
Distributed Fault Diagnosis for Networked
Embedded Systems

Master’s thesis
performed inVehicular Systems

by
Dan Hallgren
Håkan Skog

Reg nr: LiTH-ISY-EX-3820-2005

December 21, 2005

Distributed Fault Diagnosis for Networked
Embedded Systems

Master’s thesis

performed inVehicular Systems,
Dept. of Electrical Engineering

atLink öpings universitet

by

Dan Hallgren
Håkan Skog

Reg nr: LiTH-ISY-EX-3820-2005

Supervisor:Mathias Jensen
Scania CV AB

Jonas Biteus
Linköpings Universitet

Examiner: Assistant Professor Erik Frisk
Linköpings Universitet

Linköping, December 21, 2005

Avdelning, Institution
Division, Department

Datum
Date

Språk

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

URL f ör elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Titel

Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

In a system like a Scania heavy duty truck, faultcodes (DTCs) are generated
and stored locally in theECUs when components, e.g. sensors or actuators, mal-
function. Tests are run periodically to detect failure in the system. The test
results are processed by the diagnostic system that tries toisolate the faulty
components and set local faultcodes.

Currently, in a Scania truck, local diagnoses are only basedon local diagnos-
tic information, which theDTCs are based upon. The diagnosis statement can,
however, be more complete if diagnoses from otherECUs are considered. Thus
a system that extends the local diagnoses by exchanging diagnostic information
between theECUs is desired. The diagnostic information to share and how it
should be done is elaborated in this thesis. Further, a modelof distributed diag-
nosis is given and a few distributed diagnostic algorithms for transmitting and
receiving diagnostic information are presented.

A basic idea that has influenced the project is to make the diagnostic system
scalable with respect to hardware and thereby making it easyto add and remove
ECUs. When implementing a distributed diagnostic system in networked real-
time embedded systems, technical problems arise such as memory handling,
process synchronization and transmission of diagnostic data and these will be
discussed in detail. Implementation of a distributed diagnostic system is further
complicated due to the fact that the isolation process is a non deterministic job
and requires a non deterministic amount of memory.

Vehicular Systems,
Dept. of Electrical Engineering
581 83 Linköping

December 21, 2005

—

LITH-ISY-EX-3820-2005

—

http://www.vehicular.isy.liu.se
http://www.ep.liu.se/exjobb/isy/2005/3820/

Distributed Fault Diagnosis for Networked Embedded Systems

Distribuerad feldiagnos för nätverksbaserade inbyggdasystem

Dan Hallgren och Håkan Skog

××

Distributed diagnosis,OBD, Fault isolation, Embedded systems,DTC

Abstract

In a system like a Scania heavy duty truck, faultcodes (DTCs) are generated
and stored locally in theECUs when components, e.g. sensors or actuators,
malfunction. Tests are run periodically to detect failure in the system. The
test results are processed by the diagnostic system that tries to isolate the
faulty components and set local faultcodes.

Currently, in a Scania truck, local diagnoses are only basedon local diag-
nostic information, which theDTCs are based upon. The diagnosis statement
can, however, be more complete if diagnoses from otherECUs are considered.
Thus a system that extends the local diagnoses by exchangingdiagnostic in-
formation between theECUs is desired. The diagnostic information to share
and how it should be done is elaborated in this thesis. Further, a model of
distributed diagnosis is given and a few distributed diagnostic algorithms for
transmitting and receiving diagnostic information are presented.

A basic idea that has influenced the project is to make the diagnostic sys-
tem scalable with respect to hardware and thereby making it easy to add and
removeECUs. When implementing a distributed diagnostic system in net-
worked real-time embedded systems, technical problems arise such as mem-
ory handling, process synchronization and transmission ofdiagnostic data
and these will be discussed in detail. Implementation of a distributed diag-
nostic system is further complicated due to the fact that theisolation process
is a non deterministic job and requires a non deterministic amount of memory.

Keywords: Distributed diagnosis,OBD, Fault isolation, Embedded systems,
DTC

v

Preface

This master’s thesis was performed at Scania CV AB in Södertälje, Sweden.
Scania is a worldwide manufacturer of heavy duty vehicles, buses and en-
gines for marine and industrial use. The work was carried outat theEngine
Software and OBDgroup at thePowertrain Control System Developmentde-
partment.

Thesis outline

Chapter 1 Introduction to the thesis.

Chapter 2 Theory of model based diagnosis.

Chapter 3 Theory of distributed systems.

Chapter 4 Theory of distributed diagnosis.

Chapter 5 Proposed algorithms for distributed diagnosis.

Chapter 6 Issues with implementation in an embedded system environment.

Chapter 7 Conclusions of the thesis.

Chapter 8 Future work.

Acknowledgment

We would like to thank our supervisor at Linköpings Universitet, Jonas Bi-
teus, for always taking time to answer our questions and guiding us through
the project. We would also like to thankall people at Scania Powertrain
Control System Developmentwho supported us with guidance and special
knowledge. Special thanks goes to our supervisor,Mathias Jensen, for all
those fruitful discussions regardingDIMA and diagnosis in general,Kristian
Krigsmanfor his helpfulness and always putting up with our questionsre-
garding implementation,Ulf (CANKing) Carlssonand finallyMattias Nyberg
for sharing his advice on both fault diagnosis and the project as a whole.

Dan Hallgren H̊akan Skog

Södetälje, December 2005

vi

Contents

Abstract v

Preface and Acknowledgment vi

1 Introduction 1
1.1 Background . 1
1.2 Objective . 2
1.3 Approach . 2
1.4 Contribution . 3
1.5 Delimitations and Assumptions 3
1.6 Target Group . 3
1.7 Related Work . 3

2 Model Based Diagnosis 5
2.1 Introduction to Model Based Diagnosis 5
2.2 Artificial Intelligence and Fault Diagnosis 6

2.2.1 Behavioral Modes 7
2.2.2 Diagnoses . 7
2.2.3 Conflicts . 9
2.2.4 Relations between Diagnoses and Conflicts 9
2.2.5 Diagnostic Tests 10

2.3 Local Algorithms . 11
2.3.1 Reiter’s Algorithm 11
2.3.2 Isolation with Generalized Fault Modes 13
2.3.3 Virtual Components 14

3 Distributed Systems 19
3.1 Properties of Distributed Systems 19

3.1.1 Transparency . 19
3.1.2 Openness . 20
3.1.3 Scalability . 21

3.2 Hardware Concepts . 21
3.2.1 The CAN Bus . 22

vii

4 Distributed Diagnostic Systems 25
4.1 The Network Architecture 25
4.2 Current Diagnostic System 26

4.2.1 The Goal with the Distributed Diagnostic System . . 27
4.3 Components, Signals and Objects 28
4.4 Signals - Inputs and Outputs 30
4.5 Local and Global Diagnosis 31

4.5.1 Two Ways of Calculating the Global Diagnosis . . . 33
4.5.2 The Combinatorial Problem 33
4.5.3 Merging Minimal Cardinality Diagnoses 35

4.6 Centralized or Distributed Diagnosis 36
4.6.1 Centralized Diagnosis and Decentralized Diagnosis .36
4.6.2 Distributed Diagnosis 38

4.7 Sharing Diagnostic Information 38
4.7.1 Sharing Conflicts 39
4.7.2 Sharing Diagnoses 40
4.7.3 The Information to Share 41
4.7.4 Focusing on Probable Diagnosis 42
4.7.5 Problems with Component Representation 43

5 Proposed Methods for Distributed Diagnosis 45
5.1 Model for Distributed Diagnosis 45
5.2 Algorithms for Distributed Diagnosis 47

5.2.1 Method 1: Sharing Conflicts 48
5.2.2 Method 2: Sharing Diagnoses 50
5.2.3 Method 3: Sharing Diagnoses Extended 52

5.3 Discussion Concerning the Limitations and Assumptions. . 57

6 Implementation in an Embedded System 59
6.1 Hardware Setup . 59
6.2 Software Description . 59
6.3 Processes in Embedded Systems 60
6.4 Data Transferring on aCAN Bus 61

6.4.1 Protocol Design . 62
6.4.2 Transparency . 62

6.5 Memory Structure . 62
6.5.1 Memory Conflicts 63

6.6 Time Handling . 63
6.6.1 Diagnosis Executed in a Fixed Timed Loop 63
6.6.2 Diagnosis Executed in the Background Process . . . 64
6.6.3 Synchronization 64

6.7 Using Reiter’s Algorithm in Distributed Diagnosis 65
6.8 Performance of the Implementation 67

7 Conclusions 69

viii

8 Future Work 71

References 73

Notation 75

A Proof of Method 3 77

ix

x

Chapter 1

Introduction

The field ofdistributed diagnosisis an active topic in the world of fault di-
agnosis. At Scania, the subject needs to be elaborated and that is the main
underlying cause for this master’s thesis. In this chapter an introduction to
the master’s thesis is given.

1.1 Background

In modern automotive vehicles, severalElectronic Control Units(ECUs) com-
municate over a local network. EachECU is connected to a number of com-
ponents, e.g. sensors and actuators that are monitored by a diagnostic system
to make sure that the components are operating correctly. The diagnostic sys-
tem usually consists of a number of precompiled tests, simple or complex, to
perform the monitoring.

When a component becomes faulty, all tests involving that specific com-
ponent should become invalidated and the diagnostic systemshould assign
a Diagnostic Trouble Code(DTC) to each component that could possibly be
faulty.

Tests in a specificECU can involve components connected to otherECUs
based on information shared over the network, see Figure 1.1. EachECU

generates a set of local diagnoses. The tests are thereby entangled but no di-
agnostic information is shared over the network. Thus the stated local sets of
diagnoses are incomplete and in order to have a complete diagnosis statement,
diagnostic information has to be transmitted over the network.

Due to continuous development of new environmental laws, anOn Board
Diagnosis(OBD) system is needed to detect and isolate faulty components
that affect the pollution of the vehicle. In the future, the laws will demand
certain actions to be taken, e.g. torque restriction, if such a fault is detected.
It is thereby very important that all decisions made by the system are based
on correct information, thus a sophisticated diagnostic system is necessary to

1

2 Chapter 1. Introduction

meet the laws of tomorrow.
The possible designs of such a diagnostic system are many andthe solu-

tion is not obvious. Different methods need to be investigated and main issues
have to be discussed.

ECU 1 ECU 2

A DCB

CAN

Figure 1.1: A typical layout ofECUs, components and test sensitivity.

1.2 Objective

The objective of this thesis is to present one or several methods to increase
the performance of the local diagnostic systems by letting theECUs exchange
information enabling local diagnoses, consistent with theglobal diagnoses,
to be calculated. Also the objective is to implement a distributed diagnostic
system and to examine the problems that arise and if the following desirable
characteristics can be fulfilled:

• The algorithms should be fast and effective since both processing power
and memory are limited in eachECU.

• The diagnostic information shared over the network should be kept at
a minimum, because the bandwidth of the network is limited and used
for many other applications.

• The system should work independently of the system configuration,
e.g. one should be able to connect, remove or exchange oneECU with-
out affecting the diagnostic system of the otherECUs.

1.3 Approach

The main approach in this master’s thesis was to first explorethe field of
relevant articles and literature to do some research on previous work. Special
focus was on distributed systems and multi agent diagnosticsystems. Later,
based on the literature and previous work at Scania, algorithms for distributed

1.4. Contribution 3

diagnosis were designed. The early algorithms only served as a framework
for further development and did not have full functionality.

In the second phase of the project a hardware rig was constructed and the
ideas were implemented to test and investigate the main issues of a distributed
diagnostic system. The methods were extended to fully suit the existing local
system where general behavioral modes are used.

The work was documented using LATEX during the whole proceeding of
the project. The implementation was done in the C programming language.

1.4 Contribution

The main contribution of this thesis are the proposed methods for distributed
diagnosis, described in chapter 5, and the implementation of a distributed di-
agnostic system, found in chapter 6. All methods that are presented comply
with the objective. One of the methods focus on minimizing the diagnostic
data transmitted over the network. In chapter 6 issues arising at the implemen-
tation such as memory conflicts and synchronization are discussed in detail.

1.5 Delimitations and Assumptions

The focus of this master’s thesis is to perform the best possible isolation based
on the test results. No attention is thus given to how the tests work or how
they are implemented.

It is assumed that a component is restricted to only one behavioral mode
at one point in time.

No effort is spent on optimizing the implementation w.r.t. memory con-
sumption or execution time. The implementation should onlyserve as a
framework for further development and to test ideas.

1.6 Target Group

This thesis is written for engineers and students with basicknowledge in ve-
hicular systems, fault diagnosis and distributed systems.

1.7 Related Work

The main preceding work at Scania CV AB in the field distributed diagnosis
is Mathias Jensen’s master’s thesis [Jen03]. The thesis includes detailed in-
formation about local diagnosis algorithms and some information about how
local diagnoses could be used to form globally consistent diagnoses. Re-
search in distributed diagnosis for embedded system, well suited for systems

4 Chapter 1. Introduction

like those in a Scania truck, can be found in Jonas Biteus’ licentiate the-
sis [Bit05a]. The foundation of the methods presented in this thesis is ob-
tained from Biteus.

How diagnosis can be performed in large active distributed systems is
discussed in Baroni et al. [PBZ98]. The approach in this article is to perform
diagnosis by a modular automata technique. The main goal of this diagnostic
technique is the reconstruction of the behavior of the active system starting
from a set of observable events. Another interesting paper is James Kurien
et al. [JKZ02], where an algorithm for distributed diagnosis in networked
embedded systems is presented.

Multi agent diagnosis, both with semantically and spatially distributed
knowledge, is explained by Nico Roos et al. in [NRW03a] and [NRW03b].

There are many more interesting articles in the field of distributed di-
agnosis. A few more worth mentioning are [JBN05], [NRW04], [NKM02]
and [Pro02].

Chapter 2

Model Based Diagnosis

This chapter is intended to give a short introduction to model based diag-
nosis. The framework of this chapter is in particular taken from [NF05]
and [Bit05a]. For more information about model based diagnosis, the reader
is referred to [NF05].

2.1 Introduction to Model Based Diagnosis

The main goal of fault diagnosis is to, based on observation and knowledge,
generate adiagnosisD , i.e. to decide whether there is a fault or not and when
there is, identify the fault. The objects for diagnosis in this thesis are in par-
ticular sensors, actuators, pipes etc. The diagnosis is computed by observing
inconsistencies between observed variables and what is considered normal
behavior. When the diagnosis is based on an explicit formal model of the
system, the termmodel based diagnosisis used. Diagnosis can be performed
both on-line and off-line.

The major purpose of this thesis is aimed for emission control in automo-
tive vehicles but the use of diagnosis in technical processes is much wider.
Some examples of what have been discussed in the literature are nuclear
plants, chemical plants, gas turbines, industrial robots and most subsystems
of aircrafts. The use of a diagnostic system and some of the reasons why they
are incorporated are:

• Safety

• Environment Protection

• Machine Protection

• Availability

• Repairability

5

6 Chapter 2. Model Based Diagnosis

• Flexible Maintenance

Simple and early methods for diagnosis have been performed mainly by
limit checking, e.g. sensor values are checked against thresholds. Different
thresholds could be used depending on the current operatingpoint of the sys-
tem.

Another traditional approach is hardware duplication (hardware redun-
dancy), i.e. use two or more sensors to measure the same physical quantity.
This is a highly reliable method for detecting faults and often used where
safety and security is a critical issue e.g. aircrafts wheretriple redundancy
often is used. Hardware redundancy could have some drawbacks though.
Hardware could be expensive, it requires extra space and theweight of the
system is increased. Finally, the complexity of the system is increased when
extra components are introduced.

Model based diagnosis has shown to be useful either as a complement
to the methods mentioned above or by its own. The models used can be for
example logic based or differential equations that describe the process. Some
of the advantages of model based diagnosis are:

1. Higher diagnosis performance can be reached.

2. The possibility of isolation increases.

3. Disturbances can be taken care of.

4. Model based diagnosis is applicable to more kinds of components, i.e.
where components cannot be duplicated.

When models are used to compare measured values the expressionanalyt-
ical redundancyis used. Many questions arise when engineering a diagnostic
system with analytical redundancy and the problems could besolved in many
different ways. The different methods will not be discussedany further in this
thesis apart from the approach described in the next section.

2.2 Artificial Intelligence and Fault Diagnosis

A large amount of diagnosis methodology has been developed within the field
of Artificial Intelligence(AI). Most of the methods belongs to a part called
consistency based diagnosis. The objective with consistency based diagnosis
is to derive a set of assignments to the components in the model, so that the
model, the observations and the assignments are consistentwith each other
i.e. an object oriented approach with behavioral modes for each component
in the system rather than a global behavioral mode for the whole system.
Consistency based diagnosis is beneficially used in conjunction with model
based diagnosis.

2.2. Artificial Intelligence and Fault Diagnosis 7

2.2.1 Behavioral Modes

Each component is assumed to be in somebehavioral mode, e.g. normal mode
(OK), the abnormal mode(AB) or some specific fault mode, e.g.(F1), (F2)
or unknown fault, (UF), etc.

It is sometimes preferable to only consider theAB and the¬AB mode to
reduce complexity of the diagnostic system. When only thesetwo behavioral
modes are considered and there is no model for theAB mode, theminimal
diagnosis hypothesis(MDH) is said to hold (see Definition 2.3). Minimal
diagnosis is defined in Definition 2.2.

The form when only two behavioral modes are used does not cause any
problems since other fault modes could be replaced withvirtual compo-
nents, see section 2.3.3. The advantages are many. One is that the diagnostic
system could be represented with afault mode lattice, see Figure 2.1. When
a component from a set of components in the system,c ∈ C, is for example
in the abnormal mode, the notation

mode(AB, c) , AB(c)

will be used.

Set Notation

When representing faulty components in consistency based diagnosis and
when only theAB and the¬AB mode is considered, theset notationis often
used. This notation replaces logical expressions with sets. The sets are used
when representing both diagnoses and conflicts. The following example will
illustrate the notation.

Example 2.1
If two componentsA andB are faulty, the diagnosis expressed in logic form
will be:

AB(A) ∧ AB(B)

which can be represented by
{A, B}

in the set notation.

2.2.2 Diagnoses

The goal with diagnosis is to find a mode assignment, or candidate, that is
consistent with thesystem description(SD) and theobservations(OBS).
The SD is a set of logical rules or a model, describing the behavior of the

8 Chapter 2. Model Based Diagnosis

system. TheOBS is a set of observations, e.g. sensor and actuator values. In
consistency based diagnosis, the following definition of diagnosis is used:

Definition 2.1 (Diagnosis). A diagnosis is a set of componentsD ⊆ C so that

SD ∪ OBS ∪ {
∧

c∈D

AB(c) ∧
∧

c∈C\D

¬ AB(c)} (2.1)

is consistent.

⋄

To further reduce the complexity, only those diagnoses which are so called
minimal diagnosesare the ones with the greatest weight and thereby those
which are most considered. These diagnoses are, in principal, the ones with
no “simpler” diagnoses. The definition of minimal diagnosisreads:

Definition 2.2 (Minimal Diagnosis). A diagnosisD is minimal if for all
proper subsetsD ′ ⊂ D , whereD ′ is not a diagnosis.

⋄

The interest in minimal diagnosis mainly comes from reasoning like: “If one
faulty component can explain the observations, there is no reason to believe
that additional components also might be faulty.” Another reason why min-
imal diagnoses are of interest is the fact that they sometimes are a powerful
characterization (representation) of all diagnoses. Thisis stated in theMDH.

Definition 2.3 (Minimal Diagnosis Hypothesis,MDH). TheMinimal Diagno-
sis Hypothesis, MDH, is said to hold if all supersets of each minimal diagnosis
are also diagnoses.

⋄

MDH does not always hold and it is not easy to formulate an exact criterion
when it does. One sufficient criterion is however enacted in Lemma 2.1.

Lemma 2.1. A sufficient condition forMDH is that only theAB and the¬AB

mode is considered and that theAB mode has no model. Further, the two
assumptions also imply that conflicts (see Definition 2.5) can only contain the
¬AB mode.

Minimal Cardinality Diagnosis

Cardinality denotes the size of a diagnosisD, i.e. how many components that
are included inside the brackets inD. The basic view-point is that the most
probable diagnosis is the one including the least amount of components since
it is much more probable that a component is not faulty than faulty.

¬AB >> AB

2.2. Artificial Intelligence and Fault Diagnosis 9

Thus, the diagnosis with the least amount of components in abnormal mode
is the most probable one, i.e. it is the minimal cardinality diagnosis.

Definition 2.4 (Minimal cardinality diagnosis). LetD be a set of diagnoses,
then the set of minimal cardinality diagnoses is

D
mc = {D

∣∣ |D| = min
D∈D

|D|, D ∈ D}

Where|D| is the number of components included inD.

⋄

2.2.3 Conflicts

Diagnoses are generally not generated directly from the model and the ob-
servations. More commonly,conflictsare generated from tests. Compare to
structured hypothesis testing in [NF05]. A conflict is an assumption that is
not consistent with the observation. It will be shown later how diagnoses can
be derived from conflicts. Conflicts are generally denotedΠ and defined as:

Definition 2.5 (Conflict). A conflict is a set of componentsπ ⊆ C so that

SD ∪ OBS ∪ {
∧

c∈π

¬AB(c)} (2.2)

is inconsistent.

⋄

Similar to case of diagnoses,minimal conflictscan be defined as:

Definition 2.6 (Minimal Conflict). A conflictπ′ is a minimal conflict if there
is no proper subset

π 6⊆ π′

whereπ is a conflict.

⋄

The set of minimal conflicts completely characterizes all possible conflicts.

2.2.4 Relations between Diagnoses and Conflicts

There is a strong connection between diagnoses and conflicts. A diagnosis
state a set of components that are faulty while a conflict state a set with com-
ponents that might not have proper functionality. Diagnoses can be seen as
logical implications of the set of conflicts and a useful relation between the
two of them is given in Theorem 2.1.

10 Chapter 2. Model Based Diagnosis

Theorem 2.1(Conflicts to Diagnoses). Suppose that{¬π1,¬π2, . . .} is the
set ofall conflicts. Then the mode assignmentD is a diagnosis iff

{¬π1,¬π2, . . .}
⋃

D

is satisfiable.

When the set notation is used, it is sometimes useful to represent the di-
agnoses with a lattice. In section 2.3.1 an algorithm for finding the minimal
diagnoses from forthcoming conflicts will be shown. The procedure is easily
illustrated in such a lattice.

2.2.5 Diagnostic Tests

To detect abnormalities within the system, diagnostic tests are performed to
evaluate the functionality of the system’s components. In aScania truck there
exist two different kinds of tests:Electrical testsandplausibility tests. The
former test single components against the valid range for the component that
is being tested. For example, assume that a temperature sensor is ranged
between 0.4 Volt and 4.7 Volt but the reading is outside the range. If multiple
fault modes are used the test result, or sub-diagnosis, could be either “out of
range high” or “out of range low”.

Plausibility tests use models for the functionality of the system to detect
faults. If values from sensors or actuators do not coincide with the model, a
fault is present and if many tests of this kind are invalidated an isolation of
the plausible faults (sub-diagnoses) will be performed.

Conflicts and Sub-diagnoses

It is not always obviously how a test result should be interpreted. When only
two behavioral modes are used, i.e.AB and¬AB, the result of the test could
easily be interpreted as a conflict (which only states components in the¬AB

mode) which easily gives the diagnosis statement. But when general fault
modes are used, it is not equally easy to calculate a set of diagnoses from a
set of conflicts. The conflicts still only state components inthe¬AB mode,
(NF). The negated conflict should state a set of diagnoses, each containing
the remaining possible behavioral modes. It could therefore be more conve-
nient to interpret the test result as asub-diagnosisstatement, explaining some
of the possible behavioral modes of the component if the testis invalidated.
There is no more information however in a sub-diagnosis statement than in a
conflict statement. The one is just the compliment to the other, i.e. the negated
conflict should be the sub-diagnosis statement.

Decision structure

To get an overview how the faults in the different componentsaffect the tests,
a decision structure is useful to setup. A decision structure is a table con-

2.3. Local Algorithms 11

taining zeros, X:es and ones describing which test is sensitive to which fault.
Here, the subject will be discussed briefly, for a more detailed explanation of
decision structures, see [NF05].

F1(C1) F2(C1) F1(C2) F2(C2)
T1 0 0 X X

T2 0 X X 1
T3 1 0 0 0
T4 0 X X 0

Table 2.1: Example of a decision structure for a system consisting of two
components with two behavioral modes each and four tests.

A 0 in the table means that the test will not be affected by a component in
that specific behavioral mode, i.e.Ti will exactly equal zero. AnX means the
test will sometimes be affected. A one means the test will always be affected,
i.e. Ti will be nonzero.

In a typical system, test results are regularly checked, e.g. every 20 ms,
and if a test is invalidated the correspondingX :es and1:s are to become in-
puts to the local algorithm, generating diagnoses. In the algorithm described
in the following section, no difference is made betweenX :es and1:s. To use
the extra information of1:s, a different algorithm needs to be chosen. For
example, consider a system with an influence structure as Table 2.1, if a di-
agnosis has been stated includingF1(C1) even thoughT3 is not invalidated,
F1(C1) can be removed since it cannot be broken unlessT3 is invalidated.

2.3 Local Algorithms

To create a global diagnoses, local diagnoses have to be created in eachECU.
The input to the local diagnostic system is a set of test results, generated
by the tests belonging to the specific agent. Other inputs could be conflicts
or diagnoses read from theCAN bus to be merged with the own generated
conflicts or diagnoses. In section 2.3.1 however, it is only shown how minimal
diagnoses are calculated from a set of test results underMDH. The following
section is a slightly edited excerpt from [Jen03]

2.3.1 Reiter’s Algorithm

This algorithm’s task is to, given a set of conflicts (or sub-diagnoses), com-
pute the corresponding diagnoses.MDH is assumed to hold. These com-
putations can be done in a batch process where the diagnoses are computed
when all conflicts have been found, or incrementally where the set of minimal
diagnoses are incrementally refined each time a new conflict is detected.

The diagnosis computation problem is most easily illustrated using a subset-
superset lattice. Figure 2.1 shows such a lattice with five components,M1, M2,

12 Chapter 2. Model Based Diagnosis

M3, A1 andA2. Each node in the lattice represents a diagnosis candidate,
[M1, M2] meansAB(M1) ∧ AB(M2) and will be written as{M1, M2}.
The edges in the figure represent subset/superset relationship between candi-
dates. The set of minimal diagnoses is incrementally computed as follows.
Whenever a new conflict is detected, any previous minimal diagnosis that
does not explain the new conflict is replaced by one or more superset diag-
noses, which are minimal, based on this new information. This is accom-
plished by replacing any invalidated minimal diagnosis by aset of new candi-
dates, each of which contains the old minimal diagnosis and one assumption
from the new conflict. Note that these new candidates are diagnoses by con-
struction. However, the new diagnoses need not be minimal. Therefore, any
of the new diagnoses which is a superset of any other minimal diagnosis, or
is duplicated by another, is eliminated. The remaining diagnoses are minimal
and are added to the set of minimal diagnoses. This procedureis then iterated
for any conflict not processed. Note that the lattice in Figure 2.1 is only used
to illustrate the procedure, the algorithm do not need to represent the whole
lattice. This is fortunate since the lattice grows exponentially in size with
number of components.

[M1,M2,A1,A2][M1,M2,M3,A1] [M2,M3,A1,A2][M1,M2,M3,A2] [M1,M3,A1,A2]

[M1,M2,M3] [M1,M2,A1] [M1,M2,A2] [M1,M3,A1] [M1,M3,A2] [M2,M3,A1] [M1,A1,A2] [M2,M3,A2] [M2,A1,A2] [M3,A1,A2]

[M1,M2] [M1,M3] [M1,A1] [M2,M3] [M1,A2] [M2,A1] [M2,A2] [M3,A1] [M3,A2] [A1,A2]

[M3] [A1] [A2][M2][M1]

[M1,M2,M3,A1,A2]

[]

Figure 2.1: A subset/superset fault lattice with five components.

The algorithm can be summarized by the following steps:

1. Initialize the set of minimal diagnoses to hold only the empty set, i.e.
{{}}.

2. Given a (new) conflict, find out if any minimal diagnosis is invalidated,
i.e. has an empty intersection with the conflict.

3. Extend any invalidated diagnosis to a set of new diagnosesconsisting

2.3. Local Algorithms 13

of the invalidated diagnosis and an element from the new conflict.

4. Remove any new diagnosis that are not minimal, i.e. are supersets of
any other minimal diagnosis.

5. Iterate from 2 for all new conflicts.

In an ideal case where all conflicts are found and processed, the set of min-
imal diagnoses obtained from the algorithm equals the true set of minimal
diagnoses. In reality, the set of detected conflicts is usually incomplete. This
is due to the fact that when complicated structures with complicated compo-
nents are considered, it is difficult to perform the local propagation in such a
way that all conflicts are detected. The consequence of this incompleteness
is that fewer diagnoses are invalidated than in the ideal case. It is impor-
tant to note that no diagnosis will mistakenly be invalidated and eliminated
which means that no erroneous diagnosis will be produced, only less specific
diagnoses than in an ideal case.

2.3.2 Isolation with Generalized Fault Modes

Most AI approaches for fault isolation handle only the behavioral modes
¬AB andAB. Since the components in a Scania heavy duty truck (or what-
ever the system is) generally can fail in more than one way, these approaches
are inadequate. To isolate faults in components with general behavioral modes,
a framework and an algorithm is needed. Such a framework and algorithm
is presented in, among others, [Sun02]. The method presented in [Sun02]
handles multiple faults and multiple fault modes.

Before the ideas behind an isolation process with general fault modes are
presented a more general definition of a diagnosis is given.

Definition 2.7 (Diagnosis, general). Adiagnosisfor the system description
SD and the observationsOBS is a mode assignmentD, for all components
c ∈ C, such that

SD
⋃

OBS
⋃

D (2.3)

is satisfiable.

⋄

The above definition of a diagnosis does not restrict itself to only contain
the¬AB andAB mode. In a similar way a conflict could be defined as:

Definition 2.8 (Conflict, general). A mode assignmentπ, for some subset of
components, is aconflict if

SD
⋃

OBS
⋃

π (2.4)

is not satisfiable.

⋄

14 Chapter 2. Model Based Diagnosis

Assumption Based Diagnostics

The idea behind the method presented in [Sun02] is to have a number of
sub-models, each with a corresponding assumption. The assumptions are
logical expressions that state something about the behavioral modes of the
components in the system that is being diagnosed. From the sub-models,
test quantities can be derived to test whether the assumptions hold or not.
If the test is in the rejection region, the assumption is rejected, i.e. the null
hypothesis,H0, is rejected and the sub-model is invalidated.

assM → M → T ∈ RC ⇐⇒ T ∈ R → ¬ M → ¬ assM

Since a submodel may produce reasonable values even if the assumption does
not hold, no conclusions can be drawn ifH0 is not rejected.

T ∈ RC
9 assM

The assumption that is rejected constitutes a conflict,¬ assM . To calcu-
late the diagnoses, or candidates, the conflict is negated and evaluated. More
details about the evaluation could be found in [Sun02].

Since some of the sub-models often are fault models, Lemma 2.1 is not
fulfilled. Thus MDH does not necessarily holds. If the diagnosis statement
should becompletea larger representation of the statement may be needed
than if only the minimal diagnoses were considered underMDH. This is fur-
ther exploited in [JdKR92].

2.3.3 Virtual Components

Reiter’s algorithm described in section 2.3.1 is valid for components with
only two operating modes, i.e.AB and¬AB mode. This algorithm could be
extended to work with generalized fault modes by introducing virtual com-
ponents. It is shown in [Jen03] that there is a significant gain in performance
using virtual components compared to the method presented in section 2.3.2.

The first step is to map all fault modes of all components into virtual
components. Table 2.2 shows an example of such a mapping.

Component Virtual
behavioral mode component

F1(C1) → V1

F1(C2) → V2

F2(C2) → V3

UF (C2) → V2 ∧ V3

Table 2.2: The mapping between component operating modes and virtual
components.

2.3. Local Algorithms 15

This conversion could be done in advance so that no processing power
is taken from theECU. When the test results have been converted to a set
of virtual components the algorithm described in 2.3.1 is utilized. Since it is
difficult to interpret the diagnoses when it is represented using virtual compo-
nents there must also be a conversion back to real componentsand behavioral
mode assignments.

Example 2.2
A system consisting of two components with behavioral modesmapped to
virtual components according to Table 2.2. The system receives the following
test result, i.e. sub-diagnosis.

< F1(C1) >

To work with Reiter’s algorithm the test result is convertedto virtual compo-
nents. The corresponding test result is

< F1(C1) >=< V1 >

{}

{V
1
} {V

3
}{V

2
}

{V2,V3}{V1,V3}{V1,V2}

{V1,V2,V3}

Figure 2.2: Lattice for a system with three virtual components.

Reiter’s algorithm can now be used to process the test result, producing
the diagnosis

{V1}

16 Chapter 2. Model Based Diagnosis

Corresponding to the behavioral mode

{F1(C1)}

This is represented by line 1 in Figure 2.3. All nodes above the line are valid
diagnoses sinceMDH holds, but{V1} is the minimal diagnoses. Now assume
the following test result arrives

< F1(C2) >

This test result is converted to the corresponding virtual component.

< F1(C2) >=< V2 >

Inserting this into Reiter’s algorithm generates line 2 in Figure 2.3. The min-
imal diagnosis is now:

{V1, V2}

Corresponding to the behavioral mode diagnosis

{F1(C1), F1(C2)}

This is the correct diagnosis of the system. Note that a node containing two
behavioral modes of the same component is translated to behavioral mode
UF for that component.

2.3. Local Algorithms 17

{}

{V
1
} {V

3
}{V

2
}

{V2,V3}{V1,V3}{V1,V2}

{V1,V2,V3}

Line 1

Line 2

Figure 2.3: Lattice for three components with line 1 corresponding to test
result< F1(C1) > and line 2 corresponding to test result< F1(C2) >.

18

Chapter 3

Distributed Systems

This chapter is intended as a brief introduction to distributed systems. The
network in a Scania truck, see Figure 4.1, consisting of manydifferentECUs,
falls inside the definition of a distributed system. So to geta better under-
standing of the network from a distributed system point of view, the basic
terminology is here presented and discussed. Most of the facts presented be-
low are taken from [TvS02].

3.1 Properties of Distributed Systems

Within the field of distributed systems there are a few important goals that
should be met when designing a system. These are transparency, openness
and scalability, which are further explained below.

3.1.1 Transparency

A distributed system that is able to present itself to users and applications as
if it were only a single computer system is said to betransparent. There
exists different kinds of transparency, and the concept of transparency can be
applied to several aspects of a distributed system, as shownin Table 3.1.

For the distributed system considered in this report, the failure trans-
parency is the one of most interest since the whole purpose ofthe diagnostic
system is to detect faults among the components being diagnosed, making it
not failure transparent. On the other hand, if anECU fails, the system should
function as good as possible anyway, deleting the faultyECU from the diag-
nostic system. Thus, it is important to be able to distinguish between failure
transparency concerning the components and failure transparency concerning
theECUs.

Also, there is a trade-off between a high degree of transparency and the
performance of a system. For example, if one of theECUs are trying repeat-

19

20 Chapter 3. Distributed Systems

Transparency Description
Access Hide differences in data representation and how a

resource is accessed
Location Hide where a resource is located
Migration Hide that a resource might move to another loca-

tion
Relocation Hide that a resource might be moved while in use
Replication Hide that a resource is replicated
Concurrency Hide that a resource might be shared by several

competitive users
Failure Hide the failure and recovery of a resource
Persistence Hide whether a (software) resource is in memory

or on disk

Table 3.1: Different forms of transparency for distributedsystems.

edly to transmit information to otherECUs, to hide an error in anECU, but
fails, it could have been more efficient to give up earlier.

3.1.2 Openness

An open distributed system offers services according to certain rules in syntax
and semantics of those services. It is important to have a well defined inter-
face with a specification of which names are available with which types of
parameters, return values and so on. Proper specifications are complete and
neutral. Complete means that everything that is necessary for connecting to
the interface has indeed been specified. Neutral means that each object to be
connected to the distributed system can be implemented in any way as long
as it complies with rules for that specific interface.

If a system can function and communicate, inside the specification of the
interface, even though parts have been supplied from different manufacturers
it is said to have a high degree ofinteroperability . A second definition is
portability which characterizes a system that runs applications on distributed
system A, without modification, considering that they were developed for
system B, assuming system B use the same interface as system A.

If a system is both interoperable and portable it is said to beflexible,
meaning that it is easy to add new components or replace existing ones with-
out affecting those components that stay in place.

It is preferable if the distributed system in a Scania truck is flexible mak-
ing it easy to add, remove or changeECUs in future models.

3.2. Hardware Concepts 21

3.1.3 Scalability

In a scalable system the size can be changed without making any big changes
in hardware and software. Considering the fast developmentof technology,
it is easy to understand that it is critical in the design of a distributed system
to make it scalable. For example, it is highly reasonable to assume that the
network ofECUs in today’s Scania trucks will develop further, adding more
and more processing units to the network, and therefore requiring it to be
scalable.

A traditional centralized system, where the processing units transmit re-
quests of communication with the central unit, is much less scalable than
a distributed system where the different processing units share the load. The
former creates an information bottleneck that prohibits further growth. There-
fore, only distributed algorithms should be used. These generally have the fol-
lowing characteristics, which distinguish them from centralized algorithms:

1. No machine has complete information about the system state.

2. Machines make decisions based only on local information.

3. Failure of one machine does not ruin the algorithm.

4. There is no implicit assumption that a global clock exists.

When implementing a distributed diagnostic system, scalability becomes
a central issue since storing diagnostic information, received from otherECUs,
require memory and as moreECUs are added to the system, more memory
needs to be allocated in eachECU. This scalability issue will be discussed
further in chapter 6.

3.2 Hardware Concepts

There exist different models on how the hardware in a distributed system
can be configured. The multipleProcessing Elements(PEs) can either be
connected via bus or switch. If it is bus-based, there is a single backbone
with the different elements connected to it. In a switch-based system there are
individual wires from machine to machine where the messagesmove along
with an explicit switching decision made at each step to route the message
along one of the outgoing wires.

How the memory is connected can also be classified into two groups. It
can either be shared, which is usually denotedmultiprocessors(Figure 3.1),
or private, denotedmulticomputer (Figure 3.2), for eachPE.

A benefit of having a multiprocessor network is the smooth andefficient
handling of memory. For example, the scenario of onePE having plenty of
memory available while otherPEs having none cannot arise. The downside of
the multiprocessor system is all the traffic on the wires/buswhen thePEs want

22 Chapter 3. Distributed Systems

M M M

PPP

Data-bus

Figure 3.1: A bus-based multiprocessor system, P for processor and M for
memory.

to collect information from the memory units. Further, a distinction can be
made between multicomputer systems:homogeneousandheterogeneous.
Homogeneous is, as the name reveals, a set ofCPUs with the same kind of
technology that usually have access to same amount of memoryand therefore
making them easy to interconnect. Heterogeneous, on the other hand, is a
multicomputer system consisting of different, independent computers, which
in turn are connected through different networks. Following from earlier def-
initions: a homogeneous network is not as flexible as a heterogeneous system
where one can connect a machine that is different in technology but can still
be part of the distributed system, if it uses the same interface, see above.

P P P
Data-bus

M M M

Figure 3.2: A bus-based multicomputer system, P for processor and M for
memory.

The setup of hardware in today’s Scania trucks is a typical bus-based
heterogeneous multicomputer system, see Figure 4.1, withECUs of different
speed and memory size.

3.2.1 The CAN Bus

The network implemented in the distributed system in today’s Scania trucks
is aController Area Network(CAN). It was originally designed for the auto-
motive industry but is today used in a wide field of applications.CAN enables

3.2. Hardware Concepts 23

11 bit 8 byte

Identifier Data bytes

Figure 3.3: ACAN package. The shaded areas represent checksums and other
control bits.

a huge reduction in wiring complexity compared to dedicatedlinks for con-
nection between the differentECUs.

One feature ofCAN that suits distributed diagnosis particularly well is
the option of multicast or peer-to-peer communication. Multicast means that
information can be sent to a subset of receivers and peer-to-peer is communi-
cation one to one. The local diagnoses calculated by anECU probably needs
to be shared with one or many otherECUs, requiring peer-to-peer and multi-
cast. When data is transmitted on the bus, no particularECU is addressed. The
message is sent with an identifier, leaving it up to the receivers to accept the
message or not. This concept has become known in the networking world as
the producer/consumer mechanism, whereby one node produces data on the
bus for the other nodes to consume [MFB99]. Apart from data and the identi-
fier, the message also contains various control bits and checksums, baked into
oneCAN package, see Figure 3.3,

The data transmitted is 8 byte, which is not always enough fordiagnostic
messages meaning that more than one package may need to be sent.

24

Chapter 4

Distributed Diagnostic
Systems

In chapter 2, model based diagnosis was discussed and in chapter 3 distributed
systems in general were discussed. In this chapter the two areas are linked
together to build a theory on distributed diagnosis for embedded systems.

4.1 The Network Architecture

ECUs are typically connected via aCAN bus, see section 3.2.1. Figure 4.1
shows such a network used in current Scania heavy duty vehicles. It includes
three separateCAN buses: red, yellow and green. The buses are connected
by the Coordinator (COO). The COO acts like a router, making sure that
no messages are exchanged between the buses unless it is necessary. There
are between 20 and 30ECUs in a typical Scania system, depending on the
truck’s type and outfit. Between 4 and 110 components are connected to each
ECU. TheECUs’ CPUs have typically a clocking speed of 8 to 64 MHz and a
memory capacity of 4 to 150 kB [JBN05].

There are several reasons why theECUs need to exchange information
between each other over a network. Some of these are:

• A component can be used by multipleECUs.

• A component does not necessarily have to be connected to theECU that
is controlling it.

• Diagnosis is performed on components by multipleECUs.

Since multipleECUs can use and perform diagnosis on the same component
it is also important that they can inform each other whether the component is
working or not. A method for sharing this type of informationis presented in
this thesis.

25

26 Chapter 4. Distributed Diagnostic Systems

 Trailer

7-pole 15-pole

AUS
Audio system

ACC
Automatic climate
control

WTA
Auxiliary heater
system water-to-air

CTS
Clock and timer
system

CSS
Crash safety system

ACS 2

Articulation control
system

BMS
Brake management
system

GMS
Gearbox management
system

EMS1
Engine management
system

COO1
Coordinator system

BWS
Body work system

APS
Air prosessing system

VIS 1

Visibility system

TCO
Tachograph system

ICL1

Instrument cluster
system

AWD
All wheel drive
system

BCS2

Body chassis system

LAS
Locking and alarm
system

SMS
Suspension
management
system

SMS
Suspension
management system

RTG
Road transport
informatics gateway

RTI
Road transport
informatics system

EEC
Exhaust Emission
Control

SMD
Suspension
management dolly
system

SMS
Suspension
management system

ATA
Auxiliary heater
system air-to-air

Green bus

Red bus

Yellow bus

ISO11992/3

ISO11992/2

Diagnostic bus

Body Builder
Bus

Body Builder
Truck

Figure 4.1: The network andECU topology in a Scania heavy duty truck.

4.2 Current Diagnostic System

EachECU performs on-line diagnosis. The current diagnostic systemcon-
sists of tests which compares one or several components against a threshold
value. The current Scania diagnostic system includes between 10 and 1000
diagnostic tests in eachECU. If a test result is outside the boundary set by
the threshold, the test assumption is invalidated. Afterwards, when the tests
are either validated or invalidated, theDiagnostic Manager(DIMA), calcu-
lates theminimal diagnosesfrom the generated sub-diagnoses. An isolation
process follows were the minimal cardinality diagnoses, see Definition 2.4,
are selected and every component that is represented in these diagnoses is
assigned aDTC1. All components represented in the minimal cardinality di-
agnoses are presented to the technician at the workshop assuspectedby the
DTC. If a component is included in all minimal cardinality diagnoses, then
it is presented asconfirmed by the DTC. The process to deriveDTCs is il-
lustrated in figure 4.2. DTCs are only presented by thoseECUs that owns the
specific component (see Definition 4.1), i.e. anECU cannot present aDTC

belonging to anotherECU.

1All components in the diagnoses are either in theAB or¬AB mode, i.e. virtual components
are used for those with several behavioral modes.

4.2. Current Diagnostic System 27

minimal
diagnoses

minimal
cardinality
diagnoses

test
results

etc. DTC

Figure 4.2: A simplified flowchart of the diagnosis procedure. The dashed
arrows indicate where distributed diagnostic informationmight come in.

4.2.1 The Goal with the Distributed Diagnostic System

In this section the objective of this thesis, explained in section 1.2, is applied
to the system of a Scania truck. Since theDTCs are the final result of the di-
agnostic system, the objective should concernDTCs. Therefore, the objective
in section 1.2 applied to the diagnostic system in a Scania truck is:

A DTC assigned to each component that does not contradict with
theDTC assigned w.r.t. the global minimal cardinality diagnoses.

If the DTC is the same as the one generated from the global minimal car-
dinality diagnoses, theDTC is said to be globally consistent.

What this means in practice is that when all the necessary diagnostic in-
formation is processed and distributed, the resultingDTCs should be the same
as those generated at the end of the flowchart in Figure 4.2 if the test results
from all agents were put in at the beginning of the chart, i.e.theDTCs should
be globally consistent.

Note that the global diagnoses does not necessarily set morecomponents
in a confirmed mode than the local diagnoses. It could just as well degrade
components that are confirmed locally to be suspected globally. Consider
Example 4.2 where agentA1 should present aDTC for the componentA as
confirmed but the globally, and thus the correct,DTC for componentA should
only be suspected.

One question that now arises is if it is globally correct to set a compo-
nent in the suspected mode, even though it globally should beeither in the
confirmed mode or perhaps not have aDTC at all? That depends on how one
defines the termglobally correctDTC. If it means that the result should be
globally consistent, then it is not correct to suspect a component that should
not be suspected, but if a globally correctDTC means that no contradictions
exist with the global diagnoses, then it could be OK to set a component in the
suspected mode if reasonable motives exists. This makes it harder to know
which component or components that are the true faulty ones,but on the other
hand it could decrease the work for the local diagnostic system to calculate
the diagnoses.

28 Chapter 4. Distributed Diagnostic Systems

4.3 Components, Signals and Objects

A diagnostic system involves a set of agents,A, connected by theCAN bus.
An agent is a piece of software in eachECU that handles the calculation and
communication of diagnoses. An output signal in an agent is linked to input
signals in one or several agents. Further, the diagnostic system consists of
a set of objects, see Definition 4.5, which is a subset of the total number of
components for the global system. The objects for a certain agentA ∈ A are
diagnosed for abnormal behavior.

Each agent includes a number of tests. The objectsΘ, which are analyzed
for abnormal behavior by the tests, can have different origins and have differ-
ent properties. It will be shown later that it becomes important to distinguish
these types of different objects, hereafter referred to as signals and compo-
nents. One could classify two different types of componentsand two types
of signals to be analyzed by a certain agent. Components and signals will be
diagnosed in the same way in theECU. Here an explanation of each type of
component and signal will be introduced.

A component is either private or common.

Definition 4.1 (Private Component). A private component is a component
that is physically connected to an agent. It is clear which agent that owns
and controls the private component. A private component is denotedp ∈ P ,
whereP is all private components in the system.

⋄

Definition 4.2 (Common Component). A common component, G, is a com-
ponent that is physically connected to several agents or a component that is
not connected directly to any agent and who’s owner is uncertain e.g. pipes,
links or other mechanical devices.

⋄

The common component is a special type of component that currently cannot
be found in the Scania diagnostic system. It will be assumed that whenever
this type of component is added to the diagnostic system, it will be assigned
an owner and treated as aprivate componentby the owning agent. A com-
mon component is denotedg ∈ G, whereG is all common components in the
system.

Definition 4.3 (Input signal). An input signal,γ, is received fromCAN. Sev-
eral agents can read the same signal as long as it is distributed on the network.
An input signal is denotedγ ∈ Γ, whereΓ is all input signal in the system.

⋄

This type of signal is similar to the output signal defined below. An input
signal is read fromCAN and diagnosed in the same way as components by

4.3. Components, Signals and Objects 29

the diagnostic system. The signal value could be dependent on one or more
components, e.g. a sensor or an actuator, but it could also bean estimated or
calculated value. It will be discussed later if it is necessary for the diagnostic
system to know all information about the origin from the input.

Definition 4.4 (Output Component). This type of signals are the values dis-
tributed on theCAN bus. The signal can be derived from one or several physi-
cal components. It could also be estimated from some other form of data. An
output signal is denotedσ ∈ Σ, whereΣ are all output signals in the system.

⋄

As for the input signal, the output signal value could be dependent on one or
more components, e.g. a sensor or an actuator, but it can alsobe an estimated
or calculated value.

Note that a signal can be of numerous types at the same time forthe
whole system, e.g. a sensor connected to two agents where oneof the agents
distributes its value on theCAN bus, the component would be a type as those
defined in definitions 4.2, 4.3 and 4.4 at the same time from a system point of
view.

When different types of components and signals have been explained, it
is possible to define objects, which are the signals and components included
in its local diagnostic system, for an agent.

Definition 4.5 (Objects). The set of objects for an agent,A, is

Θ = PA ∪ ΓA ∪ GA ∪ ΣA

wherePA is a set of private components,ΓA is a set of input signals,GA is
a set of common components andΣA is a set of output signals. The output
signals are special cases since they are based on the diagnoses of the private
components.

⋄

The objects are different for each agent. Example 4.1 explains compo-
nents, signals and objects further.

Example 4.1
Consider Figure 4.3 where a system consisting of three agents is illustrated.
Each agent have a set of tests and the objects for agentA1 isΘ1 = {F, S1, S2},
the objects for agentA2 is Θ2 = {A, B, E, G, H, S2} and the objects for
agentA3 is Θ3 = {C, D, S1}. The classification of components and signals
are as follows.

Agent 1 ComponentF is a private component;S1 andS2 are input signals.

30 Chapter 4. Distributed Diagnostic Systems

Agent 2 ComponentA, B, E, G andH are private components,S1 is an out-
put signal andS2 is an input signal.

Agent 3 ComponentC andD are private components,S1 is an input signal
andS2 is an output signal.

Agent 1

F

Agent 3

GEBA H DC

Agent 2

S1(A,B) S2(C,D)

TESTTESTTESTTEST

CAN

TESTTESTTESTTEST
TESTTESTTESTTEST

Figure 4.3: Agents with componentsA to G and signalS1, depending on
componentA andB, and signalS2 depending on componentC andD.

4.4 Signals - Inputs and Outputs

Some reasoning about signals, i.e. inputs and outputs, and their characteris-
tics will here be presented. The discussion will be concerning a few basic
questions:

1. Is it necessary for a receiving agent to know about the origin of an input
signal?

2. Should a transmitting agent treat the output signal as a special compo-
nent in its own diagnostic system?

3. How is the cardinality of a diagnosis affected when signals are included
in the diagnosis?

The transmitting agent is the agent distributing values on theCAN bus and
the receiving agent is the one reading the value.

4.5. Local and Global Diagnosis 31

Let us start with the first question. Assume that an agent calculates an
output based on the functionality of three private components. UsingCAN,
there is no way for the receiving agent to know which components the signal
depends on, unless aninitialization process is performed. In the initialization
process each signal and which components it depends on wouldbe declared,
enabling the agents to transform signals to corresponding component repre-
sentation. Is this necessary though?

The receiving agent cannot setDTCs on components owned by the trans-
mitting agent, so it is enough to diagnose with a signal representation and
then share the information of the diagnoses stated. When theagent, where
the signal originated from, receives the diagnoses it recognizes the signal as
one of its outputs and transforms it to a component representation sinceDTCs
are not set on signals but on components. Therefore, withoutan initializa-
tion phase, the agents still have enough information to set globally consistent
DTCs. For the receiving agent, the cardinality of the object would also always
be one, because it cannot distinguish which of the three physical components
that caused the problem. And by this the third question is also answered.

Regarding the second question, there is no reason for the output signal
to be diagnosed as a signal in the transmitting agent insteadof diagnosing
the private components and from this determine which outputsignals that
are diagnosed. In the case where one would like to share information about
diagnoses that affect output signals, there is always a way to derive that kind
of information regardless if the signal is part of the diagnostic system or not,
since eachECU knows which components its output is dependent on. Also, if
the output signals would be included as components in the diagnostic system,
one would have to compensate for the cardinality in the diagnoses where the
signal is present.

The conclusion of the reasoning above is that no initialization process is
needed in order to exchange information regarding the origins of input signals
and that the cardinality of the resulting diagnoses is not affected. It could also
be concluded that the output signal should not be a part of thelocal diagnostic
system.

4.5 Local and Global Diagnosis

Considering the network ofECUs in today’s Scania trucks, shown in Fig-
ure 4.1, and how the components are linked to the differentECUs, see Fig-
ure 1.1, it is possible to define two different types of fault diagnosis for the
system. First local diagnosis, where each agent state a set of diagnoses about
its objects, without sharing any information with other agents. Since no di-
agnostic information is shared the local diagnoses can be incomplete. The
second type is global diagnosis where all the test results ofthe system is con-
sidered when generating the diagnoses.

As mentioned before, theDTCs in the system should be set based on glob-

32 Chapter 4. Distributed Diagnostic Systems

ally consistent diagnoses. Hence, theECUs need to exchange diagnostic in-
formation to form the globally consistent diagnoses. In theprocess of sharing
information the merge operator is used, the definition follows:

Definition 4.6 (Merge). LetD1 andD
2 be two sets of diagnoses, then a merge

of these diagnoses is the set of minimal sets

D
1 ×∪ D

2 = mins(D
1 ∪ D

2 | D1 ∈ D
1,D2 ∈ D

2)

⋄

From the definition of merge follows that the global diagnoses is a merge
of the local diagnosis from each agent.

Theorem 4.1(From local diagnoses to global diagnoses [Bit05a]). For each
A ∈ A, let D

A be a set of local diagnoses consistent with the conflictsΠA,
then the minimal global diagnoses is

D = ×
⋃

A∈A

D
A

In short, if the local diagnoses for each agent is known then amerge of
these generates the global diagnoses.

Example 4.2
Consider two agents holding the set of conflicts

ΠA1 = {{A, B}, {A, C}} ΠA2 = {{B, D}}

With the corresponding diagnoses

D
A1 = {{A}, {B, C}} D

A2 = {{B}, {D}}

To create the global diagnosis, the two local diagnoses are merged, resulting
in the set

D
A1 ×∪ D

A2 = {{A, B}, {A, D}, {B, C}}

Note, the non-minimal diagnosis{B, C, D} is not included in the global di-
agnosis. Notice also that each diagnosis is consistent withevery conflict, thus,
every merged diagnosis is a global diagnosis.

4.5. Local and Global Diagnosis 33

4.5.1 Two Ways of Calculating the Global Diagnosis

One can distinguish between two different ways of calculating the global di-
agnoses. The conflicts generated from the different tests ineach agent can
either be transformed into local diagnoses and then merged to form the global
diagnoses, Figure 4.4, or by first merging all the local conflicts and then gen-
erating the global diagnosis from the set of all conflicts, Figure 4.5. These
different approaches are the basics of the first two methods described in the
next chapter.

Conflicts in Agent 1

Global Diagnoses

Diagnoses in Agent N

Diagnoses in Agent 1

Conflicts in Agent N

Figure 4.4: Generating global diagnoses from local conflicts to local diag-
noses to global diagnosis.

Conflicts in Agent 1

Conflicts in Agent N

All Conflicts Global Diagnoses

Figure 4.5: Generating global diagnosis from local conflicts to all conflicts to
global diagnosis.

4.5.2 The Combinatorial Problem

A problem that arises in distributed diagnosis is the size ofthe global diag-
noses that are generated by the merge of the local diagnoses.The number of
global diagnoses grows exponentially with both the number and the size of
the local diagnoses. This leads to a combinatorial explosion if many faults,
generating many and large diagnoses, occur. A solution thatseems reason-
able is to only merge the diagnoses that are most probable i.e. to exclude the
diagnoses in each agent that are least probable.

One way of calculating the probability of a specific diagnosis is to assign
a probability to each fault mode. Normally, the no-fault mode is assigned the
highest probability, i.e. it is more probable that a component is functioning

34 Chapter 4. Distributed Diagnostic Systems

correctly than incorrectly. The various fault modes have lower probability.

P (NF) >> P (F1), P (F2), . . . , P (Fn)

The problem is to assign probabilities to the different fault modes. For ex-
ample, in the case of a Scania truck certain probabilities ofa fault when the
truck is just produced will certainly change over time when the truck is used.
Therefore, a simpler approach is desirable. The different fault modes can be
assumed to have the same probability, enabling the use of minimal cardinality.

P (NF) >> P (F1) = P (F2) = . . . = P (Fn)

The set of minimal cardinality diagnoses is usually smallerthan the set of
minimal diagnoses. Thus, the minimal cardinality diagnoses can be used to
reduce the combinatorial explosion that occurs when several diagnoses are
merged together.

Other approaches of probabilistic reasoning in fault isolation besides min-
imal cardinality reasoning exist. One could be found in [AP05] where the
utilization of bayesian networks in fault isolation is explored.

Note, for components with more than two behavioral modes, minimal
cardinality diagnosis only holds if the fault modes have an equal probability.
Example 4.3 will highlight the implications of this.

Example 4.3
Consider a system with three components, all with two behavioral modes

AB or ¬AB. The probability ofAB is 0.01 for all three components. If all
faults are assumed to occur independently the minimal cardinality diagnosis
is the most probable. For example:

P ({C1}) = 0.01

P ({C2, C3}) = 0.0001

If componentC1 has four fault modes,F1, F2, F3, UF they are assumed to
all have the same probability in order for minimal cardinality to be applicable.
The probability ofUF when all fault modes have probability 0.01 is (again,
all faults occur independently):

P (UF) = P (F1, F2) + P (F1, F3) + P (F2, F3) + P (F1, F2, F3) (4.1)

= 0.0001 + 0.0001 + 0.0001 + 0.000001 = 0.000301

This probability is much lower than the probability of the other fault modes
and therefore either the faults are dependent, for example

P (F1, F2) = P (F1) × P (F2|F1) where P (F2|F1) > P (F2)

4.5. Local and Global Diagnosis 35

making the sum of probabilities (4.1) bigger or there are possibilities of faults
not modeled,Punknown, that need to be considered, i.e.

P (UF) = P (F1, F2) + P (F1, F3) + P (F2, F3) + P (F1, F2, F3) + Punknown

It could also be a combination of dependency between behavioral modes and
unmodeled faults.

4.5.3 Merging Minimal Cardinality Diagnoses

Earlier it was shown how the global diagnoses could be generated from the
merge of all local diagnoses, Theorem 4.1. Is this also true for minimal car-
dinality diagnoses? Unfortunately not. Sets of local minimal cardinality di-
agnoses cannot be merged together to form the global minimalcardinality
diagnoses, i.e.

Dmc 6= ×
⋃

A∈A

D
mc
A

Here is an example to prove it. Note, in the following examples, to make
it understandable, a complete component representation isassumed, meaning
all ECUs know about all components of the system.

Example 4.4
Consider Example 4.2 with the minimal cardinality diagnosesD

mc
A1

= {{A}}
andD

mc
A2

= {{B}, {D}}. Then the merge results in

D
mc
A1

×∪ D
mc
A2

= {{A, B}, {A, D}}

While
Dmc = {{A, B}, {A, D}, {B, C}}

The global minimal cardinality diagnosis{B, C} was not included in the
merge of minimal cardinality local diagnoses.

The reason is that not all agents are independent of each other. Many
agents run tests including some other agent’s components, and thus the agent’s
local diagnoses might include signals that depends on some other agent’s
component. A solution, presented by [JBN05], is to first group the agents
into modules, where each module of agents is independent of each other, as
shown in the following example.

Example 4.5
If D1 = {{A, B}}, D2 = {{B, C}}, andD3 = {{E}}, then for the modules

36 Chapter 4. Distributed Diagnostic Systems

Ā1 = {A1, A2} andĀ2 = {A3}, it follows thatDmod
1

= {{A, B, C}} and
Dmod

2 = {{E}}

A module of agents with diagnoses independent of each other can form
a Module Minimal Cardinality Diagnosis(MMCD) denotedDmod,mc

i for the
i:th module. If all theseMMCDs are merged, it can be proved ([Bit05a]) that

Dmc = ×
⋃

Dmod,mc
i

Hence, grouping the agents into modules, merging the diagnosis inside
the modules and finding the minimal cardinality diagnosis for each module to
reduce the combinatorial problem, and last, merging theMMCDs, generates
the minimal cardinality global diagnosis.

4.6 Centralized or Distributed Diagnosis

In general, there are three different ways to organize a diagnostic system
working over a network. In a Scania truck theECUs can either transmit all
their data to a central unit, here called diagnostic agent, that performs tests
and states the diagnoses. This setup is denoted centralizeddiagnostic system.

A different approach is to let the agents in theECUs state their own lo-
cal object diagnoses and then transmit their results to a centralized diagnostic
agent who would merge the different local diagnoses. The advantage of this
approach, denoted decentralized diagnosis, is the distribution of work creat-
ing the diagnosis in each agent instead of in a central unit. Still, a decentral-
ized solution is in need of a central unit for the merge of the local diagnosis.

A preferable method would be to make the diagnostic system fully dis-
tributed with no need of any central unit. The agents would then have to state
their own local diagnosis and then transmit diagnostic information between
each other to generate a globally consistent diagnosis without the need of a
central unit.

4.6.1 Centralized Diagnosis and Decentralized Diagnosis

An advantage of a centralized diagnostic system is the simplicity of it. No
calculation needs to be done at local level and since the global diagnoses
stated by the diagnostic agent is based on all the diagnosticinformation of
the system, global consistency is always achieved. The communication on
the CAN bus will be directed in only one way, from theECUs to the central
unit. A basic diagram of a centralized system is shown in Figure 4.6.

A disadvantage of centralized diagnosis is the scalability. A diagnostic
system using one central diagnostic unit has a limit on how many ECUs that
can be connected since it has a finite amount of processing power and mem-
ory. Thus, it would need changes in the hardware if the systemexpanded

4.6. Centralized or Distributed Diagnosis 37

CAN-Bus

Agent

S
e

n
s

o
r

an
d

A

ct
u

a
to

r
V

a
lu

e
s

S
e

n
s

o
r

an
d

A

ct
u

a
to

r
V

a
lu

e
s

Agent

S
e

n
s

o
r

an
d

A

ct
u

a
to

r
V

a
lu

e
s

Diagnostic
Agent

Agent

Figure 4.6: A centralized diagnostic system.

outside of the central unit’s limits, e.g. faster processorto speed up the calcu-
lation of diagnoses from the increasing amount of information.

CAN-Bus

Agent

L
o

ca
l

D
ia

g
n

o
se

s

L
o

ca
l

D
ia

g
n

o
se

s

Agent

L
o

ca
l

D
ia

g
n

o
se

s

Diagnostic
Agent

Agent

Figure 4.7: A decentralized diagnostic system.

A decentralized diagnostic system is in many ways similar toa central-
ized system. It is diagnoses that are transmitted from the local agents to the
diagnostic agent, instead of sensor and actuator values, see Figure 4.7. The
system cannot be considered scalable though, because it is still quite compu-
tationally intensive to merge the local diagnoses sent to the central unit. To
increase the scalability, the merge could be processed in the agents with the
central unit as coordinator agent instructing the agents how to merge their lo-

38 Chapter 4. Distributed Diagnostic Systems

cal diagnoses in between each other. Such a solution would require a more
advanced algorithm, see [JBN05]. Another flaw of the centralized and decen-
tralized method is the failure transparency from a distributed systems point of
view. If the central unit fails, it is difficult, or impossible, for the otherECUs
to hide that failure.

4.6.2 Distributed Diagnosis

In a distributed diagnostic system, see Figure 4.8, sharingdiagnoses between
ECUs without the use of a central unit is both scalable and failure transparent.
For example, if oneECU stops working then the other agents will form the
diagnosis for the rest of the system. The computations are shared between
the agents, so for everyECU that is added not just the amount of diagnoses
increases but also the computational power. The communication is distributed
in the network ofECUs, so adding moreECUs adds traffic, but not in any
specific part of theCAN bus.

CAN-Bus

Agent

Lo
c

a
l

D
ia

g
n
o

s
e

s

Lo
c

a
l

D
ia

g
n
o

s
e

s

Agent

Lo
c

a
l

D
ia

g
n
o

s
e

s

Agent

Diagnostic Information

Figure 4.8: A distributed diagnostic system.

The drawback of this method is the complexity of the implementation. In
centralized and decentralized diagnosis the agents transmit diagnostic infor-
mation only to the diagnostic agent, but in this approach a more advanced
method of communication is required because the agents exchange informa-
tion between each other. Chapter 5 presents a few methods, suggesting how
to implement distributed diagnosis.

4.7 Sharing Diagnostic Information

As discussed earlier, the differentECUs are dependent on each other. Agent
A1 needs to know if a component, that it controls, but connectedto AgentA2,
is broken. It is possible that the diagnostic tests inA1 does not respond to an

4.7. Sharing Diagnostic Information 39

error on a certain component that it is depending on, but the tests inA2 does
or thatA1 cannot isolate which component is broken on its own but it can
with the help of the tests inA2. This strongly motivates a diagnostic system
that shares information. Every agent wants the best possible diagnoses it
can have of both its own, its shared and its common components. Maybe the
calculation of the best possible diagnoses are not feasible, taking in to account
all the information that needs to be shared and the size of thelocal diagnoses
generated. There is a trade-off between hardware usage and how good the
generated diagnoses will be. Less information is transmitted to the price of
worse diagnoses. Still though, the diagnoses need to be globally consistent to
accomplish the goal, see section 4.2.1. The question is whatto share and how
to do it in order to generate feasible and good enough diagnoses that complies
with the goal.

4.7.1 Sharing Conflicts

The diagnostic tests performed in each agent can generate a set of conflicts.
These conflicts can be sent to other agents that are interested in the condition
of the components included in these sets. The receiving agent can then insert
this conflict into its algorithm to generate diagnoses, resulting in a more com-
plete set than its local diagnoses including only diagnostic information from
its own tests. Example 4.6 gives an example of two agents sharing conflicts;

πtx denotes transmitted conflicts,πrx denotes received conflicts and
min
≃ is

the minimal diagnosis operator.

Example 4.6
Two agents in a system has found the following conflicts

ΠA1 = {A, B, C} ΠA2 = {i, F}

With the corresponding diagnoses:

D
A1 = {{A}, {B}, {C}} D

A2 = {{i}, {F}}

ComponentB make up the input signali in agentA2. Thus,A2 transmits its
conflict including signali on CAN asπtx = {i, F}. AgentA1 receives this
and translates signali to its dependency, componentB, πrx = {B, F}. The
received conflict results in extended diagnoses forA1

D
A1 = {{A, B}, {A, F}, {B}, {B, F}, {B, C}, {C, F}}

min
≃ {{A, F}, {B}, {C, F}}

Note, AgentA1 has new and more complete, globally consistent diagnoses.
Hence, the diagnoses have been improved by sharing conflicts.

40 Chapter 4. Distributed Diagnostic Systems

The final diagnoses that are generated when sharing conflictsare the cor-
rect global diagnoses. The conflicts hold direct information about the result
of the diagnostic tests performed in the agent and, thus, sharing conflicts is
equivalent to adding the tests in the transmitting agent to the tests already
present in the receiving agent. This is the same thing as looking upon the
system as a centralized diagnostic system, see section 4.6,and therefore the
result is globally consistent.

4.7.2 Sharing Diagnoses

A similar approach as used above for sharing conflicts can be used also when
sharing diagnoses. Diagnostic information is in both casessent and received
between agents and, hence, more complete local object diagnoses can be
formed. The local diagnoses must be available in the different ECUs. In the
receiving agent a merge would be performed between the received diagnoses
with the one already stated locally. It was in Theorem 4.1 shown that the re-
sult will be globally consistent. Example 4.7 gives an example of two agents
sharing diagnoses;Dtx denotes a set of transmitted diagnoses,D

rx denotes a

set of received diagnoses and
min
≃ is the minimal diagnosis operator.

Example 4.7
Consider the local diagnoses in Example 4.6

D
A1 = {{A}, {B}, {C}} D

A2 = {{i}, {F}}

A sharing of diagnoses fromA2 results inD
tx = {{i}, {F}} which will be

received byA1 and translated toDrx = {{B}, {F}} and merged with its
own diagnoses to form

D
A1 = {{A, B}, {A, F}, {B}, {B, F}, {B, C}, {C, F}}

min
≃ {{A, F}, {B}, {C, F}}

This, naturally, is the same result as in Example 4.6.

Does all the diagnostic information in the agents have to be shared or
could it be enough to transmit only certain diagnoses or conflicts and in that
way reduce theCAN traffic and calculation time for theECUs? Maybe not all
information is of interest for the receiving agent. In the section below, this
matter will be discussed more thoroughly.

4.7. Sharing Diagnostic Information 41

4.7.3 The Information to Share

A receiving agent,A, is only interested in diagnoses or conflicts available on
theCAN bus that does not have an empty intersection with its own objects, i.e.
ΘA∩Drx 6= ∅, since the other diagnoses does not affect the receiving agent’s
functionality. Thus, it may be unnecessary for an agent to share conflicts or
diagnoses consisting of only private components.

The method gives different results when sharing conflicts orsharing di-
agnoses. Conflicts are, as discussed above, directly generated from tests and
sharing them is like adding, in the receiving agent, the tests that generated the
shared conflicts, making the diagnoses stated in the receiving agent globally
consistent. Tests in the transmitting agent including onlyprivate components,
not included in any output signal, do not add any informationin the receiving
agent. When sharing diagnoses, on the other hand, consistency becomes a
problem if not all diagnoses are shared. This difference between conflicts and
diagnoses can be seen in Examples 4.8 and 4.9.

Example 4.8
Consider the conflicts in the following agents:

ΠA1 = {A, i} ΠA2 = {}

i is an input signal. AgentA1 shares the conflictπtx = {{A, i}} and agent
A2 receivesπtx = {{A, C}}, since the input signal,i, is connected to an
output signal inA2 which depends only on componentC. This gives the
diagnoses

D
A2 = {{A}, {C}}

TheDTCs are set as suspected, thus globally consistent.

Example 4.9
Same scenario as in previous example, but this time sharing diagnosis

D
A1 = {{A}, {i}} D

A2 = {{}}

AgentA1 shares only the input diagnosis sinceA is a private component not
included in any output signal.Dtx = {i} and agentA2 receivesDrx = {C},
which gives

D
A1 = {{A}, {i}} D

A2 = {{C}}

Since{{C}} is the only diagnosis present inA2, theDTC confirmed will be
set, which is not globally consistent.

42 Chapter 4. Distributed Diagnostic Systems

A significant problem with the method above is that dependingon the
cardinality of the diagnoses including only private components, i.e. those not
shared, is that in some scenarios could the receiving agent confirm a compo-
nent, which it owns, broken that is not, see Example 4.9. Thus, making it
globally inconsistent and not complying with the goal.

The inconsistency is generated when the cardinality of the not shared di-
agnoses present inA1 are disregarded. Information about cardinality needs
to be present since it is upon information about cardinalitythat theDTC is set.

4.7.4 Focusing on Probable Diagnosis

Instead of selecting which diagnostic information to sharebased on type of
components or signals it could be based upon probability. The following
example uses such an approach.

Example 4.10
AgentA1 has stated the following local diagnoses

D
A1 = {{i1, i2, A}, {B}, {C, i1}, {A, C, D}}

Using cardinality diagnoses, see Definition 2.4, assuming that it is much
higher probability that a componentX is in¬AB(X) mode than inAB(X),
one can easily conclude that the most probable diagnosis is{B}. Knowing
that, is it then necessary to share the other diagnoses including inputs and/or
outputs? That, again, depends how one chooses to trade off hardware usage
to diagnostic quality.

As seen in Example 4.4, merging diagnoses based on probability, i.e. car-
dinality, can generate a statement that is inconsistent with the global diag-
noses. To meet the goals of this project, see page 27, all the diagnoses with
cardinality lower or equal to the minimal cardinality of themerged product
need to be shared. If the cardinality is higher than this number it will not be
represented in the minimal cardinality diagnoses, becausea diagnosis with a
specific cardinality cannot by merging generate diagnoses with lower cardi-
nality. Thus these diagnoses do not need to be shared. All theother ones, i.e.
the diagnoses with cardinality lower or equal to the cardinality of the mini-
mal cardinality diagnoses of the merged product need to be shared to ensure
global consistency.

Unfortunately, knowing the minimal cardinality of the merged product is
not a simple task. It could be done by first performing a pre-merge of the
diagnoses to be merged, and then calculate the minimal cardinality of the
result. This approach would take away the whole purpose, though, since a
pre-merge, in fact, demands the same workload as a normal merge unless

4.7. Sharing Diagnostic Information 43

only some diagnoses are pre-merged, but then, which ones should be merged.
A different approach could be to sum all minimal cardinalities and use this as
an upper limit on the global minimal cardinality.

Module Diagnosis

If it is decided that all different component types should beshared, then all
agents in a module would calculate the same diagnosis, the module diagno-
sis. Instead of calculating this in every agent it can be donein a more efficient
way, presented in [JBN05], where the authors present an algorithm dealing
with this. The basic idea is to first divide the agents into independent mod-
ules and then merge the local diagnoses in these agents in an order where
the complexity is minimized. The module diagnoses build up from agent to
agent and the last one to have its diagnosis merged will also store the module
diagnosis. If the global minimal cardinality diagnoses arerequested, then a
merge can be performed between the module minimal cardinality diagnoses,
see page 36.

4.7.5 Problems with Component Representation

The diagnoses or conflicts that an agent receives often include components
belonging to another agent and therefore unknown to the receiving agent.
How is the agent supposed handle these components? Either, every agent
knows about every component in the whole system (at least allcomponents
in its module) or the unknown components included in the received diagnoses
can be added dynamically. Still, an agent cannot change the diagnostic sta-
tus i.e. none, suspected or confirmed on other agent’s components and extra
components mean extra memory and processor usage. Therefore, the best so-
lution would be if agents only stored information about components that are
its own.

44

Chapter 5

Proposed Methods for
Distributed Diagnosis

On basis of the discussions in the previous chapter, a more formal model
was created. Based on this model, methods for sharing diagnostic informa-
tion were constructed and are here presented. Algorithms are presented for
both the transmitting agent who transmits the diagnostic information and the
receiving agent who receives it.

5.1 Model for Distributed Diagnosis

The objects that could be assigned with aDTC is always components, never
signals. Signals can however be part of a diagnosis.

Components

There are a few different types of components. There are a setof private
components, PA ⊆ C, with the following property:

∀i 6= j : PAi ∩ PAj = ∅ (5.1)

There are a set ofcommon components, G ⊆ C, with the following property:

∀A : G ∩ PA = ∅ (5.2)

Signals

In the set of output signalsΣ, which are all signals on theCAN bus, an output
signal is denotedσ ∈ Σ. The set of input signals isΓ. An input signal is
denotedγ ∈ Γ. The set of signals are disjoint from the set of components and
an output signal’s dependency is a subset of private components and input

45

46 Chapter 5. Proposed Methods for Distributed Diagnosis

signals. An output signal is in other words created from the values of private
components and input signals. The creation results in a new object,σ ∈ Σ.

Σ ∩ C = ∅ (5.3)

dep(σ) ⊆ PA ∪ ΓA (5.4)

An output signal,σ, from an agent can be connected to several input sig-
nals. An input signal can however never be connected to several output sig-
nals. Further, the functioncon(x) is theconnection functionextracting which
input an output is connected to and vice versa.

con(σ) ⊆ Γ (5.5)

con(γ) ∈ Σ (5.6)

∀i 6= j : con(σi) ∩ con(σj) = ∅ (5.7)

The set of input signals is disjoint from the set of components and the
dependency of an input is the dependency from its origin.

Γ ∩ C = ∅ (5.8)

dep(γ) = dep(con(γ)) (5.9)

Limitations and Assumptions

The methods presented below are all developed under some assumptions, or
limitations. They are all correct under these circumstances but the intention
is to remove the need for these assumptions in the future methods.

The assumptions are:

∀σ ∈ ΣA : dep(σ) ⊆ PA (5.10)

∀σi, σj ∈ ΣA, i 6= j : dep(σi) ∩ dep(σj) = ∅ (5.11)

An output signal from an agentA can only depend on the agent’s private
components, compare with equation (5.4), and two or more output signals
can never depend on the same private components. These limitations will be
discussed further in section 5.3.

If one takes a closer look at equation (5.4) one notes that a common com-
ponent,g ∈ G, cannot be a part of any signal. This assumption is due to
logical and physical reasons and has no need to be removed in future meth-
ods.

5.2. Algorithms for Distributed Diagnosis 47

5.2 Algorithms for Distributed Diagnosis

Based on the model in section 5.1, a number of different methods for distribut-
ing diagnostic information were developed and some of them are presented
here.

The first method is based on the sharing of conflicts and the second method
is based on the sharing of diagnoses. The methods are much alike and both
demand that the agents can handle component information belonging to other
agents. The third method is a more advanced extension of the second method
where the problem with component representation in other agents is solved.
The diagnostic information transmitted overCAN is also reduced. This method
is the main contributing method for distributed diagnosis presented in this
thesis.

As said above, not all ideas that came up during the project are presented
here. Some of the ideas were to have approximate methods, i.e. to setDTCs
that are correct but perhaps not consistent withDTCs based on a set of globally
consistent diagnoses. The conclusions were however that there is no need for
approximate approaches. Another approach was to have a similar method to
the one presented in [JBN05] but the conclusion was that the method was too
complicated and not really suitable to be implemented in a Scania network
system.

When calculating diagnoses, the need for a function similarto the depen-
dency function arose. This function of a signals ∈ Σ, called thedependent
diagnoses function, dpd(s), returns a set of sets. Each set represent a diagno-
sis consisting of one or several components from the dependency of the signal
s.

dpdi(s) ∈ dpd(s)
⋃

i

dpdi(s) = dep(s) (5.12)

Example 5.1 will clarify the use of the dependent diagnoses function.

Example 5.1
Consider Figure 5.1 whereS1 andS2 represent two output signals in the

system. Assume that AgentA1 has two conflicts saying that none of its inputs
can be in the¬AB mode. AgentA1s set of diagnoses is therefore:

DA1 = {{S1, S2}}

where
{S1, S2} ⊆ ΓA1

Assume that the diagnosis is transmitted to agentA2 and A3. Agent A2

receives the diagnosis and detects:

S1 ∩ ΣA2 6= ∅

48 Chapter 5. Proposed Methods for Distributed Diagnosis

S2 ∩ ΓA2 6= ∅

The diagnoses to be merged with the original diagnoses inA2 is thus:

D
A2

merge = {{dpd(S1)}, {S2}} = {{A}, {B}, {S2}}

AgentA3 receives the same diagnosis and detects:

S1 ∩ ΓA3 6= ∅

S2 ∩ ΣA3 6= ∅

The diagnoses to be merged with the original diagnoses inA3 are thus:

D
A3

merge = {{S1}, {dpd(S2)}} = {{S1}, {C}, {D}}

5.2.1 Method 1: Sharing Conflicts

As previously seen under section 4.7.1, globally consistent diagnoses can be
generated by sharing conflicts and from these globally consistentDTCs can
be assigned.

Goal: By sharing conflicts, generate a set of diagnoses in each agent that
globally consistentDTCs can be assigned based upon.

Algorithm for the Transmitting Agent

Algorithm 1 Method 1 - Transmitting agent

Require: Minimal local conflictsΠA in each agent A
Ensure: Conflicts to transmit,Πtx, including all information needed for the

receiving agent to set globally consistentDTCs
1: Πtx := ∅
2: for all π ∈ ΠA do
3: for all σ ∈ ΣA do
4: if dep(σ) ∩ π 6= ∅ then
5: π := σ ∪ (π \ dep(σ))
6: end if
7: end for
8: Πtx := Πtx ∪ π

9: end for
10: TransmitΠtx on theCAN bus.

Line 1 Initiate the conflicts to be transmitted as an empty set.

5.2. Algorithms for Distributed Diagnosis 49

Line 2-7 Substitute the components that the output signals are dependent on,
for output components, representing the output signals. Add, by itera-
tion, the conflicts to be transmitted to the setΠtx.
Comment: The components in the transmitting agent that make up an
output signal is represented in the receiving agent as an input compo-
nent. Thus, if any of these components are diagnosed in the transmit-
ting agent, it is the same thing as the input signal for the receiving agent
is diagnosed.

Line 8 Add, by iteration, the conflicts to be transmitted to the setΠtx.

Line 9 TransmitΠtx on theCAN bus.

Algorithm for the Receiving Agent

Algorithm 2 Method 1 - Receiving agent

Require: Πtx

Ensure: Globally consistentDTCs on its own components
1: Πrx := ∅
2: for all π ∈ Πtx do
3: outputdep := ∅
4: for all c ∈ π do
5: if c ∩ PA = ∅ then
6: set flag forc that noDTC should be set
7: end if
8: end for
9: for all s ∈ π do

10: if s ∈ ΣA then
11: outputdep := outputdep ×∪ dpd(s))
12: π := π \ s

13: end if
14: end for
15: Πrx := Πrx ∪ (outputdep ∪ π)
16: end for
17: call the algorithm for generating diagnoses withΠrx as input

Line 1 Initiate the conflicts to be transmitted as an empty set.

Line 4-8 Mark which components that should not be assigned aDTC.
Comment: An agent can only setDTCs for its own components.

Line 9-13 For all received conflicts: merge all output component dependen-
cies iteratively and add with the conflict minus the receivedinput com-
ponent.

50 Chapter 5. Proposed Methods for Distributed Diagnosis

Comment: A received input component that is included in the receiv-
ing agent’s set of output components can depend on many components.
A conflict including this type of component generates new conflicts in
the receiving agent diagnoses need to be merged to form the correct
diagnoses for the receiving agent.

Line 15 Add, iteratively, the conflicts received to the setΠrx.

Line 17 Insert the received conflicts in the local algorithm for generating
diagnoses.

Result: A set of diagnoses for each agent, consistent with the global min-
imal cardinality diagnoses,Dmc. Based upon this set, globally consistent
DTCs can be assigned. It has previously in this thesis been shownhow shar-
ing of all conflicts, on component level, generates the global diagnoses, there-
fore theDTCs assigned will be globally consistent. A component, included in
the transmitted conflicts, that is private to the transmitting agent needs to be
marked by the receiving agent, since noDTC should be set for this component
by the receiving agent.

5.2.2 Method 2: Sharing Diagnoses

Similarly to sharing conflicts it was in the previous chapterdiscussed how
exchanging diagnoses could generate globally consistent diagnoses and from
this globally consistentDTCs can be assigned.

Goal: To generate a set of diagnoses that globally consistentDTCs can be
assigned based upon.

Algorithm for the Transmitting Agent

Algorithm 3 Method 2 - Transmitting agent

Require: Minimal local diagnosesDA

Ensure: Diagnoses to transmit,Dtx, including all information needed for the
receiving to set globally consistentDTCs

1: D
tx := ∅

2: for all D ∈ D
tx do

3: for all σ ∈ ΣA do
4: if dep(σ) ∩ D 6= ∅ then
5: D = σ ∪ (D \ dep(σ))
6: end if
7: end for
8: D

tx := D
tx ∪ D

9: end for
10: TransmitDtx on theCAN bus.

5.2. Algorithms for Distributed Diagnosis 51

Line 1 Initiate the diagnoses to be transmitted as an empty set.

Line 2-7 Substitute the components that the output signals are dependent on
for output components, representing the output signals.
Comment: The components in the transmitting agent that make up an
output signal is represented in the receiving agent as an input compo-
nent. Thus, if any of these components are diagnosed in the transmit-
ting agent, it is the same thing as the input signal for the receiving agent
is diagnosed.

Line 8 Add, iteratively, the conflicts to be transmitted to the setΠtx.

Line 10 TransmitDtx on theCAN bus.

Algorithm for the Receiving Agent

Algorithm 4 Method 2 - Receiving agent

Require: D
tx

Ensure: Globally consistentDTCs on its own components
1: D

rx := ∅
2: for all D ∈ D

rx do
3: outputdep := ∅
4: for all c ∈ D do
5: if c ∩ PA = ∅ then
6: set flag forc that noDTC should be set
7: end if
8: end for
9: for all s ∈ D do

10: if s ∈ ΣA then
11: outputdep := outputdep ×∪ dpd(s))
12: D := D \ s

13: end if
14: end for
15: D

rx := D
rx ∪ (outputdep ∪ D)

16: end for
17: D

A := D
A ×∪ D

rx

Line 1 Initiate the diagnoses to be received as an empty set.

Line 4-8 Mark which components that should not be assigned aDTC.
Comment: An agent can only setDTCs for its own components.

Line 9-13 For all received diagnoses: merge all output component depen-
dencies iteratively and add with the diagnoses minus the received input

52 Chapter 5. Proposed Methods for Distributed Diagnosis

component.
Comment: A received input component that is included in the receiv-
ing agent’s set of output components can depend on many components.
A diagnosis including this type of component generate new diagnoses
in the receiving agent diagnoses need to be merged to form thecorrect
diagnoses for the receiving agent.

Line 15 Add, iteratively, the diagnoses received to the setDrx.

Line 17 Merge the local diagnoses with the received one to form the new,
enhanced local diagnoses.

Result: A set of diagnoses for each agent, consistent with the global min-
imal cardinality diagnoses,Dmc. Based upon this set, globally consistent
DTCs can be assigned. It has previously in this thesis been shownhow sharing
of all diagnoses generate the global diagnoses, therefore the DTCs assigned
will be globally consistent. A component, included in the transmitted diag-
noses, that is private to the transmitting agent needs to be marked by the re-
ceiving agent, since noDTC should be set for this component by the receiving
agent.

5.2.3 Method 3: Sharing Diagnoses Extended

Not all components need to be shared, as in Method 2, it is enough with
selected information about cardinality for the diagnoses in the transmitting
agent. The receiving agent can with the help of this information draw cor-
rect conclusions of which components that are confirmed or suspected. For
a mathematical proof of the method, see Appendix A. An example of the
method is shown in Example 5.2.

5.2. Algorithms for Distributed Diagnosis 53

Goal: To generate a set of diagnoses for each agent that globally consis-
tentDTCs can be assigned based upon.

Algorithm for the Transmitting Agent

Algorithm 5 Method 3 - Transmitting agent

Require: Minimal local diagnosesDA

Ensure: Diagnoses to transmit,Dtx, including all information needed for the
receiving agent to set globally consistentDTCs

1: D
tx = ∅

2: for all D ∈ D
A do

3: for all σ ∈ ΣA do
4: if dep(σ) ∩ D 6= ∅ then
5: D = σ ∪ D

6: end if
7: end for
8: X = |D ∩ PA| − |D ∩ ΣA|
9: D = D \ (PA ∩ D)

10: D
tx = D

tx ∪ {D, X}
11: end for
12: Y = min(|D1|, . . . , |Dm|) for all Di ∈ (DA \ D

tx)
13: D

tx = {D
tx, Y }

Line 1 Initiate the diagnoses to be transmitted as an empty set.

Line 2-7 Substitute the components that the output signals are dependent on
for output components, representing the output signals.
Comment: The components in the transmitting agent that make up an
output signal is represented in the receiving agent as an input compo-
nent. Thus, if any of these components are diagnosed in the transmit-
ting agent, it is the same thing as the input signal for the receiving agent
is diagnosed.

Line 8,9 Set a cardinality variableXi which equals the cardinality for the
diagnosis pruned of all signals minus the cardinality of theoutputs.
Delete all private components from the diagnosis.
Comment: In the merge in the receiving agent the resulting cardinal-
ity will be depending on the cardinality of the transmitted diagnoses.
Since the private components will not be sent, information about the
cardinality needs to be present.

Line 11 Store the minimal cardinality of the diagnoses consisting of only
private components asY .

54 Chapter 5. Proposed Methods for Distributed Diagnosis

Comment: In the merge of diagnoses consisting of only private compo-
nents the cardinality of the product will be the sum of the cardinalities
of the diagnoses to be merged. Since the decision of which components
that are suspected or confirmed broken is based on minimal cardinality,
the minimal cardinality needs to be sent too.

Line 12 Transmit the diagnoses including inputs or outputs pruned on all
private components but with the correspondingXs andY .
Comment: This package could, for example, look like
D

tx = {{γ, X1 = 3}, {γ, σ, X2 = 4}, Y = 2}

Algorithm for the Receiving Agent

Algorithm 6 Method 3 - Receiving agent

Require: D
tx

Ensure: Globally consistentDTCs on its own components
1: D

rx = ∅
2: for all D ∈ D

rx do
3: outputdep = ∅
4: for all s ∈ D do
5: if s ∩ (ΓA ∪ ΣA) = ∅ then
6: X = X + 1
7: D = D \ s

8: else ifs ∩ ΣA 6= ∅ then
9: outputdep = outputdep ×∪ dpd(s)

10: D = D \ s

11: end if
12: end for
13: D

rx = D
rx ∪ (outputdep ×∪ D)

14: end for
15: D

A = D
A ×∪ D

rx = {{DA ∪ Drx, X} : DA ∈ D
A, {Drx, X} ∈ D

rx} ∪
{{DA, Y } : DA ∈ D

A}

Line 1,3 Initiate the diagnoses to be received and the output dependency di-
agnoses as empty sets.

Line 4-13 For all received signals in the diagnosis: check if the signal is an
output or input in the receiving agent. If it is neither, add one toX

for that diagnosis and delete the signal from the diagnosis.If it is an
output, then merge all output component dependencies iteratively and
add with the diagnoses minus the received input component. If it is an
input, nothing needs to be done.
Comment: An agent does not diagnose components or signals that it

5.2. Algorithms for Distributed Diagnosis 55

does not know. If a signal that it does not know is included in the diag-
noses it should be deleted but also the cardinality needs to be compen-
sated for. A signal that is included in the receiving agent’sset of output
components can depend on many components. A diagnosis including
this type of component generates new diagnoses in the receiving agent
and these need to be merged to form the correct diagnoses for the re-
ceiving agent.

Line 18 MergeD
A andD

rx to generate the diagnoses from where the glob-
ally consistentDTCs can be set.
Comment: In the mergeXi andY need to be compensated for. The
Xis are added to the cardinality of the merges betweenDA andDrx

i

and united withDA whereY is added to the cardinality ofDA

Result: Set of diagnoses for each agent, that globally consistentDTCs can be
assigned based upon. It has earlier in this thesis been shownthat a merge of
all diagnoses generates the global diagnosis. TheDTCs are to be set based
on the global minimal cardinality diagnoses. In this methodnot all diagnoses
are merged, but since cardinality information about the diagnoses that could
affect the generated minimal cardinality diagnoses is shared, consistentDTCs
can be set anyway.

Example 5.2
Consider Figure 5.1 again. Here signals are denoted with a unique symbol
Si which is equivalent withσi for the transmitting agent andγi for the re-
ceiving agent. Assume that each agent has its correspondingset of diagnoses
according to:

D1 = {{F, S2}, {S1, S2}}

D2 = {{A, E}, {S2, E}, {S2, B}, {S2, A, G}, {H}}

D3 = {{}}

A1 andA2 have both diagnosed signals (outputs or inputs) and therefore these
agents transmit their diagnoses on theCAN bus.

D
tx
1 : {F, S2} consists of one private component and one signal which

translates into{{S2}, 1}. {S1, S2} consists of two signals and translates into
{{S1, S2}, 0}. There is no diagnoses consisting of only private components,
therefore Y=0. This results in:

D
tx
1 = {{{S2}, 1}, {{S1, S2}, 0}, 0}

D
tx
2

: {A, E} consists of one output component in signalS1 and one pri-
vate component, which translates into{{S1}, 1}. {S2, E} consists of one
signal and one private component which translates into{{S2}, 1}. {S2, B}

56 Chapter 5. Proposed Methods for Distributed Diagnosis

1

F

3

GEBA H DC

2
1S 2S

Figure 5.1: Three agents. Signals are denotedSi.

consists of one signal and one output component in signalS1, which translates
into {{S1, S2}, 0}. {S2, A, G} consists of one signal, one output component
and one private component which translates into{{S1, S2}, 1}. There is only
one diagnosis consisting of only private components and itscardinality is 1,
thereforeY = 1. This results in:

D
tx
2 = {{{S1}, 1}, {{S2}, 1}, {{S1, S2}, 0}, {{S1, S2}, 1}, 1}

A1 receives diagnoses fromA2. A1 has no output soDrx,2
1

= D
tx
2

D
rx,2
1

= {{{S1}, 1}, {{S2}, 1}, {{S1, S2}, 0}, {{S1, S2}, 1}, 1}

D1
×∪ D

rx,2
1

= {{S2, F}, 1}, {{S1, S2}, 0}

A1 has no own components among its minimal cardinality diagnoses, thus no
DTCs will be set.

A2 receives diagnoses fromA1. S1 is an output signal fromA2 so the
signal will be transformed into its dependency components.

D
rx,1
2

= {{{S2}, 1}, {{A, S2}, 0}, {{B, S2}, 0}, 0}

D2
×∪ D

rx,1
2

= {{S2, A, E}, 0}, {{S2, B}, 0}, {{S2, E}, 1},

{{S2, A, G}, 0}, {{S2, H}, 1}

B is among the components in the minimal cardinality diagnoses, thusB will
be confirmed broken.

A3 receives diagnoses fromA1 andA2. S2 is an output signal fromA3

5.3. Discussion Concerning the Limitations and Assumptions 57

so the signal will be transformed into its dependency components.

D
rx,1
3

= {{{C}, 1}, {{D}, 1}, {{S1, C}, 0}, {{S1, D}, 0}

D
rx,2
3

= {{{S1}, 1}, {{C}, 1}, {{D}, 1}, {{S1, C}, 0}, {{S1, D}, 0},

{{S1, C}, 1}, {{S1, D}, 1}, 1}

D3
×∪ D

rx,1
3

×∪ D
rx,2
3

= {{{C}, 2}, {{D}, 2}, {{C, D}, 2}, {{S1, C}, 0},

{{S1, D}, 0}}

C andD are represented in one minimal cardinality diagnoses each,thus both
will be suspected.

The global merge of the local diagnoses gives in rising orderof cardinal-
ity:

D = D1
×∪ D2 = {{B, C}, {B, D}, {F, C, H}, {F, D, H} . . .}

B is confirmed broken andC andD are suspected which consistent with the
result above in each agent.

5.3 Discussion Concerning the Limitations and
Assumptions

In section 5.1 a few limitations and assumptions were introduced. Two of
these will here be discussed more thoroughly, namely equation (5.10) and
equation (5.11). They are both quite strong assumptions andbefore imple-
menting the methods in a real system it would be preferable ifthey could be
erased. The reason for their being is, however, a problem notso easy to solve.
We have in all models assumed that no initializing phase is needed, so that
when anECU receives a signal it does not know the component dependency
of it, just the value. A component could be included in the dependency of two
different signals that an agent diagnose and cause problemswhen determining
the cardinality. Example 5.3 will clarify the problem.

Example 5.3
Consider the system of Figure 5.2. The output signals from agent 1, S1

andS2, are both dependent on componentB. Agent 2 states the following
diagnoses:

D
A2 = {{S1, S2}, {C}}

58 Chapter 5. Proposed Methods for Distributed Diagnosis

Agent 2

BA C

Agent 1

S1(B) S2(B)

Figure 5.2: An example setup where one component is represented in two
signals.

Agent 2 would then set theDTC confirmed on componentC which is not the
correct diagnosis since{S1, S2} really has cardinality equal to one. Com-
ponentC should be suspected, not confirmed. Note, the given example is
simplified to highlight the problem with signals. In realityit would be un-
likely for two signals to depend on only one, and the same, component.

This problem can be found not only in the setup of Example 5.3,i.e. when
a component is included in two output signals. Also when the input from one
ECU is included in the output of another. Both the input signal and the output
signal could be inputs to a thirdECU and the same component would then
be included in two different causing, again, a problem with cardinality. It is
in both cases the same cause of the problem: a component included in two
different signal’s dependencies. The receiving agent can not detect this and
therefore the cardinality may be calculated to equal an incorrect value.

To solve the problem, theECUs need to have information about the signals
and their dependencies. One way could be to either have an initialization
phase where, at start-up, allECUs exchange information about each others
signals and which components they depend on. When diagnosing a signal,
anECU could then determine which components it is dependent on andfrom
this information conclude the correct cardinality of its diagnoses.

A second solution would be to have a pre-map of all the signalsand their
component dependencies before connecting them to the system. The result
would be the same as above but no initialization would be needed since the
ECUs at start-up already would have the correct information about the signals
and their dependencies. This would make the system less scalable and flexible
since when anECU is added to the system, all the other ones need to be re-
programmed.

Chapter 6

Implementation in an
Embedded System

To evaluate the ideas behind the methods presented in chapter 5 and also to
examine the possibilities of the desired characteristics of an implementation
of a distributed diagnostic system, defined in section 1.2, atest arrangement
consisting of twoECUs was constructed. Some of the key issues that were
dealt with in the implementation are presented in the following chapter.

6.1 Hardware Setup

The test arrangement consists of two Scania engine controllers connected via
a 250 kbit/sCAN bus. Faults can be hardware simulated and the resulting
fault codes can be read with the help of standard Scania tools. Apart from
the twoECUs, the setup consists of a power supply and a specially designed
control box. The outputs of theECUs are connected to optical indicators,
which is of no importance to the diagnostic system, but used for debugging.
The inputs of theECUs are connected to switches on the control box and these
represent components that can be either broken or not. The programming
was performed on PCs and transferred to theECUs via an interface. On this
system a framework for distributed diagnosis was successfully implemented
and evaluated.

6.2 Software Description

The method implemented and examined in this thesis was basedon the sec-
ond method in chapter 5. The difference between Method 2 and the one
implemented is that the implementation has a pre-mapped table of all signal
dependencies. Thus no replacement of the dependency of output signals for

59

60 Chapter 6. Implementation in an Embedded System

output signals in the transmitting agent is needed. Since the transmitted set
of diagnoses does not include any signals, there is no need for outputdep in
the receiving agent and the merge could be done directly.

Various test and component setups were evaluated and in eachcase the
resultingDTCs were correct, i.e. globally consistent. Due to lack of timenone
of the methods in chapter 5 were fully implemented. The implementation
was however enough in order to analyze the desirable characteristics that are
presented in the objective of section 1.2.

6.3 Processes in Embedded Systems

First, a short introduction in a typical real-time embeddedsystem is given. An
embedded system (in this case theECU) needs to perform a couple of tasks.
The number of tasks that needs to be performed varies in eachECU depending
on what it controls. Each task needs to be performed in different frequencies
depending on how important they are and how much computational power
they require. One can therefore make a couple of processes that are cyclic
executed and all tasks within that process are executed. A typical system can
consist of for example two cyclic processes, e.g. a 10 ms process (100 Hz)
and a 50 ms process (20 Hz). The tasks that not require a specific frequency
are located in the background1 process.

Each process needs to be finished in less time than the processtime and a
priority rating system is needed for the processes, e.g. thebackground process
has the lowest priority and can be interrupted by the 50 ms process. The 50 ms
process can in turn be interrupted by the 10 ms loop. All this is illustrated in
Figure 6.1.

There are also some processes that are frequently recurrentbut not trig-
gered by internal interrupts. These processes, triggered by external interrupts,
are often kept at a minimum in processing time, almost negligible in com-
parison to let say a 10 ms process. External interrupts can for example be
incomingCAN messages (where the interrupt routine only handles storageof
the data, not any processing) orCAD2 dependent interrupts (engineECU).

A worst case scenario in computational time are often easy tocalculate
in frequently recurrent tasks, such as fuel injection calculation, but almost
impossible in dynamic processes, such as fault isolation. The isolation proce-
dure is thus most suitable placed in the background process.Critical isolation
tasks, e.g. electrical faults on breaks etc., can however beplaced in a faster
loop.

1The background process can actually also be a cyclic loop butwith variable cycle time.
2Crank Angle Degree

6.4. Data Transferring on aCAN Bus 61

Background

50 ms

10 ms

Low Priority

High Priority

Figure 6.1: The priority order between the 10ms, 50ms and thebackground
process.

6.4 Data Transferring on a CAN Bus

As said in section 3.2.1, eachCAN message is sent with an identifier which
describes the type of message and where it came from. One message can
carry up to eight bytes. When two or more messages are sent on the same
time theCAN controller checks the priority of the messages by checking the
identifier of the message. A zero in the identifier has higher priority than a
one so the controller holds the message if it detects that another message with
higher priority is trying to be sent. Each message sent on theCAN bus must
therefore be unique.

When a message is received, an interrupt is triggered and thedata is
copied to a buffer. The buffer is evaluated typically every 10 ms. In the eval-
uation the data is unpacked and scaled so that the signals sent on the network
get the right units.

In order to have a scalable system (see section 3.1.3) all messages that
might come into use for the system has to be predefined. So whenthe interrupt
for incoming message is triggered, or the evaluation function is executed, the
system has to know what to do with the data belonging to a message with
a certain identifier. This causes problems when a fully scalable system is
designed. All thinkable identifiers have to be implemented in advance, i.e.
the number of possibleECUs with distributed diagnosis has to be decided in
advance. Another issue that causes problems because of limitations inCAN is
how data larger then eight bytes should be sent. This could however easily be
solved by introducing a simple protocol for handling largerdiagnostic data.

62 Chapter 6. Implementation in an Embedded System

6.4.1 Protocol Design

The necessary diagnostic information does mostly not fit into oneCAN mes-
sage. One solution could be to divide the large data amount into smaller
fragments or packets, i.e.CAN messages, and add a header with all the nec-
essary information. The design possibilities are almost infinite. A suggestion
is to divide the diagnoses into sub-diagnoses and transmit one sub-diagnosis
per packet.

Header Data (subdiag. 1) Data (subdiag. 2) Data (subdiag. N)

Header
Diagnosis
Number of subdiags
Total number of diagnoses
etc.

Data
Components
Behavioral modes
etc.

Figure 6.2: A diagnosis statement sent with a header and N data packets.

How often aCAN message can be sent is often limited by theECU and that
is the biggest bottleneck when it comes to transfer a diagnosis statement over
the bus. The number of messages should thus be minimized since the cor-
rectDTCs could not be calculated until all diagnostic information is received.
The preallocated memory (see section 6.5) used for storage of the received
diagnosis statement is then mostly occupied of the receiving algorithms.

6.4.2 Transparency

A basic idea throughout the implementation was to make the system transpar-
ent from theECUs point of view, meaning that anECU treat the otherECUs
as a system, not as individual units. An agent does not know from where it
receives its messages or to who it transmits its messages, the receiving unit
decides what to receive. A different setup, with less transparency, where the
communication is addressed could be a different approach. This would re-
quire each agent to know which other agents that would be interested in the
stated set of diagnoses and select where to transmit its diagnostic informa-
tion. A transparent system is simplifies the communication and enables a
higher degree of scalability and thus it seems as the preferable approach.

6.5 Memory Structure

Since the length of the stated diagnoses is dependent on how many compo-
nents anECU is diagnosing and the design of the tests, it is impossible to

6.6. Time Handling 63

determine how much data memory is needed to store the diagnoses. It would
be preferable to use dynamic memory allocation and store thediagnoses in a
so calledheap. New memory is allocated whenever it is needed and returned
when it is not needed anymore. There are some problems however with dy-
namic memory allocation as, for example, memory fragmentation, memory
leakage etc. See [KR89]. On anECU as simple as the present one in a Scania
truck, dynamic memory is very difficult to implement. Thus, instead a static
memory allocation is used where a worst-case size of memory needed for
generated diagnoses is pre-allocated. Scania’s own memoryhandlers could
be used. Pre-allocation is, however, potentially very wasteful because of all
the memory that could be left unused by the isolation.

6.5.1 Memory Conflicts

When several processes use the same memory, area conflicts can occur. The
conflicts can for example occur when the diagnosis isolationprocess reads
the received diagnosis statements from the other agents andsuddenly a new
statement is sent over the network. An interrupt is then triggered and starts
a function that wants to write in the memory area where the isolation was
reading. Some kind of memory handling is needed if not mixed diagnosis data
is to be processed by the system causing strange behaviors ofthe isolation.

A simple solution would be to use a semaphore system where each pro-
cess that wants to access the memory first checks if it is available and if so, set
the semaphore indicating that other processes have to wait.When the access-
ing process is finished it releases the lock to the memory. It is important that
the system does not lose data coming from external interrupts if a memory
lock is set. This is solved as a special case in the interrupt routine. For simple
and fast reading procedures it could be solved by just holding the interrupt
until the reading procedure is done. For larger and slower processes a rolling
buffer or several buffers could be used.

6.6 Time Handling

As discussed earlier, the processes in theCPU are run in either different time
intervals or in the background. The diagnostic procedure isbest suited to be
executed in the background process, but could also be calculated in a timed
loop. Below, both methods are discussed in detail.

6.6.1 Diagnosis Executed in a Fixed Timed Loop

If the diagnosis executed in a cyclic loop, new diagnoses will be ready at the
end of every loop sequence, unless, the fixed time is too shortfor the isolation
to be finished. If, for example, it takes 8 ms for the isolationprocess to be
executed and it is placed in the 10 ms loop, then there will hardly be time

64 Chapter 6. Implementation in an Embedded System

for anything else to be executed in theCPU. The isolation process should
therefore, in this case, be placed in a slower time interval.

The obvious problem with diagnosis though, is the difficultyof know-
ing how long it takes to execute. It is a dynamic process and takes different
amount of time depending on the design of the tests and their results. Natu-
rally, large diagnoses take longer to process than smaller ones. Thus, if placed
in a fixed time sequence a worst-case time length needs to be calculated and
based on that a suitable time loop can be chosen. A worst-case, however, can
be very long and the difference between the average time and worst-case time
is often quite large resulting in a slow diagnostic system.

6.6.2 Diagnosis Executed in the Background Process

As opposed to performing the diagnostics in a fixed time interval it can be
handled in the background process. This suit well with the fact that the diag-
noses take different amount of time to generate, because in the background
the generation of new diagnoses process for as long as necessary and present
the result whenever ready. Here, no worst-case scenario is needed and the
calculations of new diagnoses start as soon as the old one is finished. The
diagnostic system should be faster in comparison to a fixed time loop in most
cases but there is no guarantee when the background process is executed.

6.6.3 Synchronization

In either case, fixed timed loop or background process, synchronization of
processes is a big issue. The biggest problems occur in the receiving agent.
It cannot know if, or when, a diagnosis statement is coming orhow many. It
could be good to have a standard message telling that everything is OK (also
suitable for self-healing etc.). The receiving agent can then know from how
many other agents it should expect a diagnosis statement.

Two (perhaps more) choices exist when it comes to synchronization. The
receiving agent could either wait until all diagnoses are collected from the
other agents, or it could just go on with the isolation andDTC generation
without considering the other diagnoses. In the latter alternative, the receiv-
ing agent could generate aDTC that not is based on all information, i.e. the
agent would know it was doing something that is wrong, and yetdo it! One
could therefore think that the smarter alternative would beto wait for all other
agents. Problems can however occur even in this case.

Assume that an agent is in the process of receiving diagnostic information
from another agent and a third agent starts transmitting itsdiagnoses. By the
time the first transmitting agent is finished sending its diagnoses, the receiv-
ing agent will be waiting for the third agent to finish the transmitting of its
diagnoses. Assume further that the isolation in the first transmitting agent is
pretty fast (remember that the biggest bottleneck was the data transmitting on
CAN) and starts transmitting again, the same or new, diagnoses.The receiving

6.7. Using Reiter’s Algorithm in Distributed Diagnosis 65

agent then has to wait for the first one again and so forth. Thiswould com-
pletely lock up the isolation process of the receiving agent. It could be solved
by keeping track of from which agents it has received diagnoses, but then it
would have done the same fault as when it just continued without considering
the newest information.

T
ra

n
sf

e
r

tim
e

E
C

U
 1

T
im

e

T
im

e

ECU 1

T
im

e

ECU 3ECU 2

T
ra

n
sf

e
r

tim
e

E
C

U
 3

New
diagnoses
generated

New
diagnoses
generated

Figure 6.3: Synchronization problem with severalECUs.

6.7 Using Reiter’s Algorithm in Distributed Di-
agnosis

When using Reiter’s algorithm to generate a diagnosis statement, conflicts
or sub-diagnoses are inputs and the minimal diagnoses are the outputs. If
the algorithm is used in a reversed manner where the outputted diagnoses are
fed as an input to the algorithm, the minimal conflicts or sub-diagnoses are
generated. This trick can be useful when dealing with distributed diagnosis.

In Method 2 and 3, see previous chapter, local diagnoses are generated in
eachECU, transmitted onCAN and received as diagnoses, requiring a merge
between the received diagnoses and the local ones to generate the global diag-
noses. Reiter’s algorithm is well suited for performing such a merge. This is
done by running the algorithm twice. The first time to generate the minimal

66 Chapter 6. Implementation in an Embedded System

sub-diagnoses of the received diagnoses, and the second time to merge the
just calculated sub-diagnoses with the local set of diagnoses.

The received diagnoses can be fed into an empty Reiter’s algorithm to
change their representation from a set diagnoses to a set of sub-diagnoses.
Empty means from step one in the algorithm, see page 11. Usingthe algo-
rithm this way has the reverse effect, which is transformingdiagnoses into
sub-diagnoses as opposed to the original purpose of the algorithm, see Exam-
ple 6.1.

Example 6.1
Consider an agent with the following conflicts (sub-diagnoses works in the

same way since the corresponding set of sub-diagnoses includes the same
components):

π1

1
= {C1, C3, C4} π1

2
= {C1, C2, C3, C5} π1

3
= {C1, C2}

Not all conflicts are minimal, thus redundant information exists. From the
conflicts, Reiter’s algorithm produces the following set ofdiagnoses:

D = {{C1}, {C2, C3}, {C2, C4}}

The resulting diagnoses are all minimal. If the diagnosis statement is fed into
Reiter’s algorithm again it gives back the conflicts:

π2

1 = {C1, C2} π2

2 = {C1, C3, C4}

which both are minimal conflicts.

After the received diagnoses have been transformed into sub-diagnoses
they are merged with the existing diagnoses of the receivingagent. The merge
is performed by running Reiter’s algorithm from step 2, withthe existing
diagnoses as base and the sub-diagnoses as input. A correct merge between
the received and local diagnoses was thereby performed without the need of
an explicit merge algorithm. The transformations between the transmitting
agent’s diagnoses and a global diagnosis statement in the received agent are
shown in Figure 6.4.

A legitimate question to ask is why the sub-diagnoses generated in the
transmitting agent are not sent as sub-diagnoses directly,(similar to Method
1) so that less changes back and forth between representations would be
needed. Well, it is a trade-off between processing more datain the receiv-
ing agent (an additional execution of Reiter’s algorithm) and sending more
information onCAN. The diagnoses generated by Reiter’s algorithm in the
transmitting agent are minimal and consist of no redundant information, while
the sub-diagnoses generated from the tests is represented by much more data.
The CAN communication is the biggest bottleneck for distributed diagnosis.
It needs to be minimized and, therefore, it was chosen to transmit diagnoses.

6.8. Performance of the Implementation 67

Sub-Diagnoses
- Generated from
local tests

Diagnoses
- Generated
by Reiter’s
Algorithm

Transmitted &
Received on

CAN

Sub-Diagnoses
- Generated by
Reiter’s Algorithm
(empty)

Global Diagnoses
- Generated by
Reiter’s Algorithm
(with existing
diagnoses as a
base)

Transmitting Agent Receiving Agent

Figure 6.4: A merge between two local diagnoses using Reiter’s algorithm.

6.8 Performance of the Implementation

Each of the desired characteristics, described in section 1.2, of an implemen-
tation of a distributed diagnostic system is discussed below. The discussion
is based on the implementation that was done in this project.

Time and Memory Consumption

The synchronization problem was solved by simply holding the isolation pro-
cess until all data was received from theCAN bus. Since the transferring of
data is by far the biggest time consumer of a distributed diagnosis system, the
isolation process became significantly slower than the original local isolation
procedure. The transmitting process was placed in a 50 ms loop, resulting
in one diagnostic message every 50 ms from each agent. As discussed in
section 6.6.3, this increase in time consumption could be reduced by just con-
sidering the last received information, instead of holdingthe process while
waiting for a new message. This would imply that inconsistent diagnoses are
calculated under some time.

CPU time is spent on handling the diagnostic information from the other
agents. The extra calculation power that is needed, in a distributed system, is
dependent on the complexity of the local and the received diagnoses. Reiter’s
algorithm have to be run two extra times per received set of diagnoses accord-
ing to section 6.7. This results in a total of three times for asystem of two
agents, five times for a system of three agents etc., which is aconsiderable
increase.

Since a pre-map of the signal dependencies was utilized in the imple-
mentation, the amount of allocated memory in the receiving agent has to be
enough to process a worst case set of diagnoses received fromthe transmitting
agent. Considering this implementation, the allocated memory in eachECU

is twice as big compared to the original local diagnostic system. If Method
2 or Method 3 were fully implemented the extra amount of memory needed
would be significantly reduced.

68 Chapter 6. Implementation in an Embedded System

Bus Analysis

As previously mentioned, a protocol is needed for sending larger amounts of
data than eight bytes. In the project implementation the protocol suggested in
section 6.4.1 was used. If nothing is diagnosed a message forindicating that
no faults exist, or that the system is healed, is sent every 50ms.

A CAN message every 50 ms on a 250 kbit/s bus was measured to cor-
respond to approximately 1 % bus load per agent. The bus load increases
linearly with the frequency of the transmitted messages, e.g. a message sent
every 10 ms would approximately correspond to a 5 % bus load.

Scalability

Since this implementation includes a pre-mapping of signaldependencies it
is not very scalable. For every new agent that is added, a new map has to be
constructed and new memory has to be allocated and so forth. The mapping
problem disappears if a full implementation of Method 2 or Method 3 is made.
Although, for every kind of implementation, allCAN message identifiers has
to be defined in advance. This is discussed more deeply in section 6.4.

Chapter 7

Conclusions

A few methods for distributed diagnosis are proposed. All the methods gen-
erate diagnoses in each agent from which globally consistent DTCs can be
assigned. A method based on Method 2 in chapter 5 was implemented. The
resulting distributed diagnostic system assigns globallyconsistentDTCs and
thereby complies with the goal.

The main conclusions drawn from designing a distributed diagnostic sys-
tem are the following:

• The information necessary to share is the diagnostic information of the
components that are shared over the network, plus cardinality infor-
mation of the remaining private components, in order to calculate the
globally consistent diagnoses.

• It is sufficient to share the behavioral mode of the signal, not the com-
ponents it originates from, under some assumptions and limitations.
Without the assumptions and limitations a component could be repre-
sented in several signals and could thus cause inconsistency in cardi-
nality. To prevent this, an initialization process or pre-map of signals
would be needed.

• There are some problems, mainly because of signal representation on
theCAN bus, one has to deal with if a fully scalable and flexible system
is desired. In today’s design, all messages need to be predefined in each
ECU that take use of a particular message. Further, if the dependency
components are to be represented in the signals that is diagnosed, these
would have to be predefined if no initialization process is implemented.

• When implementing a distributed diagnostic system, problems with
memory handling and process synchronization arises. This is further
complicated due to that the isolation process is a non deterministic job
and requires non deterministic amount of memory.

69

70

Chapter 8

Future Work

The algorithms could be developed further so that the assumptions in sec-
tion 5.1 are removed. That a component cannot be part of several output
signals, or that an output signal cannot depend on input signals, are quite
strong restrictions and not desirable in an implementation. New problems
arise when trying to solve this, which also needs a solution,e.g. how multi-
ple representations of components should be handled. The future algorithms
should have a proof stating that they produce consistent globally correctDTCs
without the limitations of this report.

The algorithms could be more optimized to better suite a fastand effective
implementation. A better and optimized protocol for transferring diagnosis
messages could also be designed.

71

72

References

[AP05] B. Wahlberg A. Pernestål, M. Nyberg. A bayesian approach to
fault isolation - structure estimation and inference. 2005.

[Bit05a] Jonas Biteus. Distributed diagnosis and simulation based residual
generators. Technical report, Dept. of Electrical Engineering,
2005. LiU-TEK-LIC-2005:31, Thesis No. 1176.

[Bit05b] Jonas Biteus. Personal correspondance, Department of Electrical
Engineering, Linköpings Universitet, November 2005.

[JBN05] M. Jensen J. Biteus and M. Nyberg. Distributed diagnosis for em-
bedded systems in automotive vehicles.IFAC World Congress,
2005.

[JdKR92] Alan K. Mackworth Johan de Kleer and Raymond Reiter. Char-
acterizing diagnoses and systems. 1992.

[Jen03] M. Jensen. Distributed fault diagnosis for networked embedded
systems. Master’s thesis MMK 2003:63 MDA 231, KTH Ma-
chine Design, The Royal Institute of Technology, KTH Machine
Design, SE-100 44 Stockholm, Sweden, December 2003.

[JKZ02] X. Koutsoukos J. Kurien and F. Zhao. Diagnosis of large ac-
tive systems.Proceedings of the 13th International Workshop on
Principles of Diagnosis, May 2002.

[KR89] Brian W. Kernighan and Dennis M. Ritchie.The C Programming
Language. Number ISBN 91-970296-45. Prentice Hall Interna-
tional, Hemel Hempstead, England, 1989.

[MFB99] K. Ratcliff M. Farsi and M. Barbosa. An overview of controller
area network.Computing and Control Engineering Journal, June
1999.

[NF05] Mattias Nyberg and Erik Frisk.Model Based Diagnosis of Tech-
nical Processes. 2005.

73

74 References

[NKM02] John P. Hayes Nagarajan Kandasamy and Brian T. Murray. Time-
constrained failure diagnosis in distributed embedded systems.
2002.

[NRW03a] A. ten Teije N. Roos and C. Witteveen. Multi-agent diagnosis
with semantically distributed knowledge. 2003.

[NRW03b] A. ten Teije N. Roos and C. Witteveen. Multi-agent diagnosis
with spatially distributed knowledge. 2003.

[NRW04] A. ten Teije N. Roos and C. Witteveen. Reaching diagnostic
agreement in multi-agent diagnosis. 2004.

[PBZ98] P. Pogliano P. Baroni, G. Lamperti and M. Zanella. Diagnosis of
large active systems.Elsevier Science, July 1998.

[Pro02] Gregory Provan. A model-based diagnosis frameworkfor dis-
tributed systems. 2002.

[Sun02] Dan Sune. Isolation of multiple-faults with generalized fault-
modes. Master’s thesis, Linköpings Universitet, SE-581 83
Linköping, 2002.

[TvS02] Andrew S. Tanenbaum and Maarten van Steen.Distributed Sys-
tems. Prentice Hall, international edition, 2002.

Notation

Symbols used in the report.

Operators

∪ Union
∩ Intersection
∈ Belongs to
⊆ Subset
⊂ Strict subset
∧ Logicaland
∨ Logicalor
¬ Logicalnot
\ Domain difference
×∪ Merge

Functions

con(.) Connection
dep(.) Dependency
dpd(.) Dependent Diagnoses

Diagnoses

D Set of global diagnoses
D Set of local diagnoses
D Diagnosis

75

76 Notation

Abbreviations
CAD Crank Angle Degree
CAN Controller Area Network
COO Coordinator
DIMA Diagnostic Manager
DTC Diagnostic Trouble Code
ECU Electronic Control Unit
MDH Minimal Diagnosis Hypothesis
OBD On Board Diagnosis
PE Processing Elements

Appendix A

Proof of Method 3

[Bit05b]
A union between two local diagnoses,DA1 ∪ DA2 , should result in the

same cardinality as a union between a local diagnosis and a received diag-
nosis,DA1 ∪ Drx, whenX is used to represent the private components in
the received diagnoses, i.e.|DA1 ∪ DA2 | = |DA1 ∪ Drx| + X , where the
left-hand side cardinality have full component representation.

Two local diagnoses, in a system consisting ofN agents:

The different component types and signals are here assumed to be diagnosed

DA1 = P1 ∪ G1 ∪ Γ1, DA1 ∈ D
A1

DA2 = P2 ∪ G2 ∪ Γ2, DA2 ∈ D
A2

|DA1 ∪ DA2 | = |P1 ∪ P2 ∪ G1 ∪ G2 ∪ dpd(Γ1 ∪ Γ2)| = |G1 ∪ G2|+

|P1 ∪ P2 ∪ dpd(Γ1 ∪ Γ2)|

because

|G1 ∪ G2| ∩ |P1 ∪ P2 ∪ dpd(Γ1 ∪ Γ2)| = ∅

Split the setΓ1 into two sets:

Γ1 = Γ̄1 ∪ Γ̃1, where

{
Γ̃1 = {γ ∈ Γ1 | con(γ) ∈ Σ2}

Γ̄1 = {γ ∈ Γ1 | con(γ) ∈ Σ3...N}

Γ1 = Γ̄1 ∪ POUT
2

, wherePOUT
2

∈ ×
⋃

dep(σ), σ ∈ con(Γ̃1)

POUT
2

⊆ P2

77

78 Appendix A. Proof of Method 3

Split the setΓ2 into two sets:

Γ2 = Γ̄2∪POUT
1

, where

{
Γ̄2 = {γ ∈ Γ2 | con(γ) ∈ Σ3...N}

POUT
1 ∈ ×

⋃
dep(σ), for all σ ∈ con(Γ2) ∩ Σ1

POUT
1 ⊆ P1

One diagnosisD ∈ DA1 ∪ DA2 :

|D| = |G1 ∪ G2| + |P1 ∪ POUT
1

| + |P2 ∪ POUT
2

| + |Γ̄1 ∪ Γ̄2|

Because|dpd(Γ̄1 ∪ Γ̄2)| = |Γ̄1 ∪ Γ̄2|

X represents private components as in Method 3:

Drx = G2 ∪ Γ2 ∪ Σ2 = G2 ∪ Γ̄2 ∪ Γ̃2 ∪ Σ2

|DA1 ∪ Drx| = |P1 ∪ G1 ∪ G2 ∪ Γ1 ∪ Γ̄2 ∪ Γ̃2 ∪ Σ2| =

= |G1 ∪ G2| + |P1 ∪ POUT
1

| + |Γ̄1 ∪ Γ̄2| + |Γ̃1 ∪ Σ2|

Let X = |P2 ∪ POUT
2 | − |Γ̃1 ∪ Σ2|

X = |P2| + |POUT
2 | − |P2 ∩ POUT

2 | − |Γ̃1| − |Σ2| + |Γ̃1 ∩ Σ2|

|POUT
2 | − |Γ̃1| = 0 and |P2 ∩ POUT

2 | − |Γ̃1 ∩ Σ2| = 0 ⇒

X = |P2| − |Σ2|

This implies

|DA1 ∪ DA2 | = |DA1 ∪ Drx| + X

because

|DA1 ∪ Drx| + X = |G1 ∪ G2| + |P1 ∪ POUT
1

| + |Γ̄1 ∪ Γ̄2|

+ |P2| + |POUT
2

| − |P2 ∩ POUT
2

| − |Γ̃1| − |Σ2| + |Γ̃1 ∩ Σ2| =

|G1 ∪ G2| + |P1 ∪ POUT
1

| + |P2 ∪ POUT
2

| + |Γ̄1 ∪ Γ̄2|

Q.E.D.

Copyright

Svenska

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under
en längre tid från publiceringsdatum under förutsättning att inga extra-ordinära om-
ständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var ochen att läsa, ladda ner, skriva
ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell
forskning och för undervisning.̈Overföring av upphovsrätten vid en senare tidpunkt
kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upp-
hovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten
finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den
omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt
samt skydd mot att dokumentet ändras eller presenteras i s˚adan form eller i sådant
sammanhang som är kränkande för upphovsmannens litter¨ara eller konstnärliga anse-
ende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets
hemsida:http://www.ep.liu.se/

English
The publishers will keep this document online on the Internet - or its possible re-
placement - for a considerable time from the date of publication barring exceptional
circumstances.

The online availability of the document implies a permanentpermission for any-
one to read, to download, to print out single copies for your own use and to use it
unchanged for any non-commercial research and educationalpurpose. Subsequent
transfers of copyright cannot revoke this permission. All other uses of the document
are conditional on the consent of the copyright owner. The publisher has taken tech-
nical and administrative measures to assure authenticity,security and accessibility.

According to intellectual property law the author has the right to be mentioned
when his/her work is accessed as described above and to be protected against infringe-
ment.

For additional information about the Linköping University Electronic Press and
its procedures for publication and for assurance of document integrity, please refer to
its WWW home page:http://www.ep.liu.se/

c©
Dan Hallgren
Håkan Skog
Södertälje, December 21, 2005

	Firstpage
	Abstract
	Preface and Acknowledgment
	Introduction
	Background
	Objective
	Approach
	Contribution
	Delimitations and Assumptions
	Target Group
	Related Work

	Model Based Diagnosis
	Introduction to Model Based Diagnosis
	Artificial Intelligence and Fault Diagnosis
	Behavioral Modes
	Diagnoses
	Conflicts
	Relations between Diagnoses and Conflicts
	Diagnostic Tests

	Local Algorithms
	Reiter's Algorithm
	Isolation with Generalized Fault Modes
	Virtual Components

	Distributed Systems
	Properties of Distributed Systems
	Transparency
	Openness
	Scalability

	Hardware Concepts
	The CAN Bus

	Distributed Diagnostic Systems
	The Network Architecture
	Current Diagnostic System
	The Goal with the Distributed Diagnostic System

	Components, Signals and Objects
	Signals - Inputs and Outputs
	Local and Global Diagnosis
	Two Ways of Calculating the Global Diagnosis
	The Combinatorial Problem
	Merging Minimal Cardinality Diagnoses

	Centralized or Distributed Diagnosis
	Centralized Diagnosis and Decentralized Diagnosis
	Distributed Diagnosis

	Sharing Diagnostic Information
	Sharing Conflicts
	Sharing Diagnoses
	The Information to Share
	Focusing on Probable Diagnosis
	Problems with Component Representation

	Proposed Methods for Distributed Diagnosis
	Model for Distributed Diagnosis
	Algorithms for Distributed Diagnosis
	Method 1: Sharing Conflicts
	Method 2: Sharing Diagnoses
	Method 3: Sharing Diagnoses Extended

	Discussion Concerning the Limitations and Assumptions

	Implementation in an Embedded System
	Hardware Setup
	Software Description
	Processes in Embedded Systems
	Data Transferring on a can Bus
	Protocol Design
	Transparency

	Memory Structure
	Memory Conflicts

	Time Handling
	Diagnosis Executed in a Fixed Timed Loop
	Diagnosis Executed in the Background Process
	Synchronization

	Using Reiter's Algorithm in Distributed Diagnosis
	Performance of the Implementation

	Conclusions
	Future Work
	References
	Notation
	Proof of Method 3

