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Abstract 
 
This thesis is a result of the increased requirements on availability and costs of the 
aircraft Jas 39 Gripen. The work has been to specify demands and to find methods 
suitable for development of a decision support system for the fault isolation of the 
aircraft. The work has also been to implement the chosen method. Two different 
methods are presented and a detailed comparison is performed with the demands as a 
starting point. The chosen method handle multiple faults in O(N2)-time where N is the 
number of components. The implementation shows how all demands are fulfilled and 
how new tests can be added during execution. Since the thesis covers the development 
of a prototype no practical evaluation with compare of manually isolation is done. 
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Chapter 1  
 
Introduction 

The Aircraft Service Division is a part of Saab Aerosystems which is a business area 
within Saab AB. It runs development, modification and also flight and maintenance 
service of civil and military aircrafts. Our work has been carried out at the section of 
maintenance and service engineering.  

1.1 Background 
The requirements of increased availability and reduced costs of the aircraft Jas 39 
Gripen are continuously being raised. Both the time and the accuracy to perform fault 
isolation have to be improved. A lot of time is consumed since fault isolation is often 
made by hand by an experienced technician. To fulfill the increased requirements a 
workstation that does the fault isolation automatically is highly desirable.  

1.2 Purpose 
The purpose of this thesis is to develop a decision support system for fault isolation of 
Jas 39 Gripen. This includes the evaluation of possibilities, specifying demands and 
building a prototype. 

1.3 Limitations 
The purpose of this thesis is to develop a prototype of a decision support system. 
There are no intentions of building a system for the complete aircraft, and there are no 
intentions of collecting the probability of failure for every single component. The 
intention is to investigate the possibilities of a decision support system for fault 
isolation and how this system can be further developed for the entire aircraft.  

1.4 Thesis Outline 
The thesis starts with four introductorily chapters: Chapter 2 gives an introduction to 
the aircraft, its fuel system and its diagnostic monitoring equipment; Chapter 3 
describes the available documentation of Jas 39 Gripen and measuring data collected 
during flight. It also contains the demands we have specified for the decision support 
system; Chapter 4 explains the field of fault detection and isolation; Chapter 5 
explains the field of probabilistic reasoning systems used in decisions support 
systems. 
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Our work is mainly described in the following four chapters: 
Chapter 6 contains two different methods invented to fit the requirements. In Chapter 
7 the methods are examined against the demands and each other. It ends with a 
conclusion of which one is the most suitable to the demands. In Chapter 8 method 2 
has been implemented. Our work ends with Chapter 9 that contains a conclusion of 
the system and its possibilities.  

1.5 Contributions 
Our contribution to the scientific community with this thesis is: 

• Interpreting Saab’s wishes on the development of a decision support system. 
Chapter 3. 

• Accumulating the demands for a decision support system. Explaining what 
abilities and functionality the system must have to fulfill the wishes. Chapter 
3. 

• Development of two methods suitable for the problem: 
Method 1: Agents. 
Method 2: Extended Structured Hypothesis tests. Chapter 6. 

• Evaluation of the methods and explaining why Method 1 is not enough for the 
decision support system. Chapter 7. 

• Implementation of Method 2 and the hypothesis tests. Chapter 8.  
• Summarizing the work and suggesting how to continue the development of the 

system. Chapter 9-10. 
 



 

 3 

Chapter 2  
 
Introduction to the Aircraft 

This chapter is an introduction to the aircraft, its fuel system and its diagnostic 
monitoring equipment. Its purpose is to give the reader a deeper understanding of the 
components and functions of the aircraft. The information may be needed when 
reading Chapter 8 and a suggestion is to read this chapter lightly and when reading 
Chapter 3 to Chapter 9 take a peek in this chapter to get the deeper understanding. 
Since the work has been concentrated to the fuel system, it is only that system that is 
described. 

2.1 Components in the Fuel System 
Before a more comprehensive description of the fuel systems structure and 
functionality is made, there is a need to describe some of the components in the 
system. Following is a short survey of the most important components in the fuel 
system. The fuel system in Gripen consists of many more components than what is 
presented in this chapter. The ones described below are the basic components for 
understanding this thesis. To have a basic understanding of the fuel system and the 
components within it, also helps when trying to understand the different hypothesis 
tests that are presented later on in this thesis. 

When a component is mentioned in the thesis it means a mechanical unit that 
can be of different size and extent. A component is not necessarily the smallest part in 
the aircraft and one component can consist of other components. An example of this 
the ARTU, that contains valves. Both the ARTU and valves are referred to as 
components. The components that were just mentioned are described later in this 
chapter. 

2.1.1 Forward Refueling/Transfer Unit 
The forward refueling/transfer unit, abbreviated FRTU, can in short terms be 
described as a unit for transferring fuel between different tanks in the aircraft. The 
tanks that are connected to the FRTU are the fuselage tanks. This is illustrated in 
Appendix A. 

2.1.2 Afterward Refueling/Transfer Unit 
Just like the FRTU, the afterward refueling/transfer unit (ARTU) is a unit for 
transferring fuel in the aircraft. However it is not as advanced and does not have as 
big area of responsibility as the FRTU. The ARTU is located at the rear end of the 
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fuel system (for more details see Appendix A) and it has two main purposes. The first 
one is to supply fuel to the tank T1A (see Appendix A for location), the wing tanks 
and the drop tanks during refueling. The second purpose is to control the fuel during 
the transfer from the wing tanks and the drop tanks to the FRTU. The ARTU has 
seven inlets/outlets and six of these each have a vent valve connected to the 
inlet/outlet..  

2.1.3 Probes 
To be able to measure the amount of fuel that a tank contains there are probes located 
in each tank in the aircraft. In some tanks there are two probes, like the wing tanks 
and the tank T2A (see Appendix A for location). There are a total of 16 probes in the 
aircraft, not counting the drop tanks which have three each.  

2.1.4 Valve 
Valves are found at different places in the fuel system but foremost they are located in 
the refueling/transfer units and in the Controlled Vent Unit. A valves purpose is to 
control the flow of the fuel (which means letting through or turning off the flow) 
through a pipe. 

2.1.5 Sensors and Switches 
There are two kinds of sensors in the fuel system, low level sensors (LLS) and high 
level sensors (HLS). Sensors and switches are both binary units that has two states. A 
low level sensor indicates if a tank is empty and a high level sensor indicates if it is 
full. There are three LLS and one HLS distributed among the aircrafts different fuel 
tanks. The tanks containing sensors are VT, T1F and the wing tanks. When it comes 
to switches there are a few different types in the fuel system, but only one is of any 
interest concerning this thesis. The interesting type is the float switch that is located in 
the drop tanks. These switches have the functionality as LLS and indicate if a tank is 
empty or not. 

2.2 Fuel Tanks 
The fuel in Gripen is stored in several different tanks that are placed in different parts 
of the aircraft body. The fuel tanks placement in Gripen is shown in Figure 2-1. The 
fuel system also consists of a cooling system and a pressure system. In Gripen the fuel 
is, apart from running the engine and some smaller units, also used to cool different 
devices. The purpose of the pressure system is to keep most of the tanks pressurized. 
This is to ease the fuel transfer and to avoid cavitations in the pumps. [1] 

There are ten different fuel tanks in Gripen, including the drop tanks. Some of 
these tanks are divided into two smaller tanks, mostly a front and a rear part. The ten 
different tanks are: tank 1 (T1), tank 2 (T2), tank 3 (T3), vent tank (VT), negative-g 
tank (NGT), left wing tank, right wing tank and the centre, right and left drop tank. In 
accordance with Figure 2-1, T2 is located in the front of the aircraft followed by VT, 
T1 and T3 furthest to the rear in the aircraft. The drop tanks are not shown in the 
figure but are, if used, hung underneath the fuselage and wings. T1 and T2 are the 
tanks divided into a smaller front and rear tank, which are called forward tank and aft 
tank (T1 = T1F + T1A and T2 = T2F + T2A). In Gripen version B and D (twin 
seaters), the T2F has been removed to make room for the extra seat. The wing tanks 
are also divided into two different tanks. They are called tank 4 (T4) and tank 5 (T5). 
The collector tank constitutes of tank T1 and the NGT. 
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For the aircraft to be able to measure the quantity of fuel left, there is a number 
of contents probes in each fuel tank. Every tank in the fuselage has one contents 
probe, except for tank T2A what has two. There are four probes in each wing and 
three in each drop tank. 

The fuel system is controlled by the GECU (General systems Electronic Control 
Unit), except for some functions that are controlled by the AIU (Aircraft Interface 
Unit). For more details about which functions the AIU control, see section 2.4.1. The 
GECU is an integrated digital control unit that controls three systems in the aircraft: 

• Hydraulic System (HS) 
• Environmental Control System (ECS) 
• Fuel System (FS) 

The GECU is located behind tank T3 and its function is to measure, monitor and 
control the three systems it is responsible for. [2] 
The GECU communicates with a system computer (SysC) whose main tasks are to 
calculate the center of gravity, calculate the load vector and perform part of the Safety 
Check. [1] 

  
Figure 2-1. The different fuel tanks in Gripen 

1: Vent tank,  2: Wing tanks, 3: Rear tank, 4: Collector tank, 5: Forward tank 
The engine in the aircraft is fed with fuel from the boost pump that is located in the 
NGT. In addition to supplying the engine with fuel the boost pump also has to supply 
the heat exchangers with fuel and the jet pumps with fuel flow. If the boost pump 
should malfunction the transfer pump does the feeding of fuel to the engine instead 
and if the transfer pump also should break, tank T1 is pressurized and the engine can 
suck fuel itself. Even without pressurization the engine can suck fuel itself, as long as 
the aircraft is at a low altitude and with limited fuel consumption. [1] 

2.3 Fuel Transfer 
The fuel used in Gripen is always taken from the collective tank, i.e. the negative-g 
tank (NGT) plus tank T1. This conveys that the aircraft have to transfer fuel between 
different tanks to make sure that the collective tank never runs out of fuel. [1] 
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The fuel transfer is mostly done by the transfer pump and the jet pumps. A jet 
pump is a device in which a small jet of fluid in rapid motion moves, by its impulse, a 
larger quantity of the fluid. In Gripen there are five jet pumps and they are located in 
the tanks T1, T2 and NGT. The main purpose of the transfer pump in the fuel system 
is to transfer fuel between different tanks in the aircraft. As seen in appendix A, the 
transfer pump is located in the Forward Refueling Transfer Unit (FRTU). The GECU 
is able to limit the maximum speed of the transfer pump. Such a limit will occur at 
high altitudes, high pitch angles and high load factors. It can also occur if the 
hydraulic pressure decreases because of a malfunction in the hydraulic system. [1] 

When the engine has a large output thrust, the jet pumps in fuel tank T2 and 
T3 operate in parallel with the transfer pump. The transfer pump will stop when all 
tanks except for T1 are empty. [1] 

2.3.1 The Order of Fuel Transfer 
Since the engine gets its fuel from the NGT, the aircraft has to make sure that it 
always stays full. This is done by transferring fuel between the different tanks in a 
specific order. The drop tanks (if any) are emptied first, in the order: the left and right 
drop tank first and then the center drop tank. When the drop tanks are empty, fuel is 
taken from tank T2 down to 200 kilograms and after that the fuel is taken from the 
wing tanks. When the wing tanks have been emptied the fuel is taken from tank 2, 3 
and finally also from tank 1. [1] 

The load factor of an aircraft is a measure of the aircrafts external load. The 
value of the factor is the same as the length of the load vector, which is shown in 
Figure 2-3. During flight conditions with a high load factor, the transfer pump cannot 
supply sufficient fuel from the drop tanks to T1. Therefore the fuel is moved from the 
wing tanks instead of the drop tanks, even though the drop tanks may contain fuel. 
The reason for this is that it is easier to transfer fuel from the wings than from the 
drop tanks. Another reason is the risk of cavitations of the transfer pump. The 
definition of high load factor is when the load factor is more than 3 g or when it is 
more than 1.5 g in combination with a greater altitude than 9 km. [3]  

2.4 Monitoring and Measuring 
One of the objects with the measuring system in Gripen is to control the fuel transfer 
and torrent. The fuel quantity is measured with contents probes individually in every 
tank. The measured signal is processed in the GECU, where the total remaining fuel 
quantity and aircrafts center of gravity is calculated. [1] 

A fault that can occur is failure with the cable to the probe. As a result of this 
fault an incorrect amount of fuel will be displayed.  

2.4.1 Function Monitoring 
Function monitoring (FM) is the internal supervision in the fuel system. FM is 
automatically conducted continuously and its primary purpose is to monitor the 
system during operation and also to warn the pilot of malfunctions. In the fuel system, 
FM is mostly performed by the GECU but some parts are done by the AIU. [4] 
 
The AIU has the following functions for the fuel systems: 

• Start and stop the boost pump 
• Start and stop the RCS (Radar Cooling System) pump 
• Function Monitoring of the LP cock operation and the RCS 
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• Control of shut-off valve to EWS and leak monitoring of the cooling circuit 
for the FPU 

• Fault warnings 
Warnings are sent from the GECU to the AIU on the data bus if faults occur during 
the FM. [1] 

2.4.2 Safety Check 
The purpose of the Safety Check (SC) in the fuel system is to check the status of the 
fuel system at aircraft startup. The SC is done by the SysC in collaboration with the 
GECU. [4] 

2.4.3 Fuel Measure 
The measurement equipment in the fuel system measures and monitors the following: 

• Fuel level 
• Fuel temperature 
• Air pressure in the fuel tanks 
• Pump pressure 

 The fuel quantity that is being displayed to the pilot is shown in percent. From the 
beginning 100% was equal to full internal tanks. This is still true for the versions B 
and D (twin seaters) of the Gripen aircraft. Today, full internal tanks are in total 112% 
(for the single seated versions of Gripen). The reason for the extra 12% is the added 
tank T2F, located first in the aircraft fuselage. With three extra drop tanks the fuel 
quantity can come up to more than 112%. The quantity of 1% of fuel is same for all 
versions of aircraft 39. [1] 

2.4.4 Probe Failure 
 The fuel quantity indication only displays fuel that is available. If the fuel in a tank 
isn’t available the GECU consider that tank empty. If a contents probe malfunctions 
the fuel quantity will be displayed in accordance to Figure 2-2 below. Because of this, 
the data about the remaining fuel quantity can change quickly when there is a probe 
failure. [1]   
Tank Electrical 

Identification 
Effects 

T2F 1QB If the probe malfunctions, the tank is considered empty. 
T2A 2QB While T2F has fuel, T2A is considered full. 

In other condition, the quantity in T2A is calculated from 3QB with decreased precision 
T2A 3QB While T2F has fuel, T2A is considered full. 

In other condition, the quantity in T2A is calculated from 2QB with decreased precision 
VT 4QB If the probe malfunctions, the tank is considered empty. 
T1F  While VT has fuel, TF1 is considered full. 

In other conditions, the tank is considered empty. 
T1A 6QB If there is fuel in T1F, a value is calculated for T1A (57% of the quantity in T1F) 
NGT 7QB While T1A has fuel, NGT is considered full. 

In other conditions, the tank is considered empty. 
T3 8QB If the probe malfunctions, the tank is considered empty. 
T4 11QB, 12QB 

13QB, 14QB 
If one of the two probes in T4 malfunctions, the quantity is calculated from the 
remaining probe with decreased precision. 
If both probes malfunction, the tank is considered empty. 

T5 21QB, 22QB 
23QB, 24QB 

If one of the two probes in T5 malfunctions, the quantity is calculated from the 
remaining probe with decreased precision. 
If both probes malfunction, the tank is considered empty. 

Drop 
Tank 

 If the probe malfunctions, the tank is considered empty. 
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Figure 2-2 Probe failure effects 

2.5 Load Vector 
During flight, the different accelerations and gravity forces have an effect on the fuel 
system. This causes the fuel surface to tilt and therefore to effect the operation of the 
system. The different forces affecting the aircraft are summarized in the load vector, 
ñ, which must be considered during fuel transfer and measuring. The load vector, ñ, is 
calculated with a coordinate system that originates from the aircraft as reference. The 
pitch degree is derived from the angle between the z-axis and the load vector in x-line. 
In the same way the roll degree is calculated from angle between the z-axis and load 
vector in y-line. This is illustrated in Figure 2-3. In the illustrations the load vector 
and the reference coordinate system is shown. It is the SysC that calculates ñ and it 
can have three different states.  

• ñ is within measurable range. 
• ñ is out of measurable range but within transferable range. 
• ñ is out of transferable range.    

The different states are illustrated in Figure 2-4, where the inner filled box shows the 
restrictions for measurable range and the outer box shows the restrictions for 
transferable range. It is possible to measure fuel quantity only when ñ is within the 
measurable range. The measurable range is specified so that the direction of ñ in 
relation to Z5 is not more than: 

• - 5 degrees to + 20 degrees in pitch. 
• ± 3 degrees in roll. 

When ñ is out of the measurable range but within the transferable range the fuel tanks 
will still transfer fuel to T1 in the commonly set sequence. When ñ is out of the 
transferable range, the transfer pump stops and the larger part of the fuel transfer also 
stops. The transferable range is defined as: 

• 5 degrees to + 80 degrees in pitch 
• ± 10 degrees in roll 

[1] 
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Figure 2-3 The load vector and its reference coordinate system 

 

 
Figure 2-4 Measurable and transferable range 

2.6 Fuel Air Pressure 
During flight, most of the fuel tanks are supplied with an overpressure in relation to 
the ambient pressure. Tank T1 and the NGT are generally not kept pressurized. The 
reason for this is to ease the fuel transfer to tank T1 at lower altitudes. However there 
are a few exceptions to this rule. For example when all available fuel has been moved 
to fuel tank T1. Then T1 is pressurized to make sure that the supply to the engine 
operates as usual. Another exception is at high altitudes where there is a risk of 
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cavitations in the boost pump and transfer pump. This can also occur at high fuel 
temperature. [1] 

2.7 Existing Fault Isolation 
The existing Fault Isolation system lists components depending on which alarms are 
raised. This system is unfortunately not developed for fault isolation but rather fault 
detection. This is done in order to inform the pilot whether he/she can fulfill the 
mission, abort it or switch to another mission when faults are detected. When the 
Functional Monitoring, FM, discovers faults in a subsystem, the subsystem can be 
shut down or blocked so that other subsystems can take care of the functionality. This 
gives a graceful degradation. A list of possible explanations to the faults is made up 
on basis of FM. This list ranks components after mean time between failure (MBTF) 
and costs and time for replacing the component. These alarms are based on strict logic 
and are handled in section 5.2.
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Chapter 3  
 
Prerequisites and Demands 

This chapter describes the prerequisites for the work and the demands specified for 
the system that will be developed during this thesis. 

3.1 Prerequisites 

3.1.1 Documents 
Besides the publications used in the former chapter, there is a large amount of 
documents covering JAS 39 Gripen. We have only used them to increase our own 
understanding of the aircraft and its functions. In a further development several 
important facts about dependencies between components and possibilities of failure 
can be found in FMEA (Failure Mode Effects Analysis), FTA (Fault Tree Analysis) 
and SSDD (Subsystem Design Description). 

3.1.2 Data 
Jas 39 Gripen has an onboard data storage system collecting measurement data for 
over 5000 variables. This system is referred to as RUF, Registration Used for 
maintenance and Flight security. Included in the RUF-data is a flight report which 
contains information about safety checks, function checks, and the risen alarms.  
For the purpose of fault isolation using RUF-data a software toolkit called RUF-PD39 
exists. This software toolkit is used by technicians to manually detect and isolate 
faults. [5] 
 
Data is recorded in two ways: Continuous recording and conditional recording. The 
first continuously records some variables such as fuel quantity, altitude and mach. The 
latter starts recording when some condition is fulfilled, for example an extra altitude 
sensor is recorded during flight on low altitude. In both cases data compression is 
used to avoid running out of memory. Every variable that is recorded has a sampling 
frequency, often 1 Hz. If two or more following samples give almost the same value 
only the first value is recorded. The data compression is exemplified in Figure 3-1. In 
the figure, the value of the sensor is shown on the y-axis and the first measurement to 
be recorded is A. The following two samples do not vary enough from A and are 
therefore not recorded. The fourth sample, B, differs enough from A and is recorded. 
From this time on are further samples compared to B instead of A. How much a value 
can differ before it is recorded is called a window. [5] 
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Figure 3-1. Measurement values recorded with data compression 

 
Conventional signal processing methods like mean value and filtering is not 
applicable on signals stored with data compression. To solve this, a sample and hold-
function has been used with the signals originally frequency to estimate the samples 
that have not been recorded. After this the signals can be processed as ordinary signals 
without data compression. [6] 

3.2 Demands on the System 

3.2.1 Deterministic Fault Isolation 
When hardware and software in the development of an aircraft has been tested and 
considered working, it is packaged to something called an edition. Two aircrafts from 
the same edition have to work equally. The same goes for software outside the aircraft 
and two fault isolation systems from the same edition fed with the same flight data 
have to result in the same output. Therefore it is not an option to have a system that 
could be altered after it has been packaged to an edition. This means that the system 
has to contain all knowledge from delivery and can not be trained by the end user. 
Technicians at Saab can however train the system to a certain level and package it to 
an additional edition. 

3.2.2 Usable for a Less Experienced Technician 
For advanced manual fault isolation in Gripen the experts use RUF-PD39 which is a 
software toolkit and there is no need for alternative software for them. The purpose of 
this thesis is to deliver a system for technicians less experienced than these experts, 
and therefore shall usage of the system require a low level of knowledge about the 
aircraft and RUF-PD39. 

window 
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Time 
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A 
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3.2.3 Application vs. Information 
The information containing all knowledge about dependencies and probabilities of 
components and tests has to be updated when new information is gathered. A demand 
is that no new release of the application has to be installed during the update, but 
rather just the replacement of the files containing the information. 

3.2.4 Configuration Management 
Every aircraft is built up on a set of components. Due to service and modifications no 
aircrafts are identical. The decision support system has to be able to manage different 
configurations because of this. 

3.2.5 Maintenance 
The system has to be easy to maintain. It can not be built on ad hoc solutions and 
unstructured function calls. The information has to be handled in one place and not be 
spread out in several functions. The procedure of adding extra tests shall be equal for 
all tests and easy to handle, i.e. the insertion of new tests shall be handled the same 
independent of what the tests do.  

3.2.6 Expansion 
The system must be flexible and have potential for extension. It can not be built on a 
dead end that is not improvable. 

3.2.7 Multiple Faults Isolation 
The system obviously has to handle at least single faults otherwise it would not be a 
fault isolation system. A highly desirable feature is the ability to isolate multiple 
faults; we therefore consider that the system has to be able to isolate at least double 
faults. 

3.2.8 Ranking of Components 
If several components seem to be broken the system has to produce a list containing a 
score or probability for each component. With this score the list can be sorted in order 
to decide which component to replace first. This demand is a sub-demand of 3.2.2 
since a less experienced technician does not know where to start if a list without 
scores is produced.
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Chapter 4  
 
Introduction to FDI, Fault Detection and Isolation 

FDI is an abbreviation for Fault Detection and Isolation. This chapter is an 
introduction to terms used in this field. Most of this chapter is influenced by [7]. 

4.1 Fault Detection 
The first step in a diagnosis and surveillance system is to detect if faults are present in 
the system. This can be done by limit checking, i.e. by raising an alarm when a value 
reaches a threshold. A common example is the lamp in a car indicating that the fuel 
level is low. The electronics does not tell you why the fuel is low, just that this is the 
case. 

4.2 Fault Isolation 
The second step in a diagnosis and surveillance system is to isolate the fault to a 
specific component by figuring out what could cause the system to react the way it 
does. In the previous example with low fuel level, this can be done by examining data 
from several sensors. By using a model of the fuel consumption fed with data of the 
engine speed you can calculate the fuel consumption. This way you can figure out if 
the fuel level is supposed to be low because of consumption or some other reason. If 
the fuel level sinks even when the engine speed is low there probably is some kind of 
leakage in the fuel system. One other thing to investigate is if the fuel level suddenly 
increases without any good reason. In this case you can suspect that the fuel sensor is 
broken and that the fuel level is lower than the one told by the instruments. A 
statement like this that can explain the measured sensor data is called a diagnosis. If 
several diagnoses are present it is important to have some method to rank them in 
order of possible failures. 

4.3 Analytical Redundancy 
If there are two or more ways of deciding a variable x using only observed variables z, 
i.e. x=f1(z) and x=f2(z), where f1(z) and f2(z) are different functions, then there exists 
an analytical redundancy. 

The example above mentioned a model for fuel consumption. The outcome of 
the model was compared to a deduced fuel consumption based on measured fuel 
levels over the time. When there is a possibility to calculate the same thing in two 
different ways there is analytical redundancy in the system. This is one of the 
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cornerstones of FDI and when the two ways end up with different values you can 
conclude that the system contains a faulty component.  

4.4 Residuals 
A function constructed the way that it is close to zero when the system is in a fault 
free mode, and apart from zero when a fault is present is called a residual. By using 
the functions mentioned earlier a residual r can be 21 ffr −= . When r is far from 
zero it can be concluded that either f1 or f2 use values inconsistent with the model. 

4.5 Structured Hypothesis Tests 
By examining several residuals it is possible to decide which component that raised 
the residuals. A (binary) Hypothesis test is defined as the problem to choose one of 
two unique states. One example is to choose between a hypothesis, 

presentfaultnoH =1
0  and another hypothesis, presentfaultH =1

1 . The upper index 
indicates the number of the hypothesis test and the lower index separates the two 
hypothesis in a hypothesis test. The Hypothesis Test decides which hypothesis is true. 
To create a hypothesis test a test quantity is needed. A test quantity is a function that 
is close to zero in the fault free case and apart from zero when faults are present. A 
residual is a good example of a test quantity. A test quantity, T1, is close to zero when 

1
0H  is true and non-zero when 1

1H  is true. 
Since noise and model faults exist it is not feasible to demand the test quantity 

to be zero in the fault free case. Instead it is interpreted as zero as long as the value is 
below a certain level or threshold. Another test quantity T2, can decide whether the 
hypothesis 2

0H = no fault or only fault Fl is present or 2
1H = any of the other faults are 

present are true. By using several test quantities, fault detection and isolation can be 
performed. One way to do so is to set up a matrix over the available tests and the 
components to supervise. Figure 4-1 shows a matrix of dependencies between 
components and tests. The matrix is called a decision table, or decision matrix, and a 
cell containing ‘X’ indicates that this component can make the test of that row react. 
A cell containing ‘0’ indicates the opposite; that the component in no way can make 
the test react. 
 
Example:  
Test1 is influenced by Comp1, Comp2 and Comp3. Test2 is influenced by Comp2 and 
Comp4. Test3 is influenced by Comp3 and Comp4. When Test2 and Test3 have 
reacted, and Test1 has not, Comp2-4 can be broken. This is indicated by the circles, 
Test1 is grayed out because it has not reacted.  
 

Dependency Comp1 Comp2 Comp3 Comp4 Reacted 
Test1 X X X 0 False 
Test2 0 X 0 X True 
Test3 0 0 X X True 

Figure 4-1 Example of decision table showing connection between components and tests 
 
Structural hypothesis tests are used to find single-faults and the only component that 
can explain this test result is Comp4 since it affects both Test2 and Test3. 
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Chapter 5  
 
Introduction to Probabilistic Reasoning Systems 

In an ideal world there would be no reason not to trust the test quantities mentioned in 
Chapter 4. An absence of false alarms or missed alarms would be a comfortable 
environment for fault isolation. This chapter explains uncertainty to highlight the 
difficulties that arise when we leave the ideal world. It also covers two systems, one 
that handles uncertainty, and one that does not. Section 5.1 deals with uncertainty and 
explains the difficulties when signals are not reliable. Section 5.2 deals with theories 
not handling uncertainty and section 5.3 deals with theories that does. Most of this 
information is influenced by [8] and [9]. 

5.1 Uncertainty 
A test is supposed to decide if some event has occurred, if some signal is within 
reasonable levels, if the fuel level drops according to the fuel consumption etcetera. 
For all tests a limit has to be set up to separate faulty cases from fault free cases. 
Figure 5-1 shows the upper and lower thresholds for a test that reacts if the sensor for 
the fuel level claims that there is more fuel left than the tank can contain, or that the 
level is lower than zero. 

 
Figure 5-1 Thresholds for some sensor data. 

This limit is called threshold. The work of setting the thresholds for tests is a large 
theory on its own, that’s for example uses likelihood ratio on statistics and adaptive 
thresholds that change the limit depending on the environment. We shall not loose our 
self in this more than to establish two certain rules that always holds:  

Thresholds 

Time 

Fuel level 

Full 

Empty 
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• If the threshold is set too low the test will react on normal behavior in the fault 
free case.  

• If the threshold is set too high the test will not react even when a fault is 
present. 

The first leads to False alarms and the latter to Missed alarms and bring uncertainty 
to the system. 

5.1.1 False Alarms 
If a system that trusts its alarms is exposed to false alarms, the wrong diagnosis will 
be deduced. When all tests react correct the broken component is isolated. If some 
tests react false, i.e. reacts when they should not have reacted, some other, possibly 
functioning, component will be isolated.  

5.1.2 Missed Alarm 
If a system has logical rules based on test results a rule will never be used as long as 
the test results do not suite the rule. If a certain test has to be true for a component to 
be considered broken by a rule, the component will never be considered broken as 
long as this test is false. If this test actually should be true but anyhow returns false a 
missed alarm is present. 
 
This uncertainty has to be handled in order to build a good working decision support 
system. One possibility that has proven to be useful in [8] is Bayesian models which 
is a subset of the bigger theory of Bayesian network, also known as Belief network. 
To understand this possibility, the simpler theory of strict logical reasoning has to be 
studied first. 

5.2 Strict Logical Reasoning 
Strict logical reasoning is a propositional logic that never questions earlier decisions 
[8]. A set of logical rules are put together to give the output. Figure 5-2 shows an 
example of four rules specifying the output. The rule-based logic used in this example 
is exclusive or.  
 

Rule nr Test1 Test2 Output 
1 True True False 
2 True False True 
3 False True True 
4 False False False 

Figure 5-2 Example of rule-based logic 
 
As seen in the figure rule nr 1 specifies that if both test1 and test2 have reacted the 
output is false. If one of the tests have reacted the output is true, according to rule nr2 
and nr3. Rule nr4 says that if both tests are false, the output is also false.  

 Rule-based logic like this will be used in section 6.1 to determine if 
components are broken. The drawback is that the logic gets really vulnerable for false 
and missed alarms. One can see that if Test1 or Test2 gives the wrong answer, the 
output also will be wrong. To handle false alarms as well as missed alarms a theory 
called uncertain reasoning can be used. 
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5.3 Uncertain Reasoning 
The earliest expert systems developed in diagnosis are based on strict logical 
reasoning and did not handle any uncertainty. Rather soon the developers realized that 
this was insufficient for large systems. Expert systems presented later on all contain 
techniques for handling uncertainty. Belief network is the approach we have chosen to 
use. Some other approaches will be mentioned in section 5.3.2. 

5.3.1 Belief Network 
Belief networks are about specifying how possibilities for query are influenced by 
earlier facts, evidence. The notation used is ( )evidensqueryP |  and P(query). The 
latter is used for unconditional, prior probability that the proposition query is true. It is 
important to remember that this probability only is applicable when no evidence is 
known. As soon as other evidence B are known conditional probability P(A|B) should 
be used instead in order to get a more correct calculation. As soon as further evidence 
C is known the conditional probability ( )CBAP ∧|  should be used. The prior 
probability can be seen as a special case of conditional probability when no evidences 
are known. If C does not affect A when B is known, A and C are said to be 
conditional independent and P(A|B) can be used anyway.  

A probabilistic inference system is used to calculate the posterior probability 
for a set of query variables, given values for the evidence variables. This means that 
the system calculates P(query | evidence). A Conditional Probability Table that states 
the probability for a special event given the depending evidence can be set up. Figure 
5-3 shows the probability that Test reacts given that Component1 or Component2 is 
broken or not. The condition nr1 specify that Test will react with a certainty of 95% if 
both Component1 and Component2 are broken=true. 

 
Condition nr Component1 Component2 P(Test|Component1, 

Component2) 
1 True True 0.950 
2 True False 0.940 
3 False True 0.290 
4 False False 0.001 

Figure 5-3 Conditional Probability Table 
 
These values and their origins can be drawn in a topology showing how components 
and test influence the fault detection and isolation. Figure 5-4 displays the topology of 
Fault Detection and Isolation of two components using one test. P(C1) is the 
probability that component1 is broken. P(FDI(C1)) is the probability that C1 will be 
the considered broken by the Fault Detection and Isolation system. The table of C1, 
C2 and P(T) contains conditional probabilities that the test will react given the four 
combination of t=true and f=false. The table of T=test and P(FDI(C1)) contains 
probabilities that C1 will be considered broken given that the test has reacted=t or 
not=f. 
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Figure 5-4 Bayesian network with topology and the conditional probability tables 

The science of Bayes rules is large and need to be read in full in for example [9]. 
Because of that, a further description is left out and the short introduction is only 
present to show that we build our discussion of probabilities for false and missed 
alarms on solid ground. 

5.3.2 Other Approaches 
Several theories for handling uncertainty have been introduced in the field of 
probabilistic reasoning. For the interested readers are four of them are mentioned 
here: 

• Default reasoning 
• Rule-based method for uncertain reasoning 
• Representing ignorance with Dempster-Shafer 
• Representing vagueness with Fuzzy Logic 

Descriptions can be found in [8] and [9]. 

Component1 Component2 

Test 

FDI(C1) FDI(C2) 

C1 C2 P(T|C1,C2) 
t t 0.95 
t f 0.94 
f t 0.29 
f f 0.001 

 

P(C1) 
0.001 
 

P(C2) 
0.002 
 

T P(FDI(C1)|T) 
t 0.90 
f 0.05 

 

T P(FDI(C2)|T) 
t 0.70 
f 0.01 
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Chapter 6  
 
Two Different FDI Methods 

Two fundamentally different approaches to fault isolation will be discussed in this 
chapter. The first approach starts with the list of faulty components generated from 
the existing fault isolation. For each component it uses an agent to investigate the 
status of the component. The agents’ task is to decide whether the component is 
broken or not. The second approach starts by looking at all available tests and tries to 
find out what component that can explain most of the test results.  

6.1 Method 1: Agents 
As described section 2.7, a ranked list of components is generated when faults are 
detected by the existing fault isolation system. The accuracy of this list has to be 
increased and to do this method 1 is invented. 
 The fundamental part of the method is the construction of one diagnostic 
system for each component. Each diagnostic system is denoted an agent. For example 
do AgentX handle componentX. The objective for the agent is to decide if the 
associated component is working or not. The output from an agent is true if the 
component is considered working, and false if it is considered to be broken. If the 
agent has not been able to decide whether the component is broken or not, output is 
unknown. 

A problem is that in order to decide if a component Cx is working; some facts 
about the surrounding components are needed. If Cx uses output from another 
component Cy it is of importance to know that Cy is working. In this case the Agent 
for Cx can call the agent for Cy to get the status of Cy. Figure 6-1 shows how the rules 
decide the outcome of AgentX depending on the outcome of AgentY and Test1. 

  
Figure 6-1 Decision table of AgentX based on AgentY and Test1 

Another example is that Figure 6-1 shows how AgentX decides if Cx is broken by 
calling Test1. Test1 uses sensor data from Cy and therefore AgentY has to be called to 
verify that Cy is working. One possibility would be that Test1 calls AgentY instead 
but this would lead to unmanageable cyclic calls and are therefore not allowed.  

AgentX 

AgentY Test1 

Rule nr AgentY Test1 AgentX 
1 True True False 
2 True False False 
3 False True True 
4 False False False 
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6.1.1 Cyclic Calls 
With a cyclic call is meant that a function calls another function which in turn calls 
back to the first function. This can be done directly or indirectly. When that is done 
indirectly there can be several functions that constitute the cycle and a direct cyclic 
call is between only two functions. The direct cyclic call is illustrated in Figure 6-2, 
where Agent1 calls Agent2 that in turn calls back to Agent1 and thus making an 
undesired cycle. Figure 6-3 shows an indirect cyclic call where four agents call each 
other in a manor that forms a cycle. In both the figures an arrow indicates a direct call.  

 
Figure 6-2 Direct cyclic call 

 
Figure 6-3 Indirect cyclic call 

The direct cyclic calls are for obvious reasons easy to discover and avoid. The indirect 
cyclic calls can however cause a problem. It is to avoid these calls that the hierarchy 
in method 1 exists. To avoid cyclic calls there is a rule who says that calls can only be 
made to functions that are located in a lower level in the hierarchy than the caller. 
Despite this, problems can occur in large applications where it can be difficult to 
know where in the hierarchy functions are. Sometimes it also demands a certain 
amount of redundancy to avoid the cyclic calls. If for example an agent needs to call 
another agent at the same level it would not be allowed to do this and the first agent 
would instead have to call the second agents tests directly. This would accomplish the 
task as a call to the second agent, but with some redundancy necessary. The 
redundancy that becomes necessary is that all handling of the results from the tests 
that are done in the second agent also has to be done in the first. This example is 
shown in Figure 6-4. The figure contains two agents and a set of tests that are being 
called by the agents. The two complete arrows indicate the allowed calls and the 
dotted arrow represents the illicit call that can not be made.   

 
Figure 6-4 Redundancy in the agents 

 

First Agent Second Agent 

 
 

Tests 

Agent1 Agent2 

Agent4 

Agent3 

Agent2 

Agent1 
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6.1.2 The Process of Method 1 
Below follows a description of the process for method 1. This is illustrated in Figure 
6-5 where RUF data is input to the process and a list of components is output. The 
illustration is divided into three layers where layer 3 is the deepest with all the 
different tests. Layer 2 contains all the agents and layer 1 is the comprehensive 
process that controls the underlying layers. 

In the process picture it is shown that layer 1 consist of a function called FDI() 
and it is this one who control which agents that are called. FDI() also handles the 
answers from the called agents and uses these answers to come to conclusions that are 
needed for a good fault isolation.  

All agents exist in layer 2 and they are sorted into a hierarchy. The hierarchy is 
divided according to which component an agent is connected to and how the 
components relate to each other. Some components can contain other components 
which in turn can consist of more components, as is explained in section 2.1. The 
hierarchy is important in order to avoid cyclic calls that otherwise would be a 
problem. To avoid cyclic calls there is a rule that no agent is allowed to call another 
agent what is on the same level in the hierarchy as the caller. Nor is an agent allowed 
to call other agents at a higher level in the hierarchy. It is only allowed to call 
functions downwards in the hierarchy. For an agent to be able to decide if its 
component is faulty it has to call all agents connected to its sub components. A reason 
for agents to call each other is if an agent needs to know if the component connected 
to another agent is faulty or not in order to self be able to decide if it is faulty. 

The agents’ task is to decide if its component is faulty or not and there are 
different tests that they use to accomplish this. These tests are all located in layer 3. 
When the agents have received answers from the tests, they will make a decision 
based on these answers and some rules.  

Figure 6-5 The process of method 1 
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The use of agents has a drawback when there are insufficient sensors. For an 
agent to be able to decide if the component is broken it must have sensors in the 
nearby. If a couple of components are placed between these sensors it is not always 
possible to say which component that is broken when a fault is detected. Figure 6-6 
shows two components placed between two sensors, and if a fault is detected between 
the sensors it is not always possible to isolate the fault to one component. 

 
Figure 6-6 Two agents placed between two sensors 

A possible solution is to see Comp1 and Comp2 as one unit. Figure 6-7 shows a large 
agent covering both Comp1 and Comp2. When Comp1 or Comp2 is listed for 
examination Agent1.2 is called instead of Agent1 or Agent2. If Agent1.2 outputs True 
either Comp1 or Comp2 is broken, and it is time for statistics or other suitable method 
to decide whether Comp1 or Comp2 shall be replaced first. 

 
Figure 6-7 One agent placed between two sensors 

6.1.3 Ranking of Components 
The ability of ranking components after probability of failure given test results is one 
of the demands specified in section 3.2. If the agents indicate more than one 
component as possibly faulty, there is a need to rank these in good way. There is a 
variety of different information that can be considered for this ranking. Aspects that 
can be worth considering are statistics over earlier faults, mean time between failures, 
cost, time to change component and so on. These aspects only use information of how 
components usually failure. Doing like this every component gets a value and the 
component that has been considered broken is put on top of the list. A better ranking 
system would be to also look at how the tests have reacted.  
 This rank can be done since RUF-data that agents and tests work with is 
denoted with timestamps for every sample. The agents are able to specify at what time 
the component is considered broken. Figure 6-8 shows three agents claiming that their 
component is broken. A possible rank is to say that the one indicated first is most 
probably broken, and that this broken component disturbs the other agents to believe 
that their component is broken. 

 

Comp1 Comp2 
Sensor A Sensor B 

Agent 2 Agent 1 

Comp1 Comp2 
Sensor A Sensor B 

Agent 2 Agent 1 

Agent 1.2 
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The demand of a list of components ranked by probability of failure is hard to fulfill. 
In the example above the three agents have answered true at different times. Is it 
really sure that the earliest found is broken? How sure is it and when is some other 
case more probable? Since no general procedure is available to build in knowledge 
about this, the demand is not achieved and instead it is the technician’s job to rank the 
components. 

Figure 6-8 Agent answers in time 

6.1.4 Advantages with Method 1 
• It is easy to automatize the manual fault isolation procedure and do the same 

tests as a technician does. 

6.1.5 Disadvantages with Method 1 
• As will be presented under next headline, all test results has to be considered 

in order to do a correct isolation. This is not an impossible thing for agents but 
it gets rather inefficient since every agent has to contain the rules for all the 
other agents in order to determine if some other agent better explains the test 
results. This implementation ends up with something similar to ESH but in 
every agent, which will be explained in next chapter. 

 

 

Time line 

AgentX=true AgentY=true AgentZ=true 

Engine start Engine shut down 
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6.2 Method 2: Extended Structured Hypothesis Tests 
The problem with agents is that more than one agent can answer True based on the 
same tests. This problem is avoided by using Structured Hypothesis Tests, described 
in section 4.5. Structured Hypothesis Tests evaluates all tests and tries to find one 
component, or a set of components, that could cause the test results. Practically it tries 
to find a component that has an ‘X’ marked for all tests that has reacted. If no 
component has ‘X’ marked for all test, there may be more than one faulty component 
i.e. some test have reacted because of one component and some test have reacted 
because of another, or there may be a test that has reacted wrong, and there are false 
alarms in the test results. The handling of multiple faults is done later and for now 
more focus is put on handling false alarms. To find a false alarm it is possible to 
search for a component that could cause all test results except one test. If a component 
can explain 3 of 4 reacted tests and no component can explain all 4, then the one 
explaining 3 are considered most probably broken. By doing this, more than one 
component may be able to explain 3 of 4 tests, but they explain different tests. Figure 
6-9 shows the decision table of three components and four tests that have reacted. All 
three components can explain 3 of 4 tests. The question is how to pick the one most 
probably broken, out of these three. 
 

Dependency ComponentX ComponentY ComponentZ 

Test1 0 X X 
Test2 X 0 X 
Test3 X X 0 
Test4 X X X 

Figure 6-9 Decision table of three random components 
 

A solution is to look at the tests that could not be explained by the 
components, to see if any of these tests often react when no dependent component is 
broken or if any test almost never reacts this way. If for example Test1 often react 
without a broken dependent component, and Test2 and Test3 never do, it is probably 
ComponentX that is broken since it explains all tests except Test1, and Test1 is not 
trustable. To handle this new information we have extended the structured hypothesis 
tests with an extra matrix and decided to call the method for Extended Structured 
Hypothesis tests, abbreviated ESH. The ESH-matrix is an extra matrix specifying 
values for missed and false alarms. This extra matrix is a complement to the ordinary 
decision table shown above. For tests marked with ‘0’ in the decision table the 
corresponding value in the ESH-matrix specifies the probability of false alarms when 
the component is working. 

ESH ComponentX ComponentY ComponentZ 

Test1 0.9 0.3 0.1 
Test2 0.2 0.1 0.23 
Test3 0.35 0.4 0.1 
Test4 0.4 0.3 0.1 
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Figure 6-10. ESH-matrix with values for missed and false alarms 

False alarms are one part of uncertainty mentioned in section 5.1.2. Missed 
alarms are the other part. Figure 6-9 describes the decision table of reacted test, but it 
is still interesting to look at tests that have not reacted. Figure 6-11 shows the decision 
table for Test5 that did not react. If Test5 is strongly connected to ComponentX and 
always reacts when ComponentX is broken, it is not likely that ComponentX is 
broken if Test5 has not reacted. This information can be handled by Structured 
Hypothesis Tests by putting ‘1’ in the cell corresponding to the component and the 
test. A ‘1’ in a cell means that if the test has not reacted the component can not be 
broken. This is a very hard statement and it is not applicable especially often.  

 
Dependency ComponentX ComponentY ComponentZ 

Test5 X 0 0 
Figure 6-11 Continuation of Decision table in figure 6.9 

 
For tests marked with an ‘X’ in the decision table the corresponding value in the ESH-
matrix specifies the probability of missed alarms when the component is broken. This 
way the ESH-matrix handles the information about how probable false and missed 
alarms are. How to use this information will now be explained. 

6.2.1 The Process of Method 2 
Below follows a description of the process of method 2. This process is illustrated in 
Figure 6-12 and consists of four major steps. The parameters that are sent between 
each step are shown in connection with the arrows. The different steps are described 
in more detail.  

Figure 6-12 The process of method 2 

Step 1 
In this part of the process the amount of hypothesis tests needed to be performed are 
limited. This is to not burden the system unnecessarily much and also to shrink the 
time it takes to perform a fault isolation. If time is not a critical aspect or if the tests 
are not too resource demanding, there is no need for this limitation. 
The limitation is done by checking which hypothesis tests that provides any 
information to the diagnosis of the components in the list. Then only those tests are 
performed. Tests that provide information are first and foremost those that are directly 
affected by the components in the list, but also those that are connected to components 
that affect tests that in other ways contribute to the diagnosis. An example, pictured in  
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Figure 6-13, follows to clarify the limitation procedure. The figure shows the same 
decision matrix in two different steps in the limitation procedure. The arrows indicate 
which tests that in the end has to be performed. 
Say that component c1 is the only one in the list of possibly faulty components. First 
and foremost every test that affect c1 must be performed (t1 and t3). Then a check is 
made for any further components that affect the so far chosen tests (the only new 
component is c4, which comes from t1). All tests that are affected by the new 
component are also added to the list of tests that has to be performed (test t2 are 
affected by c4). These additional tests contain information that can be used to dismiss 
components as faulty. So far the tests that have to be performed are t1, t2 and t3. The 
latest added test (t2) is affected by c3 and c4. Component c3 are new and tests that 
affect that one must also be added to the list of tests that has to be performed. In this 
way the procedure continues until no new tests are found. In this example, c3 does not 
result in any new tests and the procedure is finished.  
 

 
 
 
 
 

 

Figure 6-13 An example of how the tests are limited 

 
Step 2 
In step 2 the chosen hypothesis tests are performed and information about when and 
which tests that reacted are sent to step 3 in the isolation process. This step also 
includes some sort of handling of the time aspect. A detailed description about the 
time aspect can be found in section 6.2.3. The handling of the time aspect is necessary 
so that the next step in the process can make an easy and flawless isolation. 
Step 3 
In this step of the process, conclusions are made with help from the results from the 
hypothesis tests. The result of this step is a ranked list of components with a 
corresponding score that states how likely it is that a component is faulty. The list of 
components can contain additional information, like for example number of false 
alarms and which they are. The number of false alarms for each component can be 
calculated by comparing which hypothesis tests that has reacted to which components 
they are affected by. If a test has reacted that is not affected by a component, that 
component has a false alarm. What is meant here is that if it is this component that is 
faulty there has been a false alarm. If there is a component that affects every test that 
has reacted, this component has no false alarms. In this way the number of false 
alarms for each component can be calculated. Missed alarms can also be calculated in 
a similar way. If a component affects a test that has not reacted, that component has a 
missed alarm. For every test that has not reacted and affects a component, that 
component has a missed alarm.  

 c1 c2 c3 c4 c5 c6 
t1 X   X   
t2   X X   
t3 X      
t4  X   X  
t5      X 

 c1 c2 c3 c4 c5 c6 
t1 X   X   
t2   X X   
t3 X      
t4  X   X  
t5      X 
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The information about missed and false alarms is then used to rank the components in 
order of most probable faulty. How the ranking of components is done is presented in 
section 6.2.2. 
Step 4 
Since it can be desirable to have more information than just the score from step 3 in 
mind when the components are ranked, step 4 exists to take care of this. Further 
information that can be used for this part of the ranking is for example MTBF, expert 
knowledge, statistics about earlier maintenance and so on. Here different weights are 
added to different information and everything is weighed together to sort the list of 
components in the order of which to change or inspect first. This step in the process is 
not implemented in our application, but is still included here to show a probable 
continuation on the treatment of the data returned from step 3. The reason step 4 is not 
implemented is that it has no direct connection to the fault isolation itself or to the 
method that is used in this thesis. The fault isolation process has already generated a 
list of components with belonging scores and if one chooses to trust it or not is a 
different issue. Naturally it can be in Saabs interest to include other aspects when they 
decide which component in the aircraft that should be changed, but this is outside the 
scope of the fault isolation process. 

6.2.2 Ranking of Components 
A list of components to change has to be produced and a score shall belong to each 
component. The component with the highest score is the one to change first and shall 
be put on top of the list. Different ways of giving the components its score are 
available, here are two ways mentioned and one of them is used in Method 2. Both of 
them use the test results, the dependency matrix mentioned in section 4.5 and the new 
ESH-matrix.  
 
How all tests are split up into four subsets is shown in Figure 6-14. This is done for 
each component. If a test is dependent on the component it is put in the left half, 
otherwise it is put in the right. If the test has reacted it is put in the upper half, 
otherwise the lower. 

 
Figure 6-14 Set of tests divided into four subsets 

 
Rewarding scoring 
The first of the two scoring system is a rewarding system. It starts with the initial 
belief that every component is working, and the value for each component is initially 
set to zero. When a test indicates that a component may be is broken the value for that 
component is increased. The fault isolation is only used when a fault has been 
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detected and the assumption of present faults in the system can be made. When a test 
has reacted it is an indication that one of the components depending on the test is 
broken. Therefore the values for all depending components are increased. When a test 
not has reacted it is an indication that one component that is not depending on the test 
is broken, and the values are therefore increased for all components that are not 
depending on the test. Figure 6-15 shows the subsets of tests used in rewarding 
scoring.  

 
Figure 6-15 Subset used in rewarding score 

 
Punishing scoring 
The second of the two scoring system is a punishing scoring. This is the one we have 
chosen to use. It starts with the initial belief that every component is broken, and the 
value for each component is initially set to one. This is in the range of one to zero. 
When a test indicates that a component may be working the value for that component 
is decreased. The assumption is done that there are present faults in the system. When 
a test has reacted it is an indication that a dependent component is broken and 
therefore it is also an indication that an independent component is working and the 
value is decreased for all independent components.  If a component is broken its 
dependent tests would react, therefore it is an indication that a component is working 
if its dependent tests have not reacted. Consecutively the value for all dependent 
components is decreased. Figure 6-16 shows the subsets of tests used in punishing 
scoring. 

 
Figure 6-16 Subsets used in punishing score 

 
Since it is known from Chapter 5 that false and missed alarms are of interest is the 
punishing scoring is suitable. Missed alarms are strongly connected to dependent tests 
that have not reacted, and false alarms are strongly connected to independent tests 
that have reacted. 
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To get a scoring system that grade the component from 0 to 100 percent, i.e. 
from zero to one, we have choose to multiply the values belonging to the tests in the 
two subsets. All values is within the interval [0, 1]. This gives 

  (1) 
the ‘1’ after the equal sign is the initial value. 
Figure 6-17 shows the same subsets as Figure 6-14 but rewritten with a new notation. 

 
Figure 6-17 New notation of subsets 

Every part is defined as:  
dependT  Set of reacted tests depending on Ci. 

dependT¬  Set of not reacted tests depending on Ci. 

independT  Set of reacted tests not depending on Ci. 

independT¬  Set of not reacted tests not depending on Ci. 
This new notation is used in (1): 
 ( ) ( )∏∏ ⋅¬⋅= independidependi TCPTCPresultsTestCiValue ||1)|(  (2) 
where P(Ci|¬Tdepend) and P(Ci|Tindepend) will be derived. To do this and to make the 
fault isolation system working we need knowledge from the world it is going to work 
in. The knowledge has to be specified by experts on the aircraft, experts who created 
the tests, and statistics from earlier repairs and flights. To keep it simple they only 
need to specify one sort of probability and it is the probability that a certain test reacts 
when a certain component is broken: 
 ( ) jiCTP ij ,| ∀  (3) 
P(Tj|Ci) is the value that shall be stored in the ESH-matrix. 
Bayes rule used on (3) gives the following two equations:  
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Where only P(Ci) and P(Tj) are unknown. P(Ci) is the probability that a component is 
broken and the value can be calculated by statistics. We have chosen to use the value �  (alfa) for every component to not favorise or punish any component. This means 
that it is equally possible that component-x breaks as if component-y breaks. If this 
choice is proven to be bad it can easily be changed later on in the development. To get 
P(Tj) the following discussion is used: Assume that tests are rather well designed and 
that false and missed alarms are unusual exceptions. If so it is fair to say that the 
probability of a test is the same as the probabilities that the components that influence 
the test break: 
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Since the components are chosen to have a low probability of failure P(Ci) are 
assumed to be very small. This assumption gives: 
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because all products are neglected. 
 
To summarize (1) is written as 
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An analysis shows that if the number of factors in any of the two products is 
increased, the total value of Ci is decreased. This is desirable since more terms come 
from more missed or false alarms. 

6.2.3 Consequences of Similar Tests 
If two tests are very similar, uses the same sensors and always react the same, the 
same probability is multiplied several times. If the tests reacts as false or missed 
alarms they will be multiplied together with the other false or missed alarms and a 
square term of the two tests are received. A solution is to change the tests probability 
depending on the dependency and the value moves closer to yprobabilit than 
probability. When several tests are dependent the probability value can be distributed 
among them so the product will be the original value used if the tests were grouped 
together as one single test.

6.2.4 Time Aspects 
All tests are performed within a given time interval. If a test react during the interval 
the answer is true, if it does not the answer is false. Whether or not the test would 
react outside the interval is not of interest. If the data used in the test are not available 
for some reason, i.e. this kind of data are only recorded during some conditions, the 
answer is Unknown. An interesting problem is to choose what time interval to use. 
Shall the entire flight be used, just a couple of minutes surrounding the time when a 
fault was detected by the aircraft or maybe the ten latest flights for the aircraft. If a too 
short interval is used the possibility of missed alarms is increased. If a too long 
interval is used the possibility of false alarms is increased. The latter depends on that 
during a long interval several different flight conditions do occur and within each one 
can different tests react without any faults in the system. The time aspect is therefore 
another possible value of adjustment that has to be adjusted when the full scale 
implementation is done. It should be mentioned that if short intervals are used another 
problem appears. At what time shall we start and stop and shall we look at several 
intervals? Figure 6–12 show the time for one flight split into four intervals. Intervals 
like these are often called time windows. A fault has been detected by the aircraft in 
the second window. 
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Figure 6-18 Problems with time windows 
 
There are no guarantees that the fault actually did happen during the second window. 
It could be the case that it just was not able to be detected earlier. In this case several 
windows have to be taken in account and every window can produce different 
diagnosis based on the reacted tests, and like the agents it is now up to the technician 
to decide which component to replace. We choose to recommend one time window 
starting when the engine starts and ending when the engine is shut down. This is to 
simplify the fault isolation and to avoid getting different diagnosis’s for different part 
of a flight. 

6.2.5 Advantages with Method 2 
• Since all information is gathered in one place, it is practical to make the 

decisions in one place. 
• It is possible to calculate and prove which components those are able to be 

isolated and with this information add extra tests to isolate more components. 
The adding of tests can be done both in the aircraft and in the post-process.  

6.2.6 Disadvantages with Method 2 
• Structured Hypothesis tests are actually not made for components with several 

failure modes (when a component can break down in different ways). The 
presence of different failure modes force tests for the different failure modes. 
When a component is in one failure mode, tests for the other modes will not 
react and appear as missed alarms. This will lead to more detailed decision 
matrices with the components divided into failure modes, but the theory 
should still be working. 

6.3 Similarities to Strict Logic and Uncertain Reasoning 
It is now time to connect chapter 3 and 4 by explaining the similarities between 
Agents and strict logic as well as between ESH and uncertain reasoning.  

Regardless of the inner design of agents they act as logic units. They get the 
input from surrounding agents and tests in form of true/false/unknown. Figure 6-19 
shows a rule-based logic used to decide the agents output depending on the inputs. 
Rule nr 1 specifies that if Test1=True and if Test2=True, the agents output is False. If 
an agent wrongfully accuses its component to be broken, i.e. wrong rule is used, no 
other agent will discover this mistake and instead it will be handled as a fact that the 
component is broken. 

 
Rule nr Test1 Test2 Agent output 

1 True True False 
2 True False True 
3 False True True 
4 False False False 

Time line 

Fault detected 

Engine start Engine shut down 

Time windows 
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Figure 6-19 Rule-based logic for agent 
 
Extended Structural Hypothesis Tests has a matrix with values for all possible 

combinations of tests and components with specified values of how probable false and 
missed alarms are. Method 2 handles all this information and weighs presence of false 
and missed alarms against each other when deciding which component to repair. The 
uncertainty is therefore fully handled.
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Chapter 7  
 
Method 1 vs. Method 2 

To evaluate the two approaches an examination of how they fulfill the demands 
specified in section 3.2  is described below. When one method is considered better 
than the other, the better one is described first to easily understand the drawback of 
the other. M1 is short for Method 1, and M2 is short for Method 2. 

7.1 Demands on the Approaches 

7.1.1 Deterministic Fault Isolation 
Both methods can be handled in editions and fulfill this demand. In Method 1 an 
edition will consist of new and updated agents that will be added to the program. An 
new edition for Method 2 consists of new hypothesis tests and new updated matrices. 
For information about which matrices that is used in Method 2, see section 8.3. 
Method 2 has the ability to be trained in field if the demand will be changed. 

7.1.2 Usable for a Less Experienced Technician 
Method 2: The system does all decisions by it self as long as the time interval is 
adjusted correctly. It needs no extra interpretation of a technician. The component 
ranked as number one is the one to change. 
 
Method 1: A technician is needed to decide if the first detected component is the one 
most proper to repair. This means that the technician must be more experienced to use 
M1 than M2, and that M1 does not fulfill this requirement. 
 
Which one of the methods has the best ability to convince the technician that the fault 
isolation isolate the correct component? 
Method 2: It is possible to show which tests that have reacted and to show which can 
be explained by different components. It is also possible to show that a component is 
not broken since some tests did not react. To show how many of the reacted tests that 
every component can explain is a good measure of how accurate the diagnoses are. 
 
Method 1: Every agent that has reacted explains the reason for this by itself. This 
gives good information of each component but very poor information of the 
dependency between components. It is hard to choose between two components, 
especially if the agents show results from the same tests. It is even hard to show that a 
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component is considered working with the only evidence that the agent did not deliver 
a true. 

7.1.3 Application vs. Information 
Method 2: The information is kept in a matrix of crosses and a matrix of 
probabilities. If a component is upgraded to a later version some crosses and some 
probabilities may have to be changed. All information can be kept in Microsoft Excel 
sheets and loaded when the application starts. 
 
Method 1: The information is kept in the agents. Each agent has information about its 
component. Since the agents are just rule-based logic, these rules can be kept in a 
separate file and loaded to the agents upon start. The upgrade of a component leads to 
new rules in this file and would be rather straight forward. In a later development 
smart agents with AI can be used and the information is built into each agent and is no 
longer separated from the application. 

7.1.4 Configuration Management 
Method 2: The components in the present examined aircraft control which tests to 
run. In the beginning the program has access to all tests but sorts out the tests not 
applicable for this aircraft. 
 
Method 1: The components in the present examined aircraft control which agents to 
load. This results in some problems in the logic rules. We may need some special 
rules for special sets of components. This is easy as long as only one component in 
each rule is upgraded but otherwise this could lead to a combinatorial explosion of 
rules. 

7.1.5 Maintenance 
Method 2: Maintenance is to create new tests, update the matrix of crosses when 
realized that some additional components are dependent of some test, and update the 
matrix of probabilities, the probability table, to tune the accuracy of the system.  
The creation of a new test requires knowledge about the aircraft and RUF but not on 
the program. The insertion of the new test into the system is done by a beautiful 
solution explained in Chapter 8 that makes it possible to insert tests without writing 
one single line of code. In fact, as long as the technician can make new tests he can 
also add them to the fault isolation. 
 
Method 1: Maintenance is to create new tests, update the rules for the agents, and to 
create new agents. The first two is rather simple but to insert a new agent a lot of 
knowledge both about aircraft and the FDI is required. A new agent has to be called 
by other agents and these agents’ rules must be updated to use the information from 
the new agent. 

7.1.6 Expansion 
Method 2: To gather tests for all subsystems in the aircraft to a large ESH is possible. 
It is also possible to split up the tests in an ESH for each subsystem, and for each 
subsystem add a dummy component called fault in subsystem-X. If fault in subsystem-
X explains most test results the ESH for subsystem-X is used instead. 
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Method 1: Building agents for every component is possible. It is also possible that 
they call agents in other subsystems. Similar to ESH, agent-Subsystem-Y can be called 
by all agents in subsystem-X if they suspect a failure in subsystem-Y. 

7.1.7 Multiple Faults Isolation 
Method 2: ESH can handle multiple faults but it is not easy to do it in an efficient 
way. For each component a check against the other components is done. If tests have 
reacted that for component ci is Tindepend, then a component cj that has these tests in 
Tdepend can explain these test results. If now cj has some reacted test is Tindepend that is 
in Tdepend for ci it is fair to suspect that both components are broken since the set of 
Tindepend becomes smaller. The complexity is O(N2) since there are two nested loops 
through the components, where N is the number of components. When these two 
components have been found, a third loop can be done to find triple faults with 
complexity O(N2)+ O(N) �  O(N2). 
 
Method 1: The agents react independently so several agents can explain its 
component to be broken. This means that the system can handle multiple faults. The 
problem is that the system can not tell whether there exist single or double faults so 
the technician will probably always believe that only a single fault is present and that 
some agents have reacted incorrect. 

7.1.8 Ranking of Components 
This demand has already been handled by 6.1.3 and 0 and will therefore not be 
repeated. 

7.2 Conclusion from Chapter 3-7 
The agent structure is a reasonable first thought. It resembles the way technicians 
manually do fault isolation. Unfortunately this structure has several drawbacks in 
many of the demands. Several agents can react upon the same signals and even 
present the same facts when they explain their results. No good way has been found to 
build in all knowledge in the system so the technician does not need to do half of the 
isolation manually. The advantage with agents is that event flow can be followed: 
First the tank pressure regulator broke, secondly the valve unit, and third the transfer 
pump stopped. The technician has to realize that this event flow depends on that if the 
tank pressure regulator breaks, the valve unit can work properly and will not conduct 
the fuel the right way and if no fuel arrives to the transfer pump it stops. In some case 
the agents can contain this knowledge but the links are not always as simple as this. 

Method 2 solves all problems. The tests for the valve unit and the transfer 
pump know that they can react if the tank pressure regulator is broken. The test for the 
regulator can not react when the valve unit or the pump is broken so the only valid 
diagnosis that can explain the test results is the regulator, and the other “faults” will 
not even be proposed. 

Method 2 solves the problem of what to display for the technician. It will be 
the list of components, the probability of each component and a number of false 
alarms that has to be present for the component to be a diagnosis. We can present the 
tests that have and have not reacted for a component and we can also explain why a 
component is not broken. 

Finally possibility to detect multiple faults in the ESH and the elegance of 
introducing new tests the must be repeated. These are two major advantages with ESH 
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that makes the fault isolation much more accurate than even the best technician with 
unlimited time can produce.
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Chapter 8  
 
Implementation 

This chapter contains a closer description about how method 2 was implemented. This 
method did not have the drawbacks that method 1 had and that is the reason we chose 
to implement method 2. Even though they are two different methods, they would still 
have pretty much in common in the implementation. The common parts are those at a 
lower level in the implementation hierarchy, i.e. the specific tests that are performed 
on the RUF data. The hypothesis tests used in method 2 are described in more detail 
in section 8.2.

8.1 Implementation of the Framework 
This section contains a description of how method 2 was implemented and each step 
in the process is described in more detail. In Figure 8-1, the main functions in the 
process are illustrated and also the parameters sent between the functions are shown in 
form of arrows. The dotted arrow in the beginning of the process indicates that there 
are no variables sent between the first two main functions. But it is still there to 
represent the flow in the process. Each main function calls some important 
subfunctions and these are shown under respective main function. How the functions 
relate to the different steps in the process is also shown in the figure. For more 
information about the variables used in the implementation see section 8.3. 

Figure 8-1 Implementation of the framework 
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The RUF data and the Event list are global parameters and are available in all the 
steps in the process. However they are only used in step 1 and 2, which will later be 
explained in the process pictures of the respective steps. 
Just like the RUF data and the Event list, the four different matrices (SHmatrix, 
SH2matrix, function2NameMatrix and alarm2CompMatrix) are read into the process 
before step 1 and are all global variables. The four matrices are explained in detail in 
section 8.3. Reading of all the global variables are handled by the function loader(), 
which in turn uses the two functions named readFlight() and readMatrixes() to do the 
job. readFlight() reads the RUF data and the Event list, while the matrices are read by 
the other function. 

8.1.1 Step 1 
In this step the alarms that have been triggered are extracted from the Event list, 
which in turn are used to make a list of possibly faulty components. This list is in the 
application called compList. The mapping between alarms and components are 
specified in alarm2CompMatrix. This is a matrix that simply holds information about 
which components that can be faulty when specific alarms are raised. A limitation of 
the amount of tests that needs to be performed is made with help from the variable 
compList. The function addTest() is used to add hypothesis tests to the list of test that 
shall be performed. This is done in the way described in section 6.2.1.  
In Figure 8-2 a more detailed picture of step 1 in the isolation process is presented. 
The dotted arrow has the same meaning as in Figure 8-1. The list of tests that shall be 
performed are in this picture called testList and are sent from testLimiter() to 
testPerformer(). 

 
Figure 8-2 A detailed picture of step 1 in the implementation 
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In Figure 8-3 below, there is a more detailed illustration of step 2 where test 1, 2 and 3 
has been performed. Therefore there are only arrows from the first function to these 

three tests. There are two major parts in step 2. The first one is a comprehensive 
function that controls which hypothesis tests to call on the basis of the testList. The 
second one is a function that handles the time aspect of the results from the tests. The 
first part includes two functions, timeDecider() and funcNameBuilder(). timeDecider() 
determines a start and a stop time for every test that is to be performed and for more 
information about how this is done see the time variables in section 8.3. The other 
function builds the function names for the tests and evaluates them in order to execute 
the tests. The hypothesis tests have among other things RUF data and a time interval 
as input. The output from a test is a timeArray, which indicates if the test has reacted 
or not. This variable is further described in section 8.3. After all the tests have been 
performed, the results are put together in a variable of type testResult. This variable is 
first treated with regard to the time aspect in the function timeHandler(), then it is sent 
on to testHandler(). For more details on how the time aspect is handled see section 
8.4. 

Figure 8-3 A detailed picture of step 2 in the implementation 

8.1.3 Step 3. 
In the first part of step 3 the number of false alarms and missed alarms for each 
component is calculated. Not just only the number of missed and false alarms are 
calculated, but also which alarms it is. This information is stored in a temporary 
variable and later used to calculate a score for each component.  

The variable reactList is used when the false alarms is determined. This is 
done in the following way. The content of each row in reactList is compared to the 
testReact list. The difference between the row and the list is the false alarms for the 
corresponding component. This is true because the row contains every test that has 
reacted and also is affected by that component, and the list contains every test that has 
reacted. The difference between these two sets is the false alarms. This is the set of 
independent alarms that has reacted, as mentioned in section 6.2.2. 

reactList is also used when the missed alarms are determined. This is done by 
again comparing a row in reactList with the set of all depending tests for a 
component. As mentioned, a row in the matrix contains the set of all dependent tests 
that has reacted for a component and the set of every dependant test is received from 
SHmatrix. Tests that is affected by a component is represented by a value in the 
corresponding column in SHmatrix.  

In the second part of step 3 a score is calculated for each component and a 
ranking of the components are done. This ranking is done with the use of the false and 
missed alarms in the way described in section 6.2.2. The ranking and score is then 
stored in the variable fdiResult which is presented to the user. A detailed description 
about the variable fdiResult is found in the section 8.3 

Test 4 

 
timeDecider() 
funcNameBuilder()  

 
timeHandler() 

 
testList 

Test 1 

Test 2 

Test 3 

RUF-data 

testReact 
testResult  



42 Chapter 8 Implementation 

 

In Figure 8-4 is a detailed illustration of step 3. The figure shows how the 
finding of false and missed alarms is done before the score for each component is 
calculated. This is necessary because the result from the first part is used in the second 
part where the score is decided and the ranking is done. 

 
Figure 8-4 A detailed picture of step 3 in the implementation 

8.2 Hypothesis Tests 
This section contains a description of the different hypothesis tests that were 
implemented. Some of the tests are more complicated than others and a declaration is 
therefore required to understand the tests. A hypothesis test always returns a variable 
of type timeArray and all tests have the same kind of input parameters. These input 
parameters are always received in the same order, which is first data then an Id 
variable and finally a startTime followed by a stopTime. A test is structured like this: 
timeArray = TestX(data, id, startTime, stopTime). The reason 
for the fixed order is to simplify the insertion of new tests and to separate the 
application from the information. 
 
checkTankOrder() 
This function consists of three tests that checks three different tank empty orders 
depending on which tank that was stated in the call. With tank empty order means a 
certain order in which the fuel tanks in the aircraft are emptied. The order in which the 
fuel tanks in the aircraft should be emptied is gathered from section 2.3.1, and is: LD 
+ RD �  CD �  LW + RW �  T2 + T3 �  T1. The reason why the tank empty order 
are divided into three tests are to avoid one big test that is affected by many 
components. Tests that are affected by many components make it harder to isolate the 
correct component and preferably avoided. The first test checks if the left and right 
drop tank is emptied before the central drop tank starts to defuel and if the drop tanks 
are empty before the wing tanks are starting to defuel. The second test checks if the 
wing tanks are emptied before T2 and T3 becomes empty. The third test checks if T2 
and T3 are empty before T1 is starting to defuel. 
 
findPlateau() 
The function findPlateau() checks if there is a plateau in the graph that shows the fuel 
quantity for a tank, i.e. if the fuel quantity remains constant over a period of time. A 
plateau in a tank does not necessarily need to be due to a faulty probe, it can also 
depend on a faulty valve. Because of this, tests are only implemented for the different 
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tanks that are connected to a valve in ARTU. It is no problem to extend this for other 
tanks that are connected to FRTU. 
 
findJump() 
The hypothesis tests for detecting jumps in the graphs that shows fuel quantity are 
divided into two categories. These are findJumpUp(), that finds a jump upwards in the 
graph, and findJumpDown(), that finds a jump downwards. With a jump up or down is 
meant an unnaturally big increase or decrease of fuel (y value) during a shorter period 
of time (x-interval). The reason that the tests are divided into up and down is that it is 
not the same components that affects the tests. For example a faulty valve conveys 
that a tank connected to it becomes immeasurable, which in turn leads that the 
remaining amount of fuel in the tank is withdrawn from the displayed fuel quantity 
and results in a downward jump in the graph. This is why findJumpDown() is affected 
by a faulty valve, while findJumpUp() is not.  
 
checkProbeFW() 
This function conveys of different tests that checks if a Failure Word for a probe has 
been set. These tests do not exist for the drop tanks because of the simple fact that the 
RUF data does not contain any variables that indicate FW for those tanks. There are 
however tests for every other fuel tank in the aircraft. A RUF variable that indicates a 
FW for a probe is probably set if the probe gives values outside of certain boundaries. 
Because of this a probe can be faulty without checkProbeFW() reacting. 
 
checkProbeAndSensor() 
The tests that are included in this function checks if the displayed fuel quantity 
matches with the indications from the current sensor of a fuel tank. There are two 
types of sensors, HLS (High Level Sensor) and LLS (Low Level Sensor), and they 
indicate if there is too much fuel in a tank respectively if a tank is almost empty. The 
low level indicators in the drop tanks are switches instead of sensors, but their 
functionality is the same. It is not every tank in the aircraft that has one of these 
sensors and the tests are only implemented for the ones that does. If the sensors’ value 
does not match with the fuel quantity the test reacts. The checkProbeAndSensor() 
reacts for example if the RUF variable for a HLS is set and the tank is not full or if a 
variable connected to LLS indicates that a tank is almost empty but the graph that 
shows fuel quantity says it is not. 
 
checkOpenFault() 
This function checks a RUF variable that contains a FW for ARTU. This FW 
indicates if there is an open fault at any valve in ARTU and are therefore affected by 
all its valves. It is uncertain what an open fault exactly indicates and this is discussed 
in section 8.7. 
 
checkAccessOK() 
The tests in this function checks if the aircraft has access to all fuel tanks that are 
connected to ARTU. If a tank is not accessible this can be due to a faulty valve. The 
tests only include fuel tanks that are connected to the ARTU, since there only exists 
RUF variables for these.  
 
checkMeasurable() 
These tests check a RUF variable that indicates if a fuel tank is measurable or not. 
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With measurable means that the amount of fuel in a tank can be measured and if this 
is not possible it could be due to a faulty probe. There can be other reasons to why a 
tank is not measurable and perhaps they should be prerequisite to this function. This is 
an issue that is deeper discussed in section 8.7. 
 
checkOutOfBounds() 
This function contains tests for every fuel tank in the aircraft and what is tested is if a 
fuel quantity is illicit. An illicit fuel quantity exists if a tank shows to contain more 
fuel than it is physically possible or if the fuel quantity is shown to be less than zero. 
The tests in checkOutOfBounds() are affected by faulty probes. 
 
checkValveFW()  
The tests contained in the function checkValveFW() checks if a FW for a valve in 
ARTU has been set. Since this thesis is limited towards the ARTU, no tests for the 
other valves in the fuel system have been implemented. It would be possible to extend 
the function for every valve since RUF contains variables for them all. 
 
checkIdFW() 
These tests check a FW that indicates if any drop tank has an id failure. An id failure 
occurs if the aircraft can not identify a drop tank and this can be due to a faulty 
connection between the aircraft and the drop tank. There is also a RUF variable that 
indicates a general id failure for all the drop tanks.   
 
checkSensorFW() 
The tests in this function checks if a FW for any sensor or switch has been set. There 
is a high level sensor in the Vent Tank (VT) that is tested and also the low level 
switch in the drop tanks is tested. For a location of the VT, see Appendix A. Further 
on the low level sensors in the wing tanks and in T1 are tested.

8.3 Variables, Constants and Data Types. 
This section contains a description of the variables and constants that are used in the 
application. Some of the variables are also own defined data types and has a more 
significant role in the program. How the variables and constants are passed and used 
in the application is described in section 8.1. The variables that are own defined data 
types are timeArray, nrOfZero and the variables that contain the results from the 
hypothesis tests. 
 
Data and Event list 
Data is a global constant that contains all the RUF data. It can be said that data 
contains variables since it contains all the RUF variables. It is the variables in data 
that the hypothesis tests examine when they are performed. The constant data is 
global for the entire process but are mostly used by the hypothesis tests. 
  
Event list is a constant that is strongly connected to data and it contains 
comprehensive information about the flight. This information consists of times when 
different events occurred. The events can for example be time for take off, the time 
when different alarms happened and time for touch down. 
 
Time variables 
There are two variables that states what time during the flight that a hypothesis test 
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should begin and end. In other words which part of the flight that should be tested. 
The variables are called startTime and stopTime and are as default set to time for take 
off respectively time for touch down. This can however be changed to an arbitrary 
value by the user. The variables are input parameters to every hypothesis test and are 
set in a function called timeDecider(). The time in the variables are given in 
milliseconds. 
 
timeArray 
timeArray, also called TA, is a self defined data type that contains the answer from a 
hypothesis test. The output from the tests is for that reason always a TA. The variable 
includes two fields; one is called time and it contains a time stamp for when a 
sequence begins or ends, the other is called status and it indicates if the time stamp is 
the beginning or the end of a sequence. With a sequence means a time period when 
the test connected to the TA has reacted. For each time stamp in TA there is a 
corresponding status variable and if it contains a ‘1’ this indicates the beginning of a 
sequence. A ‘0’ in the status variable indicates the end of a sequence. A timeArray is 
illustrated in Figure 8-5. The figure contains two different approaches to illustrate a 
TA. The first is displayed along a time axis with the sequences represented as blocks. 
The second is in matrix form and closer to the implementation. If a TA contains a 
sequence it means that the test that returned the variable has reacted during the time of 
the sequence.  
 

 
Figure 8-5 timeArray 

 
Lists 
There are a few different lists that are used in the application. One of these lists is 
testList which holds the number of every hypothesis test that shall be performed. After 
the function testLimiter() has limited the number of tests that shall be performed this 
information is stored in the testList and later used when these tests are performed.  
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There is a list that is called compList and it contains the components that are possibly 
faulty. This list is determined on the basis of the alarms that is raised and is later used 
by testLimiter() when it decides which tests that has to be performed. 
 
testReact is a list that holds which hypothesis tests that has reacted during an isolation 
process. This list is among other things used to map a test against a result from the 
variable testResult. The first position in testReact contains information about which 
hypothesis test that has given the result that is in the first position in testResult. 
 
Matrices 
There are four different matrices that are used in the application and they are all 
loaded into the program from Microsoft Excel. 
 
SHmatrix 
The most important matrix of them all is the decision matrix, which contains 
information about probability between depending components and tests. You could 
say that the values in the matrix states how probable it is for a component to be faulty 
when a depending test has not reacted (a missed alarm), or in other words how good a 
test is at detecting a faulty component. This is described in section 6.2.2 in more 
detail. SHmatrix also holds information about which components that affect different 
tests. If a component affects a test, this is represented with a value at the 
corresponding position in the matrix. 
  
SH2marix 
Just like the matrix above, this also contains probability values between components 
and tests. The difference is that the values in SH2matrix are probabilities for 
independent test that has reacted, in other words the probability that a component is 
faulty when an independent test has reacted. The subsets represented in both SHmatrix 
and SH2matrix are illustrated in Figure 6-16. The solution with SHmatrix and 
SH2matrix differs from the theory described earlier using a decision table and an 
ESH-matrix. The information in the SH-matrices is the same as in the theory but it is 
only represented in another way.   
 
function2NameMatrix 
This matrix contains a list of text strings with parts of the function names for the 
hypothesis tests. Every row in the matrix holds a part of a function name that 
corresponds to a test in any of the SH matrices. This string is used in the application 
to build a complete function name and is later evaluated in order to make a function 
call to the test that shall be performed. 
 
alarm2CompMatrix 
When the application shall limit the number of tests it has to perform, it uses the 
alarm2CompMatrix. This matrix holds information about components that possibly 
can be faulty when a certain alarm has been raised. This connection is described in the 
Aircraft Maintenance Publications (AMP37). Earlier fault isolations have shown that 
the connection in AMP37 is not entirely complete. This leads to that the list of 
possibly faulty components must be increased with additional components with the 
help from people with expert knowledge. 
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Test result 
The results from the different hypothesis tests are saved in a variable that is called 
testResult. This variable is a vector that contains a timeArray in every position, which 
is a natural structure since every position corresponds to the result from a test that has 
reacted. It is only the result from reacted tests that are stored. testResult is created in a 
function called testPerformer() and are sent to a function called timeHandler() where 
it is modified to testResultTH. The difference between the two variables is that the 
later is adapted in accordance to how the application handles the time aspect. In other 
words the testResultTH is a time handled testResult. The last two letters (TH) in the 
variable name stands for Time Handled. This time adaptation is necessary for an easy 
interpretation of the test results. 
 
reactList 
This variable is a matrix with three dimensions that corresponds to component, tests 
that has reacted and are affected by a component and finally time. The number of 
columns in the matrix is equal to the number of tests that has reacted, which is the 
same as the size of testReact. The size of the dimension for time is equal to the 
number of time windows for the flight and the size of the dimension for components 
is equal to the number of components in the decision matrix. It would be possible to 
make a reduction of the dimension for components since the only ones interesting is 
the components that affect any of the tests that has reacted.  This would not lead to 
any greater benefits, so it has not been done. reactList is as mentioned a matrix and it 
contains for every component which tests that has reacted and are influenced by the 
component. An example of how reactList can look like is shown in Figure 8-6. For 
each test that has reacted but does not affect a component in the matrix there is a zero 
in that components row. The matrix is among other used to calculate the number of 
false alarms for a component. How this is done is described in section 8.1. 

 
Figure 8-6 reactList 

 
nrOfZeros 
This is an own defined data type that in large can be described as a summary of 
reactList. The information stored in nrOfZeros is actually the number of zeros that 
each component have in its row in reactList. In other words the number of zeros in 
each row in reactList is counted and the sum is stored in nrOfZeros. The variable 
consists of three different fields and they contain information about how many zeros 
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each component in reactList has. They are also sorted in ascending order with the 
lowest number of zeros first. The structure of the variable looks as follows: 
nrOfZeros(TW).rank(x).comp / .FA. The foundation of nrOfZeros is a vector where 
each position corresponds to a time window and contains another vector that is a 
sorted list of the components with least amount of zeros first. Since the application 
uses one time window, the first vector (nrOfZeros(TW)) has no real function and 
exists only for extension possibilities. The vector rank(x) has two fields. One of them 
is called comp and specifies which component the current position in rank(x) holds. 
The other one is called FA and contains the number of zeros for the current 
component. 
 
fdiResult 
The variable fdiResult contains the final result of the fault isolation process and it is 
this variables content that is presented to the user of the program. fdiResult is a vector 
that contains five fields in each position. Every position in the vector corresponds to a 
components and the fields hold information about that component. The five fields are: 
score, comp, falseAlarms, missedAlarms and nrOfFalseAlarms. The field comp 
indicates which component the position in the vector corresponds to and score holds 
the components’ score. The score are the value the components are sorted by. The 
fields falseAlarms and missedAlarms contain which alarms that are false respectively 
missed. Finally the field nrOfFalseAlarms contains the number of false alarms. The 
variable fdiResult is constructed for easy storage and access to the final result of fault 
isolation. The structure of the variable looks like this: fdiResult(x).score / .comp / 
.falseAlarms(y) / .missedAlarms(z) / .nrOfFalseAlarms.  
 
Id variables 
The id variables are a collection of three types of variables, tankId, probeId and 
valveId, which identifies different components. It is usually one of these variables that 
decide which of the hypothesis tests in a function that should be performed. The id 
variables are used as input parameters for the tests. tankId identifies an individual tank 
or a collection of tanks, like for example RW for the tanks in the right wing. probeId 
indicates a probe in a fuel tank and valveId identifies a valve in the aircraft. 
checkValveFW() can be taken as an example. The call to the function looks like 
timeArray = checkValveFW(data, valveId, startTime, 
stopTime) and as second input parameter the id variable valveId is used. The 
function contains several hypothesis tests and valveId determines which one of them 
that is performed. If valveId contains the Id for the valve connected to the left wing, 
the test checks a FW for that valve.

8.4 Time Aspect 
As mentioned in section 6.2.3 the hypothesis tests has a dimension in time what has to 
be handled in an appropriate way. This part of the thesis report is about how the time 
aspect has been handled in the program. There are several different ways to handle the 
aspect, even if they do not differ that much. What needs to be done is to treat the 
different sequences, which indicates that a test has reacted, so that they in a good way 
can be compared. 
 In this thesis the time aspect has been handled in a way that stretches the 
sequences in every timeArray both forward and backward in time. In order to make 
easy comparisons between all TA and to have fixed start and stop times for the 
stretching, one time window (TW) is used for the entire flight. This time windows 
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constitute of the period in time between start and stop time. Every sequence in the test 
results are stretched across the entire time window. To have just one time window 
helps simplifying the method without any major drawbacks. A condition for the time 
handling is that every test result has the same start and stop time. If this is not the case 
different sequences can end and start at different time and the time windows will then 
have different length. Then the advantages of the time windows will be lost. The 
application has been implemented in a way that sets every start time to the same value 
and every stop times to the same value. 

The stretch of the test results forward in time can be motivated with the 
reasoning that a fault never can heal by itself. If a fault once has occurred it will be in 
the system for the rest of the flight even if a test that reacted to the fault stops reacting 
before the end of the flight. When the time aspect is handled a stretch backwards in 
time is also made. This stretch is made to the beginning of the time window, which 
begins at start time. Start time is in the application set to the time for take off. If a 
timeArray contain more than one sequence, it would still be stretched as one sequence 
during the entire TW. How a test result is handled with regard to the time aspect is 
illustrated in Figure 8-7 below. In the figure the sequence in the timeArray is the test 
result before it is handled and is shown closest to the axis. The test has reacted from 
approximately 2500 sec to little more than 4000 sec. How the test result looks after it 
has been handled with regard to the time aspect is shown above the original result. It 
has been stretched across the entire time window. The TW goes from start time to 
stop time, which as shown in the figure is not from time zero to the end of the flight. 
Instead it is from take off to touch down. 

 
Figure 8-7 A test result handled with regard to the time aspect 

 
The function that handles the time aspect is called timeHandler() and the 

variable it modifies is testResult, that contains the answers from the hypothesis tests. 
The handling that is described above is done once for every test result, i.e. once for 
every position in testResult. The modified result is saved in the variable testResultTH. 
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hypothesis tests. Since all data that is being treated in the application has a time 
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the case and the threshold can also be in a value of a variable. An example of where a 
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threshold in time is used is in the findPlateau(). This function checks if the 
represented fuel quantity stays constant during a period of time. The length of this 
period is a threshold in time. Thresholding can affect the tests in different ways, like 
increase or decrease their sensitivity. There is a risk of false alarms if a test becomes 
too sensitive and on the contrary a risk of missed alarms if it becomes too insensitive. 
We have not used any method or put any effort in trying to make smart decisions of 
the thresholds in this thesis. Thresholding is a big area and it would take to much time 
to use smart methods for it. Instead the thresholds have been set to arbitrary values 
that seam to work good during the testing of the application. Among the hypothesis 
tests described in section 8.2 it is checkTankOrder(), findPlateau(), findJump(), 
checkProbeAndSensor() and checkOutOfBounds() that uses any kind of thresholds.  

There is also built in thresholds in the RUF variables. An example of this is the 
variables for the sensors that indicate if a fuel tank is empty or not. In these variables 
there is a threshold for when the sensor considers a tank to be empty. The test C 
compares the variable for a low level sensor with a test of the represented fuel 
quantity. The test of the represented fuel quantity checks if the tank is empty and has a 
threshold for when the tank is considered empty. Both the LLS variable and the fuel 
quantity test has thresholds and in order to make the comparison as good as possible 
they should be set to the same value.

8.6 Application vs. Information 
Below follows a deeper description about which modifications that are needed when 
the aircraft configuration is changed. This includes a description about how the 
application is separated from the information and how easy it is to adapt the 
application to different aircraft configurations.  

When maintenance is done to the application there are actually not many 
changes that need to be done. As it was explained in section 7.1.5 maintenance is 
mainly constituted of two operations; the first is implementing the function that 
performs the hypothesis test and the second is modifying the different matrices. 

As mentioned in section 7.1.5 knowledge about the aircraft and RUF is needed 
to implement a test, but almost no knowledge is needed about the application. The 
knowledge needed about the application is limited to a data type and how a function 
call for a test should look like. A requirement made by the application is that every 
test has the same input and output when it is called. Since the output from a 
hypothesis test always consists of the data type timeArray, the maintenance demands 
knowledge about how a timeArray is constructed and what information it holds. The 
input to a function that performs a hypothesis test is always of the same type and sent 
in a specified order. This demands knowledge about the input variables, their order 
and their content. The reason for the specified order of the input is that the application 
builds the function name based on different variables and the information in a matrix. 
The function name is built in a certain order that have to match the order in the 
function itself. These function names are later evaluated in the program when a 
hypothesis test should be performed. 

When it comes to the modification of the matrices the implemented solution 
differs some what from the theory presented in section 7.1.3. The theory presented 
two matrices that needed change during maintenance, but in the application it is 
actually four matrices. First and foremost change is needed in the SHmatrix and the 
SH2matrix which contains probabilities and connections between tests and 
components that affects them. The required changes are described in section 7.1.3. 
Another matrix that needs to be changed if a new test is added is the 
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function2NameMatrix. The fourth matrix that could need to be modified is the one 
that contains information about which component that are possibly faulty when an 
alarm has been raised, i.e. the alarm2CompMatrix. 

A detail that has been included in the development phase of the application is 
the ability to make all the changes and modifications in the maintenance during run 
time of the program. This conveys that no restart or new compilation of the program 
is needed when maintenance is done. A great deal of this simplicity comes from the 
way that the functions are evaluated and that all information exists in external files 
that are separated from the application. A contributing fact is also that the matrices 
used in the program are read before an isolation is to be performed and in that way 
updated before every fault isolation is performed.  

When the program is at the end-user, the maintenance will not be done in run 
time and updates of the program will come in packages. A package will include new 
versions of the matrices and a complete set of functions for the hypothesis tests. This 
package is added to the application and an update has been done. 

As seen the required knowledge about the application during maintenance is 
keep to a minimum. This is because the application is separated from the information 
in a clear and structured way.

8.7 Problems 
A problem with the application is that all the information about the RUF variables is 
not known. This can for example be how the variables are decided or in some cases 
even what they indicate. The information have not emerged from the documents that 
where studied during the thesis. Most likely Saab has this information somewhere, but 
due to lack of time we have not been able to find it. 

There are several problems that come up when complete information about the 
variables that the tests are performed on is not available. One of them is that the 
prerequisites for the hypothesis tests can be hard to decide and this can lead to 
unnecessary double tests. When it comes to the prerequisitions the problem can be 
described with the case for the function checkMeasurable(). The tests in the function 
checks a variable that indicates if the fuel quantity in a tank is measurable or not. As 
described in section 2.5, the quantity of fuel in an aircraft is not measurable during 
certain flying conditions. These conditions are determined as restrictions on LV (load 
vector). The question is now if the variables that indicate if a tank is measurable is a 
test for these restrictions on LV or if that should be a prerequisite for the function 
checkMeasurable(). To answer that question deeper knowledge about what the 
variables indicate is necessary. A consequence of having a test on LV as a prerequisite 
and that it is the same test that the variable itself indicates is an unnecessary 
redundancy. The variable indicating measurable does probably not perform a test on 
LV since there are several such variables for different fuel tanks. If LV were to 
exceed its restrictions, every fuel tank in the aircraft except NGT would become 
immeasurable. It is for this reason not necessary with several variables that indicate if 
a tank is measurable.  

There is another case when it in greater extent has been uncertain what the 
variable indicates. This is for the function checkOpenFault() that checks a variable 
that indicates an open fault for a valve in ARTU. There has not been any information 
available about what a open fault even is. Is it a valve that can not be opened or is it a 
valve that are stuck in an open position? This test can however contribute to the fault 
isolation without knowing this information. The variable that is checked is a failure 
word and if a variable like that reacts, something is faulty. Even if more information 
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would have been better, the little that exists can still bring information to the 
diagnosis. 

There are some obvious difficulties in deciding how the decision matrix 
should look like, that is which crosses a test should have. There are two kinds of 
problems when it comes to the decision matrix. Either there can be a component that 
affects a test and do not get a cross, or there can be a cross for a component that do 
not affect a test. In both cases it adds flaws to the fault isolation and a consequence 
can be faulty components that are not isolated. It can also lead to the wrong 
component being pointed as faulty. A great deal of the accuracy and reliability of the 
isolation lays in minimizing these sorts of errors. In order to accomplish this 
exhaustive information about the variables in RUF are required. Since the decision 
matrix in this thesis is done without all the necessary information it can contain faults 
like the ones mentioned above.  
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Chapter 9  
 
Conclusions 

Method 1 using one agent for each component was at first thought of as a good idea 
with the possibility of implementing the most crucial agent first and later finishing 
with the less important. This procedure works fine as long as the component does not 
interact with each other. The interaction forces an agent to gather information of how 
the surrounding components work before it can specify how the agent’s component 
works. Rather soon is realized that this method has no way of structuring the 
knowledge of how components interacts and how the information may be modified 
when needed. 

Method 2 is invented from Structured Hypothesis Tests that has a dependency 
matrix specifying some if the information of how components interact: It specifies 
how a test can be raised from several components even if the test intentionally where 
designed for one single component. One demand on the system is to get a ranked list 
of components most probable to be broken. To manage this, the theory of probabilistic 
reasoning system that handles uncertainty is used. Uncertainty is represented as false 
and missed alarms, which can be rather frequent depending on how thresholds for 
automatized test are set. This led us to an extension of structured hypothesis tests that 
even has the ability of multiple fault detection. 

The intention was to implement both of the methods but method 1 was after a 
time proven to be full of flaws and all problems were not even possible to solve. 
Therefore only a prototype using method 2 implemented fully. 

Unfortunate there has not been enough time or data available to conduct a 
complete testing of the implementation. A few minor tests have been made and they 
show good results, but a more thorough testing has to be performed before any deeper 
conclusions can be drawn about the implementation.  
 
Did the prototype fulfill the demands? 
As stated in Chapter 6 and Chapter 7, method 2 fulfills all eight demands. So does the 
prototype building on method 2. The multiple fault detection has not been 
implemented due to time. We believe that the theory works and it would be interesting 
to see multiple fault detection in action, since it is not so many systems that do handle 
multiple faults. 
 
Automatic vs. manual fault detection 
Since we only have developed a prototype and not fed it with knowledge this 
comparison is not feasible. Depending on how the knowledge is put into the system it 
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can produce diagnoses with different accuracy. This will be further explained in 9.1. 
One thing that is for certain is that multiple fault detection is almost impossible to do 
manually, and if it is proven to work well in our system it will have a great advantage 
to manual fault detection. 

9.1 Future Work 
Theoretical 
We have shown how to fuse data from both present and created test to get a list of 
components containing a score of how each component may explain the test results. 
The next step is to put knowledge into the system. This can be done in two ways: 

1. An expert of the aircraft specifies the probability ( ) jiCTP ij ,| ∀  as stated in 
section 6.2.2. The accuracy depends on how well the experts know the system 
and can specify the probabilities.  

2. A learning framework is built outside the decision support system to train the 
system to give the components its score. In this case a less experienced expert 
can build up the knowledge by feeding the system with flight data and 
specifying what components are broken in each flight. This way the learning 
framework calculates the probabilities on its own. The accuracy depends on 
how many training flights the system is fed with. A fair guess is that at least 
one flight for each component, with the component broken in that flight, has to 
be used. It is rather hard to tell exactly what was broken during a flight, and 
this way the system will probably not get any better than the expert. [9] 

 
These two ways are pretty different; the first one just tells the system how to calculate 
the scores and the latter one tells the system how to think. When taking over the 
development, the developer has to choose which way to go depending on the experts’ 
knowledge. 
 Further on two interfaces to the user has to be built. One for the insertion of 
knowledge, used by experts and programmers, and one for the regular use of the 
decision support system. These two has to be tailor made according to other software 
used by technicians of the aircraft. This way it will be easy for the technicians to learn 
and use the program. 
 
Practical 
A good continuation of this thesis would be study the RUF variables in more detail. 
Example of questions that should be answered is: What is it a failure word truly 
indicated? How is it set? As an example a flight with a faulty probe can be mentioned. 
In this example a failure word for a valve reacted but it was actually a probe that was 
faulty. In order to understand and handle this, a deeper knowledge about the RUF data 
is required. Also the prerequisite for the RUF variables needs to be studied in more 
detail. This is directly linked to what the tests that decides the variables actually do. 
All this information is important when deciding how the hypothesis tests shall be 
designed. It is also important in order to get an understanding of how good a test is, 
which components it affects and also which tests that are needed in the isolation 
process. 

Since step 4 in the process of method 2 is not implemented this could be done 
as future work. Step 4 consists of making a final ranking of the components with more 
information considered. An example of information that can be considered is: expert 
knowledge, mean time between failure, statistic about faulty components, cost for the 
components and time it takes to change the components. This extension is a question 
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about how much information that should be considered and how they should be 
weighed between themselves. A suggestion is to show a list where all the information 
in present in its own column and to have one column that sums up the weighing of the 
information into a “change value”. The components can then be sorted after this 
“change value”.  





 

 57 

Bibliography  

[1] Saab AB, General Description Publication, Fuel System,  
Linköping 2005, J3-A-37-00-00-00A-040E-A 
 
[2] Saab AB, General Description Publication, General systems electronic  control unit, 
Linköping 2005, J3-A-37-00-00-00A-040E-A 
 
[3] Saab AB, Detailed Description Publication, Fuel system,  
Linköping 2005, J3-A-37-00-00-00A-040G-A 
 
[4] Saab AB, Testmetodbeskrivning,  
Linköping 2005 JSU2-37-TMB:4184 
 
[5] Saab AB. Detailed Description Publication, Maintenance data recording system, 
Linköping 2005, J3-A-69-00-00-00A-040G-A 
 
[6] Gustafsson F., Ljung L, , Millnert M., Signalbehandling, Studentlitteratur,  
Lund 2001, ISBN 914401709X 
 
[7] Nyberg M., Frisk E, Model Based Diagnosis of Technical Processes,  
Linköping 2005 
 
[8] Russell S., Norvig P,, Artificial Intelligence, A modern approach 1st ed, Prentice 
Hall, New Jersey, 1995. ISBN 0131038052 
 
[9] Russell S., Norvig P., Artificial Intelligence, A modern approach 2nd ed, Prentice 
Hall, New Jersey 2003. ISBN 0130803022 
 
[10] Saab AB. Aircraft Maintenance Publication, Fuel system,  
Linköping 2005, J3-A-37-00-00-00A-002A-A





 

 59 

Abbreviations 

AIU – Aircraft Interface Unit 
ARTU – Afterward Refueling Transfer Unit 
BIT – Built In Test 
CVU – Controlled Vent Unit  
ESH – Extended Structured Hypothesis tests 
FDI – Fault Detection and Isolation 
FM – Function Monitoring 
FRTU – Forward Refueling Transfer Unit  
GECU – General Electronic Control Unit 
GUI – Graphical User Interface 
JAS – Jakt Attack Spaning 
NGT – Negative-G Tank 
RUF – Registration Used for maintenance and Fight security 
SC – Safety Check 
SH – Structured Hypothesis tests 
SysC – System Computer 
TA – Time Array 
TW – Time Window 
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Appendix A 

Next pages contain a picture of the complete fuel system.  
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