear shift if
the counter is less than the limitklim.
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The enlarged discrete system description is then

vk+1 = vk +
h

vk
f1(vk, uk, αk)

gk+1 = gk

cM+1 =

{

1 + c0 , gM+1 = g0

1 , gM+1 6= g0

mf,k+1 = mf,k +
h

vk
f2(vk, uk, αk)

k = 0, 1, . . . ,M vk > 0 ∀k (5.6)

whereg denote the gear number andc the counter.

5.4 Determining the search space

Due to the curse of dimensionality, it is important to reducethe search space.
The search space consists of the values of velocities and control signals which
are considered by the DP algorithm.

The allowed velocities, specified in (5.1), are a first limitation. The lower
bound is however treated as soft, and therefore it may be necessary to take
additional velocities into account. The initial state is known and with this
information the first part of the search space can be reduced,because it is not
certain that all of the allowed velocities are reachable in one step. If con-
straints are set on possible final states the possible velocities can be restricted
further.

The set of gears can be limited by introducing an allowed range for the
engine speed. The brakes will only be applied if the upper bound vmax oth-
erwise would be reached. The pedal signal will be calculatedrather than
discretized.

The rest of this section explains in detail how the search space is deter-
mined.

5.4.1 Gear selection

A gearbox in a heavy truck can have more than ten gears. But with a given
velocity only a subset of these are applicable. With a constraint on the engine
speedN it is possible to select a set of usable gears in a state. A gearG is a
number that maps to a conversion ratioit and an efficiencyηt. In a state with
the velocityvk, the set of usable gearsGvk

is then defined as

Gvk
= {G | Nmin ≤ N(vk, G) ≤ Nmax} ∪ {0} (5.7)

whereN(vk, G) is the engine speed at vehicle velocityvk and gear number
G with parameters{it, ηt},

N(vk, G) =
30

π

itif
rw

vk, G 6= 0
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whereif is the final drive ratio andrw the wheel radius. Note that neutral
gear is gear number zero and modeled by a ratioit which equals zero.

5.4.2 Considered velocities

In order to determine the velocities to consider the reachable velocities, with
consideration of the allowed range, from the initial state along the horizon is
first calculated. This gives an interval of velocities for each stage. The lower
bound in the last stage is then increased to the reference velocity vref , or set
equal to the higher bound if that goes belowvref . This is done in order to
prevent the solutions of always ending in a state with a velocity lower than
the set point. In general, that would save fuel but it is not a desirable behavior.
With this restriction it is possible to go through the interval backwards from
the last stage and remove states from where it is not possibleto reach one of
the allowed velocities in the last stage. An example is shownin figure 5.2.
The gray area is the part of the state space that will be considered. The darker
area is the velocities that are removed when going backwardsfrom the last
stage.

1 ... ... ... NN−1

max

minv

v

refv

0v

Stage

velocity

0

Figure 5.2: The velocity state space

For a fix initial velocity and gear it is clear that maximum fueling, P = 1
gives the highest end velocity. Which gear that lead to the highest speed is not
as evident. It can however easily be determined by simulating. Let a vector
vP=1 contain these simulated velocities. The highest reachablespeedv+ is
then the maximum of the speeds attained with each of the gearsandP = 1.

v+ = max {vP=1}

If brake use is disregarded, the lowest speedv− that can be attained is
when the pedalP is zero. The drag torque is modeled as linear in engine
speed. The gear with the highest ratio gives the highest engine speed and
hence the greatest drag torque and the lowest vehicle speed.
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The set of reachable velocities is accordingly[v−, v+]. The constraints
on the velocity, specified in (5.1), must then be imposed. Denote the set of
velocities that are to be considered[vlow, vhigh]. The higher limitvhigh is

vhigh = min
{

v+, vmax

}

If the high limit exceeds the minimum allowed speed, then thelower bound
is set to

vlow = min
{

max
{

v−, vmin

}

, vmax

}

, v+ ≥ vmin

That is, the limit is set tov− as long as it not violates the boundsvmin and
vmax. It is however a possibility thatv+ < vmin, and then the lower limit
is set to the minimum of the speedsvP=1 that was attained with maximum
fueling.

vlow = min {vP=1} , v+ < vmin

The interval[vlow, vhigh] is first calculated for each stage, starting at the
initial state in the first stage. The lower bound in the last stage is increased
to the reference velocityvref , or set equal to the higher bound if that goes
belowvref . The intervals are then processed once again, starting out at the
new lower bound in the last stage. The lower bound in the previous stage is
increased to the minimum velocity required to reach the new bound in the last
stage. This calculation is then repeated backwards throughall stages.

There is now, for each stage, a set of velocities which are to be considered,
[vlow, vhigh]. This is a subset of the reachable velocities. The set in stagek is
discretized in constant steps ofδ. This make up a setVk

Vk = {vlow, vlow + δ, vlow + 2δ, . . . , vhigh} (5.8)

5.4.3 Pedal and brake selection

The algorithm will generate grid points in neighboring stages and try to find
feasible control actions between all of these, see section 5.6. Grid points
consist of velocity and gear values. The subproblem is therefore to find a
feasible control action, if possible, between two specifiedstates.

Assume that the grid point in the current stage is{v0, g0} and{v1, g1} in
the next stage. The required pedal signalP can then be computed from the
system equation (5.4). If

−ǫ ≤ P ≤ 1 + ǫ, ǫ > 0

holds, a feasible control action is found.P is then limited to the interval
0 ≤ P ≤ 1. With the calculated value ofP , the system (5.6) is simulated
with initial velocity v0 and gearg1. This gives the fuel mass required for this
choice of pedal level which is used to calculate the cost.
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If no feasible pedal level is found and|v1 − vmax| < δ, a brake level
is computed. The brake level that transforms the system fromv0 to v1 is
calculated from the system equation (5.4).

The parameterǫ determines the values of the calculated pedal level that
are treated as minimum (P = 0) and maximum (P = 1) fueling respectively.
It is set by the user. Details about the preceding calculations are found in
appendix B.

5.5 Cost function

With basis of the objectives, the weighting functionζk is set to

ζk(vk, vk+1, uk, uk+1, αk) = [Q1, Q2, Q3, Q4, Q5]













mf,k

κ(ek)e 2
k

|vk − vk+1|
κ(|Gk − Gk+1|)

Bk













(5.9)
whereek = vk − vref,k andκ is a step function

κ(t) =

{

1 , t > 0
0 , t ≤ 0

(5.10)

First, the required fuel massmf,k is included(Q1). Only velocities above
the reference speed is penalized(Q2). It is desirable that the speed increases
above the reference in order to gain kinetic energy, if that is advantageous in a
long view. Velocity changes are penalized(Q3) in order to receive a smooth
control. Besides the shifting limitklim, gear changes are penalized in the cost
function as well(Q4). A big klim increases the risk of not finding a feasible
solution, see section 5.6 below. With an extra cost on gear shifts, the need of
a largeklim is reduced. Finally is the brake level penalized(Q5). The effect
of the penalizing factors is stated in table 5.1 for clarity.

Factor Penalizes
Q1 Fuel use
Q2 Negative deviation from the reference velocity
Q3 Velocity changes
Q4 Gear shifts
Q5 The use of brakes

Table 5.1: Penalizing factors

The terminal cost is set to zero

ζN = 0



5.6. Algorithm 29

The set of velocities that are considered in the last stage islimited, as de-
scribed in section 5.4. It is not necessary nor desirable to penalize these al-
lowed states. It is preferred to end up in a velocity greater than the lowest
allowed, if that is advantageous considering the entire horizon.

5.6 Algorithm

The algorithm is started once everyS meter. When the vehicle has traveledS
meter, the calculated optimal control signal is applied. Ifthe vehicle position
is s, the algorithm calculates the control signal to apply whens ∈ [s + S, s +
2S[. The time available for the computation is the transport time whens ∈
[s, s + S[.

The first step is to predict the vehicle velocity afterS meter with the
current control signals. This predicted initial state is used as the starting point
when determining the velocity rangeVk which is to be considered in each
stagek, as it is described in section 5.4 above.

Because of the principle of optimality, see chapter 4, and the fact that
the MPC scheme only uses the first control of the calculated ones, it is not
necessary to store any information about subsequent stageswhen the optimal
costs has been computed for the states in a stage. This saves alot of memory,
especially if the number of steps is great.

A statei is made up of a velocityv and a gear numberg, i = {v, g}. The
counterc is merely used to make sure that the limitklim is not violated. The
possible statesi ∈ Sk in stagek will be generated from the velocity rangeVk

and the set of gearsG,

Sk = {{v, g} |v ∈ Vk, g ∈ Gv}

The counters in the states of the last stage,cj
N , j ∈ SN , are set toklim. For

each state in stagek, feasible control actions are sought which transforms the
system into the states in stagek + 1. The feasible control action with the
lowest cost is the optimal control from the current state.

The initial node is denoteds and the terminal nodet. The notation for the
costs is

ai,j
k = transition cost at stepk from statei ∈ Sk to statej ∈ Sk+1

ai,t
N = terminal cost of statei ∈ SN .

The costai,j
k is equal toζk(i, j, ui,j

k , αk), defined in (5.9). The controlui,j
k

causes the transition from statei to j with a road slope ofαk. The terminal
cost of statei is equal togN (i) which is set to zero according to (5.10). If
there is no control that transforms the system from statei to j at stagek, ai,j

k

is set to infinity. With a numerical approach, an infinite costmeans a very
large number in comparison with other transition costs.

The algorithm is summarily stated below.



30 Chapter 5. Control algorithm

DP algorithm

1. LetJN (i) = ai,t
N = 0.

2. Letk = N − 1.

3. Let
Jk(i) = min

j∈Sk+1

{

ai,j
k + Jk+1(j)

}

, i ∈ Sk.

A control action ui,j
k that transforms the system from state

{vi, gi}, i ∈ Sk to a state{vj , gj}, j ∈ Sk+1 is only allowed
if gi = gj or (1 + cj

k+1
) ≥ klim. The counter of statei, ci

k is set

to (1 + cj
k+1

) if gi = gj and1 otherwise.

4. Repeat step 3 fork = N − 2, N − 3, . . . , 0

5. The optimal cost isJ0(s) and the sought control is the optimal
control set froms.

When the sets of considered velocitiesVk, k = 1, . . . , N − 1 are deter-
mined, the counter of the initial state,cs

0, is taken into account. It not possible
to regard the shifting limit in stagesk, wherek ≥ (klim + cs

0), because it
is not known beforehand if and where the optimal path contains a gear shift.
This introduces a risk of not finding a feasible solution. Thepossibility is of
course increased with a shifting limit of many stages. If no feasible solution
is found, the controller outputs the last feasible control.

The behavior of the algorithm is controlled by a number of parameters.
These are summarized in table 5.2.

Parameter Function
S The stage grid[m]
N The number of steps of lengthS taken in the algorithm
h The step length used to integrate the system equations[m]
δ Velocity discretization[km/h]
ǫ Accuracy used when calculating a pedal level

vinc Maximum increase above the reference speed[km/h]
vdec Minimum decrease below the reference speed[km/h]
klim Minimum number of steps of lengthS before a gear shift
Nmin Lower bound on the operating range of the engine[rpm]
Nmax Upper bound on the operating range of the engine[rpm]

Table 5.2: User parameters
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5.7 Complexity

During the first phase of the algorithm, the set of velocitiesto be considered
is determined. This requires the horizon to be searched twice. Two velocities
are calculated at every step. This action is thus linear withthe number of
steps.

A state has a unique combination of a velocity and gear number. The
possible number of states is thus dependent on the range of allowed velocities,
the discretizationδ and the number of gears. The range is

vmax − vmin = vinc + vdec

at the most according to section 5.4. The maximum number of statesn is then

n = kg

(

⌊
vinc + vdec

δ
⌋ + 1

)

wherekg is the maximum number of gears that is applicable at one stage. The
limit on gear shifting frequencyklim reduces the possible number of states but
this is not taken into account.

The minimization of the cost function in the DP algorithm will at every
stepi process every combination of states in stagei andi + 1. The number
of possible combinations is the product of the numbers of states in the two
stages. At every step, the number of operations will therefore be proportional
to the square of the number of statesn2. The total number of operations for
the minimization over a horizon ofN steps is then proportional toNn2.

The preceding reasoning leads to that the complexityO as function of the
number of stepsN can be approximated by

O(N) = kNn2 = kNk 2
g

(

⌊
vinc + vdec

δ
⌋ + 1

)2

(5.11)

wherek is a constant. The complexity is linear with the horizon length. This
is a direct consequence of the fact that the allowed velocities and thereby the
number of states are limited.

Assume that the parametersvinc andvdec are determined butN andδ are
not yet chosen. Let there be two different set of parameters,N1 δ1 andN2 δ2.
The complexity ratio ofO(N1) andO(N2) is

O(N1)

O(N2)
=

N1kk 2
g

(

⌊ vinc+vdec

δ1
⌋ + 1

)2

N2kk 2
g

(

⌊ vinc+vdec

δ2
⌋ + 1

)2
≈

N1

N2

(

δ2

δ1

)2

(5.12)

If the velocity discretization is made twice as accurate thehorizon must then
be made four times as short in order to achieve the same computational com-
plexity.
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Including the neutral gear in the set of gears that can be chosen obviously
increases the complexity due to the fact that the possible number of states
increases. To estimate the magnitude of the raise, let the complexity function
depend on the parameterkg. If kg is increased bym, the complexity ratio is

O(kg + m)

O(kg)
=

Nk(kg + m) 2
(

⌊ vinc+vdec

δ ⌋ + 1
)2

Nkk 2
g

(

⌊ vinc+vdec

δ ⌋ + 1
)2

=

(

1 +
m

kg

)2

(5.13)

With aid of figure 2.5 the number of gears that is applicable inneighborhood
of one velocity is estimated to three. The complexity increase according to
(5.13) withm = 1 then becomes

O(kg + 1)

O(kg)
=

(

1 +
1

3

)2

=
16

9
≈ 1.8

A rather large increase is the result. The gear shifting limit klim has been
neglected and therefore the value can be seen as an upper bound to the com-
plexity increase. IfN is much larger thanklim the ratio will be closer to the
approximated value than if the values ofN andklim are more alike.

The stage gridS do not directly affect the complexity of the algorithm but
will of course increase the computational effort needed forthe MPC controller
by determining how often the algorithm is started.



Chapter 6

Simulations

In this chapter the results of a number of simulations on different road sec-
tions are reported. First the used parameters values are described and then
results from both artificial and authentic road maps are discussed and illus-
trated. The magnitude of the gain in the possibility of usingthe neutral gear
is investigated. Finally, the the computational complexity of the algorithm is
examined.

To assess the performance on different road sections, the relative differ-
ence in the fuel consumption∆fuel and the travel time∆time are calculated
as follows

∆fuel =
fuelMPC − fuelPI

fuelPI

∆time =
timeMPC − timePI

timePI

where the subscript refers to the respective controller.
When studying the computational complexity a ratioq is determined be-

tween the required computer time and the time simulated during that time.

q =
computer time
simulated time

If it takes the computert1s to simulatet2s, the ratio isq = t1
t2

. A ratio of
one thus means that the simulation precisely runs in real time. A ratio greater
than one means that the simulation demands more time than theactual time
simulated and conversely.

Simulation times reported are relative to a PC with a Intel Celeron 2.6GHz
processor and 480Mb of RAM running Windows XP SP2. The MatLabver-
sion used is 6.5.1, Release 13.

33
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6.1 Parameters

The resolution in position of the road measurements is 25m which is about
the length of a heavy truck. This length is used as basis when choosing the
stage gridS. Simulations with a grid of 10, 25 and 50m are reported. The
step length used to integrate the system equationsh is set toS and in appendix
B the accuracy in predicted velocities with these step lengths are discussed.
This discussion is the basis for selecting the velocity discretization. When
studying controller behavior in detail, a prediction horizon of 1000m is used.
When varying the prediction horizon it appears that a length of 1000m is
necessary to achieve satisfactory results, see section 6.5.

The algorithm parameters that are used if nothing else is specified, are
found in table 6.1. The minimum number of steps before a gear shift is al-
lowed,klim is adjusted with the stage gridS so thatS · klim equals 200m.
Only one step is taken when using the Euler method to integrate the system
equations which means that the step lengthh is set equal to the stage gridS.

Parameter Function Value
S · N Horizon = Grid x Steps 1000m

h Step length when integrating S
δ Velocity discretization 0.1 or 0.2
ǫ Accuracy when calculating a pedal level 0.1

vinc Max. increase above the reference 5km/h
vdec Min. decrease below the reference 5km/h
klim Min. number of steps before a gear shift 200

S
Nmin Lower bound on engine operating range 1000rpm
Nmax Upper bound on engine operating range 2000rpm

Table 6.1: User parameters

The values of the penalization factors are not easily determined. The
used values have been chosen by simulating simple road sections as a straight
road and the artificially created road maps described in section 1.2 and tuning
the parameters to get satisfactory behavior of the controller. When a set of
values have been determined through these simple sections,the controller
performance is checked on pieces of the authentic road maps available. The
process is repeated until the performance is good enough. All penalization
factors and their values used in simulations are stated in table 6.2.

The results and the values of the penalization factors naturally depends
on the vehicle parameters used. The most important parameter is the mass
of the vehicle. The vehicle mass has been chosen to 40 metric tons and the
reference velocity is set to 85km/h in all simulations. The complete set of
vehicle parameters and their values are to be found in appendix A.
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Factor Penalizes Value
Q1 Fuel use 2
Q2 Negative deviation from the reference speed5 (if δ=0.1) or 7 (ifδ=0.2)
Q3 Velocity changes 15
Q4 Gear shifts 15
Q5 The use of brakes 100

Table 6.2: Penalization factors

6.2 Constant slope

Artificial road sections with one ascent or descent are created. The section
begins with 500m straight road followed byL m with constant slopeα and is
finally ended with another 1500m straight road, see figure 6.1. Simulations
are run on sections where the lengthL and slopeα are varied. The results
are shown in figure 6.2. In ascents (α > 0), the effect on fuel consumption
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Figure 6.1: Artificial road section with one hill.
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Figure 6.2: The effect on fuel consumption and travel time inascents and
descents with varying slope and length.

is small but the travel time is reduced. The mean velocity is thus increased.
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The increase grows with the length of the hillL and the main cause of this in
the longer hills is that the controller accelerates the vehicle before the uphill.
An example of this effect in the section withL = 500m andα = 3.5% is
shown in figure 6.3. With the extra fuel used for the acceleration before the
hill it is possible to keep a higher velocity throughout the ascent and the time
required on a lower gear is reduced. This behavior is primarily determined
by the ratio between the penalization of fuel use (Q1) and negative deviation
from the reference velocity (Q2) in the cost function, see (5.9) in section 5.5.

The controller only accelerate the truck before the the hillif it is steep
enough. In figure 6.4 the length is still 500m as in the former example, but
the slope is only 2%. The sole difference between the MPC and PI controller
appear after the hill and is due to the fact that the integrator part of the PI
controller is saturated (with its maximum value). This effect is also seen in
the previous example in figure 6.3.

The use of fuel is noticeably reduced in descents (α < 0) according to
figure 6.2. The reduction increases with steeper and longer descents and the
main cause of this is that the controller lets the velocity sink below the ref-
erence before the descent. The travel time is generally slightly increased
because of the lower velocity before the downhill. If the maximum velocity
is reached going downhills, the need of braking is lowered owing to the lower
velocity. The relationship in the cost function, see (5.9) in section 5.5, be-
tween the penalization of fuel use (Q1), negative deviation from the reference
velocity (Q2) and brake use (Q5) is primarily decisive of when to lower the
velocity.

Examples of descents with slopeα = −3% and lengthsL of 300 and
500m are seen in figures 6.5 and 6.6. In the short downhill, seefigure 6.5,
neutral gear is used from about 200m before to 200m after the downhill slope.
The gain in form of kinetic energy is evidently greater than the fuel used to run
the engine on idle. If the neutral gear was disengaged in the 500m downhill,
see figure 6.6, the maximum velocity would be reached earlierand increase
the need for braking. In both examples the brake use is lowered compared
to the PI-controller. The difference between the MPC and PI controller after
the descent is owing to the fact that the integrator part of the PI controller is
saturated (with its minimum value).
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Figure 6.3: A 500m ascent with slope of 3.5%. The MPC controller acceler-
ates the vehicle before the ascent.
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Figure 6.5: A 300m descent with slope of -3%. Fuel and brake use is lowered
by the MPC controller by letting the vehicle slow down beforethe descent.

0 500 1000 1500 2000 2500
−15

−10

−5

0

A
lti

tu
de

 [m
]

  −3%

∆fuel = −11.48 %  ∆time = 0.72 %

0 500 1000 1500 2000 2500
80

85

90

V
el

oc
ity

 [k
m

/h
]

−− v
ref

0 500 1000 1500 2000 2500

0

0.5

1

Le
ve

l

0 500 1000 1500 2000 2500

12

G
ea

r

Position [m]

MPC
PI

MPC
PI

MPC acc
MPC brake x5
PI acc
PI brake x5

Figure 6.6: A 500m descent with slope of -3%. Fuel and brake use is lowered
by the MPC controller by letting the vehicle slow down beforethe descent.
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6.3 Crest and depression

As described in section 1.2, artificial crests and depressions are created by
letting the slope vary linear with position. The crest or depression isLm long
and starts with 500m and ends with 1000m straight road. If theslope increases
linear with position fromα to β whereα < 0 andβ > 0, a depression is
received. If the slope decreases linear with position fromα to β whereα > 0
andβ < 0, a crest is created. The absolute values ofα andβ are set equal
andβ = |α| is then varied together with the lengthL in order to create a set
of different road sections. A positive value ofβ therefore means a depression
and a negative value means a crest, see figure 6.7. The algorithm is applied
to a set of these sections and the results are shown in figure 6.8. The fuel
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Figure 6.7: Artificial road section with a depression or a crest.
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Figure 6.8: The effect on fuel consumption and travel time incrests and de-
pressions with varying slopes and lengths.

consumption is reduced in both crests and depressions if theslope is greater
than 1% or less than -1% and the lengthL is longer than about 1000m. The
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travel time is rather moderatly affected. The greatest difference occurs in long
and steep depressions according to figure 6.8.

Figure 6.9 and 6.10 shows a crest and a depression, each of 1500m length.
The neutral gear is used in both cases. On the top of the crest in figure 6.9, the
vehicle is run on neutral gear until the road is straight. At the top the velocity
sinks below the reference but as the downhill slope gets steeper the vehicle
accelerates back to the reference velocity on neutral gear.In the depression,
neutral gear is used from the beginning to the bottom of the depression. This
allows the vehicle to accelerate faster than running on fuelcut which can be
seen in figure 6.10.

The use of neutral gear is mainly governed by the relationship between
the penalizing factors for fuel use (Q1), negative deviation from the reference
velocity (Q2) and gear shifts (Q4) in the cost function, see (5.9) in section
5.5.

In figures 6.11 and 6.12, the previous crest and depression are made twice
as steep. This evidently reveals a greater potential for saving fuel.

In the the crest, figure 6.11, the controller accelerates thevehicle before
the uphill begins. This leads to a higher velocity from the foot to the top of
the crest. Before the top is reached, the accelerator level is decreased despite
that the velocity is much below the reference. The coming downhill will
accelerate the vehicle above the reference anyway and the lower velocity on
the top of the crest will reduce the need for braking. The lower gear is kept
throughout the crest to further reduce the need of braking. The vehicle is
finally let to slow down to the reference velocity on the neutral gear. Neutral
gear makes the retardation slightly smaller.

In the depression in figure 6.12, the vehicle is let to slow down before the
downhill begins. This saves fuel and the need for braking is lowered later in
the downhill . The controller increases the pedal level at the bottom of the
depression, despite that the velocity is above the reference. This acceleration,
in the MPC case, allows the truck to keep a higher velocity throughout the
downhill on the same gear whereas the PI controller shifts toa lower gear
when the uphill gets steep.

The acceleration before an ascent and retardation before a descent as it
appear in the crest and depression in figures 6.11 and 6.12 arethe same effects
as described above in the case of a constant slope, see figures6.3, 6.5 and 6.6.
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Figure 6.9: A 1500m crest. The MPC controller lets the vehicle run on neutral
gear as the downhill slope gets steeper.
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Figure 6.10: A 1500m depression. The MPC controller uses neutral gear to
accelerate faster than if the twelfth gear was engaged.
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Figure 6.11: A 1500m crest. The MPC controller accelerates the vehicle
before the crest and lets it slow down at the top.
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Figure 6.12: A 1500m depression. The MPC controller lets thevehicle slow
down before the depression and accelerates it at the bottom.
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Figure 6.13: A section on the road from Linköping to J̈onköping. The section
begins 97km from Link̈oping and ends 21km from Jönköping. Acceleration
prior a steep ascent is seen at 3km. Retardation prior a descent is seen at 2,
4 and 5km. A lower gear is used to reduce the load on the brake systems
between about 6 and 8km. Neutral gear is finally used at about 8km to slow
down to the reference velocity after the steep descent.
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Figure 6.14: A section on the road from Jönköping to Link̈oping. The section
begins 21km from J̈onköping and ends 97km from Jönköping. Acceleration
prior a steep ascent is seen at 1,4 and 6km. Retardation priora descent is seen
at 5 and 7km. A lower gear is used to reduce the load on the brakesystems
between about 5.5 and 6km. Between about 7 and 8km, the truck is let to
accelerate on neutral gear. When the slope lessens and the truck retards, the
twelfth gear is engaged when the reference velocity is reached.
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6.4 Authentic road sections in detail

A portion of the road between Linköping and J̈onköping is selected. Simula-
tions are made with this section in both directions. The results are shown in
figures 6.13 and 6.14. The effects discovered in the artificial road sections are
also found in these simulations with authentic sections.

In figure 6.13, acceleration prior a steep ascent is seen at 3km. Retardation
prior a descent is seen at 2, 4 and 5km. A lower gear is used to reduce the
load on the brake systems between about 6 and 8km. Brake use ishowever
mostly lowered by the retardation before the descent. The truck is let to slow
down to the reference velocity on neutral gear after a steep descent at about
8km.

In figure 6.14, acceleration prior a steep ascent is seen at 1,4 and 6km.
Retardation prior a descent is seen at 5 and 7km. A lower gear is used to
reduce the load on the brake systems between about 5.5 and 6km. Brake use
is however mostly lowered by the retardation before the descent. Between
about 7 and 8km, neutral gear is used and the the truck accelerates. When
the slope lessens and the truck retards, the twelfth gear is engaged when the
reference velocity is reached.

The use of fuel is greatly reduced (-12.73%) in the first section shown in
figure 6.13. The reduction is mainly made through the retardations before the
downhill slopes at about 2, 4 and 5km. The acceleration priorthe uphill at
3km leads to that the twelfth gear is used for about 200m longer and a higher
velocity is maintained throughout the hill compared to the PI-case. The higher
velocity in the uphill between 3 and 4km lessens the increaseof the travel time
that is a result of the retardations. The change in travel time for this section
then becomes negligible (+0.07%). The magnitude of the fuelconsumption
reduction is of course dependent on the fact that the altitude above sea level
decreases with almost 100m over the 9km in figure 6.13. However, when this
section is used in the other direction, figure 6.14 shows thata decent reduction
of the fuel consumption still can be achieved (-2.26%).

Figure 6.14 shows the section where the altitude increases with about
100m over 9km. Fuel is primarily saved through the retardations before the
downhill slopes at 5 and 7km. In this case, the accelerationsprior ascents ev-
idently increases the mean velocity more than the retardations prior descents
decreases it, resulting in a travel time reduction (-1.77%).



46 Chapter 6. Simulations

0 20 40 60 80 100 120
0

50

100

150

200

250

300

A
lti

tu
de

 [m
]

0 20 40 60 80 100 120
−5

−4

−3

−2

−1

0

1

2

3

4

S
lo

pe
 [%

]

Linköping Jönköping Linköping JönköpingPosition [km] Position [km]

Figure 6.15: The road between Linköping and J̈onköping
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Figure 6.16: The effect on fuel consumption and travel time on the road
Linköping to J̈onköping. The stage gridS is 25m and the velocity discretiza-
tion δ is 0.1 and 0.2km/h.
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Figure 6.17: The effect on fuel consumption and travel time on the road
Linköping to J̈onköping. The stage gridS is 50m and the velocity discretiza-
tion δ is 0.1 and 0.2km/h.
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6.5 From Link öping to Jönköping and back

The altitudes above sea level and the road slopes are shown infigure 6.15.
The entire distance is about 127km. The slope varies betweenabout -4% and
+3%. Simulations are made with the road in both directions. The prediction
horizon is varied between 25m and 3000m. Stage gridsS of 25 and 50m are
used in conjunction with velocity discretizationsδ of 0.1 and 0.2 km/h.

The effects on the fuel consumption and the travel time whenS = 25m
andδ equals 0.1 and 0.2km/h are shown in figure 6.16. It is seen thatthere
are only small differences betweenδ = 0.1 andδ = 0.2 when the horizon is
more than 1000m.

The fuel consumption is at best reduced with about 2% in the direction to-
ward J̈onköping and about 3% toward Linköping. The altitude above sea level
is around 60m higher in Jönköping than in Link̈oping, see figure 6.15. Go-
ing toward J̈onköping thus in general means facing more uphill than downhill
slope, which may explain most of this difference.

The travel time is moderately affected and the magnitude does not vary
much with the horizon according to figure 6.16. The fuel use ishowever
clearly dependent on the horizon. A horizon longer than 2000m seems ab-
solutely superfluous and good results are achieved with about 1000m, at least
for this road configuration.

The effects on the fuel consumption and the travel time whenS = 50m
andδ equals 0.1 and 0.2km/h are shown in figure 6.17. The solutionswith
δ = 0.1 are poorer with at least half a percent, with equal regard to fuel
use and travel time, than whenδ = 0.2. It may be unexpected that the
higher accuracy gives somewhat poorer performance. This indicates that a
smallerδ will not always give better solutions. In appendix B the meaner-
ror in predicted velocities withh = S = 50m and N=20(1000m) on the road
Linköping to J̈onköping are estimated to be about 0.1km/h which is the size of
the smallerδ. This may suggest that it is not beneficial to use a discretization
too close to the mean error.

6.6 Neutral gear

The use of neutral gear adds another degree of freedom in the problem. To
estimate the magnitude of the gain that is achieved through this, simulations
are made where neutral gear is disallowed. The stage gridS is 25m, the ve-
locity discretizationδ is 0.2km/h and the penalization factorQ2 is set to 7.
A comparison between figures 6.16 and 6.18 reveals the effects. Traveling
toward J̈onköping, the fuel consumption reduction is only lessened by about
half a percent. The travel time is however increased half a percent. This
increase does of course contribute to the relatively small change in the fuel
consumption. If fuel use and travel time are given the same weight, the so-
lutions become about two times poorer compared to when neutral gear was
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Figure 6.18: The effect on fuel use and travel time on the roadLinköping to
Jönköping. Use of neutral gear is disallowed.S = 25, δ = 0.2 andQ2 = 7.

used
The most evident difference appears in the direction towardLinköping.

The change in travel time is similar but the fuel use is reduced about three
times more when neutral gear is allowed than when it is disallowed. The
altitude above sea level is around 60m higher in Jönköping than in Link̈oping,
see figure 6.15. Neutral gear is as expected most useful when there is more
downhill than uphill slope.

6.7 Complexity

The ratioq tells the required computer time to simulate the system one sec-
ond. A ratio of one means that the simulation precisely can berun real time.
A ratio greater than one means that the simulation demands more time than
the actual time simulated and conversely.

In order to assess the computational complexity and to validate the ap-
proximation in (5.11) the ratioq is determined for varying step lengthN for
a stage grid of 25 and 50m and velocity discretizations of 0.1and 0.2km/h.
The results are shown in figure 6.19. The test track Linköping to J̈onköping
is used in these simulations. The linear dependence of the horizon length ap-
pears clearly in all figures. WithS = 25, δ = 0.1 (upper left figure) a horizon
of about 750m allows the simulation precisely to be run in real time. Accord-
ing to (5.12) the same computational complexity is achievedwith a horizon
four times as long if the discretizationδ is doubled. WithS = 25, δ = 0.2
the simulation should thus run in real time up to a horizon length of about
750·4=3000m which the upper right figure confirms. Doubling the stage grid
S will lead to half as many algorithm runs on the same distance.The same
horizon length is further achieved with half as many steps which halves the
complexity. In total it should thus be four times as demanding usingS = 25m
thanS = 50m which is confirmed by comparing the upper and lower figures.
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Figure 6.19: The ratioq tells the required computer time to simulate the sys-
tem one second. Simulations are made on the road Linköping to J̈onköping.



Chapter 7

Conclusions

The scenario in this thesis has been a heavy truck traveling on a road with a
constant reference velocity and where small deviations from this reference are
allowed. The aim was to reduce the fuel consumption with almost no increase
in the travel time. The fuel use can effortlessly be lowered by a lowered mean
velocity but the travel time will then obviously increase. In simulations a
5km/h positive and negative deviation from the reference velocity is allowed.
Simulations on the test track Linköping to J̈onköping and back with a load of
40 metric tons reduces the fuel consumption with 2.5%, 2% in the direction
toward J̈onköping and 3% going back toward Linköping, whereas the travel
time only is insignificantly changed. These results are achieved provided that
more than 1500m of the road ahead is take into consideration (see figures 6.16
and 6.17). The reductions are achieved through rather intuitive actions.

Simulations show that the greatest fuel use reductions are made when a
downhill with sufficient slope is ahead. The vehicle velocity is lowered before
the downhill and the truck is then let to accelerate in the descent (see figure
6.6). Slowing down before a steep downhill will further in general lower the
need for braking.

When there is a steep uphill ahead, it may be favorable to accelerate be-
fore the hill. A higher velocity reaching the uphill can lessen the need for
lower gears (see figure 6.3). This action do not decrease the use of fuel of no-
ticeable amounts, it may even slightly increase it. Simulations show that the
travel time is, by the higher mean velocity, shortened of a greater magnitude
than the change in fuel consumption. Considering a route, the time decrease
will however counterbalance the time increases introducedwhere the vehicle
velocity is lowered prior a descent.

The neutral gear can finally be used in order to gain kinetic energy from
the torque otherwise used to pull the engine. On artificial road sections sim-
ulations shows that the fuel consumption can be fairly decreased whereas the
travel time only is slightly affected (see figures 6.9 and 6.10). On a route
with more downhill than uphill slope, the use of neutral gearseems to be the
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most potent way of reducing fuel use. When going back this route and mostly
going uphill, a clever choice of the pedal level appear to be just as important
(compare figures 6.16 and 6.18). On the test track Linköping to J̈onköping
the solutions became two to three times better, with equal regard to fuel use
and travel time, with the possibility of using neutral gear.

The limited range of allowed velocities results in the rather attractive
property that the computational complexity of the algorithm is linear in the
horizon length. The complexity however increases with the square of the
number of possible states in a stage. Horizons of more than 1000m produce
the best results amongst the simulations made. With a stage grid of 50m and
a velocity discretization of 0.2km/h results close to the best ones is achieved
with a horizon of 2000m (see figure 6.17). This simulation runs four times as
fast as real time which means that simulating one seconds requires one fourth
of a second of computer time (see figure 6.19). A stage grid of 25m and the
same discretization gives about the same result with a horizon of 1500m (see
figure 6.16). These simulation runs about twice as fast as real time.



Chapter 8

Future work and extensions

Any controller that make use of topographic information is dependent on the
road maps being reasonably accurate and that the vehicle position is robustly
determined. This is obviously of importance and a controller’s robustness
against the inevitable errors in the information must be investigated. In the
case of a MPC controller, the performance further relies heavily on the model
which is used.

The repeated computation in the control algorithm is ratherdemanding.
This is a drawback which is not easy to circumvent. In the following ap-
proaches to this problem are presented.

An much simpler and more ad hoc algorithm could be developed by tak-
ing the discovered actions as starting points. At regular intervals calculations
could be made deciding if it is favorable to slow down, accelerate or using
neutral gear. The ordinary cruise controller is used if noneof these actions
are rated as beneficial. The calculations should probably take at least 1000m
of the road ahead into account according to the results in chapter 6.

If a simple logic is established that determines which gear to use in a state
and the use of neutral gear is disallowed, the complexity could be reduced
up to sixteen times (setkg = 4 andm = −3 in (5.13)). In case this logic
resembles an existing automatic gear selection system, theMPC algorithm
could for example be used on-line to generate reference trajectories that can
be fed to a feedbacked cruise controller.
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Appendix A

Simulink model

The implementation structure follows the standard formulated by the Center
for Automotive Propulsion Simulation (Eriksson et al., 2004). Due to the fact
that the Center is in its startup phase, few complete models are available and
therefore only templates have been used. In figure A.1 the structure of the
truck model is shown.

1

vehicle fb out

cmd in

mech fb in [rad/s]

sensor out

mech power out [Nm]

ice_model

cmd in

mech power in [Nm]

mech f b in [rad/s]

sensor out

mech power out [Nm]

mech fb out [rad/s]

final_drive

driv er cmd in

sensor in

v ehicle f b out

cmd out

controller

cmd in

mech power in [Nm]

mech fb in [rad/s]

sensor out

mech power out [Nm]

mech fb out [rad/s]

clutch_and_gearbox

cmd in

mech power in [Nm]

sensor out

mech fb out [rad/s]

chassis_model

1

driver cmd in

ice gearbox f inal_driv e chassis
<ice> <gearbox> <f inal_driv e> <chassis>

Figure A.1: Truck model structure

Table A.1 state the values of the vehicle parameters introduced in chap-
ter 2. The engine map used and other vehicle parameters are supposed to
resemble a typical Scania heavy truck.
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Parameter Value Unit
Engine
InertiaJe 3.5 kgm2

Number of cylindersncyl 6 -
Number of rev. per strokenr 2 -
Engine mapT̂map

ae -3.30·10−3 Nm
rpm

be 9.16 Nm stroke
mg

ce -82.53 Nm

Fuel flow limit δ̂max

aδ -1.59·10−4 mg
rpm2 stroke

bδ 0.42 mg
rpm stroke

cδ -57.05 mg
stroke

Drag torque T̂drag

ad -8.80·10−2 Nm
rpm

bd -51.51 Nm
Idle values
Engine idle speedNidle 600 rpm
Idle fuelingδidle 10.44 mg

stroke
Final drive
Ratioif 3.27 -
Efficiencynf 0.97 -
Longitudinal forces
Wheel inertiaJw 32.9 kgm2

Rolling resistance coefficientcr 7·10−3 -
Gravity constantg 9.81 m

s2

Air drag coefficientcw 0.6 -
Max. cross section areaAa 10 m2

Air densityρa 1.29 kg
m3

Wheel radiusrw 0.52 m
Brakes
Maximum torquekb 20·103 Nm

Table A.1: Vehicle parameters
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The ratiosit and efficienciesηt for the gearbox are stated in table A.2.
The ratios are chosen on the pattern of the Scania GRS900R gearbox. The ef-
ficiencies are however only made up and do not come from measurements.
These have been chosen so that the efficiencies increases as the ratio de-
creases.

Gear selection is made as described in section 2.5. The thresholds are
shown in table A.3. The cruise controller parameters are finally presented in
table A.4.

Gear Ratio Efficiency Gear Ratio Efficiency

1 11.27 0.88 7 3.01 0.94
2 9.14 0.89 8 2.44 0.95
3 7.17 0.90 9 1.91 0.96
4 5.81 0.91 10 1.55 0.97
5 4.62 0.92 11 1.23 0.98
6 3.75 0.93 12 1 0.99

Table A.2: Gearbox parameters

Gear Down Up Gear Down Up

1 - 1800 7 1300 1800
2 1300 1800 8 1300 1800
3 1300 1800 9 1300 1800
4 1300 1800 10 1300 1800
5 1300 1800 11 1300 1700
6 1300 1800 12 1300 -

Table A.3: Engine speed thresholds for gear shifting [rpm].

Pedal controller
Proportional constantKP 1.845
Integrator constantIP 0.2
Saturation value 30
Brake controller
Proportional constantKB 0.3
Integrator constantIB 0.02
Saturation value 30
Thresholdvmax [km/h] vref + 5

Table A.4: PI controller parameters



Appendix B

Calculations

In this appendix various calculations are performed. The vehicle model is first
given a more compact description by the introduction of a setof parameters. It
is further shown how the pedal and brake levels used in the control algorithm
are computed. Finally, the numerical stability and accuracy of Euler’s method
applied to the vehicle model is investigated.

B.1 Vehicle model

The complete driveline model is stated in (2.10). With the identity

cr cos α + sin α =
√

1 + c2
r sin(α + arctan cr)

the equation becomes

v̇ =
rw

Jw + mr2
w + ηf i2fηti2t Je

(

ηtitηf ifT (v, P,G)

−kbB−
1

2
cwAaρarwv2 − mgrw

√

1 + c2
r sin(α + arctan cr)

)

.
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Introduce the parameters

c1 =
rw

Jw + mr2
w + ηti2t ηf i2fJe

c2 =
1

2
cwAaρarw

c3 = ηtitηf if

c4 =
30

π

itif
rw

c5 =
1

6 · 104

ncyl

nr

c6 = mgrw

√

1 + c2
r

c7 = arctan cr

and the driveline model can be written as

v̇ = c1

(

c3T (v, P,G) − kbB − c2v
2 − c6 sin(α + c7)

)

(B.1)

The engine speed is

N =

{

c4v G 6= 0
Nidle G = 0

The mass flow of fuel in (2.13) becomes

ṁf (N,P,G) =

{

c5NPδ̂max(N) G 6= 0
c5Nidleδidle G = 0

(B.2)

The engine torqueT is approximated according to (2.8) and the upper
fueling boundδmax according to (2.6). The equations are repeated below for
convenience.

T̂e(N,P,G) =







aeN + beP δ̂max(N) + ce P > 0, G 6= 0
adN + bd P ≤ 0, G 6= 0

0 G = 0

δ̂max(N) = aδN
2 + bδN + cδ

B.2 Pedal and brake level

The problem faced is to calculate a pedal or brake level that transforms the
system from a velocityv0 to another velocityv1 using the gearg1 when the
road slope isα. We assume that another gear than neutral is active (G 6= 0).



B.3. Numerical stability of Euler’s method 61

The problem is represented according to (5.4) withM = 1, which means
that the step lengthh used for integration is set equal to the stage gridS. The
equation then becomes

v1 = v0 +
h

v0

f1(v0, u, α) vk > 0 ∀k (B.3)

whereu = [P B G ]
T andf1 = v̇ using (B.1).

When calculating a pedal levelP it is assumed thatP > 0 which means
that the engine torque is

T̂e(N,P,G) = aeN + beP δ̂max(N) + ce (B.4)

If then
−ǫ ≤ P ≤ 1 + ǫ, ǫ > 0

holds, a feasible pedal level is found. The parameterǫ will thus determine the
values of the pedal level that are treated as minimum (P = 0) and maximum
fueling (P = 1) respectively. The brake levelB is assumed to be zero. Insert
(B.4) in (B.3) withN = c4v andu = [P 0 G ]

T . Solving forP yields

P =
−c1c3ceh − aec1c3c4hv0 − v2

0 + c1c2hv2
0 + v0v1 + c1c6h sin(α + c7)

bec1c3h (cδ + bδc4v0 + c2
4aδv2

0)
(B.5)

When calculating a brake levelB it is assumed thatP = 0 which means
that the engine torque is the drag torque

T̂e(N,P,C) = adN + bd (B.6)

If then
0 ≤ B ≤ 1

holds, a feasible brake level is found. Insert (B.6) in (B.3)with N = c4v and
u = [0 B G ]

T . Solving forB yields

B =
bdc1c3h + adc1c3c4hv0 + v2

0 − c1c2hv2
0 − v0v1 − c1c6h sin(α + c7)

c1kbh
(B.7)

B.3 Numerical stability of Euler’s method

The system equations are integrated with Euler’s method, see (5.4) and (5.5).
The velocity function is linearized and then stability willbe investigated using
the linearized system. The fuel flow function (B.2) is only a polynomial of
the velocity. If the calculation of the velocity is stable, the computation of the
flow will also be stable.
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B.3.1 Linearization

The rewrite (5.3) is used to replace the time dependence withposition depen-
dence. With (B.1) the system becomes

f(v, u, α) =
dv

ds
=

c1

v

(

c3T (v, P,G) − kbB − c2v
2 − c6 sin(α + c7)

)

The system can be linearized around a singular point wheref(v0, u0, α0) = 0
and written on the form

ż = az + Bw, z = v − v0, w = u − u0

wherea =
∂f

∂v
|v0,u

0
and the the row vector B are given bybi =

∂f

∂ui
|v0,u

0

(Ljung and Glad, 2003).
The eigenvalue of the system matrix isa and it is interesting when inves-

tigating system properties. In tables B.1 and B.2, the eigenvalues for three
different stationary points and two vehicle masses are shown. The vehicle

v0 P0 B0 α0 λ
85 0.443 0 0.00% -0.238·10−3

90 0 0.0490 -4.00% -0.224·10−3

85 0 0 -1.25% -0.192·10−3

Table B.1: Eigenvaluesλ at different stationary points. The velocityv0 is in
km/h. The mass is 40 metric tons.

v0 P0 B0 α0 λ
85 0.331 0 0.00% -0.451·10−3

90 0 0.0153 -4.00% -0.445·10−3

85 0 0 -1.80% -0.382·10−3

Table B.2: Eigenvaluesλ at different stationary points. The velocityv0 is in
km/h. The mass is 20 metric tons.

parameters besides the mass are found in appendix A.

B.3.2 Test problem

To study the stability for the numerical method, the following test problem
can be used (Eld́en and Wittmeyer-Koch, 1996; Ljung and Glad, 2004)

ẋ = λx, x(0) = x0
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Applying Euler’s method yields

xn+1 = xn + hλxn = (1 + hλ)xn

The solution to the difference equation is

xn = x0(1 + hλ)n

The number sequence must be decreasing to regard the method as stable. It
is easy to see that the solution above is decreasing if

|1 + hλ| < 1 ⇔ −2 < hλ < 0

holds. A stable differential equation hasλ < 0 and because ofh > 0, the
step length must be chosen as

h <
2

|λ|

to receive a decreasing solution.

B.3.3 Conclusions

The reasoning about the test problem can directly be used on the linearized
system. The absolute values of the eigenvalues for the different points are all
less than1

2
10−3, see tables B.1 and B.2. This indicates a rather slow system.

Comparing the two tables also show that the eigenvalues roughly double when
the mass halves. The Euler method is thus stable for step lengths more than

2
1
2
10−3 = 4000m. Such long step lengths are not reasonable considering

the truncation errors. The global truncation error in Euler’s method is, as
well known, O(h) (Eldén and Wittmeyer-Koch, 1996). Accuracy is thus a
greater concern when choosing the step length. See the following section for
a discussion about the truncation error.

B.4 Accuracy in Euler’s method

The error sources when integrating differential equationsnumerically are
truncation and rounding errors.

A floating point representation with baseβ andt fraction numbers leads to
a relative rounding error less than1

2
β−t (Eldén and Wittmeyer-Koch, 1996).

MatLab on a PC uses binary representationβ = 2 and double precision (64
bits) t = 52 according to the IEEE floating point standard. The relative
rounding error is thus less than

1

2
2−52 ≈ 1.1 · 10−16
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The pedal and brake levels that are used in the algorithm presented in
chapter 5 are calculated as described in detail in section B.2 above. The sys-
tem equations are solved with aid of Euler’s method with a step lengthh
equal to the stage gridS. Levels are further kept constant duringS m. If the
relatively small rounding errors are neglected the errors introduced by these
calculations come from truncation errors in Euler’s method. To investigate
the magnitude of these errors computed pedal and brake levels are used for
open-loop control. First are the levels calculated according to (B.5) and (B.7).
The levels are then applied to the system equations which aresolved with a
higher accuracy than the accuracy used in the calculation. The predicted ve-
locity which was used in the level calculation can then be compared to the
velocity obtained when solving the system with the higher accuracy. This is
done in the following using the road Linköping to J̈onköping and compar-
ing predicted velocities to actual velocities obtained when applying Euler’s
method with a step length ofh = 2m. A step of 2m corresponds to a sam-
ple time of 2

85/3.6 ≈ 0.08s when traveling in 85km/h. In the calculations the
aim has been to calculate a pedal level that maintains the reference velocity
(85km/h) or a brake level such that the maximum velocity (90km/h) is kept.
Gear selection is made based upon current engine speed as described in sec-
tion 2.5.

In figure B.1 the errors made in one step are shown for different step
lengthsh. The errors are all rather small. The greatest errors occur when the
altitude is changing quickly. When the slope lies between about -2 and 2%
the erros are as smallest.

It is also interesting to compare the errors using differentstep lengthsh
and a number of stepsN such thath ·N equals the same length. In figure B.2
the errors made whenh · N equals 1000m are shown.

B.4.1 Conclusions

The errors made with Euler’s method are naturally decreasedwhen shorter
step lengths are used. The magnitude of the errors on one roadsection can
be seen in figure B.1. It is however also worthwhile to comparestep lengths
when predicting the velocity over a fixed total length as in figure B.2.

According to figure B.2 the maximal error of usingN steps ofhm roughly
increases with 50% whenh doubles andN halves. The available measure-
ments give one slope value each 25m. Using a step length greater than 25m
will skip some slope measurements whereas a step length lessthan or equal
to 25m will ensure that every measurement is taken into account. Longer step
lengths will therefore render into additional errors. Withh = 50m it seems
however that this effect is negligible owing to the fact thatthe maximal er-
rors do not noticeably increase with another proportion compared to the step
lengths 10 and 25m. The main source of error is then still the inaccuracy in
Euler’s method.
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Figure B.1: The error made in one step of lengthh when using calculated
pedal and brake levels which are constant during the lengthh. A pedal or
brake level is repeatedly computed and applied to the systemduring the length
h. The predicted end velocity is then compared to a more accurate simulated
velocity of the vehicle.
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Figure B.2: The error made withN steps of lengthh when using calculated
pedal and brake levels which are constant during the lengthh. The error is the
difference between the velocity that is predicted throughN steps of lengthh
and a more accurate simulated velocity.
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It is beneficial to compare the magnitude of the errors in figure B.2 with
the velocity discretizationδ used in the DP algorithm, see chapter 5. If the
errors are smaller thanδ along the horizon the vehicle will reach the predicted
states and the optimal path will not change due to these errors. The optimal
path can however change in subsequent samples with consideration of the
additional slope values at the end of the horizon.

Studying figure B.2 thus give hints about what velocity discretizationδ
that are suitable to use in conjunction with a given step length h. It is unnec-
essary to increase the complexity by using a discretizationof a much higher
accuracy than the accuracy in the velocity predictions. Making δ twice as
accurate will increase the computational complexity four times, according to
section 5.7.

Sensor errors, imperfect slope measurements, model errorsand other dis-
turbances will make the difference between predicted and actual velocities
greater. With additional errors such as these, the benefit ofa shorter distance
between computations of control signals increases as it reduces the time of
open-loop control and increases the feedback. The reasoning in this section
therefore sets a upper bound to the accuracy achievable in the velocity pre-
dictions.
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