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Abstract

Today’s diesel engines are complex with systems like VGT BGGR to be
able to fulfil the stricter emission legislations and the deds on the fuel
consumption. Controlling a system like this demands a stighted con-
trol system. Furthermore, the authorities demand on satjrihsis requires
an equal sophisticated diagnosis system. These systemiserggod knowl-
edge about the signals present in the system and how they affeh other.

One way to achieve this is to have a good model of the systerbased
on this calculate an observer. The observer is then useditoagds signals
used for control and diagnosis. Advantages with an obsamstgad of using
just sensors are that the sensor signals often are noisyestita be filtered
before they can be used. This causes time delay which fucthraplicates
the control and diagnosis systems. Other advantages dreeifisors are ex-
pensive and that some engine quantities are hard to measure.

In this Master’s thesis a model of a Scania diesel enginevieldped and
an observer is calculated. Due to the non-linearities imibdel the observer
is based on a constant gain extended Kalman filter.

Keywords: Diesel engine, EGR, VGT, Modelling, Linearization, Obssrv
Constant gain extended Kalman filter
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Thesis outline

Chapter 1 gives an introduction to the existing work and the objectioé
this thesis.

Chapter 2 gives a short introduction in the theory of signal procegsind
describes the nature of the noise in the air mass flow sensor.

Chapter 3 introduces the existing model and the extended model.
Chapter 4 describes the observer design and the linearization of thien
Chapter 5 explains the measurement setup.

Chapter 6 estimates and evaluates the parameters.

Chapter 7 presents the results achieved.

Chapter 8 discusses the conclusion and the future work.
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Chapter 1

Introduction

The purpose of this thesis is to further improve the, at Scandisting model
and gas flow observer of a six cylinder Scania diesel engitie BGR and
VGT. A concrete list of what this thesis will deal with is pesdged in Sec-
tion[.2 and the existing work regarding the model is presint Sectiof 111 1.

Those not familiar with the terminology in thermodynamisgine mod-
elling, observer design and acronyms in the automotiveniegsi should con-
sult the notation section at the end of this thesis.

1.1 Background

Emission legislation on heavy trucks is getting stricten Keep the emis-
sions at a low level and to be able to detect when the emissxeeed the
legislated levels, accurate models used for diagnostid€antrol have to be
implemented. This is especially important for engines WItAT and EGR
due to the extra degrees of freedom that these extra coignalls result in.

1.1.1 Existing work

At Scania CV AB the work to create a mean value engine model EMY
started with a Master’s thesis by Elfvik in [E1{02]. The pigal model created
was then simplified by Ritzén i@b?.] to enhance the rimaktperformance.
Flardh and Gustavsson extended the modéLin [OF03] withotaompound
and Ericson improved the EGR modelmioq. Swartlingadtuced a gas
flow observer in[[Swa5] to be able to use feedback from difiemeasured
quantities which greatly improved the connection betwéemtodel and the
reality.
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1.2

Objectives

The objectives of this thesis are to:

1.3

Describe the nature of the noise in the air mass flow sensqrifaind
proves to be possible, integrate this signal in the modelthadob-
server.

Extend the existing mean value engine model with a modelefem-
perature in the intake manifold and add it as feedback to liserver.

Extend the existing EGR system model with temperature aesspre
states.

Evaluate the observer with data from a Scania diesel truck.

Linearize the non-linear engine model and examine how welllin-
earized model corresponds to the non-linear model.

Examine the number of Kalman filters needed to get as goodhadrse
performance as possible.

Examine if a more complex model gives a better observer drisf i
better to keep the model complexity at a low level to ensulgeal-
time performance.

Target group

This work is first and foremost intended for employees at Bc&Vv and
M.Sc. /B.Sc. students with basic knowledge in signal prsiogs control the-
ory, vehicular systems and thermodynamics.



Chapter 2

Noise In the air mass flow
sensor

To compensate for model errors an observer can used. Thevebseses
measured signals to estimate the states. Kalman theoryreésdunowledge
about process noise and measurement noise. While exanth@rdpta de-
scribing the measurement noimaOS] proposed that more lvas to be
done regarding the description of the noise in the air massdémsor.

2.1 Sensor errors

The noise model in this thesis takes the following sensarsinto account:
e Bias
e Noise

Other errors exist, but they are small and are therefore oféglected. This
is also the case in this thesis. A common way to model sensmisds to use
white Gaussian noise. Another approach is to use a stagi@mnssian pro-
cess with an exponential auto correlation, a so called Gilaskov process.
In this thesis the noise is modelled using white Gaussiasendihis choice
is made for simplicity.

2.2 \Variations in noise intensity

In [Swa05] a relation was found between the noise intensithe sensors

measuring;,, pen andng.;,, and the speed of the turbine. A second degree

polynomial was proposed for the noise intensity,

I'=ag+ai nyp+as: niy, (2.1)
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and estimated;,: = 1,2, 3 using data from an ETC-cycle. An ETC-cycle
(European Transient Cycle) does not contain many statyomarking points.
Because of this it is hard to examine a relation between rioisasity in the
air mass flow sensor and turbine speed from this data. Faitsese obtained
for the noise i, perm anNdng,p.

Applying (Z) to describe the noise in the air mass flow sedses not
give as good results as for the other signals.

2.2.1 Variations due to environment

Itis difficult to extract the actual noise in a process, anithis thesis the noise
in air mass flow sensor is described as a lumped parametes.paameter
consists of the noise and the model uncertainties, i.e. digens a way to
model the incorrectness of the model. Read more about nioglelhd using
noise in [And05].

How does the environment affect the noise intensity? Thi®tsobvious
due to the complexity of the system, but a first guess is thabi@ momplex
system will be noisier and have more model uncertaintiethitnchapter this
is investigated by comparing the noise variance from thitéerdnt environ-
ments. The measurements in these environments have thespumisolate
the origin of the noise in the sensor. The environments witeresensor is
placed are:

e A straight pipe placed in a test apparatus.
e The intake manifold placed in a test apparatus.
e The intake manifold placed in a truck.

In the first set-up the noise observed in the measured sigiaabumed to
originate from the sensor itself since the air mass flow inptipe is not dis-
turbed by the pipe. Therefore this set-up gives an indioatfidhe magnitude
of the measurement noise.

In the second set-up the noise observed in the measured isigimaix of
measurement noise and system noise. The system noise sethip origi-
nate from the shape of the intake manifold.

The third set-up is quite similar to the second with the défece that here
the system noise consists of contributions from both th@elwd the intake
manifold and the vibrations etc. from the vehicle.

2.2.2 Variations due to air mass flow

As stated in Sectiof 2.2 a weak quadratic relation is obsereéveen mea-
surement noise intensity and turbine speed, i.e. the aisrfiaw. In this

thesis this potential relation is captured in a differenywiais now possible
to characterize the noise in all operating points. The aggran this thesis
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is to extract the noise sequences for each operating poidfram these se-
guences calculate the Q- and R-matrices in the Kalman fker Sectioh214.

2.3 Experimental set-up

The experimental set-up consists of two different pipegraight millboard
pipe and an intake manifold. With the straight pipe one expent is per-
formed in a test apparatus and with the intake manifold twmeerents are
performed, one in a test apparatus and one in a truck. Thesgiments are
further described in the following sections. The test apper experiments
were performed by Mats Jennische at Scania who providedtaghis data.

2.3.1 Test apparatus

The test apparatus consists of a fixed fan and a pipe to makettsair the
environments examined, i.e. the pipe and the intake mahitok placed in
as smooth and lamirfhflow as possible.

Fan

Air mass flow
sensor Im
L 3m _
I\_ €

A

Figure 2.1: Test apparatus with the straight millboard ipenected.

Straight pipe

In this set-up a straight four inches millboard pipe is carteé to the fan. To
smoothen the flow further there is a flange at the end of the ipe set-up
can be seen in Figufe2.1.

Intake manifold

In this experimental set-up the straight pipe is replacetthbyntake manifold.

ILaminar flow is the fluid is moving in smooth layers in the objec
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2.3.2 \Vehicle

The final experiment is performed with the intake manifolaitruck. Here
the air mass flow is determined by the speed of the compressonat by
the fan, as in the test bed experiment. The conditions in ¢iécle are quite
different from those in the test apparatus, as stated in@®dgi2.1. In the
truck there is e.g. an air-filter just prior to the intake nialdi, which makes
the air more turbulent than a straight pipe.

2.4 Treating and collecting data

This section describes how the data is selected and prate3béaining good
results are highly dependent on good data sets. Many dataised in this
thesis contain bad or missing data. Ljung extensively dessrthe theory
explaining data selection and processindﬁ]u%}.

2.4.1 Data collection

The data is collected from a test apparatus and from a Scdt#id Riesel
truck. The noise is extracted from the air mass flow signahahestationary
operating point. From this information the intensity at tliéerent operating
points is calculated.

2.4.2 Data selection
In the data selection, the following criteria are considere

1. To make sure that only the noise is examined the sequercktode
stationary, see Secti@n P.5.

2. To achieve data from which it is possible to estimate atigglasimi-
lar to the one proposed ih_[SwA05], sequences from sevefeteait
operating points in the working area of the engine have toseelu

The first criterion give rise to problems since the noise @tthnsients is not
taken into consideration.

2.4.3 Data processing

Due to the fact that the data acquisition equipment is ndepersingle val-
ues or portions of data may be missing. This is because oumalibns in
the sensors or communication links. Certain measured sahas also be in
obvious error due to measurement failure. These bad datsac@a substan-
tial negative effect when using the sequence in e.g. theifnecy analysis in
SectiolZb.
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Some of the sequences used in the estimation in Sdcfibn At&icaniss-
ing data in the input signal, i.e. the turbine speed. Thetz skis are treated
using one of the methods proposedﬁh%]. The method urstds thesis
is to replace the missing data with the mean value of the giegevalues in
the current data sequence. This way to treat missing or badndaks in this
case since the data needing correction is stationary ankbvasrinput to the
model.

To isolate the noise in the signal, offsets and trends habe temoved.
The offset is removed by subtracting the mean value of theasifjom the
signal, and the trends is removed in a similar way by adjgsistraight line
to the signal and subtract it from the signal.

2.5 Frequency analysis

To get a better understanding of the properties of the noigeeiair mass flow
sensor a frequency-domain method is used. The fundamelealbiehind
these methods is to approximate the frequency content isigimal. Signals
that are smooth enough, discrete as well as continuous,eadedzrribed as
functions ofcosinusandsinuscomponents. This information will in this case
describe the characteristics of the noise in the sensor.

2.5.1 Theory

The (power) spectrum of a discrete-time signal describesréguency con-
tents of the signal. For a weakly stationary stochastic ggscthe spectrum
is defined as the Fourier transform of the covariance functio

Ppp(w)=T i R(nT)e~nT, (2.2)

n—=——oo

Obviously it is necessary to investigate if our processatyrare weakly sta-
tionary processes. One has to recall that this is a theatgtioperty that not
easily applies to measured signals. This implies that thisstigation only
makes it probable that the processes are weakly statioaadythis inves-
tigation is not a proof whatsoever. The following theorenfl Welp in the

analysis.

Theorem 2.1. A process is weakly stationary if
m(t) = m (2.3)
R(t1,ta) = R(t1 —ta), (2.4)
wherem is the mean value an# is the auto correlation function, holds.

This theorem states that a weakly stationary process desyatidhe in-
dependent mean valde{R.3) and a time independent autdatmmefunction
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3.

Some of the sequences in the measurements of the air massftow i
environments presented [DR.3 appear to have time indepeadé corre-
lation function, see Figufe.2. One observation is thatilte correlation
looks whiter in those cases where the sensor is situated oracomplicated
environment. Note that the auto correlation function foite/moisé is just
an impulse:

R(1) = Rod(7) (2.5)
Straight pipe in the test apparatus Straight pipe in the test apparatus
1 1
0.5 0.5
0 0
-100 -50 0 50 100 -100 -50 0 50 100
Inlet manifold in the test apparatus Inlet manifold in the test apparatus
1 1
0.5 0.5 J
0 0 sebadhbybiohe
-100 -50 0 50 100 -100 -50 0 50 100
Inlet manifold placed in a Scania truck  Inlet manifold placed in a Scania truck
1 1
0.5 0.5
0 0
-10 -5 0 5 10 -10 -5 0 5 10

Figure 2.2: Auto correlation functions for the sequencesthk left column
the air mass flow is approximately 0.35 kg/s and in the rightroo the air
mass flow is approximately 0.20 kg/s. The top row is a strgighe and the
second row is the inlet manifold in the test apparatus. Theborow is the
inlet manifold in a truck. Note that the measurements in¢iseapparatus are
ten times longer than in the Scania truck.

The chosen sequences prove to be approximately Gaussiarawine
independent mean value close to zero. The statement al®aotghn value
is natural though, since the chosen sequences are statiartarbine speed,
and their mean values and trends are removed. In other wbalsequences
are chosen to fulfil the demands concerning the mean value.

Regarding the approximation that the sequences are Gaussia Fig-
ureZB. In these figures, histograms for the sequences armliferimposed

2White noise is noise that has its energy equally distribotest all frequencies.
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Straight pipe in the test apparatus Straight pipe in the test apparatus.

2500 2500
2000 2000
1500 1500

1000 1000

500 500
0 0
-002 -0015 -001 -0005 O 0005 001 0015 002 -002 -0015 -001 -0005 0 0005

Inlet manifold in the test apparatus Inlet manifold in the test apparatus

2500 2500
2000 2000
1500 1500
1000 1000

500 500
0 0
-002 -0015 -001 -0005 O 0005 001 0015 002 -002 -0015 -001 -0005 O 0005 001 0015 002

Inlet manifold in a Scania truck Inlet manifold in a Scania truck

200

150

100

50

0
-002 -0015 -001 -0005 O 0005 001 0015 002

0
-002 -0015 -001 -0005 O 0005 001 0015 002

Figure 2.3: Histograms for the sequences and the superadpusmal den-
sity. In the left column the air mass flow is approximatley®kg)/s and in

the right column the air mass flow is approximatley 0.20 kgl top row is

a straight pipe and the second row is the inlet manifold intésé apparatus.
The bottom row is the inlet manifold in a truck.

normal density show that the Gaussian approximation ioredse. For com-
pleteness, a theorem about gauss processes is stated below.

Theorem 2.2. A weakly stationary Gaussian process is always strictly sta
tionary.

This means that Equatiof{2.2) holds.
The data only has a finite number of samples

y(nT),n=0,1,2,...,N — 1. (2.6)

If the frequency content in this finite sequence is to be itilgated another
approach has to be used. This is due to the fact that it is igiiplesto cal-
culate the spectrum for an observed (finite) signal. Inssegpiencd(216) is
estimated. This is done by looking at the discrete-time ieotransform of
the truncated signal and its normalized absolute valueuargy That is

N—-1
YQEN>(6ZWT) _ Z y(nT)efuunT (27)
n=0

1 |2
CIJN(w) = ﬁ ‘le(wN) (GMJT>’

(2.8)
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The estimate[{2]18) is called the periodogram[ofl(2.6) andritess the con-
tribution from the frequency

_ 2mn
T NT

to the decomposition of sequenEe]2.6).

w

(2.9)

2.5.2 Method

There are several ways to perform the spectral analysisvemavell known
methods are Welch's method and Blackman-Tuckey’s methothis thesis
the spa function in MatLABH is used, which in turn uses the Blackman-
Tuckey's approach. This is further discussedLin [EG01], famch periodic
signal in ].

The signals at hand will give a spectral density that imdesfrequent
contents in the noise for the air mass flow sensor, see Higdrd Be reason
for the fluttering is that the variance does not decrease aitlincreasing
number of samples, see [FG01]. Note that Fidire 2.4 doesistinglish
measurement noise and process noise.

2.6 Filter analysis

In Chaptef¥ a Kalman-observer is calculated. Calculatmglaserver with
Kalman theory requires knowledge of the disturbances ptésé¢he system.
The disturbances are of two kinds, measurement disturlkamteystem dis-
turbance. The measurement disturbance, or measuremsat ifonoise that
originates from variations or inaccuracy in the sensorggeint and does not
affect the system. The system noise, on the other hand,gs ttmat originates
from phenomena not modelled or disturbances that affecdyteem. These
disturbances are often hard to describe accurately anchiieeseldom white
noise. When the disturbances are Gaussian white noisey hearoved that
the Kalman filter is optimal among all filters, linear as wedl mon-linear,
consult e.g.[[EGA1]. To handle this problem the noise can beeited and
included in the model. Non-white noise can sometimes be iteatias white
noise through a stable linear filter, see Fiduré 2.5.the system or measure-
ment noiseyw is white noise and{ is the filter.

w——m> H — v

Figure 2.5: White noise through a filterH gives the sensor noise

SMATLAB and SMULINK are registered trademarks of The MathWorks, Inc.
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. Straight pipe in a the test apparatus . Straight pipe in a the test apparatus
10 10
107
H 210
& &
10°
o .
10 10
107 107 10’ 10! 107 10" 10° 10t
Frequency (radls) Frequency (radls)
Inlet manifold in a the test apparatus Inlet manifold in a the test apparatus
10 10
210" <10
& &
10° ~ 10 — N
10 10 10 10 10" 10 10
Frequency (rad/s) Frequency (rads)
Inlet manifold in a Scania truck Inlet manifold in a Scania truck
10 10
107
G :
& &
107
10° 10 |
10 10 10 10

10° 10" 10°
Frequency (radls) Frequency (radls)

Figure 2.4: Spectrum for the sequences. In the left colurarathmass flow
is approximately 0.20 kg/s and in the right column the air srié@w is ap-
proximately 0.35 kg/s. The top row is a straight pipe and #@ad row is
the inlet manifold in the test apparatus. The bottom row ésitet manifold
in a truck.
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As stated in Sectiof .5 the noise is a realization of a statipprocess.
This means that the auto correlation functionvdfecomes

R, (1) = / / h(11)h(T2) Ry (T — 71 + T2)dT1dT2 (2.10)
and the spectral density

O,(w) = [H(w)[* ®oy(w). (2.11)

Looking at [ZIL) one realize that the assumption that iniy the intensity
of the white noise that varies with the turbine speed, is nitecso simple.
The reason for this is the difficulties to say whether it isititensity of the
white noise or the filter that varies with the turbine speaalinvestigate this,
a system identification procedure is applied to the noiseessces.

2.6.1 Black-box models

In some cases the system cannot be modelled through phglsidetion due
to its unknown structure or because it is to complex to sorttoel physical
relations. In these cases it is suitable to use standardImthdd through ex-
perience is known to handle many different kinds of systemadyics. Linear
systems are the most common among these standard models.

Transfer function models

Normally these models are derived in discrete time, sineedta used is
sampled and therefore discrete. To get a model in continimeshe discrete
model can be transformed. A general linear model in disdiete can be
written as

y(t) = n(t) +w(t). (2.12)

Wherew(t) is a disturbance term angt) is the output without disturbance.
This output can be written as

n(t) = G(q, O)u(t). (2.13)
WhereG(q, 9) is a rational function of the displacement operator

B(q) big~ "™ + b2q7m¢71 + - +b, qfnkfn;,Jrl
Gla.0) = 7y = 2 . (214
(@) F(q) L+ fig7 v 4 4 fn,g™ (2.14)

With this ZI38) can be written as the difference equation

nt)+ fint =T)+ -+ fu,n(t —nsT) =
biu(t —ngT) 4+ -+ + bp,u(t — (np + n — 1)T).  (2.15)
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The disturbance term can be treated in the same way with

w(t) = H(q,0)e(t) (2.16)
and o) .
9 _1taqg +---+cen g™
H(q,0) = = 2 , 2.17
(q ) D(q) 1+d1q_1+"'+dndq_nd ( )
wheree(t) is white noise.
Now the model[[Z2) can be written as
y(t) = Glq,0)ul(t) + H(q,0)e(t) (2.18)

wheref contains the coefficients;, b;, ¢; and f; in the transfer functions.
This is called theBox-Jenkins modelnd is described by the five "structure”
parametersy,, n., nq, ny andng. Box-Jenkins is the most general form of
the linear black-box models and can be simplified in a nunediffierent
ways to suit other more specific systems. One of these is the@raBess
(autoregressive), which is achieved by setting= ¢; = f; = 0,7 # 0. This
means tha{{Z18) becomes

——e(t). (2.19)

The reasons for choosing the AR-process in this thesis atdttls simple
and easy to estimate.

2.6.2 Results

The procedure is performed with System Identification Torlim MATLAB .
This resulted in the model choice of a first order AR-model

1

S — 2.2
14 ag! (2.20)

With the idea that the filter is dependent on the turbine spegdation[Z20)

becomes )
H(ngyp) = —————. 2.21
(’nt I) 1+ a(ntrb)q71 ( )
In FigurelZ® the result of the filter analysis is presentesican be seen it is
hard to state any relation between the turbine speed andtéreTihe reasons
for this are the big differences in the a-values for diffetenbine speeds.
The data in this filter analysis is selected and treated gsoged in Sec-

tion[Z4.
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Chapter 2. Noise in the air mass flow sensor
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Chapter 3

Modelling

To further improve the observer the number of signals useteback can
be increased. IMS} the intake manifold pressure,thawest manifold
pressure and the turbine speed are used for feedback in seevelb Other
sensor signals possible to use for feedback are the sigwafsthe air mass
flow sensor and the temperature sensor in the intake manifoldise these
signals for feedback they have to be modelled. The air massiglalready
in the model but the intake manifold temperature is not, gonttedel needs
to be extended with models and states for the temperature.
Some parts of the existing mean value engine model are alsmiad

and some new parts are added. The following parts are furbhestigated in
this thesis:

e Temperature drop over the intercooler.

e Temperature states in the intercooler, intake manifoldehéust man-
ifold.

e Temperature and pressure dynamics in the EGR system.
e Heat exchange in the exhaust manifold.

e Temperature and pressure dynamics in the exhaust systeito due
exhaust brake.

e Temperature sensor dynamics.

3.1 Model structure
The model is a MVEM with sub models for each subsystem. A MVEM d

scribes the average behaviour of the engine, which meanshthaignals,
parameters and variables that are considered are averegjea® or several

15
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cycIeE. The subsystems are the compressor, intercooler, intakéfotth
combustion, exhaust manifold, EGR-system, VGT and exhsystem with
an exhaust brake. The components, or sub models, added &xigtang
model are described in this section. To make the model intli@sis com-
plete, the existing model is briefly described here as weile model is im-
plemented in MTLAB/SIMULINK and can easily be altered with more or less
components or dynamics. Figlirel3.1 shows how the diffe@mponents are
connected to each other and where the model dynamics exist.

10ne cycle for a four stroke engine is two revolutions of thenrshaft. For a thorough
description of the four stroke cycle consult Nielsen and&on in [LNO4].
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3.1. Model structure
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Figure 3.1: System overview.
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3.2 Compressor

The compressor is driven by the turbine shaft which is atddb the VGT.
It increases the density and temperature of the air flowing tine engine.
This will in turn not only give a higher efficiency and powertput from
the engine, but also a higher temperature in cylinders am@xhaust gases.
The compressor has not been treated in this thesis, but tfegieqs will be
presented for completeness.

The efficiency and the flow out of the compressor are deschlypestatic
maps with pressure ratio over the compressor and turbinedsag inputs.
These maps are supplied by the manufacturer.

Wemp = fWemy (pcmp ) ntrb) (3.2)
Pamb
Pem
Nemp = fncvnp (pa—,,nZ? nt’l‘b) (3.2)
Yair—1
H(J]Iair _ 1
Temp = Tamsp | 1+ —2—— (3.3)
Tlemp

wherell.,,, = % is the pressure ratio over the compressorand Z—P is
the ratio of the specific heats.

3.3 Intercooler model

To get an even higher power output and efficiency of the ergyiriatercooler
is added to cool the charged air. This will increase the dgwo$ithe air, and
by that increase the amount of air flowing into the cylindeékshigher den-
sity of the air makes it possible to inject a higher amountusflf Consult
e.g. M] for a thorough discussion.

The existing intercooler model consists of a control voluand a restric-
tion. The control volume only contains a state for the pressund will be
complemented with a state for the temperature as well. A érehanger
model will also be added. The model choices are made in aanoedwith

[Hol0g].

3.3.1 Control volume

The control volume is a two state control volume with statspressure,
p, and temperature. The control volume has a fixed volumi, and the
change of mass within the control volume is determined bythmass flow
in and out of the control volume. Within the control volume tenergy is
conserved and stored. The energy transfers to or from theatamlume
through the air mass flowiz, and by the heat transfep. Here a derivation
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of the differential algebraic equations follows. For moegails seem4]
and [Hol05].
The rate of the mass change in the control volume is given by

dm . :
E = Myin, — Moyt (34)

and the change of the internal energy is given by

aa . )
— = Hip — Hour — Q. 3.5
o (—Q (35)
To facilitate the modelling and to keep the model from becamd complex,
the following assumptions are made:

e The gas inside the control volume is ideal,

pV = mRT (3.6)

e ¢, andc, are constant,
R=c, —cy. (3.7)

e The temperature of the gas flowing out is the same as that othteol
volume,
Touwt =T. (3.8)

With these assumptions the pressure can be determined frondeal gas
law, Equation[(3J6), and the temperature can be determioedthe internal
energy and the mass through

U =mu(T) = [cy, — constant] = me,T. (3.9)

The enthalpy flows are given by

Hin - mincpﬂn and Hout - mouthTout- (310)

The pressure differential is achieved by differentiating ideal gas law
@8) which, when the temperature is allowed to change,ineso

dp dm dT

Inserting [3}) and eliminating the mass with the ideal gas{B.%), Equation

@E13) becomes
dp RT . . p dT
(mzn mout) + T dt .

= (3.12)
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The temperature differential is achieved by differentigtihe internal en-
ergy [3.9) which gives the relationship

dU  dm dr
% = ECDT + mcq}%~ (3'13)

Combining [31),[(315) [(3710) and3]113) yields
. . T . :
co T (mm — mout) + mch = minCpTin - moutcpTout - Q (314)

Rearranging the terms ii{3]114) and insertibgl(3[E)] (3nd) &.8) result in
the following temperature differential

dT RT /. . . .

T e (mmcv (Tin — T) + R (Tiniiin — Tritgut) — Q) . (3.15)

In this thesis the heat transfer is assumed to be zero onttieeigide but not
on the exhaust side. The heat transfer on the exhaust sideewiiodelled in
accordance with Eriksson if[Eri02] and will be presente@éttion[IGI1.
In both casesg) = 0.

3.3.2 Restriction

The intercooler restriction is modelled as an incompréss#striction since
the gas velocity through the intercooler is slow. The restn model has
the pressure after the compressor and the pressure aftertdneooler as
inputs and the mass flow through the intercooler as outpute fressure
loss over the restriction is described with one param#iet, the restriction
coefficient, see [LNG4].

The equations for the intercooler restriction are

TusW?
Apres = DPus — Pds = Hres(im = (316)

us

/ Apres
Wres = pusH T (317)

Since the derivative of{3:17) with respect Ap,.., approaches infinity as
Ap..s approaches zero, the function is linearized to

DPus Apres
Wies = 3.18
HresTus \/Plin ( )

for 0 < Apres < puin. For causality, the simplification that flow only runs in
forward direction in the model has been maldé.; is setto 0 forAp,..s < 0.
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3.3.3 Heat exchange

In the intercooler there are two mass flows present, the asifl@awv and the
cooling air mass flow. In combustion engines the flow rate efdboling air,
Meool, 1S greater than the mass floviy;,, i.€. 1Mcoor > Mg IN ]
by Nielsen and Eriksson the following equation for the terapre after the
intercooler is proposed

Tic = Temp — €ic (Temp — Teoot) (3.19)
where
Teoot = Tamb (3.20)
and
€ic = kic. (3.21)

The result of the estimation of the parameters can be seesctin®G.1.

3.4 Intake manifold

The intake manifold connects the inlet system with the EGdResy and feeds
the cylinders with a mixture of fresh air and EGR gases.

The intake manifold is modelled as a control volume with twegsure
states, one for oxygen and one for inert gases, and one cort@mperature
state. The separation between inert gases and oxygen isageiea better es-
timation of the lambdhvalue. This separation was initially done mOS].
Only one temperature state is needed due to the fact thates gre mixed
before the control volume and are considered completelyedirside the
control volume. In this thesis the mixing of EGR gas and scip@&mged air
takes place before the intake manifold. This is a simplificasince the EGR
gases are actually mixed with the supercharged air in thdlmaf the intake
manifold.

3.4.1 Gas mixing

The gas mixture in the control volume will be described by specific heat
capacities¢, andc,. Here follows a presentation of these new quantities.

Cy,airMMic + Cy,egrMegr

Cy,im = . (322)
Mim,in

Rim _ Rairmic. + Rethegr (323)
Mim,in

(mair/msuet)
Mair/Mfyel),

metric combustion reaction. Read more in NO04]

2The lambda value is defined as= were the index s refers to a stoichio-
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with
mim,in = M + megr (324)

andT;,, becomes

Ticcv,air Mic + Tegr Cy,egrMegr

Tim = (3.25)

Coy,imMbim,in

3.4.2 Control volume

The control volume has two pressure states, one for oxygeoaa for inert
gases, and one temperature state. These pressure andaemgstates are
modelled as described in Sectlon313.1.

3.5 Combustion

The mixture of air and fuel is injected into the combustioariber, i.e. the
cylinder, under high pressure. In the cylinder, the air amel mixture is
burned. This liberates the energy in the fuel and the pigdorced down by
the burned gases. These gases have high temperatures hipddsgures.
The combustion has not been treated in this thesis, but thatiegs will
be presented for completeness. Read more about the coonbins{EIf02].

o VdNengpim
Weng,ln,tot = Nvol 120R”"T,”n (326)
Pim

TNvol = fn,wl (Ne'n,g7 T R ) (327)

QLHVfT (quelaNeng)
Tem =tim + — 3.28
Cp,exh (Weng,in + qupl) ( )

where
5NengN(:yl
wel = T o0 ¢ .2

Wiuel 120 (3.29)

3.6 Exhaust manifold

The exhaust gases flow into the exhaust manifold after cotiolousThe ex-
haust manifold is modelled as a control volume with one tertpee state
and two pressure states just like the intake manifold. AiBaant difference
between the intake manifold and the exhaust manifold is #w transfer.
In the intake manifold the heat transfer is assumed to be adchere it is
modelled as describedIn-3b.1.
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3.6.1 Heat transfer

The exhaust gases leaving the cylinders have high tempesatu compar-
ison to the ambient temperature. This results in a temperatop of the
exhaust gases when they pass through the exhaust pipe.hérisipenon is
described in[[Erid2]. The temperature drop in the fluid is eitetl as a one
dimensional flow with the outlet temperatufg,,

_ h(W)A

Tout - 71wall + (len - 71wall) (& Wep (330)

whereT,q.; is the pipe wall temperaturé;,, intake temperaturé, (/) heat
transfer coefficientA pipe wall area, and’ mass flow. Eriksson compared
three different models, two stationary and one dynamic. dftace in this
thesis is a stationary model without pipe wall conducti@mglthe flow direc-
tion and where all heat transfer modes in Equafion{3.32uanped together
to one total heat transfer coefficielt,;. Hence the heat transfer is from the
gas to constant ambient conditions with a constant heasfeagoefficient
and withT 411 = Toump + Tamb,corr the model can be summarized as

hiot A
Tout - (Tamb + Tamb,corr) + (T’L - (Tamb + Tamb,corr)) e Wep
(3.31)
where
1 1 1
n (3.32)

htot N hcv,i hcv,e + hcd,e + hrad

andZymp + Tamb,corr 1S the adjusted ambient temperatufeg,,, is the tem-
perature outside the vehicle, but near the engine the textyvetis a bit higher
which is described b¥ .5, corr. In OUr case Equatiof{3B1) can be rewritten
as

_ hiotA

Tem,cooled = (Tamb + Tamb,corr) + (Tem - (Tamb + Tamb,corr)) e Wer
(3.33)

whereT.,, cooica IS the temperature of the gas flowing into the EGR system.
The approximation thal,,q;; = Tams+Tamb,corr AN be Motivated by the fact
that the wall conduction coefficient is so large that the walh be approxi-
mated to have the same temperature as the surroundingsis normally
used as tuning parameter but sin¢és hard to estimate accurate the tuning
parameter in this thesis will big,,; A.

The choice of a stationary model can be motivated by the featthe
existing model already catches the dynamics well but matielsemperature
of the exhaust gases too high in comparison to the measurguktatures.
The result of the estimation of the parameters can be seesctin8G.B.
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3.6.2 \Vontrol volume

The control volume has two pressure states, one for oxygeoaa for inert
gases, and one temperature state. These pressure andaemgstates are
modelled as described in Sectlon313.1.

3.7 VGT

To be able to control the amount of air fed into the cylinderd the EGR
flow a VGT is used. The VGT is driven by the exhaust gases whindefit to
rotate. The VGT is connected to the compressor which feedoessed air
into the intake manifold. The VGT is described WOZ],daine equations
will just be described in a few words.

The pressure ratio between the exhaust manifold and theusixigstem,
the turbine speed together with the position of the VGT dbsdhe flow in
the majC3-34. The temperature after the VGT is given by thefiop[3.3b.

War = v (L2 s (334
Yewh—1
Pes Yexh

Tygr = 1+ nrp ( ) -1 Tem (3.35)

3.8 Exhaust system

This system consists of a silencer and an exhaust pipe iessein exhaust
brake is located immediately before the silencer. The estreystem is mod-
elled as two control volumes and two restrictions, one \dgigestriction for
the exhaust brake and one fix restriction for the exhaust pifee control
volume before the exhaust brake is small and the controtwelafter the ex-
haust brake is large. This means that the states in the ¢oottome before
the exhaust brake will be much faster than the states aegxthaust brake.
Because of this the total system will be §iffn previous models the exhaust
system are modelled without the exhaust brake and they hsingla control
volume.

3.8.1 Control volumes

The control volumes are modelled as described in SeEfiadl.3.3

SDifferential equations with a significant dispersion betwéhe time constants
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3.8.2 Restrictions

The fix restriction is modelled as an incompressible rembricand is there-
fore modelled as described in Sectlon3.3.2. The varialdicion on the
other hand is modelled as a compressible restriction arideilurther pre-
sented below.

Compressible restriction

The exhaust brake is modelled as a compressible restriitige the gas ve-
locity through this restriction is high, sdm04].

The mass flow depends on the opening area, the density befoooh-
traction and the pressure ratio over the contraction. Thesrflaw through a
contraction like this is

. Pus Pds
) = AU 3.36
" VR, (p) (3:36)
where
Aeff:A'CD. (337)

A'is the inner area of the pipe ait, is a discharge coefficient that depends
on the shape of the flow areal. s is the effective flow area and is smaller
than A due to the contraction of the flow described 6. W(2) and
ﬁ%T describe the velocity and density in terms of intake condgi

Acry and¥ are modelled as lookup tables and the derivation of thede wil
not be presented in this thesis.

3.9 EGR system

In order to lower theN O, formation a portion of the exhaust gases are re-
circulated to the intake manifold. This reduces the pealptrature, and by
that, NO,. formation. Not only theVO,. will decrease, but also the fuel con-
sumption with increased EGR flow. To avoid misfire, the EGR ftamnot
be allowed to get to high. The EGR system consists of a valdeaarEGR
cooler.

The current model contains a control volume and a restrictithe con-
trol volume only contains a pressure state. In this thegsntiodel will be
extended with a temperature state as well. The heat exchanige EGR is
modelled in two steps. These steps are the valve and the EGIBrcd he
model choices are made in accordance With [Eri04].
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3.9.1 Valve

The temperature drop over the valve is small and measursrasntinreliable
during low gas flows in the EGR system. The isentropic modabpsed by
Ericson in ] proved hard to validate. Instead, Eritsthose not to
model any temperature drop over the valve. Despite thistinéerature drop
over the valve is modelled in this thesis.

y—1

Tvalve = <ZM> ’ Temh (338)
Pexh

3.9.2 EGR cooler

The efficiency of the EGR cooler is hard to model because fitdifies in
temperature measurements. Therefore, a constant effijciensed in this
thesis as well.

Teer = Tvatve — €egr (Tvalve - TEGR) (339)
€egr — kegr (340)

The result of the estimation of the parameters can be seesctin&G.P.

3.9.3 Control volume

The control volume in the EGR system is modelled in the same again
SectiorT3311.

3.9.4 Restriction

The EGR restriction is modelled as an incompressible cd&tn, see Sec-
tion[332. The result of the estimation of the parametensbeaseen in Sec-
tion[6.2.

3.10 Temperature sensors

Temperature sensors have slow dynamics and it can therbéteard to

compare measured and simulated signals when the tempechtamges fast.
Therefore a model for the temperature sensors is includdteimodel. The
temperature sensors are modelled as first order systems.

1

T_HTmodelled (341)
T

Tsensor =

T is the time constant of the temperature sen%pf,q .14 the actual tem-
perature and’s.,, s, the temperature measured by the sensor. The thermal
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element in the temperature sensor has a diameter of appteiini mm and
this will, according tol[Eri02], result in a value of abouBGeconds for the
time constant]". This applies to the case when the sensor is situated in flow-
ing air.



28



Chapter 4

Observer design

An observer can have several different applications in aehott can for
example be used for diagnosis of sensors and actuators gneldict signals
not measured. In this thesis, the primary application ofdhserver will
be to improve the state estimates in the model using sensmmflbetween
measured and modelled signals. Sensor fusion deals witprttdem to
weight the different signals together. This is conductedhgyKalman filter,
which is a linear filter. Due to the nonlinear dynamics of thistem a more
general form of the Kalman filter is used, the constant gaiereded Kalman
filter.

4.1 Kalman filter and observer

During the Second World War, Norbert Wiener implementedafener filter
in radar applications. The Wiener filter needs stationay scalar signals,
but it is the optimal filter to extract the interesting sigfraim a noisy signal.
In 1960 R.E. Kalman and R.S. Bucy derived the Kalman filterohis
a generalization of the Wiener filter. One limitation of thalian filter is
that the relation between the measured signal and the #titegesignal is
described in state-space form which limits the filter to dinsystems.

4.1.1 Linear model

As mentioned in Sectidn4.1 the system has to be in genetatspace form,
that is

(t) = Ax(t)+ Bu(t)+ Nw(t) (4.1)
y(t) = Cux(t) + Du(t) +v(t). (4.2)

Herey(t) represents the observation an@) is the state vector of the sys-

tem at the time. The state propagation of the system in time, is described

29
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by the state transition equation, Equatibni(4.1), and thasmed signals by
the measurement equation, Equatibnl(4.2). The noise tertisand v(t)
are assumed to be white stochastic processes and are defes process
noise and measurement noise respectively. They descebenfterfections
of the model. The covariance function and the mean valueh®nbise are
described by

Elw(t)] El(t)] =0 (4.3)
E[w(t)wT(T)] Qio(t — 1) (4.4)
Elt)v?(r)] = Rt —71) (4.5)
E[w(t)vT(T)] = St —71). (4.6)

The stochastic variables could come from an arbitrary iBistion, but in
the special case with normally distributed stochasticaldes the resulting
Kalman filter is optimal. If this is the case equatibn4.6¢dmes

Elwt)v™ (7)) =0 4.7

For simplicity, the following notation for the covariancainx (without Dirac’s
delta function) will be used in this thesis

H:(g;’ }‘i ) (4.8)

Theorem 4.1 (Kalman estimator: Continuous timelConsider the system
described by[[411) and(4.2). Assume thgtC, Q., R, and S fulfil the
following. R, is symmetric and positively definite a@d, = Q., — SR, 'S”

is positively semi definite. Assume thidt C') is detectable and thatd —
SR;'C,Q.,) is possible to stabilize. Then the observer that minimikes t
prediction error

Z(t) = z(t) — 2(t) (4.9)
is given by .
&= A% + Bu(t) + K(y(t) — C&(t)) (4.10)
whereK is given by
K = (PCT + NS)R,". (4.11)
Here P is the symmetric positive semi definite solution of the matjuation
AP 4+ PAT - KR'KT + NQ,NT =0 (4.12)

and the variance of the minimal prediction error is given by
Ez(t)z"]) = P. (4.13)

This is the Kalman observer. According fo [EG01] the covaz@matri-
ces represent the trust in the initial state and can thexdieseen as a design
variables.

For a more thorough description of the Kalman theory, cdresgl @lﬂ,

] or [GM93].
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4.1.2 Modelling and linearization errors

Figure[Z1 shows how the non-linear model is influenced bgremot only

in the model derivation, but also in the linearization psxerhese errors are
denotedA; andA,, respectively. The Kalman filter may become impaired
due to these errors.

Iiodelling &
Paratneter Lineatization
Identification

= f5,) = AxtB
B |y D .1,

Ay A,

Motminal Mo -
Linear Fngine
Model

Motminal Linear
Fngine Wodel

Figure 4.1: Modelling error representation.

If the presumed model uncertainties are part in the measmeamd pro-
cess noises, it means that these uncertainties are mergegl i) Q and S
matrices. To put this into practice, the measurement naisetlae process
noise are given by

v o= 7§ (4.14)
w o= fi(du)— i (4.15)

wherei is the derivative of the low pass filtered measured stategjasmthe
high-pass filtered measured signals.is achieved by measuring all states,
filter them with a non-causal filter and at last numericalfyedentiate them
with an Euler backward methog.consists op;,., pem, Nirs, Wair andT;,,,
which are the measured signals on a original engine in ptamucThis fil-
tering is made because all frequency components exceetirgr’the mea-
sured signals are considered to be measurement noise. Fbo# frequency
of 2Hz is chosen at this point since all system dynamics ameesithan this.
The low pass filtering of the measured signals in EqudfioB & hecessary
to remove the measurement noise and is performed beforéfiedtiation.
The covariance estimation in this thesis is performed inTMAB with the
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functioncovf . In the Equationd{4.16) and(4117) the algorithm is presdnt

N
Ry = >0 (4.16)
N 1 ;
Qij = N ;wi(t)wj(t) (417)

These calculations of the and(@ matrices give the joint correlation between
the signals in the measurement noise and system noise tigshec

When calculating the observer the relation betwéeand Q describes
how strong the feedback from the measured signals is in th&osdusion.
To get satisfactory performance of the sensor fusion thédiom is treated as
a design parameter.

Calculation of covariance matrices for the noise

In this non-scalar model, the cross correlation betweemtbasurement sig-
nals and the measured state signals will not be estimatesiniglicity. This
means that th&l matrix will become

_ Qw 0
Il = ( o R ) (4.18)

Due to the fact that the measured signals of the EGR systernthamest of
the system are performed in two different measurementpgtihe actual
cross-correlation in th€) matrix is hard to calculate for those signals. The
uncertainties in such estimation could be large, and tbezghese correla-
tions are not taken into account. This will givé)amatrix with the following
properties

13x13 013><2
15%15 truck meas.
QLX15 . (4.19)
02><13 2x2

test bed meas.

The R3*® matrix does obviously not have these problems, and the calcu
lation is straightforward with EquatioR{Z]16).

4.2 Linearization

The system at hand is a typical non-linear system, and to lectaluse the
Kalman theory it has to be linearized. A non-linear time{owmous model

flx,u) + gz, u)wy (4.20)
= h(z,u) 4+ ws (4.22)
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can be linearized around a stationary poiit= f(xg,ug) = 0. With the
notation

o= 2—ap (4.22)
b= u—ug (4.23)

and a Taylor series expansion, the linearized system wative

2 = Az+ Bv (4.24)
w = Cz+ Dv. (4.25)

Here the matricesl, B, C' and D are the Jacobians of the functiofiér, u)
andh(z,u) The elements;;, b;;, c;;, d;; in the matrices are given by

0y = g);:f (4.26)
§ le=wo,u=uo

5= B @2

by = gzg o (4.29)

4.2.1 Linearization procedure

The linearization process is a two step procedure. The figtis to find a
stable operating point and the second is the linearizatseif.i

Finding a stationary operating point

The search for a stationary operating point is performeditmylating the
model with constant inputs until stationary states areea@d. These inputs
and states are used to define the operating point in whichintbarlzation is
performed.

Linearizing

The linearization procedure presented in Sedfioh 4.2 fepaed by the func-
tionli neari ze in SIMULINK CONTROL DESIGN Toolbox. The function
uses analytical Jacobians for all blocks possible. Thelim@ar blocks with-
out analytical Jacobians, e.g. lookup tables, are replag#dgains when
linearizing. The linearization results are presented ictiSe[7.].
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4.2.2 Scaling

When linearizing, it is important that the numerical prdjees of the received
linearized system is good. Bad numerical properties cahttemstability and
loss of precision. The standard way to improve system with riaamerical
properties is to rescale the model states so that they aheisame order of
magnitude, i.e. balanced realization. For example the nigaleproperties
might improve if the pressure is modelled in bar instead afcBhto get in
the same order of magnitude as the temperature. This is mfrped in
this thesis because the linearized system does not showeadgricies of
numerical problems.

4.2.3 Kalman filter and non-linear models

When using the Kalman theory on the non-linear model desdrily Equa-
tion (£20) andl{Z21), a number of different techniquesimnsed. Lineariz-
ing the model about the Kalman filter’s estimated trajectorg then calculate
a Kalman filter in this point in real time, is called tbgtended Kalman filter
This method is not feasible due to the model complexity whidgh make
the linearization computationally demanding. Another vugatp use theon-
stant gain extended Kalman filter (CGEKH)he CGEKF method linearizes
the model in several operating points and calculates armredasr each lin-
earization. The system then uses the observer nearestittemtcoperating
point and switches between these Kalman filters. The CGEKfeiapproach
in this thesis since all calculations can be made in advandét & less com-
putational demanding for the ECU on the engine.

According to ] considerable non-linearities can stimes lead to
divergence for the CGEKF, or thimearized Kalman filteas they call it. The
advice then is to use the extended Kalman filter. In this appitn however,
this is not an option, and reducing the model might be necgssa Chap-
ter[d the CGEKF does not show any tendencies to diverge, armbtirclusion
is that the non-linearities are not large enough to motivabelel reduction.
Note that this divergence depends on the operating point,fast and large
steps that are taken etc. This investigation covers norpeakting points and
steps.



Chapter 5

Measurement set-up

To be able to tune the parameters in the model and to valilatenbdel,
measurements are performed in order to collect data. Theursaent set-
up consists of a Scania R124 equipped with a new generatiorhg 7six
cylinder diesel engine with VGT and EGR. To make tuning ofapagters
and validation possible several extra temperature andspresensors are
mounted in addition to the original ones.

Measurements carried out in the Scania vehicle are samptectaorded
with the measurement tool ATl Vision. This tool from Acclwediechnologies
Inc. allows access to the ECU:s (Electronic Control Unit) &mongst other,
calibration and logging measurement data.

5.1 Sensors

When tuning and validating the model parameters the origieasors on
the test vehicle are not enough. The following sectionsgrethe sensors
mounted in the vehicle. When tuning the parameters in the BGERm, data
from a test bed are used. For a more thorough descriptioreaghsors used,

consult [Hol0b].
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5.1.1 Vehicle sensors

The sensors monted in the vehicle are listed in Teble 5.1.

Sensor Description

5 Injected amount of fuglkg/ s

Neng Engine speefrpm)]

Nirb Turbine speedirpm)

Dim Pressure in the intake manifdtr]

Dem Pressure in the exhaust manifdbd|
Pamb Ambient pressur@ar]

Demp Pressure after the compresgair]

Dtrb Pressure after the turbirfigr]
PEzhBrake Pressure after the exhaust brélker]

T; Temperature in the intake manifotC]
Teormb Ambient temperaturf C]

Temp Temperature after the compres$ar]
Tirt Temperature after the turbif@’]
TrahBrake Temperature after the exhaust brg@]
Tem Temperature in the exhaust manif¢td]
Weir Air mass flow into the intake manifoldg/ s]

Table 5.1: Standard sensors.

5.1.2 Test bed sensors

The sensors monted in a test bed are listed in Table 5.2.

Sensor Description

Dbefore,valve  Pressure before the EGR valer]
Pafterwalve  Pressure after the EGR val{ier]

PEGR Pressure after the EGR air coo|édr]
Theforevalve  Temperature before the EGR valye’]
Tecr Temperature after the EGR air coghe?]

Table 5.2: Test bed sensors.



Chapter 6

Parameter estimation

In this chapter the parameter estimation will be presentdéd normal way
to estimate a parameter is to split the data sequence in twse, e for
modelling and one for validation. This is also the routinghis thesis. The
parameter estimation is performed with the least-squatbadeon the mea-
sured data. Considered errors are

N
. 1 |Z(t;) — z(t;)]
Mean relative error = — 6.1
N2 ) ©
. . t(t;) — x(t;
Maximum relative error = max 1€ ) z(t)| (6.2)
1<i<N |Z(t:)]

6.1 Intercooler heat exchanger efficiency

In SectiorZ3.3B a heat exchanger model with constant effiyies presented.
This parameter is estimated with data from the Scania trueggmnted in Sec-
tion[ . The result is presented in Tablel6.1 and the estimatimrs are listed
in Table[62. The performance for the model of the heat exghieefficiency

in the Intercooler can be seen in Figlird 6.1.

| Parameterl Value |
[ €ic | 83.6% |

Table 6.1: The parameter for the heat exchanger efficienttyeitntercooler.
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| Parameterl Mean relative erroil Max relative error]
[ e | 1.3% | 6.4% |

Table 6.2: The relative mean and maximum errors in the Intdes efficiency
estimation.
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T
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N
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Figure 6.1: Intercooler efficiency.

According to Figuré 6]l the model over the heat exchangaiefity is
quite good. It is hard to model a simple efficiency model faattexchangers
in trucks where for example vehicle speed, wind speed aner athknown
disturbance sources influences the efficiency.

6.2 EGR cooler

The EGR cooler consist, as mentioned in Sedfioh 3.9, of agxehtanger and
a restriction. The parameters describing these modelstineated with data
from an engine in a test bed at Scania.
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6.2.1 EGR mass flow

To estimate the restriction model the EGR mass flow is neetledre is no
sensor for this mass flow and it is therefore calculated withafion [&B).

Pim VD Ncle

T%mR 2. 60 - Wair (63)

Wegr = Nvol
Here isn,.; the volumetric efficiencylp the displacement volume ad.,;

the number of cylinders of the engine.

6.2.2 EGR cooler efficiency

In Sectio 3.9 a model with constant efficiency is proposEtk result is
listed in TabldGB and the estimation errors are listed W&E3.

| Parameter Value |
[eqr [763% |

Table 6.3: The parameter for the efficiency model in the EG&ero

| Parametel Mean relative errofl Max relative error|
| €cgr | 9.1% | 35.7% |

Table 6.4: The relative mean and maximum errors in the EGRec@dfi-
ciency estimation.

The maximum relative error is considerable and an explan#dr this is
that the model is simple. The EGR cooler is over dimensiomednaanages
to lower the gas temperature to just a few degrees over thpeterure of
the cooled supercharged air. This makes it hard to modelerQthysical
parameters affecting the EGR cooler efficiency could e.ghbeEGR flow
and the temperature of the EGR gas. One should also remehdtethis
test was performed in a test bed, and the efficiency in a trultkary even
more because of differences in the cooling air mass flow. Sogasurements
indicate efficiency higher than one. This means the exhasstgjcooled to
a lower temperature than the cooling air, which is physjdatipossible. An
explanation for this could e.g. be a bad location for the terapre sensors
for certain flows, or cooling of the temperature sensor dustwlensed air in
the exhaust gas. Read more about validation of temperansmsvalues by
Ericson in ].
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6.2.3 EGR cooler restriction

The EGR cooler restriction contains one tuning paraméfgr, and the result
can be seen in Table®.5. The estimation errors are listesviel TabldE.b.

| Parametef  Value |
| Hyes | 5.1849-10° |

Table 6.5: The parameter in the EGR cooler restriction.

| Parameterl Mean relative erroif Max relative error]
[ Hyes | 5.0% | 55.6 % |

Table 6.6: The relative mean and maximum errors in the EGRecoestric-
tion estimation.

The performance for the model of the EGR cooler restrict@mloe seen
in Figure[G.D.

— — —Calculated EGR gas flow
—— Measured EGR gas flow

EGR gas flow [kg/s]

|
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i’l
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Time [s]

Figure 6.2: EGR cooler restriction.

According to this figure the model for the EGR cooler resimittde-
scribes the flow through the cooler very good.
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6.3 Heat transfer in the exhaust manifold

The parameters estimated in the heat transfer model indBEEB.1, are the
parametefl,,,; corr and the lumped parametey,, A. These parameters are
estimated with data from a Scania trucK,,,; .- is manually adjusted to
minimize the estimation errors @f,,; A. The parameters are listed in Ta-
ble[6.]. The estimation errors relateditg, A are listed in TablEGl8.

| Parametel Value |

htotA 195J/K8
Tamb,corr 180K

Table 6.7: The parameters in the heat transfer model.

| Parametel Mean relative errofl Max relative error|
[ it A ] 21.1% | 62.4% |

Table 6.8: The relative mean and maximum errors in the haaster param-
eter estimation.

The performance for the model of the heat transfer in the esthaan-
ifold can be seen in Figule_®.3. According to this figure thedel®f the
heat transfer in the exhaust manifold improves the exhaastgmperature
model with approximately 50 %. This means that even thougtv#iue for
htot A are inaccurate according to Tali[e]6.8, the estimation fbaest gas
temperature is improved.
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— Model without heat exchange in the exhaust manifold
- Model with heat exchange in the exhaust manifold
11001
- —-Measured exhaust gas temperature
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Figure 6.3: Heat transfer in the exhaust manifold.



Chapter 7

Results

This chapter presents the results of the modelling, lizetidn and the Kalman
feedback. The results are obtained by simulating the mod=ented in
ChapteB and the linearized model in Secfiad 4.2, using stienated pa-
rameters from Chaptgl 6, with data from a Scania truck.

7.1 Linearization

In this section the result from the linearization procediar&ection 4P is
presented. All three models are linearized but only thelre$the fully ex-
tended is presented.

Step responses from all inputs are simulated for both theatimnd the
non-linear model. The steps in the inputs are made aftercdhsks. To en-
lighten the non-linear effects in the model, the magnituafethe steps are
20% and 1 % of respective input. A comparison shows that thespon-
dence, i.e. the time constants and the gains, between e lamd the non-
linear model are good for small steps but not so good for tastgps. Some
of the step responses are presented below together withcgimoments. All
these step responses originate from the same stationargtimgepoint, but
the non-linear effects can vary between different opeggtioints. This can-
not be seen here.
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Step inu.,, to output W,

Increasingu.y, corresponds to opening the EGR valve which results in an
increase in the EGR mass floW/.,.. This means that the air mass flow,
Wair, decreases. This phenomena and the non-linear effectsecaeeln in
Figure[Z1 and Figulfe=.2.

Step respons in Wau for step in uegr
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0.193 + non-linear model
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0.1885 . L
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Figure 7.1: Step respons i, for the linear and the non-linear model with
a 20 % step inueg,.
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Figure 7.2: Step respons i, for the linear and the non-linear model with
a 1% step inueg,.
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Step inu,, to output p;,
Increasingu, : corresponds to decreasing the effective flow area in the tur-
bine which results in a higher gas velocity. This implied the turbine speed
increases and the compressor will therefore increase #ssire in the inlet
manifold, p;,,. This phenomena and the non-linear effects can be seen in

Figure[ZB and Figule.4.
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Figure 7.3: Step respons jn,, for the linear and the non-linear model with
a 20 % step ing, g¢.
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a 1% step in,g.
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Step inu.g, to output p;,

As stated above, increasing,, corresponds to opening the EGR valve which
results in an immediate increase of the EGR mass flbw,-. This in turn
results in an immediate increase in the inlet manifold presg;,,. How-

ever, opening..,- also means that more exhaust gases are recirculated and
less exhaust gases are left to drive the turbine. This cabsewirbine to

slow down which results in a larger decrease iy than the initial increase.

These phenomena and the non-linear effects can be seenureEg and
Figure[Z6.
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Figure 7.5:; Step respons jn,, for the linear and the non-linear model with
a 20 % step inueg, .
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Figure 7.6: Step respons jin,, for the linear and the non-linear model with
a 1% step inucg,.
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Step inu,, to output W,
As stated above, increasing ; corresponds to a decrease of the effective
flow area in the turbine such that the exhaust gas flow throtughmore
restricted. If the EGR valve is sufficiently open when thippens, the ex-
haust gas recirculatioy ., will increase and¥,;, will decrease. On the
other hand, if the EGR valve is closed when the exhaust gaslilmugh the
turbine is restrictedlV,,, cannot increase and the effect will be that the tur-
bine speed increases abid,;, will increase. The latter phenomena and the
non-linear effects can be seen in Figlird 7.7 and Figuie 7.8.
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Figure 7.7: Step respons i, for the linear and the non-linear model with
a 20 % step ing,q.
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7.2 Model comparison

In this section three models with different complexity ammpared. The
models are:

e The model presented by Swartling @aOS], sometimegnedeto
as the original model.

e The model above extended with a state for the temperatuhe iimtake
manifold.

e The fully extended model with states for all temperatures.

A plot of the models fop;,,, and the measured signal fpy,, is given in Fig-
ure[Z.9. The reason for choosing, as the signal measuring the performance
is that this signal is important in the calculation of thealue.

As seen in FigurEZ719, the best correspondence with the mezhsignal
is achieved by the fully extended model followed by the eragimodel with-
out a state for the temperature in the intake manifold. Harehe reason
for extending the model with a model for the intake manif@ohperature is
to be able to use the signal for feedback and, by that, imptevebserver.

In Table[Z1 the mean relative error and maximum relativereior the
three different models are listed. These figures verify thatbest model is
the fully extended model.

| Model | Mean rel. error] Max rel. error |
Extended model, states for alltemp.  4.55% 16.8%
Swartling’s model with state fdF;,,, 13.2% 24.8%
Swartling’s model 11.9% 21.7%

Table 7.1: The mean relative error and the maximum relativer gor the
three models.

7.3 Kalman feedback

The models in Sectidn4.2 are linearized, and upon this aerebsis calcu-
lated. To handle the non-linearities in the model the lireeat Kalman filter
is used, see SectignZP.3.

To find the best relation between the number of Kalman filtei the
model complexity, three sets of models and three sets of &alfitters are
compared to find the best total performance. These compares@® made
in two steps. Section 7.3.1 discusses the number of Kalntansfiised for
feedback and Sectign 7.B.2 treats the model complexity.
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% 10° Pressure in the intake manifold
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Figure 7.9: Comparison gf;,,, for all three models.

7.3.1 Number of linearization points

When the model is simulated with the Kalman feedback, ongdakoose
the number of Kalman filters used in the observer@va@émmber of
Kalman filters is estimated to be around ten for the best paidace. Three
observers with different number of Kalman filters are testethe fully ex-
tended model. The numbers of Kalman filters tested in thergbeeare 3, 9
and 16. Figur€7Z10 shows that it is difficult to distinguiklk best observer.
The performances of the observers are also compared usimggan relative
error and the maximum relative error in TabI€l7.2. This taibticates that
the observer with 9 Kalman filter has the best overall pertorce.
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Pressure in the intake manifold
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Figure 7.10: The difference between the models with Kalneadlback seems
to be negligible. Despite the conformity an error estintasbows some dif-

ferences.

| Number of linearization points Mean rel. error| Max rel. error |

3 linearization points 1.52% 7.51%
9 linearization points 1.10% 5.60 %
16 linearization points 1.70% 5.96 %

Table 7.2: The mean relative error and the maximum relativer éor the
three different sets of linearization points in the observe

The pressure in the exhaust manifold is difficult to estinsteurately.
This can be seen in Figufe7111. The reason for the differbatgeen the
model and the measured signal in the fast and the slow trarfsiep..,, is
that the model has too slow dynamics. The fast transienttisetéeft and the
slow is to the right in FigurEZZ1 1.

The performance for the observer in the estimatiopgf is expressed
in terms of the mean relative error and the maximum relativeres above.

The errors are listed in Tablley.3.
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Figure 7.11: The estimation @f,, is not good.

| Number of linearization point$ Mean rel. error| Max rel. error|
| 260% |

[ 713%

| 9 linearization points

Table 7.3: The mean relative error and the maximum relatinar éor the set
of nine linearization points in the estimationf,,.

7.3.2 Model complexity

The observers used in this comparison use 9 linearizatiamtgovhich is
considered to give the best performance. The result candveedi in Fig-
ure[ZIP. The figure shows that a more complex model givesterlestima-

tion of the pressure in the intake manifold.
The performances of the observers for the different modelsalso com-
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% 10° Pressure in the intake manifold
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Figure 7.12: The figure shows that the best model when usimgrization
points is the extended model, with states for all tempeeatuiSwartling’s
model with and without a state far;,,, has almost equal performance.

pared using the mean relative error and the maximum relatigr. The er-
rors are listed in TablEZd.4. The extended model is obvidbstier according
to the error estimation as well.
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| Model | Mean rel. error] Max rel. error |
Extended model, states for all temp 1.10% 5.60 %
Swartling’s model with states fdf;,, 2.07% 3.78%
Swartling’s model 3.55% 6.24 %

Table 7.4: The extended model has better performance inrbeén relative
error and maximum relative error.
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Chapter 8

Concluding remarks

This chapter contains the conclusions together with a shortmary of the
obtained results and observations made. It also includest#&ns in which
interesting future work is introduced.

8.1 Conclusions and discussion

The goal of this thesis is to improve the gas flow observeoihiced in
[W]. The evaluation is performed on several data seta &t Scania
truck.

The noise in the air mass flow sensor is examined and charasctén the
frequency domain. The result of this investigation shovet the approach
presented in this thesis does not apply to the noise in thaass flow sensor
and another approach is needed.

Kalman theory is used to calculate the observer and thisnesja linear
model. The models in this thesis are non-linear and thetir&i#ons are per-
formed with SMULINK CONTROL DESIGNwith good results.

The original model has been extended in two stages to inchate sys-
tem dynamics. In the first stage a temperature state in takamhanifold is
introduced. In the second stage the model is extended witheeature states
for all control volumes and with complete dynamics for theFE§ystem and
the exhaust system including the exhaust brake. These madetompared
in how good they coincide with the measured signals. The esisgn shows
that the best model is the fully extended model followed kg first stage
extended model.

8.2 Future work

In this thesis the mixing of EGR gas and supercharged aistplaee before
the intake manifold. A more realistic model would be to matelmixing of
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these gases after the control volume, right before the engin

The choice of a static model for the heat transfer in the esthman-
ifold can be motivated by the fact that the existing modetadly catches
the dynamics well but models the temperature of the exhassigtoo high.
Nevertheless, here are some possibilities of future workirsh suggestion
would be to model the wall temperature with the dynamic mquesented
by Eriksson in[[Eri02].

The extended model presented in this thesis can be improxéahing
some of the control volumes better. The control volumes noperly tuned
are those present in the original model, which are tuned foodel not con-
taining dynamics for the temperatures.

Simulations show that the model of the pressure after thebastion, i.e.
the pressure in the outlet manifold, is not so good. Hené®idta suggestion
for some future work.

Since the engine has VGT the choice of using the signal frentutbine
speed to choose filter in the observer is not so good. For actiownal turbo
this choice is good since the speed of the turbo has a fairplsirelation to
the load of the engine. This is not the case when a VGT is useekefore a
thorough investigation of which signals to choose filtetwis necessary.

One way to improve the performance of the observer is to nbéaioise
in the air mass flow sensor in a different way to achieve a bietéelback sig-
nal.
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Notation

Symbols used in the report.

Variables and parameters in chaptei 2

m(t)
my
Ntrp

Noise intensity/variance

Time dependent mean value
Time independent mean value
Turbine/Compressor speed

r(t1,t2)  Auto-correlation function

Variables and parameters in Chapter3

IISNROS IITTTOLL >

Area

Specific heat at constant pressure
Specific heat at constant volume
Efficiency,0 <e <1

Heat transfer coefficient

Flow restriction coefficient
Enthalphy flow

Mass

Mass flow

Pressure

Heat transfer

Ideal gas constant

Temperature

Internal energy

Volume

Mass flow

Variables and parameters in Chapterl4

0(t —7) Dirac’s delta function

E[

Expectation value
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Notation

Variables and parameters in Chapter®

Mot VOlumetric efficiency

Neyr Number of cylinders

Vb Displacement volume
Indices

amb Ambient

cmp  Compressor

cool  Cooling

cv,i  Convection, Internal

cv,e  Convection, Engine block

cd,e Conduction, Engine block

ds Down stream

eff Effective

egr  EGR air cooler

em Exhaust manifold

es Exhaust system

eng Engine

erh  Exhaust

ic Intercooler

m Inlet manifold

lin Linearization

rad  Radiation

res Restriction

t Time dependent

tot Total

trb Turbine

us Up stream

vgt  Variable geometry turbine
Acronyms

CGEKF Constant gain extended Kalman filter

ECU Electronic control unit

EGR Exhaust gas recirculation

ETC European transient cycle

MVEM  Mean value engine model

VGT

Variable geometry turbine
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