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Abstract

The legal amount of emissions that vehicles with spark ignited engines
are allowed to produce are steadily reduced over time. To meet future
emission requirements it is desirable to make the catalytic converter
work in a more efficient way. One way to do this is to control the air-
fuel-ratio according to the oxygen storage level in the converter, instead
of, as is done today, always trying to keep it close to stoichiometric.
The oxygen storage level cannot be measured by a sensor. Hence, a
model describing the dynamic behaviors of the converter is needed to
observe this level. Three such models have been examined, validated,
and compared.

Two of these models have been implemented in Matlab/Simulink
and adapted to measurements from an experimental setup. Finally, one
of the models was chosen to be incorporated in an extended Kalman
filter (EKF), in order to make it possible to observe the oxygen storage
level online.

The model that shows best potential needs further work, and the
EKF is working with flaws, but overall the results are promising.

Keywords: catalytic converter, TWC, oxygen storage, lambda, ob-
server, EKF, modeling, simulation

v



vi



Sammanfattning

Avgasmängden som bensindrivna fordon till̊ats släppa ut minskas hela
tiden. Ett sätt att möta framtida krav, är att förbättra katalysatorns
effektivitet. För att göra detta kan luft-bränsle-förh̊allandet regleras
med avseende p̊a syrelagringen i katalysatorn, istället för som idag, re-
glera mot stökiometriskt blandningsförh̊allande. Eftersom syrelagrin-
gen inte g̊ar att mäta med en givare behövs en modell som beskriver
katalysatorns dynamiska egenskaper. Tre s̊adana modeller har un-
dersökts, utvärderats och jämförts.

Tv̊a av modellerna har implementerats i Matlab/Simulink och an-
passats till mätningar fr̊an en experimentuppställning. För att kunna
observera syrelagringen online valdes slutligen en av modellerna ut, och
implementerades i ett Extended Kalman filter.

Ytterligare arbete behöver läggas ner p̊a den mest lovande mod-
ellen, och detsamma gäller för Kalmanfiltret, men p̊a sikt förväntas
resultaten kunna bli bra.

Nyckelord: katalysator, TWC, syrelagring, lambda, observatör, EKF,
modellering, simulering
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Notation

Nomenclature

Variable Unit Description
A s−1 pre-exponential factor
Ageo m2/m3 specific geometric catalyst surface
Aλst...Fλst V,- coefficients in the switch-type λ-sensor model
Ci m/s convection mass transfer coefficient of i
Dchan m diameter gas channel
DTWC m catalytic converter diameter
E kJ/mol activation energy
Kd - constant of proportionality
Kr - constant of proportionality
Kλ - constant of proportionality
Kψ - constant of proportionality
LTWC m TWC length
SC mol/m3 storage capacity
T K temperature
U V voltage
VTWC m3 catalytic converter volume

V̇ m3/s volumetric flow
a1...a5 - coefficients in the polynomial describing N(φ)
aηcomb

- coefficient in the exhaust gas model
bηcomb

1/K coefficient in the exhaust gas model
bi - triangular basis functions
c mol/m3 concentration
cp J/kg*K specific heat capacity (gas phase)
cs J/kg*K specific heat capacity (solid phase)
f1,2..n - tuning parameters
fL - function for lean input
fR - function for rich input
g(ζ) - function in Model B
k 1/s reaction rate coefficient
kd - parameter in Model B
ṁf kg/s fuel mass flow
nc - number of discrete cells
r - reaction rate
yi - mole fractions
∆H J/mol reaction enthalpy
∆Λ - post-catalyst AFR deviation from stoichiometric be-

fore the effect of the catalyst deactivation
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∆λ - λ− 1
Σi - diffusion volumes
α W/m2K heat-transfer coefficient TWC → exhaust
αcat W/m2K heat-transfer coefficient TWC → ambient
ε - volume fraction of gas phase
ζ - global fraction of oxygen storage
ηCO - number of sites occupied by CO
ηcomb - inverse combustion efficiency
θ - occupancy fraction on noble metal
λ - normalized air-fuel-ratio
λs W/m*K heat conductivity solid phase
ξ - local fraction of oxygen storage
ρs kg/m3 density solid phase
φ - oxygen storage level
φH2/CO - H2/CO ratio
ψ - reversible catalyst deactivation

Vectors and matrices

Variable Description
f dynamics function of state-space system
h measurement function of state-space system
u control vector
x state vector
y measurement vector
v,w uncorrelated white noise process
F system dynamics matrix
H system measurement matrix
I identity matrix
K kalman gain matrix
P covariance matrix of the estimate error
Q covariance matrix of process white noise
R covariance matrix of measurement white noise
Φ fundamental matrix
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Subscripts

Subscript Description
ex excess of the species after a surface reaction has been

completed
exh exhaust
g gas
in incoming variable to the converter
out outgoing variable after the converter
post denotes the variable after the converter
pre denotes the variable before the converter
s solid
tp tail-pipe
λst switch-type λ

Superscripts

Superscript Description
ads adsorption
ch channel
ox oxidation
red reduction
wc washcoat
∗ vacant site in the catalytic converter

Abbreviations

AFR Air-Fuel-Ratio
FTP 75 American Federal Test Procedure
NEDC New European Driving Cycle
O, P, R Oxidants, Products and Reactants
ROC Relative Oxygen coverage of Ceria
TWC Three-Way catalytic Converter

Constants

Variable Value/Unit Description
ℜ 8.31451 J/molK universal gas constant
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Chapter 1

Introduction

1.1 Background

Already in 1915, concerns were raised about the risk potential of auto-
mobile pollutants, they were considered noisy, dangerous, and smelly.
As a consequence the first regulation concerning emissions came in use
1959 in California and since then the allowed emission levels have been
reduced. The automotive producers have a tough challenge. They do
not only have to meet the emission requirements, they also want to
satisfy the customers’ power, fuel consumption and cost requirements,
which often contradicts low emission rates.

1.1.1 Regulations

In 1968, US got the first federal standards during the Clean Air Act,
mainly because the smog was becoming an increasing concern. The ini-
tial targets were carbon monoxide and unburned hydrocarbons. A few
years later, the adverse effect of oxides of nitrogen on the environment
was recognized.

Since the first regulation, legislators all over the world have steadily
reduced the legal limits of emissions over time. This is demonstrated in
figure 1.1, which shows how the emission regulations for petrol vehicles
in the US have changed over time.

The emission regulations are formulated as maximum values of emis-
sions (measured in pollutant mass per distance traveled) from a vehicle
following a specified driving profile, called test cycle. There are differ-
ent test cycles available. Two frequently used is the American Federal
Test Procedure, FTP 75, and the New European Driving Cycle, NEDC.

1
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Figure 1.1: Legal limits of emissions in the US. Limits taken from [10].

1.1.2 Catalytic converters

The legal limits of emissions have forced the industry to accelerate the
development of control systems and catalytic converters, but when the
first regulation was introduced the only known way to reduce CO and
HC was to lean the mixture of air and fuel. This put an end to increases
in specific power outputs for a few years. During the 1970s, the two-
way catalytic converters (which oxidized both CO and HCs to water
and CO2) started to appear.

The most significant change in engine and catalytic converter tech-
nology came with the recognition of the adverse effect of oxides of
nitrogen (NOx) on the environment. To deal with this ”new” prob-
lem the combustion was carefully controlled to keep the air fuel ratio,
AFR, close to stoichiometric and new catalytic converters were devel-
oped. These three-way catalytic converters (TWCs) reduce the NOx

content of the exhaust gases to nitrogen as well as oxidize the HC and
CO.

Although these catalytic converters were known in the early 1980s,
it was not until the late 1980s that the catalytic converter became
standard in new cars. Today the use of catalytic converters in ex-
haust after-treatment systems is essential in reducing emissions to the
levels demanded by environmental legislation. Since the legislations
keeps getting stronger the treatment of the pollutants has to develop
as well. One way to do this is to improve the converters formulation
and substrate design. Another possibility is to use advanced control
and monitoring of converter operation in order to maximize the perfor-
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mance.

Previously the task of the engine management system has been to
keep the AFR as close to the stoichiometric value as possible which is
the optimal thing to do under steady-state operating conditions. Dur-
ing real world driving conditions however, the AFR oscillates around
the stoichiometric value. To control and optimize the engine perfor-
mance with respect to emissions under transient conditions, a dynamic
model of the converter is required.

Many existing models used in the design and development of cat-
alytic converters are based on the underlying physical processes of heat
transfer, chemical kinetics, and fluid dynamics, but are unsuitable for
real-time control of catalytic operation because of their complexity. Up
to date two types of simple dynamic models have been proposed. One
based on the use of simplified chemical kinetic relationships and one
based on the recognition that the catalytic converter behavior is domi-
nated by the dynamics, storage and release, of the oxygen. Because of
the limitations of the existing models, advanced converter control has
not been widely implemented in practice.

1.2 Purpose and method

The most common way to control the emissions is to use the λ-sensor
value before the catalytic converter to control the fuel injection time
and throttle angle to get λ = 1 and thus get the smallest amount of
pollutants, (see figure 3.2).

Sometimes it is desirable to run the engine rich or lean, but this is
difficult from a control point of view, since most cars cannot predict
when the catalytic converter becomes unable to reduce the harmful
exhausts in a satisfying way. If the converter has a high relative oxygen
level, there will be no bad consequences on the exhaust if the engine
runs rich for a little while, and vice versa. An advantage of this is
that when the engine is running idle a lean mixture would reduce the
pumping losses. Correspondingly, the turbo engine needs cooling when
running at maximum load. This can be done by running the engine
a little rich, since the excess fuel is reducing the temperature of the
engine. The problem is that it is impossible to measure the oxygen level
in the converter with a sensor. The problem can be solved by using
a model of the catalytic converter and an observer that can estimate
the relative oxygen level and use the relative oxygen level as input to
a controller. Three such models are presented and compared in this
thesis.
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1.3 Prerequisites

To make a model of the catalytic converter and be able to use it as
an observer in the engine control system, several demands have to be
met. First of all the model needs to provide information about the
state the catalytic converter is in, such as the oxygen storage level, and
it has to be accurate enough. It also needs to be sufficiently simple to
fit in the control system where CPU resources are limited. Since the
dynamical behavior of a catalytic converter changes during its lifetime
due to ageing, the model should be able to describe this. Finally, the
model should be simple to apply and to adjust to different catalytic
converters.

To be able to use the model in a control system, the output from
the model needs to be comparable with measurements. Hence, a sen-
sor model downstream of the catalytic converter might be necessary.
The λ-sensor also has a dynamical behavior, which changes during the
lifetime because of ageing, but this is neglected in this thesis. This is
because the dynamics of the sensor is considerably faster than the gas
composition downstream of the catalytic converter [3], and the main
concern in this thesis is on the model of the catalytic converter. Fur-
thermore, the sensor is affected largely by the same phenomenon as
the catalytic converter. Hence, the dynamics of the sensor is to some
extent accounted for in the model of the catalytic converter.

A study of the ageing process of the catalytic converter would re-
quire an extensive measurement process and possible also a need for
several catalytic converters of different age. There is no room for this
within the scope of this thesis and it is thus not done. The ageing of
the catalytic converter is accounted for by changing parameter values.

As described in section 3.2 the temperature in the catalytic con-
verter has to reach a certain level, the light-off temperature, before the
catalytic converter begins to work in a satisfying way. In this thesis,
it is assumed that the engine has been running long enough to heat
the catalytic converter and no steps has been done to adjust for this
phenomenon.

Furthermore, the models in this thesis have been adapted to the
catalytic converter in a research laboratory. Hence no considerations
regarding airflow around the vehicle, changes of pressure and temper-
ature in the ambient air etc. have been done.

1.4 Thesis Outline

The thesis begins with an introduction to the thesis with background,
purpose, and method. The second chapter contains the model verifi-
cation method, how the data has been obtained, and how to validate
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the models. Chapter three presents an introduction to emissions and
catalytic converters. The following three chapters describe the mod-
els investigated in this thesis, and in the seventh chapter, they are
compared. In chapter eight, one of the models is incorporated in an
extended Kalman filter in order to observe the oxygen storage. The
results and discussion can be found in chapter nine. Finally, future
work are suggested in chapter ten.
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Chapter 2

Model Verification

Method

The models described in chapter 4, 5 and 6, and the online adaption
strategy in chapter 8 has been implemented in Matlab/Simulink. The
measurements used to adapt and validate the models have been col-
lected from an experimental setup.

2.1 Experimental setup

The experimental setup is located in the research laboratory at the divi-
sion of Vehicular Systems at the Department of Electrical Engineering,
Linköpings Universitet.

The engine used in this thesis is a L850 from SAAB. It is a spark
ignited, four stroke, two liters, turbo charged, piston engine driven by
petrol with four cylinders, much alike the engine used in SAAB 93 aero
today. The control system from SAAB, Trionic 9, is a prototype system
used for research. A dynamometer is used to place a load on the engine.

The catalytic converter used is of commercial type with coating of
Pt and Rh.

The standard sensors mounted on the engine, as well as some addi-
tional sensors, have been used for measurements. The additional sen-
sors are a wide-range λ-sensor before the catalytic converter, a switch-
type λ-sensor after the converter, a thermocouple placed before the
converter to measure the temperature of the exhaust gases and a ther-
mocouple in the catalytic converter.

More information about the research laboratory can be found in [1]
and [2].

7
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2.2 Data

The measured data was chosen in roughly the same way as in [3], i.e. the
λ-value was controlled to switch between rich (0.97) and lean (1.03),
with at first 30 seconds interval, then every 15th second, every 5th,
every other second, and finally every second.

In order to find the stoichiometric point the fuel injection time was
tuned as the λ-value was controlled to switch fast between rich and
lean. As shall be explained later in this thesis, a catalytic converter is
able to compensate for deviation in the incoming λ for short periods.
Hence, the stoichiometric point is found when the switch-type λ-sensor
after the catalytic converter stays close to the switch-point. In practice
this means that it is found when the sensor neither reaches the lean
nor rich value, but stays somewhere in between, since a switch-type
λ-sensor is highly nonlinear. When the stoichiometric point was found
the fuel injection time was increased with 3% to make the engine run
rich, and decreased with 3% to make it run lean.

The data was collected at three operating points, which can be seen
in table 2.1. Two sets of data were collected at every operating point,
one to use when calibrating the models, the estimation data, and the
other to use when validating the models, the validation data.

No. Engine speed Engine load
[rpm] [Nm]

1 1500 26
2a 1800 38
2b 1800 38
3 2500 50

Table 2.1: Operating points where measurements were taken.

At operating point number 2, two estimation and validation data
sets were collected with a slight difference in the estimated position of
the stoichiometric point. The switch-type λ-sensor values from these
two data sets can be seen in figure 2.1. The dotted lines in the figure
represent the rich and lean levels. This shows the great sensitivity
to a very small change in the point where the AFR is assumed to be
stoichiometric.

The measured wide-range λ before the catalytic converter at oper-
ating point number 3 can be seen in figure 2.2. The measurements in
the other three sets of data look similar to this one. Notice that the
wide-range λ-sensor before the catalytic converter suffers from a bias
and show measurements between 0.98 and 1.04, even though the real
λ-value switches between 0.97 and 1.03.
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Figure 2.1: The filtered measurements from the switch-type λ-sensor
after the catalytic converter. In both measurements, the engine is con-
trolled to switch between rich and lean, but with a slight difference in
the estimated point where the engine is assumed to run stoichiometric.

2.3 Model adaption strategy

The models’ parameters can be adapted to the measured data by
using a least-square algorithm such as the functions fminsearch or
lsqnonlin in Matlab Optimization Toolbox. fminsearch is often more
time demanding than lsqnonlin, but lsqnonlin has a higher tendency
to stay in local minima.

Different variables are available to be compared to sensor signals,
depending on the properties of the models.

2.4 Validation

One way to validate the accuracy of the catalytic converter models is
to compare the λ-value given by the models with measured value, the
effects of the sensors are important. Either a sufficiently exact sensor
is required, or the use of a sensor model that is able to estimate the
measured value with sufficient accuracy.

The validation can be performed by calculating the sum of the errors
between the measured and simulated values. A better way however, is
to compare the simulated and measured λ-values by looking at them.
Doing this, considerations regarding the big difference in the switch-
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Figure 2.2: The filtered measurement from the wide-range λ-sensor
before the catalytic converter, in one of the estimation data sets.

type sensor signal that may occur at the end of the data sets can be
taken. This is due to the switch-type λ-sensor’s high nonlinearity, as
described in the previous section.

In addition the behavior of the models’ states can be investigated.
These are not possible to compare with measurements, but they should
be examined in order to make sure they behave in a sensible way. Fi-
nally, the demand of CPU power by the models should be taken into
account.

To make sure the online adaption strategy with Model C incorpo-
rated (see chapter 8) works properly, the storage capacity should be
adapted to the same value after a limited amount of time, indepen-
dently of the initial value. The values of the states should also be
observed, to assure that they behave as predicted.



Chapter 3

Introduction to

Emissions and Catalytic

Converters

Cars are equipped with catalytic converters in order to reduce pollu-
tants that have negative consequences on both humans and the envi-
ronment. In order to reduce the harmful species the catalytic converter
contains noble metals that promote reactions to take place. These re-
actions are necessary for the reduction of the dangerous species in the
exhaust gas.

3.1 Combustion Engines and Emissions

A combustion engine takes air and fuel as input and produces power
and emissions. The fuel is based on hydrocarbons (CαHβ). A schematic
picture of a combustion engine can be found in figure 3.1. When the
engine is running stoichiometrically (λ = 1) the fuel and oxygen in
the air are in perfect proportion to each other and theoretically the
emissions consists only of carbon dioxide, water vapor and nitrogen,
see (3.1).

1

(α+ β
4 )λ

CαHβ +O2 +
79

21
N2

λ=1
−−−→

α

(α+ β
4 )
CO2 +

β/2

(α+ β
4 )
H2O +

79

21
N2 (3.1)

In reality though, small amounts of CO, HC and NOx are produced
as well, due to non ideal burning in the cylinders. These species are

11
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⇒

Catalyst
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Piston
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Emissions

Fuel
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Figure 3.1: Schematic picture of an engine. The engine takes air and
fuel as input and generates power and emissions. The picture is taken
from [10] and used with permission from the authors.

dangerous to both humans and nature and it is important that they
are being reduced as much as possible.

If the engine is running lean there is excess oxygen in the air/fuel
mixture. The excess oxygen reacts with nitrogen when the gases are
heated in the cylinder and oxides of nitrogen are produced. If the en-
gine is running rich the air/fuel mixture consists of a higher rate of
fuel as compared to when the engine runs stoichiometric. Hence the
combustion is incomplete and produces carbon monoxide and hydro-
carbons.

The least amount of pollutants after the catalytic converter is ob-
tained when the engine is run stoichiometric, see figure 3.2.

3.2 The Catalytic Converter

When having a catalytic converter the engine can be allowed to differ
from the stoichiometric point for short periods of time, due to the
properties of the converter. Simplified, the converter can be compared
to a box containing stored oxygen. When the engine runs lean the
box is filled with the excess oxygen and when the engine runs rich the
oxygen in the TWC is used to oxidize CO and HC. This means that
when the box is full the NOx and excess oxygen will pass right through
the TWC. When the box is empty the same thing goes for CO and HC.
It is therefore desirable to know the relative oxygen level in order to be
able to control the lambda value to get a more efficiently run engine.
The storage capacity describes the maximum amount of oxygen that is
possible to store in the converter.

Most catalytic converters have a honeycomb structure, the wash-
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Figure 3.2: Picture of the lambda window, which shows the interval
in which acceptable pollution are obtained. Dashed - Before catalyst,
Stroked - After catalyst. The picture is taken from [10] and used with
permission of the authors.

coat, covered with rhodium, platinum and/or palladium. The washcoat
is made of a heat transferring solid phase e.g alumina. The alumina is
surface treated with porous materials e.g ceria and zirconium. Figure
3.3 is a schematic view of the structure of a catalytic converter. The
role of ceria and ceria based materials in a catalytic converter is to help
maintaining the conversion efficiency of the converter. Ceria has the
ability to store excess oxygen during lean period and release it during
rich conditions to oxidize CO and hydrocarbons.

Since the noble species are expensive and important to the func-
tionality of the converter, it is desirable to have as much surface area
exposed to the exhaust stream as possible, while minimizing the amount
of noble material. During rich conditions the noble materials promote
the conversion of CO and HC. The CO and HC react with stored oxy-
gen, becoming CO2 and water vapor. During lean conditions the NOx

gases leave O on the converter when being converted into N2.

In order for the converter to work efficiently it must have reached
a high temperature, around 450-600 K. The temperature when the
conversion reaches 50 % is called light-off temperature. Since most of
the polluting is taking place before the light-off temperature is reached,
it is important to get a fast heating of the converter. This can be done
by putting the converter closer to the engine, but if the converter is
too close to the engine the noble materials can be damaged. Another
way to reach the light-off temperature early is to pre-heat it using the
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Inner Gas Phase (Washcoat)

Outer Gas Phase (Channel)

Figure 3.3: Schematic figure of a catalytic converter. The picture is a
simplified version of a picture taken from [3] and used with permission
of the author.

electrical system of the car. Unfortunately, with the 12 Volt-system
used in most cars today it takes several minutes to heat the converter
and a majority of people do not wait that long before starting their
car.

3.3 Study of the dynamics

One way to examine the dynamics of the catalytic converter is to mon-
itor the AFR before the catalytic converter to switch from lean to rich,
then back again, and watch the behavior of λ after the catalytic con-
verter as shown in figure 3.4.

For further reading about the dynamics of the converter, [3], [4], [7]
and [9] are recommended.

3.3.1 The sensors’ influence on the measurements

The sensors have not been widely investigated in this thesis, but since
their influence on the measured value is important if the right conclu-
sions are to be drawn, a short introduction is given here.

The sensors are not only sensitive to the λ-value, but also to the
gas composition, especially hydrogen has a large effect [11]. This is
not a problem before the catalytic converter, since the exhaust gas
composition from the engine remains roughly constant for a specific
λ-value, and the sensor is calibrated with representative engine-out
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Figure 3.4: Filtered measurements from two wide-range λ-sensors. One
sensor is placed before and the other one is placed after the TWC.

exhaust.
Downstream of the catalytic converter however, the gas composition

changes dynamically due to the reactions taking place in the converter.
The sensor can hence not be well calibrated, and a time-varying bias
occurs. Additionally the generation of hydrogen in the TWC changes
as the converter ages and hence the biases changes over the converter’s
lifetime.

Further information about the effect on the sensors can be found
e.g. in [3] and [7]. The first also contains information concerning the
gas composition downstream of the converter.

Wide-range versus switch-type sensors after the TWC

In figure 3.4 both the λ-value before the catalytic converter, and the
one after the converter have been measured with wide-range λ-sensors
in order to make the comparison easier.

Although both wide-range and switch-type λ-sensors depends on the
gas composition. A switch-type λ-sensor is often preferred in practice
downstream of the converter, due to a number of reasons:

• the switch-type λ-sensor is very precise around the stoichiomet-
ric point, even when placed downstream of the TWC. It is thus
possible to decide if the λ-value is rich or lean.

• a wide-range λ-sensors suffers from considerable offsets, depend-
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ing on the ageing level of the converter and the sensor

• a switch-type λ-sensor is cheaper than a wide-range. Additionally
a switch-type λ-sensor is already in use for diagnostic purposes
in modern cars, therefore no extra sensor is needed.

3.3.2 Study of the measurements

To make the references shorter in this section all capital letters in brack-
ets should be interpreted as references to the corresponding time stamps
in figure 3.4.

Both the λ-values before and after the catalytic converter, have been
measured with wide-range λ-sensors. It should be noted however, that
the characteristics of the sensors are different, and tests have shown that
there are offset and gain differences between them even when placed on
the same side of the converter.

Before the point where the wide-range λ-sensor before the converter,
λpre, switches from lean to rich (A) the engine has been running lean
for quite a while and thus the amount of stored oxygen in the catalytic
converter is high and the degree of catalyst deactivation is low. The
differences in λpre and the wide-range λ-sensor after the converter,
λpost, should not be paid too much attention because of the difference
between the sensors and the influence of the change in gas composition.

Directly after λpre switches from lean to rich (between A and B)
λpost stays close to the stoichiometric level even though λpre is rich.
This is because of the large amount of excess oxygen in the catalytic
converter that compensates for the lack of oxygen in the incoming gas.
λpost does not start to fall until the converter is out of excess oxygen
(B). Then λpost drops to its richest value (C).

During the interval between (B) and (C) the oxygen storage level
decreases even more to compensate for the lack of oxygen in the in-
coming gas. At the same time, the degree of catalyst deactivation is
slightly increased due to the rich incoming gas that cannot be oxidized
due to the lack of excess oxygen. Hence, the engine is running rich and
there is a high amount of vacant sites on the converter’s surface, which
promotes the hydrogen generating reactions listed in appendix A. The
increasing amount of hydrogen makes the λpost-sensor show a richer
value than the true one. This explains the big difference between λpost
and λpre at (C).

In the interval between (C) and (D) where both λpre and λpost
show rich values, the degree of catalyst deactivation is continuously
increased since there are more species that needs to be oxidized than
available oxygen. Hence, the number of vacant sites is decreased, and
the hydrogen generation is inhibited. This affects the λpost-sensor,
which shows an increasingly leaner value.
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When λpre switches back to lean (D), λpost stays close to the sto-
ichiometric level in the same way as when λpre switched to rich. At
first, the excess oxygen in the incoming gas works to oxidize the species
that have been gathered in the catalytic converter during the rich pe-
riod and caused the catalyst deactivation. Then the excess oxygen in
the incoming gas is adsorbed in the converter and increases the level of
stored oxygen again.

λpost starts to increase when the catalytic converter is close to full
with oxygen (E) and reaches it’s leanest level (F) then stays at the lean
level until λpre switches from lean to rich (A) and everything starts
over again.

The reason why the interval between (D) and (E) is much further
in time than the interval between (A) and (B) is probably mostly due
to biases in the system. Even though the response time when the λ
is switched between rich and lean might differ from the response time
when it switches from lean to rich.

Both the λ-value measured by the control system, as well as the
λ-sensors may suffer from biases. The control system is operated to
switch the λ-value between 0.97 and 1.03 but as can be seen in figure
3.4 the measured λpre is lower than that. Hence, it is possible that
the engine is running very rich when running rich, but only slightly
lean when running lean, which would explain the difference in time to
increase/decrease the catalyst deactivation and fill/empty the converter
of stored oxygen.
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Chapter 4

Model A - A Storage

Dominated Model with

Reversible Catalyst

Deactivation

This chapter describes a model presented by James C. Peyton Jones in
[6] and [8]. It is empirical and it is assumed that the dynamics of the
catalytic converter are dominated by oxygen storage in the converter
and reversible catalyst deactivation. These are not assumed to change
over the catalytic converter’s spatially distributed nature. Hence, there
are two state space variables to describe these two phenomena. This
is based on the observation in [6] that all gas components respond to
input changes over a similar time-scale. Which shows that the process
is dominated by the relatively slow dynamics of gas storage and re-
lease, and that the other kinetics occur over a much shorter, and less
significant, time-scale.

4.1 Model

The model has one input, the wide-range λ-value before the catalytic
converter, and one output, the wide-range λ-value after the converter.

Note that the AFR in this model is expressed in terms of the dif-
ference from stoichiometric, ∆λ = λ− 1, instead of the more common
λ. This makes it possible to model the states of the catalytic converter
with a single integrator.

19
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4.1.1 The oxygen storage state, φ

The oxygen storage and release rate is dependent on the flow of oxygen
into the catalytic converter and the amount of oxygen stored in the
converter, φ. During lean conditions, when there is an excess of oxygen
in the exhaust gas, ∆λpre promotes adsorption, and vice versa during
rich conditions.

The oxygen storage is described compared to the equilibrium level
when the pre-catalyst AFR is stoichiometric, hence φ can be both pos-
itive and negative. The effect of φ on the oxygen storage and release
rate is not linear since it becomes increasingly harder to store more
oxygen as φ increases from zero and vice versa. Hence, a general func-
tion, N(φ), with a nonlinear spring characteristic is used. The function
N(φ) is therefore approximated with a polynomial expansion of φ:

N(φ) = a1φ+ a2φ
2 + a3φ

3 + a4φ
4 + a5φ

5,

and can be seen in figure 4.1.
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Figure 4.1: The effect of φ on the oxygen storage and release rate.

The exception from the above occur during lean to rich transitions
when high levels of stored oxygen are available for reducing the rich
incoming feed gas (between point A and B in figure 3.4). The oxygen
release is then limited only by the feed gas demand.

Hence, it follows that the equation for the oxygen storage rate can
be described as:

φ̇ =

{

ṁfKλ∆λpre (∆λpre < 0) and (φ > 0)
ṁfKλ(∆λpre −N(φ)) otherwise,

(4.1)

where ṁf is the fuel mass flow to the engine.
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4.1.2 The reversible catalyst deactivation, ψ

The deactivated fraction of the catalytic converter surface increases
when there is a deficiency of oxygen both before the converter and af-
ter, i.e. when there is a deficiency of oxygen in the incoming feed gas
and not enough oxygen stored in the converter to compensate for this
(between point B and D in figure 3.4). The rate at which the deactiva-
tion increases is proportional to the mass flow into the converter, the
lack of oxygen after the catalytic converter, −∆Λpost, and the fraction
of the surface already occupied by deactivation agents, ψ. The pres-
ence of excess oxygen in the feed gas, ∆λpre > 0, on the other hand
decreases the deactivation at a rate proportional to the supply of oxy-
gen in the feed gas, until there are no more deactivation agents left on
the surface, ψ = 0, (just after point D in figure 3.4).

The deactivated fraction of the catalytic converter surface, ψ, can
hence be described as follows:

ψ̇ =







ṁfKd(∆Λpost − ψ) (∆λpre < 0) and (∆Λpost < 0)
−ṁfKr∆λpre (∆λpre > 0) and (ψ > 0)
0 otherwise.

(4.2)

Note that ∆Λpost is the post-catalyst AFR deviation from stoichio-
metric before the effect of the catalyst deactivation has been taken into
account, and thus not equal to ∆λpost, which is the ∆λ-value after the
catalytic converter.

4.1.3 Estimated ∆λ value after the catalytic con-

verter

The ∆λ value after the catalytic converter depends on the ∆λ value
before the converter, the rate at which oxygen is released compared to
the fuel mass flow, and the deactivated fraction of the converter.

∆λpost = ∆λpre −
1

ṁfKλ
φ̇+Kψψ

=

{

Kψψ (∆λpre < 0) and (φ > 0)
N(φ) +Kψψ otherwise

(4.3)

The received output from this model is thus a λ-value that can be
compared to the output from a wide-range λ-sensor.

4.2 Convert to switch type λ-values

To be able to use the wide-range λ-value obtained from the model
for control purposes, a reliable wide-range λ-sensor after the catalytic
converter is needed. In the articles [6] and [8], the measured values
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agree well with the values achieved with the model. The oxygen storage
state describes the dynamics of the oxygen filling and depleting, and
the distortion of the λ-sensor is taken into account by the reversible
catalyst deactivation state. The wide-range λ-sensor used after the
converter in this thesis however, suffers from biases and attempts to
adapt the model to measured data failed.

One way to solve this problem is to make a model, which converts
the wide-range λ-value to a corresponding switch-type λ-value. Since
the main concern in this thesis is on the model of the catalytic converter
and not on the sensors, a simple solution is to merge the exhaust gas
and the sensor models from [3], described in chapter 6, to achieve this
λ converter. The augmented model can be seen in figure 4.2.
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converter
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λ-sensor

model

Exhaust temperature

Switch-
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λ converter model
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Figure 4.2: Block diagram of the catalytic converter model and the λ
converter.

To be able to do this however, several more assumptions and simpli-
fications are needed. First of all the exhaust gas model is developed to
be in front of the catalytic converter, i.e. the input signal is supposed
to be the λ-value of the gases from the engine. In this case however,
the λ after the converter would be used as input.

Secondly, the temperature after the converter is estimated in the
converter model in chapter 6, presented in [3], and used as input to the
sensor model. With this TWC model, the temperature after the con-
verter is not obtained and hence the assumption that the temperature
after the converter is equal to the one before the converter is made.

4.3 Parameter Estimation

As described in section 3.3, a wide-range λ-sensor often suffers from
biases. Hence, the value measured with the wide-range λ-sensor before
the converter is adjusted with an offset to compensate for this.

The parameter estimation was done by simulating the entire model
with the four different estimation data described in chapter 2 and min-
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imizing the sum of the square error. This can be done according to the
scheme below:

• Use the function fminsearch in Matlab Optimization Toolbox in
order to estimate the parameters in the catalytic converter model.
The first time this is done, the start values of the parameters
in the exhaust gas and sensor models can be set to the values
obtained in chapter 6.

• Use the function fminsearch in order to estimate the parameters
in the exhaust gas model.

• Once again, use the function fminsearch and estimate the pa-
rameters in the sensor model.

• Depending on the accuracy of the start values, the previous three
steps might have to be repeated. When reasonable values have
been obtained, the function lsqnonlin in Matlab Optimization
Toolbox can be used to estimate all of the parameters, to finally
tune them.

The resulting parameter values can be found in appendix B.

Since the model is highly nonlinear it is hard to find the parameters
that are optimal in a global sense, and a large number of optimiza-
tion steps might have to be made to obtain good estimations of the
parameters.

4.3.1 Catalytic Converter Parameters

The parameters that need to be estimated in this model of the catalytic
converter are:

Kλ , a constant of proportionality, which affects the rate at which the
oxygen storage state changes.

Kd , the deactivation constant of proportionality, i.e. it affects the rate
at which the deactivation increases.

Kr , the reactivation constant of proportionality, i.e. it affects the rate
at which the deactivation decreases.

Kψ , a constant of proportionality, which represents the effect the re-
versible catalyst deactivation has on the λpost-value.

a1...a5 , the coefficients in the polynomial describing N(φ).
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4.3.2 Exhaust Gas and Sensor Parameters

The parameters in the exhaust gas and sensor models are estimated in
order to adjust the models to the new conditions, i.e. that the exhaust
gas model is placed behind the model of the catalytic converter instead
of in front, and the temperature used as input to the sensor model is
the one of the exhaust gases instead of the temperature of the gases
after the converter.

The parameters to be estimated in the exhaust gas model are:

aηcomb
, bηcomb

, and φH2/CO,

and the ones in the sensor model are:

Aλst, Bλst, Cλst, Dλst, EA,λst, EE,λst, and Fλst.

4.3.3 Parameters adjusted to the age of the con-

verter

The catalytic converter’s behavior changes as a result of the ageing of
the converter. Hence, some parameter values are adjusted over time to
account for this. According to [12] it is the converter’s storage capacity
that is affected. Thus, the parameters that need to be adjusted are the
ones, which affect mainly the increase of the oxygen storage rate and
the increase of the catalyst deactivation.

The oxygen storage rate depend on the parameter Kλ and the co-
efficients in the polynomial N(φ), i.e. a1 to a5. Since Kλ is the only
parameter that affects the decrease during lean to rich transitions when
high levels of stored oxygen are available, and this rate should be signif-
icantly the same over time, Kλ is not adjusted. Hence, the parameters
that do need to be adjusted are the coefficients a1 to a5.

The catalyst deactivation rate depend on the parameter Kd when
it is increasing and Kr when it is decreasing. Therefore, it is the pa-
rameter Kd that should be adjusted.

The only remaining parameter in the converter model not consid-
ered is Kψ. This represents the effect the reversible catalyst deactiva-
tion has on the λpost-value and should not be significantly dependent
on the converters age.

To sum up, the parameter Kd and the coefficients a1 to a5 should
be adjusted as the converter is ageing.

4.4 Discussion

The model of the catalytic converter and the merged λ converter are
evaluated in order to see if they together make a good estimation of the
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switch-type λ-value after the converter, and if the states act the way
they are expected to.

4.4.1 The extension to switch-type λ-values

As mentioned earlier two large simplifications were made to be able
to merge the exhaust gas model and the sensor model in chapter 6,
presented in [3], into a λ converter.

The first one was that the exhaust gas model could be used after the
catalytic converter, instead of before the converter. The composition of
the gases for a specific λ-value before the converter is roughly constant,
as described in section 3.3. This knowledge is used when the concen-
trations are calculated in the exhaust gas model. The gas composition
downstream of the converter however, changes dynamically (also this
is described in section 3.3). This model should thus not be expected to
produce the correct concentrations at e.g. different operating points.

The second simplification was to use the exhaust gas temperature
before the converter instead of the one after the TWC as input to
the exhaust gas and the sensor model. In reality, the behavior of the
exhaust gas temperature before and after the converter is very different.
When the engine is running rich, the exhaust gas temperature is low.
This leads to a high amount of unburned fuel that instead reaches the
converter and makes the temperature rise in the gases that leaves the
TWC. Hence, in this case, low exhaust gas temperatures lead to higher
temperatures of the gases after the converter.

In order to make the exhaust gas and sensor models as accurate as
possible under these new conditions, the parameters in the models were
estimated in this chapter as well. However, it should be noted that the
resulting λ converter not is expected to be very reliable. A benefit from
using it though, is that a switch-type λ-sensor can be used downstream
of the converter, instead of a wide-range. As described in section 3.3,
a switch-type sensor is often preferred.

Parameter values in the exhaust gas and sensor models

The adjustments made in the parameters can be seen when comparing
the values of the parameters obtained in this chapter, which can be
found in appendix B, with the values estimated in 6, found in appendix
C.

In the exhaust gas model, the coefficients relating to the temper-
ature, aηcomb

and bηcomb
, has changed the sign. Additionally a big

increase in φH2/CO can be seen, which suggests that there are a lot
more hydrogen as compared to CO in the gas after the converter than
before, as expected.
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In the sensor model’s parameters the major differences can be found
in the parameters Bλst, Cλst, Dλst and EE,λst. The first three is directly
connected to the concentrations, i.e. the output from the exhaust gas
model, and the fourth to the temperature.

4.4.2 Validation

The model is validated with the validation data described in chapter
2. The switch-type λ-values estimated by the model, as well as the
measured values can be seen in figure 4.3. The corresponding oxygen
storage state and the reversible catalyst deactivations can be seen in
figure 4.4 and 4.5.

As mentioned earlier, the gas composition after the converter is
dependent on the operating point but the λ converter is not able to
catch this behavior. Hence, the model is adapted to make the errors
for the four data sets as small as possible. Since there are two sets
of data for operating point number 2, as described in chapter 2, and
this operating point additionally is between operating point number 1
and 3, the model is hence primarily calibrated to match the data from
operating point number 2. The second and third simulation are hence
the ones least affected by the errors of the λ converter, and therefore
the ones of highest interest when the model of the catalytic converter
is to be examined.

The switch-type λ-sensor value

As can be seen in figure 4.3 the model is good at predicting the switch-
type λ-value after the catalytic converter in the second and third simu-
lation. The richest and leanest levels estimated by the model are close
to the levels measured, and the points at witch λ switches from lean to
rich and vice versa is close to the measured ones. The agreement in the
first and fourth simulation is less accurate. It is hard to tell whether
this is solely due to less accuracy in the λ-converter model, or not.

At the end of the plot, when the λ-value before the catalytic con-
verter switches fast between lean and rich, the estimated switch-type
λ-value slowly converges with the measured in the second and third
simulation.

The oxygen storage state

The accuracy of the estimations of the oxygen storage level is harder
to determine. Although it seems reasonable with a high value after the
engine has been running lean, and a low value when running rich.
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Figure 4.3: The filtered measured and simulated switch-type λ-values
from the four operating points (see 2.2).

The deactivation state

Since the hydrogen generation is closely connected to the deactivation
level, the weakness of the λ converter affects the accuracy of the deac-
tivation state. One should hence not attach to much attention to the
deactivation state estimated by the model. However, it can be noted
that it seems to increase when the engine is running rich, and decrease
when running lean, as expected. A drawback is that its value does not
decrease to zero as the engine runs rich.

Even though the reversible catalyst deactivation is not paid much
attention, it should be noted that errors in this state affect the λ-value
and the oxygen storage state as well.

4.4.3 Results

Without a λ converter with high accuracy, or a wide-range λ-sensor
without biases after the TWC, it is hard to evaluate the model of the
catalytic converter. Even though it captures the dynamics of the con-
verter well for some of the measurements in this thesis, it is not assumed
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Figure 4.4: The estimated oxygen storage level for the four data sets.

to do this regardless of the operating point or the age of the converter.
Additionally, even if the model of the converter is very accurate it can-
not be used in an engine control system without a sufficient λ converter
model.
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data sets.
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Chapter 5

Model B - A Model

Consisting of One

Nonlinear Integrator

This model is presented by Mario Balenovic in [4]. The model is basi-
cally a nonlinear integrator with one state representing oxygen cover-
age, one parameter which gives an indication on the converters’ storage
capacity and a function that represents the relative conversion. The
model has one input and one output, the wide-range λ-sensor signals
before and after the catalytic converter, respectively.

5.1 Model

The model is developed in order to control the engine based on the state
of the catalytic converter. In this case the desired controlled variable
is the degree of ceria coverage by oxygen containing species (relative
oxygen coverage of ceria, ROC).

5.1.1 Model developement

Model assumptions:

• The dynamic behavior of the catalytic converter is only due to
the oxygen storage and release capabilities of ceria.

• Reactions taking place on the noble metal surface are assumed to
be instantaneous.

• The oxygen storage filling can be represented by a single variable.
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• Both the lambda sensors (before and after the catalytic converter)
are ideal

• CO is not taken into account when calculating the relative oxygen
coverage of ceria.

It is also assumed that there are only CO and O2 in the exhausts and
that the converters’ length is almost zero. These assumptions make it
possible to model only one point in the converter. The species can react
in the converter either by surface reactions or by oxidation or reduction
on the ceria. The outgoing concentration of CO is the incoming con-
centration of CO minus the CO that reacts on the surface and the CO
that reacts with ceria. The same goes for O2. The surface reactions
are assumed to be immediate. This means that the incoming CO or O2

and the CO or O2 that is left after the reaction with the surface can
be called the excess of the species. Then the outlet concentrations for
rich inlet feed can be written as following:

cCOout = cCOex − rCO

cO2out = 0
(5.1)

and for lean inlet feed:

cCOout = 0

cO2out = cO2ex − rO2

. (5.2)

The subscript ex denotes the excess of the species after a surface reac-
tion has been completed and r is the reaction rate on the ceria.

During lean conditions the disappearance rate of excess O2 is pro-
portional to the oxygen storage filling:

rO2
∼
dξ

dt
=

1

L
kfillcO2

(1 − ξ). (5.3)

Correspondingly the disappearance rate of excess CO during rich con-
ditions is proportional to the oxygen storage emptying:

rCO ∼ −
dξ

dt
= −

1

L
kempcO2

θCOξ, (5.4)

where ξ is the local fraction of oxygen storage. These equations are
based on equations from a more advanced model, also presented in [4].

The λ value can be expressed in terms of oxidants (O), reactants
(R) and products (P):

λ =
O + P

R+ P
, P ≫ O,P ≫ R. (5.5)
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It will be assumed that all oxidants can oxidize ceria and all reactants
can reduce ceria. Only the excess of reactants or oxidants will be needed
for the model input, hence the following holds:

λlean ≈
Oex
P

+ 1

λrich ≈ 1 −
Rex
P

. (5.6)

In order to get the λrich equation a first order Taylor series has been
used. This holds as long as the input does not become very rich. Since
only the excess of reactants or oxidants will be needed for model input
the lambda excess, λ − 1, will be used. The lambda excess will be
denoted ∆λ. Taking into account (5.1) and (5.2) the final model (for
one point of the converter) that holds in both lean and rich regions
becomes:

∆λout = ∆λin − kd
dξ

dt
. (5.7)

Replacing the local variable ξ with ζ representing the relative oxygen
coverage of ceria for the whole reactor, this model is valid also for the
whole converter. Since the complete reactor is modeled as a series of
almost zero-length reactors the expressions (5.3) and (5.4) has to be
modified. Since they become nonlinear when more than one reactor is
connected in series an alternative approach has to be taken. The global
reaction rate can therefore be expressed as:

dζ

dt
= kgr∆λinf(ζ). (5.8)

kgr is a scaling factor and the function f(ζ) is a nonlinear function
depending on the inlet feed. f(ζ) is in fact two functions, fL for lean
input and fR for rich input. If (5.7) and (5.8) are put together the
expression for ∆λ becomes:

∆λout = ∆λin(1 − kdkgrf(ζ)) (5.9)

.
Under the assumption that the outlet lambda cannot have the op-

posite sign of the inlet lambda, (1 − kdkgrf(ζ)) cannot be below 0 or
exceed l. This means that kdkgrf(ζ) also is bounded in the same inter-
val. Since the function f has to be estimated the two scaling factors
can be included in f . It will also be assumed that kgr = 1

kd
. Thus, the

model becomes:

dζ

dt
=

1

kd
∆λinf(ζ) (5.10)

∆λout = ∆λin − kd
dζ

dt
(5.11)

= ∆λin(1 − f(ζ)). (5.12)
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5.1.2 The complete model

The assumption that the inlet and outlet lambda value cannot have
opposite signs is not always true. During a rich-to-lean step the outlet
stays rich for a short period of time even though the inlet is lean, see
[4]. This can also be seen after point D in figure 3.4. This is due to CO
and HC desorption from the ceria surface and the noble metal surface.
The model (5.10) cannot describe this, thus some modification should
be made. One way of solving this is to add an additional function to
account for the desorption effect. The final model becomes:

dζ

dt
=

1

kd
(∆λinf(ζ) + g(ζ) (5.13)

∆λout = ∆λin − kd
dζ

dt
(5.14)

= ∆λin(1 − f(ζ)) + g(ζ). (5.15)

The strictly positive function g(ζ) is only activated when the inlet is
stoichiometric or lean and thus it is possible to model rich output with
lean inputs.

5.1.3 Model parameters and functions

The only parameter in the model, kd, is the inverse of the integrator
gain and gives an indication of the oxygen storage capacity. Since a
higher mass flow trough the engine will fill up the catalytic converter
with oxygen faster than a low mass flow, kd is also dependent on the
mass flow. As already mentioned, the function f is in fact two func-
tions, fL for lean conditions and fR for rich conditions. These functions
represent the relative conversion. The typical appearance of the func-
tions is shown in fig 5.1. For lean input the left picture in fig 5.1 is
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Figure 5.1: A typical appearance of the functions fL and fR.

the function used. Looking at (5.15) and figure 5.1 it can be seen that
when the ROC (ζ) is 1, the λ outlet is equal to the input, assuming that
g(ζ) = 0. This is reasonable since no more of the excess oxygen can be
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stored when ζ = 1. The less oxygen stored in the catalytic converter,
the closer to 1 fL gets, which means that ∆λout approaches zero, i.e.
λ ≈ 1. For rich input it is the other way around. When there is a lot of
stored oxygen almost all of the reducing species in the converter reacts
with the stored oxygen and ∆λout is close to zero. When the converter
is empty of stored oxygen all the exhaust coming in to the converter
also comes out. Both fL and fR is dependent on the mass flow.

The function g(ζ) has been added to the model in order to be able
to model rich output with lean input. The function is activated only
when the input is stoichiometric or lean and is also dependent on the
mass flow.

Since both parameter and functions are dependent on the mass flow,
Balenovic made additional changes in the model in order to make the
model better in a wider operating range. These changes will not be
presented here but can be viewed in [4].

Both parameter and functions are dependent on the mass flow.
However, in [4] additional changes in the model is presented, which
makes the model better in a wider operating range. These changes will
not be presented here.

5.2 Parameter estimation

It is desirable to have an easy parameter estimation algorithm which
can be used online, since the behavior of the catalytic converter changes
over time. The parameter estimation algorithm presented in [4] requires
very short testing time. The parameters and functions that need to be
estimated are kd, f(ζ) and g(ζ). kd is very straight-forward to get.
From (5.14) it follows:

kddζ = (∆λin − ∆λout)dt. (5.16)

If a test begins after the engine has run rich for a while and the oxygen
storage is ζ = 0 and ends after Tss seconds with a completely filled
oxygen storage the following holds:

kd =

∫ Tss

0 (∆λin − ∆λout)dt
∫ 1

0
dζ

=

∫ Tss

0

(∆λin − ∆λout)dt

. (5.17)

The same approach can be used when the catalytic converter is initially
filled and empty at the end of the test. (5.17) can be approximated
with the following sum:

kd =

N
∑

k=1

(∆λin(k) − ∆λout(k))Ts, (5.18)
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where N is the total number of samples and Ts is the sampling time.
The same data and the same equation can be used to get ζ(t) which

can be used to estimate the function f(ζ) (g(ζ) is neglected here). From
(5.15) it follows:

f(ζ) = 1 −
∆λout
∆λin

. (5.19)

When calculating (5.19) for all samples, F(k) is obtained. Instead of

using a map with F(k) and ζ(k) a simpler function f̂(ζ) is calculated

with a least squares algorithm. f̂(ζ) is approximated by a piecewise
linear function. This function can be written as a linear combination
of triangular basis functions:

f̂(ζ) =

∑n
i=1 bi(ζ)fi

∑n
i=1 bi()ζ

, (5.20)

where the triangular basis functions are:

bi(ζ) =



















0, if ζ < ζi−1, i ≥ 2
ζ−ζi−1

ζi−ζi−1 , if ζi−1 ≤ ζ < ζi, i ≥ 2

1 − ζ−ζi

ζi+1−ζi
, if ζi ≤ ζ < ζi+1, i ≤ n− 1

0, if ζ ≥ ζi+1, i ≤ n− 1.

(5.21)

Good results have been obtained in [4] when predefining the basis func-
tions. With fixed basis functions equation (5.20) has an analytical
solution. The parameters f1,2..n are tuning parameters to the n ba-
sis functions. A piecewise linear function with five points should be
enough. An example on how to solve the least square problem can be
found in [4].

The function g(ζ) can be obtained in a similar manner. The data
used to estimate the function is taken during a rich to lean step. Since
the function only will be used when inlet and outlet lambda have dif-
ferent signs and when ∆λin ≥ 0, the data set is calculated by:

G(k) =

{

∆λout, if ∆λout < 0
0, if ∆λout ≥ 0

(5.22)

F (k) =

{

1, if ∆λout < 0

1 − ∆λout

∆λin
, if ∆λout ≥ 0.

(5.23)

The function ĝ(ζ) does not have to be as accurate as f , so a piecewise
linear function with two or three point should be sufficient. ĝ(ζ) can

be calculated in the same manner as f̂(ζ).

5.3 Validation

During the parameter estimation, the accuracy of the lambda sensor
signals is crucial. Neither the pre nor the post catalytic converter sensor
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can have any biases. No such lambda sensor signals have been available
and therefore the model has not been tested.

The reason why this model is included in this thesis, is that with
accurate λ-sensors, the model should give satisfying result. The model
is also very simple with only one state and it needs no parameter op-
timization, only calculations of the parameter and states. Hence, the
model should be easy to fit into an engine control system and need
little CPU power.
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Chapter 6

Model C - A Simplified

Physical Exhaust Gas

Aftertreatment Model

This model has been developed by Theophil Sebastian Auckenthaler
and is presented in [3]. The model is a physical model of the exhaust
gas aftertreatment system, which includes a reversible wide-range λ-
sensor model before the converter, a switch-type λ-sensor model after
the converter, and of course a TWC model.

The model is based on reaction kinetics of a small number of key gas
components and reactions together with the dynamics of gas storage on
the converter surface. The spatially distributed nature of the converter
is approximated by a lumped parameter model. The ageing of the
TWC is represented by the parameter describing the storage capacity,
hence the storage capacity is the only parameter that is assumed to
change over time.

6.1 Model

The model consists of three modules, see fig 6.1.
The input to the model is the wide-range lambda sensor signal up-

stream of the TWC, the exhaust mass flow and temperature, and the
output is the switch-type lambda sensor signal.

6.1.1 Exhaust gas model

The main purpose of the exhaust gas model is to convert the wide-range
lambda sensor value into mole fractions of O2, CO and H2. These mole
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Exhaust
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Figure 6.1: Block diagram of the complete model.

fractions are calculated from the combustion reactions when the engine
is running lean (O2 mole fraction) and when the engine is running rich
(CO and H2 mole fractions).

1

(α + β
4 )λ

CαHβ +O2 +
79

21
N2 →

ξCO2
CO2 + ξH2OH2O + ξO2

O2 + ξN2
N2 (6.1)

1

(α + β
4 )λ

CαHβ +O2 +
79

21
N2 →

ξCO2
CO2 + ξH2OH2O + ξCOCO + ξH2

H2 + ξN2
N2 (6.2)

The combustion reactions for lean and rich engine conditions are
given in equations (6.1) and (6.2), respectively. Perfect combustion is
assumed. The fuel is assumed to be CαHβ .

During lean conditions all oxidizing components has been collected
into O2. Hence, the O2 mole fraction is

yO2
=

ξO2
∑

i=CO2,H2O,O2,N2
ξi

=
1 − 1

λ
α+β/2

(α+β/4)λ + (1 − 1
λ) + 79

21

.

(6.3)

The mole fractions for CO and H2 can be calculated if the ratio be-
tween H2 and CO (φH2/CO) is assumed to be constant. This assumption
is motivated in [3].
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yCO =

2
1+φH2/CO

( 1
λ − 1)

α+β/2
(α+β/4)λ + 79

21

yH2
=

2φH2/CO

1+φH2/CO
( 1
λ − 1)

α+β/2
(α+β/4)λ + 79

21

.

(6.4)

Since species have been lumped together it is important to remem-
ber that the mole fractions contain fractions of other species as well.
It has been found that it is critical that the final mole fractions are
consistent in terms of the air/fuel ratio λ, but it is not so critical that
they are accurate. To make the air/fuel ratio consistent, the author of
[3] found a heuristic function:

∆yO2
=

ηcomb
1 + 10|λ− 1|

∆yCO =
2

1 + φH2/CO

ηcomb
1 + 10|λ− 1|

∆yH2
=

2φH2/CO

1 + φH2/CO

ηcomb
1 + 10|λ− 1|

(6.5)

where

ηcomb = aηcomb
+ bηcomb

Texh. (6.6)

When the efficiency of the combustion increase the temperature of
the exhaust gas increase and the concentrations of the reducing and
oxidizing species that reaches the catalytic converter decreases. ηcomb
can be interpreted as an inverse combustion efficiency. The factor is
dependent on the exhaust gas temperature and has strong impact on
the energy balance of the TWC.

The final mole fractions are:

yi,exh = yi + ∆yi. (6.7)

These mole fractions are the input to the TWC-model.

6.1.2 TWC model

The TWC model takes the concentrations of the species before the
TWC, exhaust gas temperature, and exhaust mass flow as input, and
pass on the concentrations of the species after the TWC and the tailpipe
temperature to the switch-type λ-sensor.
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Chemical Reactions and Reaction Rates

The number of chemical reactions taking place in a catalytic converter
are far too many and complex to be described in detail in this the-
sis. Extensive information on the chemical reactions taking place in
a catalytic converter can be found in [4] and [3]. After extensive as-
sumptions, simplifications, and eliminations done in [3] the following
chemical reactions remains:

1
2O2(g) + ∗ → O∗

CO(g) + O∗ → CO2 + ∗
H2(g) +O∗ → H2O(g) + ∗
H2O(g) + ∗ → H2(g) +O∗

CO(g) + ηCO∗ → COηCO∗

1
2O2(g) + COηCO∗ → CO2(g) + ηCO∗,

(6.8)

where * denotes a vacant site on the catalytic converter surface, and
the superscript * stands for adsorbed species.

The reaction rates depend on the reaction coefficient, ki, the con-
centration of the current species in the washcoat, cwci , and the fraction
of the catalytic converter surface that is either vacant, θV , or occupied
by the necessary species, θi.

Consequently the reaction rates corresponding to the chemical re-
actions are:

radsO2
= k1c

wc
O2
θV

rredCO = k2c
wc
COθO

rredH2
= k3c

wc
H2
θO

radsH2O = k4θ
2
V

radsCO = k5c
wc
COθV

roxCO = k6c
wc
O2
θCO,

(6.9)

where the fraction of the catalytic converter surface that is vacant,
θV = 1− θO− θCO. The reaction coefficients are obtained by using the

Arrhenius equation, hence ki = Aie
−Ei
ℜTs , i = 1..6.

Since the water concentration is assumed to be constant, it has been
included in the pre-exponential factor A4, the water adsorption rate is
thus independent of this concentration.

Occupancy of O and CO

The first and fourth chemical reaction increases the fraction of the
catalytic converter surface occupied by oxygen, and the fifth reaction
increases the fraction of the converter surface occupied by CO but with
the higher rate ηCO. In a similar way the second, third and sixth
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reaction decreases the fraction of the converter surface occupied by the
species in question.

The balance equations for the occupancies of O and CO can hence
be expressed as follows:

∂θO
∂t

= radsO2
− rredCO − rredH2

+ radsH2O

∂θCO
∂t

= ηCO(radsCO − roxCO).

(6.10)

Concentrations

The concentrations are calculated from the set of mass balance equa-
tions for the species in the channel, cch, and in the washcoat, cwc. To
make a simple model the TWC is discretized along the flow axis into a
small number, nc, of cells. Then the rate at which the concentration of
species i in the channel changes in cell j, is assumed to be dependent
only of the difference between concentrations in the channel in the pre-
vious and the present cell, and the difference between concentrations
in the channel and the washcoat in the present cell.

∂cchi,j
∂t

= f(cchi,j−1 − cchi,j , c
ch
i,j − cwci,j )

The rate at which the concentration of species i in the washcoat changes
in cell j is assumed to be dependent only of the difference between
concentrations in the channel and the washcoat in the present cell, and
the storage capacity, SC, which is assumed to be constant over the
catalytic converter.

∂cwci,j
∂t

= f(cchi,j − cwci,j , SC)

Since the dynamics of the gas species are much faster than the ones
of the oxygen storage deactivation the mass balance equations can be
applied as static equations. From these assumptions, the following
terms for both the channel and the washcoat concentrations of O2, CO
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and H2 are obtained:

cchO2,j =
V̇relc

ch
O2,j−1

V̇rel +DO2

(

1 −
DO2

DO2
+0.5(k1θV,j+k6θCO,j)SC

)

cchCO,j =
V̇relc

ch
CO,j−1

V̇rel +DCO

(

1 − DCO

DCO+(k2θO,j+k5θV,j)SC

)

cchH2,j =
V̇relc

ch
H2,j−1 +

DH2
k4θ

2
V,jSC

DH2
+k3θO,jSC

V̇rel +DH2

(

1 −
DH2

DH2
+k3θO,jSC

)

cwcO2,j =
DO2

cchO2,j

DO2
+ 0.5(k1θV,j + k6θCO,j)SC

cwcCO,j =
DCOc

ch
CO,j

DCO + (k2θO,j + k5θV,j)SC

cwcH2,j =
DH2

cchH2,j
+ k4θ

2
V,jSC

DH2
+ k3θO,jSC

,

(6.11)

where cchi,j−1 stands for the concentration of species i in the preceding
cell or at the TWC inlet if j = 1. SC is the storage capacity of the TWC.
Di = CiAgeo where Ci is the convection mass transfer coefficient of
species i, and Ageo is the specific geometric catalytic converter surface.

V̇rel = V̇
VT WC/nc

where V̇ is the volumetric flow of the exhaust gas,

VTWC denotes the total volume of the TWC, and nc is the number of
cells.

The channel concentrations of the last cell are the actual output
variables, which are fed into the switch-type λ-sensor model.

Temperature

The temperatures are calculated from the set of energy balance equa-
tions for the solid and the gas phase. The rate at which the gas
phase temperature, Tg, changes is assumed to be dependent only of
the derivative of the gas phase temperature along the axial position,
∂Tg

∂z , and the difference between the solid phase and the gas phase tem-
perature, Ts−Tg. Since the dynamics of the exhaust gas temperature,
are expected to be much faster than the one of the solid temperature,
the dynamics of the exhaust gas temperature are neglected. Hence, the
following equation for the exhaust gas temperature of cell j is obtained:

Tg,j =

ṁ
VT WC/nc

cp,gTg,j−1 + αAgeoTs,j
ṁ

VT WC/nc
cp,g + αAgeo

, (6.12)
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where VTWC/nc is the volume of one cell. Tg,j−1 is the gas temperature
of the preceding cell, except for the first cell where Tg,j−1 denotes the
inlet gas temperature.

The rate at which the solid phase temperature changes is assumed
to be dependent only of the second derivative of the solid phase tem-

perature along the axial position, ∂
2Ts

∂z2 , the difference between the solid
phase and the gas phase temperature, the reaction enthalpies, and the
difference between the solid phase and the ambient temperature. The
second derivative of the temperature has to be discretized, which is
done with a backward difference scheme. Since the CO and the H2 ox-
idation are the only global oxidation reactions occurring it is assumed
that the only enthalpies needed is ∆HCO2

and ∆HH2O, even though
NO and HC are included in the O2 and CO concentrations.

Solid phase temperature in cell j Ts,j :

∂Ts,j
∂t

=
(1 − ε)λs

Ts,j−1−2Ts,j+Ts,j+1

dz2 − αAgeo(Ts,j − Tg,j)

̺scs(1 − ε)

+
SC((−r2 − r6)∆HCO2

+ (−r3 + r4)∆HH2O)

̺scs(1 − ε)

−
αcat(Ts,j − Tamb)

4
DT WC

̺scs(1 − ε)
,

(6.13)

where αTWC is the heat transfer coefficient from the TWC to the am-
bient air. ATWC is the outer TWC surface and DTWC is the TWC’s
diameter.

6.1.3 Switch-type λ-sensor model

It has been shown (see [11]) that it is not only oxygen that affect
the tailpipe λ-sensor, H2 and other reducing species has strong impact
on the sensor output, especially during rich conditions. Therefore the
reducing species as well as the oxidizing should be a part of the sensor
model.

The switch-type λ sensor works like a spring. This means that the
sensor voltage corresponds to the drag of the spring. When the sensor
is exposed to an inert gas the springs are under a slight drag and when
exposed to a lean gas composition the springs are released and the
voltage drops. When the sensor is exposed to a rich gas composition
the voltage is higher. These properties can be modeled with:

Uλst = Aλst + f(yCO, yH2
) − g(yO2

). (6.14)

Aλst corresponds to the value when no reducing nor oxidizing species
are present.
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An analysis in [3] has shown that the sensor output corresponds
with the logarithm of the exhaust gas components. When exposed to
rich exhausts the sensitivity to H2 is dominating, however even though
there is no H2 present the sensor shows a higher input than when ex-
posed to an inert gas. The sensor output also decreases with increasing
temperatures. A model that covers these considerations is:

Uλst = Aλst + EA,λst · e
−EE,λst

ℜTtp · log10(1 +BλstyCO + CλstyH2
)

− Fλst · log10(1 +DλstyO2
). (6.15)

When the concentrations are zero the corresponding term should also
become zero and thus the 1 in the logarithmic expressions. The 1 also
prevent the terms from becoming negative.

The exhaust gas in the real sensor is brought to a chemical equi-
librium and thus the model cannot be applied to the concentrations
directly. The calculation of the equilibrium concentrations is very com-
plex and a crude approximation is used. When the mixture is lean the
concentrations are:

yO2
= max(ytpO2

− 0.5(ytpH2
+ ytpCO), 0)

yCO = 0

yH2
= 0

(6.16)

and a somewhat more complicated calculation when the inlet is rich:

yO2
= 0

yCO = max(ytpCO − 2(1 − wλst)y
tp
O2

+ min(ytpH2
− 2wλsty

tp
O2
, 0), 0)

yH2
= max(ytpH2

− 2wλsty
tp
O2

+ min(ytpCO − 2(1 − wλst)y
tp
O2
, 0), 0).

(6.17)

It is assumed that CO has a higher inclination to react with the excess
O2 as compared to H2 and the weighing factor wλst is introduced to
take that into account. wλst was chosen as:

wλst =
0.3ytpH2

0.3ytpH2
+ ytpCO

. (6.18)

The response time of the sensor is much shorter than the dynamics
of the exhaust gas composition. Thus the sensor dynamics can be
neglected and the presented algebraic model should be sufficient.

6.2 Parameter estimation

The model contains many parameters. Most of the physical parameters
have been found in tables or in the data sheets of the catalytic con-
verter. However, the parameters not found must be estimated. These
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parameters are the switch-type λ-sensor specific parameters, the oxy-
gen storage capacity and heat-transfer coefficient between the TWC
and ambient, the kinetic parameters of the TWC and heat conductiv-
ity in the solid phase.

If measurements of the concentrations downstream of the catalytic
converter are available, the λ-sensor parameters can be found separately
which makes the estimation of the rest of the parameters much easier.

Unfortunately, concentration measurements were not available in
the laboratory used for measurements in this thesis and therefore the
parameters are quite hard to obtain.

6.2.1 Simplifications and assumption

To make the parameter estimation more accurate a few assumptions
and simplifications can be made to get better start values to use with
the estimation algorithm.

Obtaining the lean-related parameters in the λ-sensor model

When the engine has been running lean long enough to fill the TWC
with oxygen the downstream exhausts can be assumed to be the same
as the inlet gases, which means that the inlet concentrations can be
applied directly to the λ-sensor model. If assuming that Aλst has the
same value as in [3] a least-square optimization routine can be applied
and Dλst and Fλst can be obtained.

Bλst and Cλst ratio

A constant ratio between Bλst and Cλst can be assumed. This ratio is
assumed to be the same as in [3]

Fixed heat transfer and heat conduction

The heat transfer coefficient between the converter and the ambient
air, αcat, can at first be set to zero. This will make the temperatures
increase but the change is not dramatic. The heat conduction λs is
important, though a high accuracy is not needed due to the fact that
the model is very simplified. Hence a reasonable value can be used.

6.2.2 Estimation algorithm

Many of the parameters that has to be estimated are dependent on each
other and therefore an estimation algorithm has been made in order to
get as accurate parameter values as possible. The optimization algo-
rithm needs good first guesses. The algorithm should first be applied
to the kinetic parameters, SC, Bλst, EA,λst and EEλst with the rest



48 Chapter 6. Model C - A Simplified Physical...

of the values as suggested in section 6.2.1. Now the parameters have
been narrowed down from 22 to 16. Next step is to freeze a few of the
parameters at the time and apply the algorithm to the rest. This is
done in order to make the parameters which are dependent on other
parameters evolve without interacting with each other. An example of
the estimation algorithm is given below:

1. kinetic parameters Ai and Ei, SC, Bλst, EA,λst and EEλst

2. kinetic parameters only

3. Bλst, EA,λst and EEλst only

4. SC only

5. all parameters, including Aλst, Cλst, Dλst, Fλst, αcat, λs

6. kinetic parameters only

7. sensor parameters only

8. αcat

9. SC

10. λs

The parameters are obtained by minimizing the error between the
model output and the switch-type λ-sensor. Some parameters how-
ever, e.g αcat, affects the temperature rather than the model output,
hence when αcat is estimated the least-square algorithm should mini-
mize the error between the models temperature in the TWC and the
sensor value instead of the switch-type λ-sensor.

If the result is not satisfying or if no good initial values are available
the steps should of course be repeated.

The values obtained can be found in appendix C.

6.3 Validation

Two sets of parameters are presented in this chapter. The first set gives
an output which is more alike the λ-sensor output than the second set,
at least in the beginning of the simulations. The second set gives the
states a more realistic appearance than the first. The major difference
between the first and second parameter set is that a parameter repre-
senting the lambda offset had a fix value in the second set but not in
the first, when estimating the parameters.

The parameters (from both sets) have initially been obtained as
described above. The steps have been repeated several times.
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6.3.1 The first set

When estimating the first set of parameters, a parameter represent-
ing the wide-range λ-sensor offset was included in the estimation algo-
rithm. This parameter was finally estimated to be 0.001, but this is
not a reasonable value. As implied in section 2.2 the offset should be
approximately -0.01.

As mentioned above the first set of parameters gives an output that
is similar to the sensor output, at least during the first 290-300 seconds.
Figure 6.2 shows the measured and simulated switch-type λ-values after
the converter from the four sets of validation data. As can be seen, the
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Figure 6.2: Simulated and measured switch-type λ-sensor values from
the four sets of measurements.

model can describe the output well, except when the input λ changes
fast (290s-350s).

Looking at the states describing the oxygen and carbon monoxide
levels stored in the converter (see figure 6.3), it is can be seen that the
model not describe the dynamics of the converter in a physical way.
When the engine has been running lean for a long time the converter
is filled with oxygen; the oxygen storage level is 1. As can be seen in
figure 6.3 this is described by the converter. However, when the engine
has been running rich for a long time the oxygen level should decrease
to zero as the excess reducing species react with the oxygen in the
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Figure 6.3: Simulated levels of O and CO in the first cell.

converter. This is not described by the model, since the oxygen level
in the simulation from e.g. operating point 1 never is below 0.5. In the
simulations from the other data sets the oxygen level is less than 0.5 at
the lowest point, but the same parameters should be able to describe
this in all operating points.

It is hard to say how much the carbon monoxide level should increase
when running rich. It is though reasonable that it should increase, as
the engine then produces more of the reducing species. Naturally, the
carbon monoxide level should also decrease when the engine starts to
run lean again. Hence, looking at figure 6.3, the carbon monoxide level
described by the model is reasonable. The levels of oxygen and carbon
monoxide in the other cells behave as the ones in the first cell.

6.3.2 The second set

The second set of parameters were estimated with a fixed value of the
wide-range λ-sensor offset, -0.01. This resulted in model states that are
more physically representative than with the first set of parameters.
Figure 6.4 shows the simulated levels of oxygen and carbon monoxide
in the first cell. As can be seen in the figure, the simulated oxygen
levels are changing as desired, i.e. they go up to 1 when the engine has
been running lean for a while and they all drop down to zero after
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Figure 6.4: Simulated levels of O and CO in the first cell.

running rich for a while. The carbon monoxide levels also acts as
expected. However, even though the states behave as expected, the
output switch-type λ-value does not match with the measured value as
well as in [3]. Figure 6.5 shows the simulated and measured switch-type
λ-value. It can be seen that these parameters do not describe the time
when λ switches from lean to rich or from rich to lean as good as the
first set of parameters. The second set though, is better at describing
the output when the input λ switches fast.

6.3.3 Number of cells

Since the estimation of the parameters have been very time-demanding,
tests on how the accuracy changes with the number of cells used in the
TWC model have not been made, as changing the number of cells also
means that new parameter values have to be obtained. As Auckenthaler
[3] has found that three cells are suitable in terms of both accuracy and
CPU power, the same number of cells have been chosen in this thesis
as well.
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Figure 6.5: Simulated and measured switch-type λ-sensor values from
the four sets of measurements.

6.3.4 Discussion

One important aspect when modeling, is to think about what the model
is going to be used for. In this case, it is desired to use the model for
estimating the oxygen storage for control purposes, i.e. it will be used
together with a Kalman filter to observe the oxygen storage. This
means that it is very important that the oxygen storage level and car-
bon monoxide level states are good reflections of the real levels. How-
ever, it is also crucial that the switch-type λ-value agrees well with the
measured, since the states are being corrected based on the difference
between the simulated and measured value. Based on this, the first
parameter set is not suitable to use in a Kalman filter. Since the sec-
ond set of parameters shows better agreement between measured and
simulated values and also describes the states better, the second set
should be chosen if the model is to be used in a Kalman filter.
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Model comparison

One reason to compare the models is to decide whether any of the
models can be used in the online adaption strategy described in the
following chapter.

7.1 Accuracy of the models

An important aspect when comparing the models is their accuracy
compared to measurements.

Model A

It is hard to draw any conclusions about the accuracy of the catalytic
converter model in chapter 4, since a reliable wide-range λ-sensor down-
stream of the converter, or a λ converter model with high accuracy is
needed to compare the model with measured data.

With the λ converter used in this thesis, the model of the converter
seems to capture the dynamics of the converter well for one operating
point, but the model is not expected to show as good results when the
operating point is changed or the converter is aged.

Model B

Since no simulations has been done with this model there is no infor-
mation available about the accuracy of the model.

Model C

The accuracy of the Model C output as compared to measurements
is good, regarding the low complexity of the model. It describes the
long-period changes in inlet λ well, but the agreement when the inlet λ
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changes fast is not very good. The oxygen level and carbon monoxide
states changes in a reasonable way.

Comparison

The accuracy of Model A and Model C is almost the same, as can
be seen in figures 4.3 and 6.5. The accuracy of Model C is though
expected to be better than Model A in other operating points than
used for evaluation in this thesis, since the model is based on physical
reactions in the converter.

7.2 Inputs and outputs

Due to economical reasons, automotive producers is reluctant to add
additional sensors. Therefore a model using only the present sensors is
desirable.

Model A

The catalytic converter model described in chapter 4, uses measure-
ments from a wide-range λ-sensor before the catalytic converter, and
the fuel mass flow as inputs. The output, which is to be compared with
measurements, from the model of the catalytic converter is a wide-range
λ-value. When the λ-converter model is applied however, a switch-type
λ-value is the output. The λ-converter model also needs exhaust gas
temperature as input.

Model B

Model B takes the upstream wide-range λ as input and the output is
the downstream wide-range λ.

Model C

Model C takes the wide-range λ, exhaust mass flow and exhaust tem-
perature as inputs. The output is a switch-type λ-value.

Comparison

The major difference in the models’ need for extra sensors, is the use
of a wide-range or a switch-type λ-sensor downstream of the converter.
The measurements of the mass flow and exhaust gas temperatures are
of minor concerns. Hence, from this point of view, Model A and C are
preferred.
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7.3 Number of states and parameters

The number of parameters is important because a higher number in-
dicates that a good estimation of the parameters is harder to obtain.
This in turn makes it hard to apply and adjust the model to different
catalytic converters.

The number of states is a measurement of how detailed the model
is. Additionally the CPU recourses demanded by an online adaption
strategy, such as the one described in chapter 8, is linked to the number
of states together with the number of parameters that changes as a
result of the ageing of the converter.

Model A

Model A contains two states describing the oxygen storage and the re-
versible catalyst deactivation. These correspond to the states in Model
C describing the occupancy of O and CO. A big difference is that no
consideration has been made to describe the spatially distributed na-
ture of the converter in this model.

The model of the catalytic converter contains nine parameters. Ad-
ditionally the λ converter introduce ten parameters that have to be
estimated. Among the nine parameters in the model of the converter
there are six which change as the catalytic converter ages.

Model B

Model B has only one state, which indicates the current global rela-
tive oxygen coverage of ceria (ROC) in the catalytic converter. ROC
corresponds to the storage capacity SC in Model C. Model B has two
functions that easily can be estimated with a data set where the ROC
goes from 0 to 1 and from 1 to 0. Furthermore, the model has one
additional parameter that has to be estimated. This parameter is easy
to obtain using the same data sets as for the functions. Both parame-
ter and functions change over time and can be estimated online. Good
sensor values must be available in order to estimate the parameter and
functions.

Model C

The dynamics of the converter is in Model C described by the TWC
model. Each cell in the TWC model contains three states, describing
the occupancy of O and CO, and the solid phase temperature. In this
case when the catalytic converter is divided into three cells there are
consequently nine states.
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The exhaust gas model, the TWC model and the sensor model have
together 22 parameters which need to be estimated. Amongst them
there is one which changes as the catalytic converter ages.

Comparison

The number of parameters that need to be estimated are 19 in Model A,
1 in Model B, and 22 in Model C. Model B additionally contains 2 func-
tions with parameters, but these are obtained by simple calculations,
and does not demand any optimization. Estimating the parameters in
Model A and Model C, is hence expected to cause more trouble, than
the estimation for Model B.

In an online strategy two states and 6 parameters would have to be
estimated if Model A was to be used. One state, the parameter and
two functions would have to be estimated if using Model B. The same
numbers for Model C is 9 states and one parameter. From this, the
conclusion that Model B is least demanding if it were to be implemented
in an online strategy, is drawn.

7.4 Simulation speed

The time it takes to simulate the models is a measurement of their
complexity. The shorter time it takes, the easier the model will be
to fit into an engine control system. Tests have shown that a 240 s
long measurement sequence takes approximately 9 seconds to simulate
with Model C and approximately 4 seconds with Model A. This is not
a surprising result since Model A has fewer states than Model C and
hence should not need as much computer calculations as Model C.

7.5 Extensibility

The requirements of the models might differ depending on the field of
application. It is therefore desirable to know in what extent the models
can be modified or extended.

Model A

Model A is empirical, and the dynamics of the TWC is assumed to be
dominated of the oxygen storage and the reversible catalyst deactiva-
tion. Extending this model with further characteristics would probably
result in the need to reconsider the entire model.
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Model B

The model can easily be extended to be accurate in a wider operating
range by making the parameter and functions depend on the exhaust
mass flow. However, that also means that the model needs one more
input.

Model C

Since Model C is a simplified physical model, it is quite easy to extend.
One way is to include humid air or a gasoline containing not only H
and C, but also O in the combustion reactions (6.1) and (6.2).

It is also likely that the model can be extended with the NO and
HC concentrations without a drastic increase of the CPU power.

Comparison

Model C originates from a more advanced model, which has been sim-
plified in order to be used in control strategies or on board diagnostics.
More about the advanced model can be read in [3]. It is hence quite
easy to extend. Even though Model B is a black-box model, it can be
extended to show better results with different mass flows.

7.6 Final comparison

The most important aspect when comparing the models, is of course
the accuracy compared to measurements. If the model makes a poor
description of the catalytic converter, it does not matter if e.g. the
demand for CPU power is limited.

Model B has due to offset problems with the sensors not been im-
plemented and thus it cannot be used in the online adaptation strategy.

Model C is expected to be more accurate than Model A in other
operating point than the ones used in this thesis.

Model C contains the highest amount of states, and is hence the
most CPU consuming model. Additionally it is the model where the
parameter values are hardest to obtain. On the other hand, the many
states and parameters make the model more reliable when it comes to
describing the behavior of the catalytic converter, and Model C has the
most physical interpretation of the three models.
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Chapter 8

Extended Kalman filter

To be able to use the models of the catalytic converter from the previous
chapters, both the estimation of the internal state variables, by means
of an observer, and the estimation of the parameters that changes over
the converter’s lifetime, should be performed by the control unit during
operation, i.e. an online adaption strategy is required.

The correct estimation of the controlled internal state variables such
as the oxygen storage level require a fast and accurate adaption to the
”true” values. One way to achieve this is to use an extended Kalman
filter (EKF), which can handle both the internal state variables and
adapting parameters, as well as the nonlinear models.

8.1 Introduction to EKF

The EKF in this chapter is implemented accordingly to the EKF pre-
sented in [3]. Therefore, only a short introduction is given. For further
information on the subject the reader is referred to [3], and books and
papers on the subject such as [5] and [13].

Assume that the process noise and the measurement noise pro-
cesses are uncorrelated, zero-mean white noise and additive to the state
derivative and the output vectors. Then the system can be described
by nonlinear state space equations:

ẋ = f(x,u) + w

y = h(x,u) + v,

where u is the control input vector, x the state vector, y the output
vector, w the process noise and v the measurement noise. The co-
variance matrices for the process and the measurement noise can be
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expressed as:

Q = E[wwT ]

R = E[vvT ],

and the covariance matrix of the estimate error as:

P = E[(x − x̂)(x − x̂)T ].

The model has to be linearized around the current state estimate x̂

to obtain the systems measurement matrix H:

H =
∂h(x,u)

∂x

∣

∣

∣

∣

x=x̂

and the dynamics matrix F:

F =
∂f(x,u)

∂x

∣

∣

∣

∣

x=x̂

.

Since the purpose is to create a discrete filter, the fundamental matrix
Φk is required instead of the systems dynamic matrix. Φk can be
approximated by the first two terms of the Taylor-series expansion:

Φk = eFhs ≈ I + Fhs

The first step of the extended Kalman filter algorithm is the ”time
update” or ”extrapolation” step, where the state vector estimate x̂ and
the covariance matrix P are projected one step ahead:

x̂−

k = f(x̂k−1,uk−1) (8.1a)

P−

k = ΦkPk−1Φ
T
k + Qk, (8.1b)

where the discrete process noise matrix Qk can be obtained from the
continuous matrix Q by integration over one time step:

Qk =

∫ khs

(k−1)hs

Φ(τ)QΦT (τ)dτ

The second step is the ”measurement update” or ”correction” step,
where the state vector estimate x̂ and the covariance matrix P are
corrected using the error between the projected output vector h(x̂−

k )
and the measured vector zk, and the measurement matrix Hk:

x̂k = x̂−

k + Kk(zk − h(x̂−

k ,uk)) (8.2a)

Pk = (I − KkHk)P
−

k (8.2b)
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The Kalman gain Kk is calculated from the discrete Riccati-equation:

Kk = P−

k HT
k (HkP

−

k HT
k + Rk)

−1 (8.3)

The filter algorithm is established with equations (8.1)-(8.3). These
equations needs to be calculated every time step. Hence, the amount of
CPU power that is needed to carry them out has to be rather small.
With this in mind, one might think that what appears to be a matrix
inversion in the Riccati equation (8.3) could cause problems, but a
closer inspection reveals that this is actually a scalar inversion, in this
case, since the output vector is one dimensional. (Bara en utsignal)

8.1.1 Parameter identification

The parameters that changes over the catalytic converter’s lifetime need
to be identified online. This is easily implemented when a discrete EKF
is used by seeing them as additional state variables.

The discrete state space equation is originally expressed as:

xk+1 = f(xk,uk) + wk

yk = h(xk,uk) + vk,

and then augmented with the equation for the new state variables

pk+1 = pk + wp,k,

where p denotes the vector with the new state variables and wp,k is
a zero-mean scalar white noise process. The effect of this is that p

is kept constant in the extrapolation step and only adjusted in the
measurement update step. Obviously Q and P have to be augmented
accordingly.

8.2 Implementation

In this thesis, as well as in [3], the model incorporated in the EKF is
the Model C.

As a discrete EKF is used, the model has to be discretized. One
way to do this is to approximate the expressions for the states in the
catalytic converter model with an Euler forward scheme.

When using Model C, the input, state and output vectors are de-
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fined as follows:

u =
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, y = [Uλst]

The discrete form of the state space model is augmented with the
parameter that needs to be identified, SC, which is the parameter that
changes as the converter ages:

SCk+1 = SCk + wSC,k

Hence the model now contains ten state variables. This is close to
the allowed upper limit. As stated before it should be simple enough
to fit in the control system.

Since the coupling between the temperatures and the sensor out-
put is relatively weak the filter can be simplified by not including the
temperatures in the measurement update step. The temperatures are
hence only calculated in the extrapolation step and then handled as
model parameters.

The state vector can thus be split in two vectors

xcorr =





















θO,1
θCO,1
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θCO,2
θO,3
θCO,3
SC





















and xTemp =





Ts,1
Ts,2
Ts,3



 .

These two vectors in combination is used with an Euler forward scheme
to calculate the state vector in the extrapolation step, but only xcorr
is updated in the correction step.

An attempt to calculate the Jacobians F and H analytically was
made, but this task turned out to be to awkward, and they are here
calculated numerically with a forward differential scheme.

8.3 Tuning of the EKF

The two covariance matrices Q and R are used as tuning parameters of
the EKF. If R is chosen large as compared to Q, the measured value is
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supposed to be less accurate then the estimated value from the model,
and hence the model is trusted more. Correspondingly, the opposite is
true, if Q is chosen to be large and R small.

According to [3], the model noise should generally be considered as
small compared to the measurement noise, because a relatively slow
adaption is preferred.

8.4 Discussion and results

Due to lack of time, the implementation of the EKF has not been fully
investigated. This description of how to implement the EKF should
be looked upon as a suggestion of how to start if an online adaption
strategy is to be used.

8.4.1 Validation

The results from a simulation with the EKF can be seen in figure 8.1
and 8.2. As can be seen, the switch-type λ-value follows the measured
one well, the θO seems to have the expected behavior, but θCO acts in
an unexpected way in this simulation. It should be emphasized that this
is a simulation, with particularly good results. A small change in any
value such as Q, R or the initial value of a state results in considerably
deteriorations.

100 150 200 250 300 350
0

0.5

1

Time [s]

λ
 [V

]

Estimated in EKF

Measured

Figure 8.1: The measured switch-type λ and the switch-type λ-value
estimated by the model in the EKF.

These problems might be numerical, because the simplest method
always was chosen e.g. when the model was discretized, and when the
Jacobians F and H were estimated. This did not lead to any major
numerical problems in [3]. In this thesis however, the EKF has been
run with a sample rate of 500Hz. This is higher than in a present
production-type control unit, but only half of the sample rate used in
[3]. Additionally, the parameter values in [3] is expected to have greater
accuracy than the ones obtained in this thesis.
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Figure 8.2: The upper plot shows θO, and the lower θCO, in the EKF.

The comparatively good result should hence not be seen as some-
thing that is always achieved, but rather as a confirmation that good
results are possible to obtain.

8.4.2 Properties of the EKF

Provided that the previously described problems have been handled,
is the introduced EKF reliable in all situations? Is for example the
system stable and observable, and simple enough to fit in the control
system? These properties have been investigated in [3], and will only
be mentioned shortly here.

Splitting the state vector

As described in the previous section the state vector is split and hence
the temperatures are not included in the measurement update step.
This is done to simplify the filter, but does it also reduce the accuracy?
Actually, it was shown in [3] that this reduction of the problem consid-
erably improves the robustness of the filter against sudden transients,
because of the weak coupling between the temperatures and the sensor
output.

Stability

The system is obviously bounded-input/bounded-output stable, and all
state variables are bounded. This can bee seen since the system focused
on here describes a physical system with physically limited occupancies,
which can not become negative and their sum can not exceed 1. The
temperature can never decrease below the ambient temperature and the
heat production is dependent on the occupancies and therefore cannot
increase indefinitely. Thus, all state variables remain bounded in the
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real system and since the model is a representation of the reality, they
remain bounded in the model as well. According to [3], the resulting
linearized system is asymptotically stable in any steady state operating
point.

When the model is implemented in an EKF however, it is possible
that the states is adjusted to values outside their physical limitations.
One way to try to come around this is to implement boundaries in
the EKF, which also has been done. This might be another reason to
the strange behavior of θCO, since it primarily occurs when there is
supposed to be higher levels of θCO.

Observability

To investigate the observability, a comparison between the model con-
sisting of three connected cells and two occupancies, and a system of
three tanks filled with e.g. water and oil, is made in [3]. If each tank
leaks water/oil to the next tank dependent on the level of the liquid,
and the size and geometry of the tanks are known, as well as the cor-
relation of the storage levels and the leakage, it is intuitively obvious
that the levels of water and oil in the three tanks can be determined if
the amount of water and oil leaving the last tank is measured.

Convergence

The investigation of the convergence is done in a similar way as with
the observability in [3]. A system consisting of a tank with entering and
leaving mass flows is used to conclude that the system has to be excited
to guarantee convergence of the Kalman filter states to the ”true” val-
ues. Under steady state conditions, when the input and output mass
flows are equal and constant, it is clear that the volume of the tank
cannot be determined. In the model it is theoretically possible to de-
termine the storage capacity under steady state conditions, since the
reaction rates and hence both the heat production and the tailpipe con-
centrations are dependent on SC. But this input-output link is weak.

The condition for convergence is hence that the system has to be
excited. This is however usually not a problem. The disturbances of
the λ at the TWC inlet and the transients of the exhaust gas mass flow
during normal driving conditions are sufficient. The worst case scenario
is when the driving is constant during longer periods, e.g. when driving
on a highway. In that case the excitations can become very weak, but
at least the process does not diverge.
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Chapter 9

Results and Discussion

The purpose of this thesis was to examine the possibilities to model
the dynamics of a catalytic converter for control purposes. During the
search for existing models, three promising models were found and they
have been investigated in this thesis.

All three models have the wide-range λ as input and have at least
one state that in some way describes the oxygen storage level, and they
all consider catalyst deactivation. The three models are fairly simple
and needs online adaptation due to ageing of the converter. A short
summary of the most important features of the models are presented
below. Further comparison of the models is given in chapter 7.

Two of the models (Model A and Model B) have a wide-range λ
as output. To be able to compare the values from these models with
measurements, the wide-range λ-sensor downstream of the catalytic
converter have to be accurate enough. This is a problem since wide-
range sensors often suffers from time varying biases. More about the
disadvantage of a wide-range sensor downstream of the converter can
be found in section 3.3. The third model (Model C), on the other hand,
has a switch-type λ as output.

Of the three models, Model B would probably be the one that de-
mands the least CPU power and it is the easiest one to adapt to dif-
ferent kinds of converters. No expensive tests or optimization routines
have to be done to obtain the parameter and functions. However, it
is also the most sensitive model by means of the characteristics of the
λ-sensors. The dynamics in Model B is based on the wide-range sensor
values before and after the converter, and when the sensors do not be-
have as expected the model works poorly. The sensor problem is hard
to get around, since an accurate converter model from switch-type to
wide-range λ-value is difficult to make, because of the nonlinearity of
the switch-type sensor.

Model A describes the oxygen level well, but the λ-sensor value
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after the converter is not reliable, which is crucial if the model is to be
used for control purposes. To overcome this, the original TWC model
has been extended with a model that converts the output wide-range λ
into a switch-type λ. This gives a better result, but it is not expected
to extrapolate to other operating points than the ones used for the
parameter estimation.

Model C is the most detailed of the three models examined, it is thus
no surprise that it is the most accurate, consume the highest amount
of CPU power, and contains the highest number of parameters. Even
though the results in this investigation is not as good as the results
in [3], it is the most promising of the three models presented in this
thesis. The drawback of Model C is that it has many parameters that
are hard to estimate if only the switch-type λ-sensor is available for
measurements. If sensors measuring the concentrations of the species
after the converter are available, the parameter estimation can be di-
vided into two parts, and thus the identification of the parameters is
easier.

The extended Kalman filter presented in chapter 8, together with
Model C, is not fully investigated and should be considered as a way to
start if an online adaption strategy is to be implemented. The use of
an EKF is promising, and good results are expected if the previously
described numerical problems (see section 8.4.1) are seen to.

An important conclusion drawn from this thesis, is that the behavior
of the sensors have to be taken into account if a model of the converter
is to be used e.g. for onboard control.

Finally, the chances are good that the extended Kalman filter to-
gether with Model C can successfully be used in an engine control sys-
tem, if an effort is made to tune in the model parameters even better
and the problems with the EKF is solved.



Chapter 10

Future work

First of all, more time should be invested in obtaining parameter values
for Model C that describe the dynamics more accurately, e.g by using
other estimation algorithms or investigate if any simplifications like the
ones in section 6.2.1 can be done. When satisfying results have been
obtained, the next step is to solve the problems in the extended Kalman
filter and finally, test the filter online with a control strategy. Since the
storage capacity is adapted online the filter can be used for diagnostic
purposes as well.

As described in previous chapters, the reactions taking place in
the converter make the gas composition change dynamically. As the
gas composition has great impact on the sensors’ behavior, further
investigation of the λ-sensors are highly recommended, especially if
a wide-range λ-sensor is to be used. Additionally, the effects of sensor
ageing should be examined.
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Appendix A

Chemical reactions

The main purpose of a catalytic converter is to promote the following
three chemical reactions:

CαHβ + (α+
β

4
)O2 → αCO2 +

β

2
H2O

CO +
1

2
O2 → CO2

CO +NO → CO2 +
1

2
N2.

Additionally the TWC do not only promote these reactions, but also
affects the water-gas shift and the steam-reforming reactions:

CO +H2O ↔ CO2 +H2

CαHβ + 2αH2O ↔ αCO2 + (2α+
β

2
)H2
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Appendix B

Model A - Parameter

Values

The parameters of the catalytic converter in Model A are presented in
table B.1. As described in chapter 4, the exhaust gas and the sensor
model from chapter 6 have been merged to function as a switch-type λ-
sensor model. The values of the parameters in this model are presented
in table B.2.

Table B.1: Parameters of the catalytic converter in Model A.
Parameter Value
Kλ 5080
Kd 0.314
Kr 0.0710
Kψ 0.889
a1 -1.02e-7
a2 -4.78e-3
a3 0.0255
a4 0.105
a5 0.101
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Table B.2: Parameters of the switch-type λ-sensor in Model A.
Parameter Value
aηcomb

-3.06e-4
bηcomb

4.55e-7
φH2/CO 6.48

Aλst 0.238
Bλst 154000
Cλst 3.86
Dλst 28.5
EA,λst 0.0276
EE,λst -6990
Fλst 0.0328



Appendix C

Model C - Parameter

Values

The parameters are obtained using the algorithm described in section
6.2. The parameters in the exhaust gas model and switch-type λ-sensor
model are presented in table C.1 and C.4, respectively. The kinetic
parameters from the TWC-model are listed in table C.2 and the rest
of the TWC-model parameters are listed in C.3.

When estimating the first set of parameters a parameter represent-
ing the wide-range λ-sensor offset was included in the estimation algo-
rithm. This parameter was finally estimated to be 1e-3. When esti-
mating the second set of parameters the lambda offset was assumed to
be -0.01.

Table C.1: Exhaust gas model parameters
Parameter Value Unit
aηcomb

1.765e-2 [-]
bηcomb

-1.26e-5 [1/K]
φH2/CO 0.25 [-]
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Table C.2: Kinetic parameters of the TWC model
Parameter 1st set 2nd set Specification/Unit
E1 -20000 -18310 Activation energy [J/mol]
E2 -80 -77.56 Activation energy [J/mol]
E3 2.2e5 2.214e5 Activation energy [J/mol]
E4 2e5 2.23e5 Activation energy [J/mol]
E5 1.3e5 1.395e5 Activation energy [J/mol]
E6 1.6e5 1.597e5 Activation energy [J/mol]
A1 5 5.111 Pre-exponential factor

(Langmuir-Hinshelwood) [s−1]
A2 18 17.84 Pre-exponential factor

(Langmuir-Hinshelwood) [s−1]
A3 5.5e16 5.517e16 Pre-exponential factor

(Langmuir-Hinshelwood) [s−1]
A4 7e14 6.094e14 Pre-exponential factor

(Langmuir-Hinshelwood) [s−1]
A5 4e7 4.23e7 Pre-exponential factor

(Langmuir-Hinshelwood) [s−1]
A6 7.5e9 7.441e9 Pre-exponential factor

(Langmuir-Hinshelwood) [s−1]
ηCO 12 Number of sites occupied by CO
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Table C.3: Geometry, material and thermodynamic parameters of the
TWC model
Parameter Value Specification/Unit
Ageo 2616 Specific geometric catalyst surface

[m2/m3]
Dchan 1.117e-3 Diameter gas channel [m]
nc 3 Number of discrete cells
LTWC 152.4e-3 TWC length [m]
dz LTWC/nc [m]
DTWC 118.4e-3 Catalytic converter diameter [m]
VTWC 1.678e-3 Catalytic converter volume [m3]
α 82.3 Heat-transfer coefficient TWC→exhaust

[W/m2*K]
ρs 1739 Density solid phase [kg/m3]
cs 906 Specific heat capacity (solid phase)

[J/kg*K]
cp 1100 Specific heat capacity (gas phase) [J/kg*K]
ε 0.73 Volume fraction of gas phase
λs 50 Heat conductivity solid phase [W/m*K]
∆HH2O -241.8e3 Reaction enthalpy of H2 oxidation [J/mol]
∆HCO2

-283.0e3 Reaction enthalpy of CO oxidation [J/mol]
ΣO2

16.3 Diffusion volume
ΣCO 18.0 Diffusion volume
ΣH2

6.12 Diffusion volume
ΣN2

18.5 Diffusion volume
αcat 47 Heat-transfer coefficient TWC → ambient

[W/m2K]

Table C.4: Switch-type λ-sensor model parameters
Parameter 1st set 2nd set Unit
Aλst 0.15 0.15 [V]
Bλst 4e9 3.954e9 [-]
Cλst 8.8e11 8.71e1 [-]
Dλst 1.028e5 102800 [-]
EA,λst 0.04455 0.04836 [V]
EE,λst -3999 -3020 [J/mol]
Fλst 0.02697 0.02697 [V]
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