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Abstract 

Rodon is a diagnostic tool developed by Sörman Information and Media AB. Saab’s 
interest in Rodon regards the possibility to use the tool for development and 
operations of aircraft systems. The main goal of this thesis was to evaluate the 
capacity of Rodon and determine how Saab can use the diagnostic tool during 
development and operations. 

The tool uses model based diagnosis with artificial intelligence for fault isolation 
which is a powerful approach. If Rodon is introduced at Saab, then detailed models of 
systems will be necessary to create, including the nominal behavior of the system and 
different faulty behaviors. In order to achieve high quality fault isolation, it is 
necessary to have complete and consistent models. To be able to use all applications 
that Rodon feature for a modeled system, preferable characteristics are that the model 
should be static, have discrete control signals, and have well defined system 
behavioral modes.  

During development of a system Rodon can be used to improve and ease the work of 
failure analysis, guidance of sensor placements, evaluation of tests, generation of 
decision structures, and fault isolation. Since design of tests during development is a 
desirable application that Rodon does not have, two different methods are presented 
that utilizes Rodon to generate all possible limit checking tests. 

In conclusion, Rodon can be very useful in several different aspects if introduced, but 
benefits gained by using Rodon will have to be compared to the labor cost of creating 
good models. 
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Chapter 1  
 
Introduction 

Rodon is a diagnostic tool developed by Sörman Information and Media AB. Saab’s 
interest in Rodon regards the possibility to use the tool for development and operations of 
aircraft systems. An aircraft, such as Saab’s JAS 39 Gripen, is a complex system divided 
into many subsystems. It is of great importance to detect if any of these subsystems 
malfunction. For this purpose functional monitoring is used to alarm when important 
subsystems do not behave as expected during flight. If an alarm has been set, the 
diagnosis problem during maintenance is to find the component causing the faulty 
behavior through fault isolation.      

1.1 Purpose 

The thesis project will evaluate the capacity of Rodon and the main goal is to determine 
how Saab can use Rodon during development and operations.  

1.2 Method 

The chosen work method was to model various systems in Rodon and analyze them by 
using different features, and by this way gaining experience and material for a general 
analysis of the tool. Therefore, the work started by trying to find suitable systems to 
model by studying various subsystems in JAS 39 Gripen. One electrical system and one 
hydraulic system were chosen, since it was of desire to cover different system 
characteristics and behaviors. An ongoing analysis of what Saab was interested in and 
discussions with the supervisors finally led to the questions that needed answers. New 
models were developed and analyzed with the purpose to answer questions that arose 
during the analysis process. 
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1.3 Thesis Outline 

The diagnosis theory necessary for this thesis is presented in Chapter 2. A vision of how a 
diagnostic modeling tool desirably could be used during the lifecycle of an airplane is 
given in Chapter 3. Chapter 4 consists of a short introduction to Rodon followed by 
Chapter 5 that describes how it is to work with Rodon, which benefits the tool has, 
problems that can occur, and limitations. In Chapter 6, a method is given with the 
purpose to decide which tests that should be implemented to achieve fault isolation and 
functional monitoring goals. Chapter 7 evaluates which parts of the vision described in 
Chapter 3 that can be fulfilled by Rodon. The conclusion of this thesis is then 
summarized together with suggestions for future work in Chapter 8.   

1.4 Contributions 

The main contributions of this thesis are  

Chapter 3: A presentation of a vision regarding how a diagnostic tool can be used during 
development and operations of aircraft subsystems.  

Chapter 5: Analysis of how it is to work in Rodon, what benefits the tool has, problems 
that can occur, limitations, and which type of systems that are suitable to model. 

Chapter 6: Presentation of a method with the purpose to decide which tests that should 
be implemented to achieve fault isolation and functional monitoring goals. 

Chapter 7: Analysis of which parts of the vision described in Chapter 3 that can be 
fulfilled by Rodon.
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Chapter 2  
 
Theory 

This chapter starts with a general introduction of the diagnosis problem. After that, 
concepts are defined so that model based diagnosis can be explained and hypothesis tests 
introduced.   

2.1 Introduction to the diagnosis problem  

A system in general has a nominal behavior, which can be described with equations 
stating how it operates normally when no faults are present. Systems are built up by 
components and these behave differently depending on if they function or not. The 
behavior of the system may deviate from the nominal behavior when components 
malfunction.  

The diagnosis problem is to detect a fault in a system and to locate the cause of it (Frisk, 
Nyberg, 2002). The use of diagnosis can be several, e.g. to fulfill safety and environment 
requirements, protect machinery, improve availability and repairability. One approach to 
solve the diagnosis problem is model based diagnosis, which either can be an approach of 
type AI (Artificial Intelligence) or FDI (Fault Detection and Isolation). The AI approach 
will be described in Section 4.2 and the FDI approach will be described in the next 
section. 

2.2 Model based diagnosis by FDI 

As stated earlier a system, sys, consists of components Nici ,..,2,1, = . Each component 
can behave differently over time and these behaviors can be grouped into component 
behavioral modes. To denote that a component ic behaves according to one of its 
component behavioral modes bm, we will write bmci = . 



  Chapter 2 - Theory 

  

4 

Let )( yuz = be a vector of all known signals, where u is control signals and y 
measurements. Control signals in a system can either be active, which means that they are 
controllable, or passive, which means that they are uncontrollable. The model equations 
describing bmci = can be formulated as 0)( =zM bm

i . 

If component ic has ki different behavioral modes, then we write },...,{ 1 iki bmbmc ∈ . Each 
component is assumed to behave exactly according to one of its component behavioral 
mode, i.e. },...,{ 1 iki bmbmc ∈ . It is now possible to define the arbitrary system behavioral 
mode }....,,,{

21 21 NjNjj bmcbmcbmcBM ==== , where },...,2,1{,1 Nikj ii ∈∀≤≤ . The 
true system behavioral mode will be written 
as }....,,,{

21 21 NjNjj bmcbmcbmcBMsys ===== .The system behavioral mode no fault 
(NF) will be frequently used in this thesis and is defined 
as }....,,,{ 21 nfcnfcnfcNFsys N ===== , where nf stands for the component 
behavioral mode no fault.  

If }....,,,{
21 21 NjNjj bmcbmcbmcBMsys ===== then the component behavioral modes 

define which model equations that describe the behavior of each component. The model 
equations of all components can be combined into a model describing the behavior of the 
whole system when being in BM and this model is denoted 0)( =zM BM .  

This combination can for NF be expressed as 

)()(
}...,2,1{

zMzM nf
i

Ni

NF

∈
= U  

and the model equations are written as 0)( =zM NF . The corresponding system behavioral 
mode set is for the model defined as { }0)(| ==Θ zMz NF

NF  and consists all z consistent 
with NFsys = . In general, BMΘ will denote all z consistent with BMsys = for a model 
and sys

BMΘ will denote all z consistent with BMsys = for a system sys. 

In order to perform MBD (Model Based Diagnosis) a premise is that the system has been 
expressed in model equations describing all components behavioral modes. If the model 
and system has system behavioral modes{ }kBMBM ...,,1 , then the set of all possible 
observations is

kBMBMZ Θ∪∪Θ= ...
1

.   

The definition of a diagnosis is given next.  

Definition 2.1: 

Given an observation Zz ∈ , a system behavioral mode, BM, is a diagnosis if 
and only if BMz Θ∈ . 
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A purpose of an on board diagnosis system is given an observation z to find all diagnoses, 
i.e. to find all system behavioral modes that fulfill Definition 2.1. The function of the on 
board diagnosis system and how it interacts with the system is illustrated in Figure 1. 

System

Diagnosis 
System

Diagnoses

Disturbances, v Faults, f

Control signals, u Measurements, y

 

Figure 1. Illustration of how a diagnosis system functions and how it interacts with the system. 

An illustration of an on board diagnosis system architecture to achieve FDI can be seen in 
Figure 2 (Blanke et al. 2003). The architecture of the on board diagnosis system consists 
of two parts: tests and a fault isolation logic block. Tests are constructed with the purpose 
to reject system behavioral modes that can not explain the system behavior and the fault 
isolation logic sorts and generates the diagnoses from the test results.  
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Observations

Diagnostic
test

Diagnostic
test

Diagnostic
test

Diagnostic
test

Diagnostic
test

Fault isolation logic

Diagnoses
 

Figure 2. Architecture of an on board diagnosis system for FDI. 

2.2.1 Hypothesis test 
The model equations can together with observations, from sensors, be used to create tests. 
The purpose with the tests of an on board diagnosis system is to detect and alarm for 
certain behavioral modes by comparing the observations with the expected values of the 
observations. A test will react if this comparison renders a sufficient difference.  

In diagnosis, a null hypothesis 0H is an assumption that the system is behaving in 
accordance with one of the system behavioral modes in a set 0S of system behavioral 
modes and its alternative hypothesis 1H is that it behaves accordingly to one of the system 
behavioral modes in 1S . A hypothesis test T is used to decide if 0H can be rejected or not. 
The null hypothesis is rejected if C

Tz Θ∈ , where C
TΘ is the rejection region of T. If the test 

reacts, then 0H will be rejected and the conclusion will be that 1H is true and 1Ssys ∈ .  

The hypothesis can be written as: 
00 : SsysH ∈    Some behavioral mode in 0S  can explain observations 

11 : SsysH ∈   No behavioral mode in 0S can explain observations 

This means that the set TΘ should be a superset of all BMΘ where 0SBM ∈ . 

Next we exemplify a proper design of a test including the choices of 1S and C
TΘ . 
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Assume a system, sys, that has four different system behavioral modes: NF (No Fault), 
F1, F2, and F3. A hypothesis test T1 has been created with the purpose to detect and alarm 
for F1 and F2. The rejection region of the test is C

T1
Θ and can be seen in Figure 3 together 

with the behavioral mode sets.  

Since
1FΘ is a subset of C

T1
Θ and

2FΘ has a non empty intersection with C
T1

Θ , these two 

system behavioral modes, F1 and F2, will be included in 1S . Analogous, since NFΘ and 

3FΘ are subsets of
1TΘ , and 

2FΘ has a non empty intersection with
1TΘ , these three system 

behavioral modes will be included in 0S . In summary the rejection region of the test 
results in },{ 21

1 FFS = and },,{ 32
0 FFNFS = .  

If the system behaves according to F1 then C
TFz

11
Θ⊂Θ∈ and this results in rejecting the 

null hypothesis and the decision will be that },{ 21
1 FFSsys =∈ .  

The null hypothesis will only be rejected for 2Fsys = when C
TFz

12
Θ∩Θ∈ . This means 

that the test will fail to react and detect 2Fsys = when )\(
12

C
TFz ΘΘ∈  and as a 

consequence alarms will be missed.  

The test will never react when { }3, FNFsys ∈  and the null hypothesis will not be rejected 
and the decision will be that },,{ 32

0 FFNFSsys =∈ . 

In summary this means that the following conclusions can be drawn from the test: 

{ }
},,{,

,,

32
00

21
10

1

1

FFNFSsysrejectednotHz

FFSsysrejectedHz
C
T

C
T

=∈→Θ∉

=∈→Θ∈
 

C
T1

Θ
2FΘ

1FΘ
3FΘ

NFΘ

 

Figure 3. A system with four behavioral mode sets and the rejection region for the test used in the 
diagnosis system. 
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2.2.2 Decision structure 
Let 0, X and 1 symbolize that a system behavioral mode will never, sometimes and 
always cause rejection of the null hypothesis respectively. Then the example presented in 
Section 2.2.1 can be described by the decision structure in Table 1. 

Table 1. Decision structure of the test in the example in section 2.2.1. 

 

Fault isolation is to determine which component or components that causes a faulty 
behavior. This can be done by using a decision structure. Assume that the diagnosis 
system in the example in Section 2.2.1 is supplemented with two new tests T2 and T3. The 
resulting decision structure can be viewed in Table 2. 

Table 2. Decision structure of how behavioral modes NF, F1, F2, and F3 affect the tests T1, T2, and T3. 

 

Two examples of how the information in the decision structure can be used for fault 
isolation analysis: 

If tests T1 and T2 have reacted, the conclusion that can be drawn is 2Fsys = since no other 
system behavioral mode can cause both these tests to react. Hence, F2 is said to be fault 
isolated. 

If only test T2 has reacted, the conclusion that can be drawn is that { }32 , FFsys = since 
they both can cause the test to react. Hence, no fault isolation can be made since F2 and F3 
both will be suspected system behavioral modes. 

The purpose with the fault isolation logic is to perform this fault isolation analysis 
automatically based upon the decision structure and the values of the corresponding 
diagnostic tests.   

 NF F1 F2 F3 

T1  0 1 X 0 

 NF F1 F2 F3 

T1  0 1 X 0 

T2 0 0 X X 

T3 0 X 0 X 
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2.2.3 Summary 
This chapter has defined the basis for model based diagnosis by FDI. The on board 
diagnosis system was introduced and it includes diagnostic tests and fault isolation logic. 
It is of interest to determine whether or not a diagnostic tool can be used for construction 
of an on board diagnosis system for FDI. A vision will follow in the next chapter, 
regarding how a diagnostic tool could be used for diagnosis system development.
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Chapter 3  
 
Usage of a diagnostic tool for subsystem development and 
operations 

An aircraft contains several complex subsystems containing diagnostics. This chapter 
presents a vision of how a diagnostic tool can be used during development and operation 
of subsystems. It concludes with a summary of the desired achievements of the tool. 

3.1 The vision 

This vision will refer to the development environment which is where the development of 
a system takes place and it contains various tools. Operations take place in the flight 
environment of the aircraft and the maintenance workstation, which is where 
maintenance is performed with the help of various tools. An aircraft subsystem has been 
developed from definitions and requires diagnostics to be integrated in the flight 
environment of the aircraft. Construction of the diagnosis system is performed in a 
development environment with the help of a diagnostic tool and a model of the subsystem 
is therefore implemented in the tool in the development environment.  

It is important to analyze the behavior of the subsystem to determine which faults that 
can cause subsystem failure, which is when the function of the system significantly 
deviates from normal operation. This analysis is mostly performed manually at Saab 
today and the vision is to use a diagnostic tool instead. Found flaws will if necessary and 
possible be adjusted by redesign of the subsystem, resulting in a need to reiterate the 
modeling and analysis in the development environment. The model is upon completion 
passed on to the diagnostic tool of the maintenance workstation.   

Faults that cause system failure are important to detect since they can result in loss or 
degradation of the subsystem functionality, which in a worst case scenario could be 
equivalent to loss of an aircraft. Detection of system failures are called functional 
monitoring and must be performed by the on board diagnosis system. This can hopefully 
be achieved by creating tests that react when functionality is lost. Tests in the on board 
diagnosis system can also be constructed with the purpose to isolate faults down to a 
specific replaceable system component (At Saab denoted as a line replaceable unit, 
LRU).   
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Tests for functional monitoring and for fault isolation must be designed for the on board 
diagnosis system, to achieve FDI, and this has been a manual process up to now but the 
vision is to use a diagnostic tool instead.   

All designed tests, for fault isolation and functional monitoring purposes, constitute a 
specification of which tests that need to be implemented in the on board diagnosis system 
in the flight environment and also decide which sensors that must be implemented in the 
subsystem. Further sensors might be implemented and the diagnostic tool can perhaps 
provide an indication of suitable placements. 

The decision structure for the designed tests is generated from the diagnostic tool and is 
used in the fault isolation logic, situated inside the on board diagnosis system, to provide 
diagnosis data which can be separated into two parts: functional monitoring data and fault 
isolation data. During flight, the sensors of the subsystem in the flight environment 
provide observations. These observations are recorded in the Maintenance Data Record 
(MDR), which can be seen as the hard drive of the aircraft for storage of operational data. 
Functional monitoring data is processed to inform the pilot of system failures and suitable 
recovery actions. Fault isolation and functional monitoring data is stored in the MDR.  

Data from MDR is loaded into the MDR ground, in the maintenance workstation, after 
landing. During maintenance at ground, selected MDR data is inserted in the model of the 
diagnostic tool to achieve fault isolation through an AI model based diagnosis approach. 
The selected MDR data contains functional monitoring and fault isolation data of interest 
for the subsystem together with observations. The idea is to perform new measurements 
manually at ground in the subsystem and insert these in the model of the diagnostic tool 
to further reduce the suspected component behavioral modes. This means that fault 
isolation is performed at two instances, both on board by the diagnosis system and off 
board, and the reason is that there is a requirement of basic fault isolation on board in the 
flight environment without further aid of off board tools such as e.g. a maintenance 
workstation or a diagnostic tool.   

The diagnostic tool provides the suspected component behavioral modes, summarized in 
the diagnostic report, and the faulty components are replaced by the technician. Finally, 
feedback is provided from the maintenance department on model improvements. 
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3.2 Desired features included in a diagnostic tool 

The desired features included in a diagnostic tool can be summarized as: 

• Performance of failure analysis 

• Guidance for sensor placements 

• Design and evaluation of tests for an on board diagnosis system 

• Generation of the decision structure corresponding to the diagnostic tests of the on 
board diagnosis system. This decision structure is to be used for fault isolation 

• Achieve high quality fault isolation during maintenance by an AI model based 
diagnosis approach 

This thesis will try to determine if Rodon can fulfill the desired requirements of the 
vision, and an introduction of the tool and how it performs AI model based diagnosis will 
follow in the next chapter.
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Chapter 4  
 
Introduction to Rodon 

This chapter describes how modeling and simulation is performed in Rodon. Rodon is a 
diagnostic modeling tool available from the company Sörman Information and Media 
AB. It is an object oriented tool that allows creation of components in the modeling 
language Rodelica, a derivate of Modelica.  

4.1 Modeling 

The work process in Rodon starts with the task of modeling all components that are 
needed in the model and are not included in the standard libraries. After this is 
completed, the model can be assembled graphically through drag and drop or by textual 
programming. The model can upon completion be used for simulation purposes and 
generation of data, which will be presented later on in this chapter. 

4.1.1 Components 
Different behaviors of a component are, as said before, called component behavioral 
modes. For each bm a set of equations holds. The component behavioral modes and their 
equations are implemented in Rodon when a component class is created. How the 
Rodelica code for a component class { }NffnfbmX ,...,, 1∈=  generally is built up is 
showed in Figure 4. The code is divided into two sections, where the first section is used 
for declaration of attributes and the second section, behavior, is where the different 
component behavioral mode equations { }N

bm
X ffnfbmzM ,...,,,0)( 1∈∀=  are 

implemented. 
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Model X
Declarations of attributes (public, protected or private)

Behavior
if (behavioral mode nf)

Equations that hold for nf

if (behavioral mode f1)
Equations that hold for f1

if (behavioral mode fN)
Equations that hold for fN

End Model X; 

 

Figure 4. General code of how a component class is implemented in Rodon. 

4.1.2 Creation of a model 
A model can be created graphically by drag and drop or by textual programming. The 
object oriented feature in Rodon provides easy model alteration, e.g. if the model consists 
of several hundreds objects of the same type that need to be modified then it is only 
necessary to change the base class to alter all objects. The inheritance feature allows the 
user to create new altered class abstractions of already existing component base classes.  

An example of a model can be seen in Figure 5. It is built up by a battery, wire, resistor 
(100 Ohm) and ground. All components in the model have a nominal, fault free, 
component behavioral mode and this means for the battery and ground that they provide 
12 V respectively 0 V. The wire’s nominal behavior is that the voltage is the same in both 
ends and that the sum of the current that flow in and out equals zero. The nominal 
behavior of the resistor is that Ohm’s law applies. Furthermore the battery, the wire, the 
resistor and the ground all contain the behavioral mode disconnected, which states that no 
current can flow through the component.     

 

Figure 5. Illustration of a model in Rodon. 
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4.1.1 Connectors and connections  
Consider electrical circuits containing resistors, capacitors and inductors. The formulas 
used to describe these circuits are basically the relations between the variables voltage u, 
Volt, and current i, Ampere. Generally these variables are called potential and flow 
quantities. For many different physical domains the physical constraints have the same 
fundamental structure (Ljung, Glad, 2004). In this thesis only electrical and hydraulic 
systems will be handled and in Table 3 the variable names for each respective quantity in 
both domains are listed. 

Table 3. Variable names, potential and flow quantities for the two different physical domains handled in 
this thesis. 

Domain Potential quantity Variable name Flow quantity Variable name 

Electrical Voltage (V) U Current (A) i 

Hydraulics Pressure(P) P Mass flow rate(kg/s) m&  
 
 

Connector is a type of class defined in Rodon containing only declarations of potential 
and flow variables. Graphically connectors are represented as squared dots on the side of 
the component icons, see for example Figure 5. Its purpose is to create connections 
between the equations of different components, in order to generate the system 
behavioral mode equations 0)( =zM BM for each BM. 

Connectors that are interlinked form a connection. For each connection, equations are 
generated with the purpose of describing how the connector variables will be propagated 
between each other. The connection equations follow these conventions (Rodon manual): 

• All potential variables of a connection are set equal. 
• A zero-balance equation is automatically created for all flow variables of a 

connection. 
• The value of flow variables is positive, if the flow is directed into the connector of 

a component. 
How the Rodelica code for a connector class port is generally built up is described in 
Figure 6.   

Connector port

Potential quantity p;

Flow quantity f;

end port;
 

Figure 6. General description of how a connector class can be built up. 
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Connectors are declared as attributes in the component classes. Since connector classes 
have no behavioral modes, connection equations are independent of which system 
behavioral mode that is present and will never alter.  

A general example: the connection connect(p1,…, pN) , where p1,…,pN  all are 
connectors of class port, connects the ports so that they form one node, creating the 
equations (Bunus, 2002): 

;0.....1
;.....1
=++

==
fpNfp
ppNpp

 

Connectors of class pin, declared in Figure 7, are used for electrical systems. 

Connector pin

Voltage u;

flow current i;

end pin;
  

Figure 7. Description of how a connector class for electrical systems can be built up. 

For an electrical component c with pin p1 the notation c.p1.i and c.p1.u is used for the 
current and voltage of the pin. As an example of an electrical component, the component 
class of a resistor is described in Figure 8. 

Model resistor

pin p1, p2;

Resistance r;

Behavior

p1.i + p2.i = 0;

p1.u - p2.u = r*p1.i;

end resistor  

Figure 8. Example code of a resistor class. 
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4.1.2 Property marks 
In Rodon property marks are used for assigning roles to model attributes. If an attribute in 
a model has a property of special interest for analysis purposes it can be tagged with a 
property mark. This could be used for a value of a control signal, an observation, a 
component behavioral mode or a flag representing if a test has reacted. These are only a 
few of all the property marks that are defined in Rodon, and a full listing can be found in 
Appendix B. An application where the use of property mark is crucial is Auto simulation, 
described in section 4.4.1. The model in Figure 5 will be used in a small example to 
illustrate how a component attribute can be tagged with a property mark. 

Let’s assume that the current on the left hand side of the wire is measured by a sensor in 
the real system as is indicated in Figure 5. Then the attribute wire.p1.i should be tagged 
with an observation property mark in the Rodon model. 

4.2 Model based diagnosis in Rodon 

As said in Section 2.1, Rodon uses an AI approach to perform model based diagnosis and 
how this is done will be described in this section. The algorithm used is based on ATMS 
(Assumption Based Truth Maintenance System) (Hamscher et al., 1992). In summary 
ATMS is a data base containing the model equations, 0)ˆ( =zM BM , and an example of 
one is given in Section 4.2.1. Measurements ŷ are inserted in the data base and these 
values are propagated during simulation until all intermediates have been calculated and 
fulfill a certain tolerance. Inconsistencies will result in conflicts including potential 
suspects.  

4.2.1 Simulation 
In Rodon simulation is done through local value propagation. Local value propagation is 
an iterative solving process, where solutions are approached by eliminations of 
impossible values by systematical examination of each single relation in the model. 
Rodon tries to solve the model equations for each component. The calculated values are 
then propagated back and forth between the different components in order to find 
solutions that hold for all equations in the modeled system. This is done until all variable 
values have been generated for 

{ }0)ˆ,(ˆˆ
0

0 ==Θ yuMy BMu
BM , 

Interval arithmetic is used to apply value ranges on variables.  

Every component in Rodon can be set to comply with one of its behavioral modes. This 
allows the user to simulate a model with any of the implemented system behavioral 
modes. Hence, no new model is needed to simulate different behaviors. If nothing else is 
set, Rodon simulates the nominal fault free behavior 0)ˆ( 0 =yuM NF  as a default 
assignment.  
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Consider the system modeled in Figure 5. For the system behavioral 
mode { }nfbatterynfwirenfresistornfgroundnodeNF ===== ,,, , the model 
equations 0)ˆ( =zM NF , where component equations are expressed on the 
form { }emodbehavioralcomponentequation, , are as follows: 

{ }nfgroundnodeupgroundnode == ,0.1.     (4.1) 

{ }nfresistoripresistorupresistorupresistor =⋅=− ,.1.100.2..1.  (4.2) 

{ }nfresistoripresistoripresistor ==+ ,0.2..1.    (4.3) 

{ }nfwireupwireupwire == ,.2..1.      (4.4) 

{ }nfwireipwireipwire ==+ ,0.2..1.     (4.5) 

{ }nfbatterypbattery == ,121.      (4.6) 

upresistorupgroundnode .1..1. =      (4.7) 

0.1..1. =+ ipresistoripgroundnode      (4.8) 

upwireupresistor .1..2. =       (4.9) 

0.1..2. =+ ipwireipresistor       (4.10) 

upbatteryupwire .1..2. =       (4.11) 

0.1..2. =+ ipbatteryipwire       (4.12) 

Equations (4.7)-(4.12) are created by the connector connections in accordance to Section 

4.1.1. 
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After a simulation Rodon will return one of the following status messages, simulation 
successful, conflict detected or simulation aborted. The interpretation of each status 
messages is as follows:  

• Simulation successful is returned when Rodon has completed all of its calculation 
processes without finding any contradictions.  

• Conflict detected is returned as a simulation result when a variable contradiction 
has been localized during the solving process.  

• Simulation aborted is returned when Rodon is not able to end the simulation. The 
cause of this can be that there is a calculation loop somewhere in the model. 

4.2.2 Conflicts 
A conflict in Rodon is, as stated earlier, generated when a contradiction of a variable 
relation is located. In the case when only control signals and behavioral modes are used 
as input signals, conflict detected means that there exists no solution ŷ to 0)ˆ( =yuM BM , 
and is an indication of an incorrect model. If the Rodon model is to be used for diagnosis 
purposes a conflict should only be caused due to an inconsistency between the calculated 
model variable values and measured observations from the real system. Hence, a conflict 
detected should only be the result of simulation if a measurement yy ˆ∉ is inserted in the 
model 0)ˆ( =yuM BM . 

An example of a conflict can be illustrated with the model in Section 4.2.1. The current 
through the wire has been measured to 0 A and is introduced in the Rodon model as 

 0wire.p1.i =         (4.13)  

is added as a condition in the solving process. A conflict is generated during simulation 
because the measurement is inconsistent with the system behavior NF. Equations (4.3), 
(4.10), and (4.13) results in 

0.1. =ipresistor        (4.14) 

 This results together with Ohm’s law, equation (4.2), that there can not be any potential 
difference over the resistor 

 resistor.p1u = resistor.p2.u       (4.15) 

The value of groundnode.p1.u propagated through equations (4.1), (4.2), (4.7), (4.9) and 
(4.15) result in  

wire.p1.u = 0         (4.16)  

At the same time  

wire.p1.u=12         (4.17)  
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is propagated from the battery.p1.u through equations (4.4),  (4.6), and (4.11). This 
results in a conflict since equation (4.16) and (4.17) contradict each other. Rodon marks 
all components in which equations are used to calculate the variable or variables in 
conflict. These components are all potential suspects, in which faults can be present, 
since they all affect the calculation of the variable. In this example all components will be 
possible suspects. 

4.2.3 Diagnosis 
A diagnosis can be computed in Rodon when a conflict has occurred during simulation. 
As described in Section 4.2.2 Rodon will mark the components in which equations have 
been used to calculate the variable or variables where the contradictions have occurred. 
To compute a diagnosis, the tool evaluates different system behavioral modes in order to 
find which of the marked components that should remain as suspects. If a system 
behavioral mode is inconsistent with the observations then it is ruled out as a diagnosis in 
the process. The system behavioral modes that are consistent with the observations are 
presented as the diagnosis results. 

To illustrate this, a diagnosis can be computed on the conflicts in the example in Section 
4.2.2. All components in the system have been marked as possible suspects. The model 
equations will be altered for each system behavioral mode that Rodon tests. When testing 
the system behavioral mode 

{ }nfbatteryeddisconnectwirenfresistornfgroundnodeeddisconnectwire ===== ,,,.  
the model equations (4.4) and (4.5) from Section 4.2.1 are, since a disconnection means 
that no current can flow trough the wire, replaced by the equations: 

{ }eddisconnectwireipwire == ,0.1.      (4.18) 

{ }eddisconnectwireipwire == ,0.2.      (4.19) 

This change leads to consistency between the model and the observation wire.p1.i = 0 
which results in wire = disconnected being a diagnosis. 

Other system behavioral modes will also be consistent with the observation and Rodon’s 
complete list of diagnoses of single faults will be that any of the components 
groundnode, wire, resistor, or battery could be disconnected.  

4.3 Dynamic simulation 

A fault in one component can cause other components to break and malfunction. 
Consider the system that has been modeled in Figure 9. If wire1= short to ground, the 
high current between wire1 and battery will cause the fuse to blow. As a result, there will 
no longer be a current flowing through the circuit.  
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Rodon features the possibility to simulate this kind of casual sequence of events 
mentioned in the example above. This is done by dividing each course of event into a 
frame. An attribute ai can be updated between frames if it is complemented with an 
attribute aiNext, which sets the value of ai in the next frame. In Rodon this is called 
pseudo dynamic simulation and can be illustrated with an example on the system 
introduced in Figure 9. 

 

Figure 9. A model of an electrical circuit containing a battery, fuse, wire, resistor and a ground node. 

The fuse has an attribute { }blownokstate ,∈ , complemented with an 
attribute { }blownokstateNext ,∈ , which controls the current flowing through it. If 
state=ok, then the current can flow through the fuse, but if state=blown, then no current 
will flow through the fuse. A too large current through the fuse will result in 
stateNext=blown. When the model behavior of the nominal fault free case is simulated 
the current through the circuit is 1.2 A. Simulating the component behavioral mode 
wire1=short to ground results in a high current between wire1 and the battery and will 
set stateNext=blown in frame1. The value of stateNext in frame1 will set state=blown in 
frame2. As a result, no current will be able to flow through the fuse. The fuse status in the 
two different frames is shown in Figure 10. 

Fuse status:

Pin_in.i = inf

Pin_out.i = inf

State = ok

StateNext = blown

Fuse status:

Pin_in.i = 0

Pin_out.i = 0

State = blown

StateNext = blown

frame1 frame2

 

Figure 10. An example of how a fuse status changes between different frames when it blows. 
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The example above describes what could be called an event based simulation of how a 
system evolves over time. This simulation process is called pseudo dynamic simulation 
and it generates the attribute values for each event, but is not a dynamic simulation in the 
sense that it does not describe how a system behavior varies with time in between events. 
However, the same feature can also be used for time varying dynamic simulation by 
updating variables with the Next suffix. This allows dynamic simulation by the user of 
discretized state space systems. 

4.4 Applications 

In this section different Rodon applications are presented. 

4.4.1 Auto simulation 
Auto simulation is a feature in Rodon that is used to analyze how different combination 
of predefined input signals will affect the output signals. To be able to use a certain 
attribute in the auto simulation it needs to have been given a property mark. Which 
attributes that are going to be used as inputs and outputs are sorted by their property 
marks and defined by the user in a definition file. There are in Rodon two combinatorial 
possibilities available for input signals, cross product or concatenation. The first one 
means that all combinations of the input signals are simulated and the second that each 
one is simulated separately. This is perhaps best described through an example. 

Consider an arbitrary system controlled by the user with two switches, switch 1 and 
switch 2. These switches can either be off, in position 1, or in position 2, and their 
position will be defined as an input signal. If these are combined as the cross product then 
auto simulation will simulate and decide the resulting outputs for the following nine 
different control signal combinations: 

 

pos 2pos 2

pos 1pos 2

offpos 2

pos 2pos 1

pos 1pos 1

offpos 1

pos 2off

pos 1off

offoff

Switch 2Switch 1

 
 

If the input instead were defined as the concatenation then the control signal 
combinations would be:  
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pos 2off

pos 1off

offpos 2

offpos 1

offoff

Switch 2Switch 1

 
 

The auto simulation principle is illustrated in Figure 11 where control signals u and 
behavioral modes BM have been chosen as inputs to calculate selected outputs y. The 
chosen input signals are combined as cross products. 

Mu y

BM є {NF, F1, … FN}

 

Figure 11. The auto simulation feature in Rodon calculates the selected outputs, y, for selected inputs, 
u and BM. 

All data that is generated by auto simulation is stored in a SDB (State Database). An 
example of an SDB can be seen in Table 4 where the control signal u and component 
behavioral modes have been chosen as inputs and are listed in the first two columns from 
the left. In the three remaining columns calculated outputs of wire1.p1.i, wire1.p1.u, and 
wire2.p2.i, which have been tagged with the observation property mark, are listed.  

Table 4. SDB generated for a model where u and behavioral modes bm have been chosen as inputs 
and wire1.p1.i, wire1.p1.u, and wire2.p2.i are calculated outputs. 

Behavioral modes U wire_1.p1.i Wire_1.p1.u wire_1.p2.i 

System OK off 0 12 0

bulb disconnected off 0 12 0

Groundnode_1 disconnected off 0 12 0

switch disconnected off 0 12 0

switch pin_short off [0.83166 0.83168] [11.975 11.977] [-0.83168 -0.83166] 

wire_1 disconnected off 0 12 0
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wire_1 short_to_gnd off [416.66 416.67] 0 0

wire_1 short_to_batt off 0 [11.999 12] 0

wire_2 disconnected off 0 12 0

wire_2 short_to_gnd off 0 12 0

wire_2 short_to_batt off 0 12 0

wire_3 disconnected off 0 12 0

wire_3 short_to_gnd off 0 12 0

wire_3 short_to_batt off 0 12 0

System OK on [0.83166 0.83168] [11.975 11.977] [-0.83168 -0.83166] 

bulb disconnected on 0 12 0

Groundnode_1 disconnected on 0 12 0

switch disconnected on 0 12 0

switch pin_short on [0.83166 0.83168] [11.975 11.977] [-0.83168 -0.83166] 

wire_1 disconnected on 0 12 0

wire_1 short_to_gnd on [416.66 416.67] 0 0

wire_1 short_to_batt on [0.3723 0.47518] [11.986 11.99] [-0.83259 -0.83237] 

wire_2 disconnected on 0 12 0

wire_2 short_to_gnd on [416.66 416.67] 0 [-416.67 -416.66] 

wire_2 short_to_batt on [0.3723 0.47518] [11.986 11.99] [-0.47518 -0.3723] 

wire_3 disconnected on 0 12 0

wire_3 short_to_gnd on [0.83166 0.83168] [11.975 11.977] [-0.83168 -0.83166] 

wire_3 short_to_batt on [0.83166 0.83168] [11.975 11.977] [-0.83168 -0.83166] 

4.4.2 Auto generation of a model from a specification list 
A specification list is a listing of system components. Rodon features the possibility to 
automatically generate a model from a specification list. E-Cad is an electrical modeling 
tool and can be used to generate specification lists, called E-Cad lists, from which Rodon 
models can be automatically generated.  
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4.4.3 Decision tree 
The purpose with a decision tree is to aid the technician with fault isolation. It provides 
measurement suggestions to decrease the number of suspected faulty components. 
Decision trees can be created from an SDB generated with auto simulation, described in 
Section 4.4.1. No extra modeling is needed. An example of a Rodon generated decision 
tree can be seen in Figure 12. 

 

Figure 12. An example of a decision tree generated with Rodon. 

4.4.4 Fault tree analysis 
Fault tree analysis illustrates the relation between a critical event and the cause of it. It is 
used to perform quantitative and qualitative analysis of complex systems. Rodon can be 
used for fault tree analysis, but requires a different modeling approach then the one 
described earlier in this chapter and will not be further investigated in the thesis. 

4.4.5 Failure mode effect analysis 
The SDB data can be filtered in Rodon to be used as a decision basis for a FMEA 
(Failure Mode Effect Analysis), where the effects off all failure modes are listed.   
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4.4.6 Test implementation 
When modeling a system, it is possible to implement diagnostic tests in the model. A test 
is designed to react if the specified conditions are fulfilled. In Rodon a flag is used to 
indicate if a test has reacted, and the flag is property marked as a failure code fc. If the 
test T with the rejection region C

TΘ has been implemented in Rodon, then the failure code 
fcT will be set true when C

Tz Θ∈ . This can be summarized as 

truefczT T
C
T =→Θ∈:  

4.4.7 Dirigent 
As said in Section 4.4.6, in Rodon a flag is used to indicate if a test has reacted, and the 
flag is property marked as a failure code fc. For a test T that has been implemented in a 
model of system sys, Rodon offer the possibility to generate a list of the system 
behavioral modes 1S that can cause the test to react. This is done in the feature Dirigent 
which through simulations investigates which behavioral modes that are consistent with 
the condition fcT = true. A system behavioral mode BM is added to the 
set 1S if C

TBM Θ∈Θ . The information generated by Dirigent  

1Ssystruefc ∈→=  

is in Rodon called decision rules and the behavioral modes in the set 1S  are called 
suspects. An analogy can be made with decision structures described in Section 2.2.2, 
since the information a decision rule contain is very similar to the information in a 
decision structure. The only difference is that a diagnostic rule does not describe how 
well the rejection region C

TΘ of a test T covers the set BMΘ for a behavioral mode 1SBM ∈ . 

4.4.8 Automatic code generation 
Rodon features the possibility to automatically generate c struct code of diagnostic rules 
generated in Dirigent, described in Sections 4.4.7. This c struct code can be generated in 
the feature DRsimulator. The resulting code defines which faulty components that can 
cause each implemented test to react.  

4.5 Summary 

In this chapter an introduction to Rodon has been presented. The purpose has been to give 
an understanding to how Rodon works and which applications that are included. The 
following chapter will describe how it is to work with Rodon, which benefits the tool has, 
problems that can occur, and limitations.
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Chapter 5  
 
Using Rodon 

This chapter will describe how it is to work in Rodon, what benefits the tool have, 
problems that can occur, limitations, and which type of systems that are suitable to 
model.    

5.1 Generally 

Analyzing a system manually, in order to predict which faults that can lead to serious 
failures is a problem whose complexity increases with the size of the system. The 
advantage of using a diagnostic modeling tool such as Rodon is that it gives an 
opportunity to easy structurize this problem. By using the already existing knowledge on 
component level of which faults that can occur in order to build a Rodon model, the 
effects each fault will have on the system can be automatically generated, see Section 
4.4.1. Because each component is modeled locally, no analytical calculations need to be 
made by the user in order to derive model equations for the whole system, since this is 
done by Rodon, see Section 4.2. 

 

Figure 13. An illustration of hierarchal modeling in Rodon. 
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The use of connector variables makes the tool quite intuitive for users with modeling 
background because of the close analogy with bond graphs. More information about bond 
graphs can be found in (Ljung, Glad 2004). For modeled systems with high complexity 
Rodon offers a possibility to divide the model into different submodels, and by this way 
create a hierarchal model. This makes it easier to verify the model since each sub model 
can be verified separately, and it also creates a good overview. An example of this is 
showed in Figure 13. 

Rodon is, as stated earlier, based on the programming language Rodelica which provides 
an object oriented modeling approach and this allows the user great freedom when 
creating class components and which equations they should abide. A necessary condition 
for utilizing components in a model is that the equations are consistent.   

Modeling freedom is an advantage since the user is not depending on somebody else 
developing component libraries and there are no restrictions, other than syntactical, when 
creating components. At the same time modeling freedom has drawbacks since it is easy 
to lose perspective on how different components can be combined to form a consistent 
model. 

5.2 Modeling  

Before modeling can start in Rodon, behavior equations need to be specified of how each 
component in the system behaves. The specification might include not only the nominal 
fault free behavior but also knowledge of which faults that can occur and how they will 
affect the system.  

Depending on the analysis purpose different level of details of system modeling is 
required. During the design phase when analyzing how different faults affects a system, 
e.g. by using an SDB generated from a model as a decision base for FMEA, the exact 
knowledge of how a fault affect a system might not be needed, since the objective is to 
capture the primary characteristics. But if a model is to be used for fault isolation for 
maintenance purposes more details are needed in order to achieve a high fault isolation 
performance, this will be discussed further in sections 5.2.3 - 5.2.5. 

Describing how the failure modes influence the system can be a difficult task since the 
description should be general and valid for all variations of the fault. One approch to 
solve this is through modeling of degradation and another is through implementation of 
undescribed failures modes. These two different approaches will be discussed in the two 
following sections.   

5.2.1 Modeling of degradation with failure parameter 
Modeling degradation is to describe how much a fault affects a system in a general way 
so that it is valid for all variations of the fault.  
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mLeakALeak

pAmbient

 

Figure 14. Illustration of a pipe. 

An example could be the modeling of a component pipe illustrated in Figure 14. Assume 
that pPipe > pAmbient. Nominal, fault free, behavior nf is that the mass flow rates 
equal OutIn mm && = . The pressure pPipe and temperature T is approximated to be constant 
throughout the pipe. One fault that can occur is the failure mode leakage fLeak. The effect 
of a leakage will be that the mass flow rates equal LeakOutIn mmm &&& += and that the pressure 
in the pipe will drop. The mass flow rate Leakm&  will differ depending on the leakage area 
ALeak of the hole according to the equation: 

T

ppCA
m AmbientPipeLeak

Leak

22 −⋅
=&  

where C is a constant of proportionality and T is the temperature inside the pipe. 

By introducing the failure parameter, ALeak, a general analytical description can be made 
that captures a wide range of the variation of the behavior that the fault can have. Hence, 
the failure mode FLeak can be described generally by a failure parameter, ALeak ≠ 0. 

From a model based diagnosis point of view this is a robust approach since all possible 
behaviors of a leaking pipe are solutions to the model.  

5.2.2 Undescribed component behavioral modes 
For components with faults that have unknown behaviors Rodon offers the possibility to 
implement undescribed behavioral modes. An undescribed behavioral mode captures 
observations that can not be explained by already described behavioral modes, the set 

FxΘ  is represented by the striped area in Figure 15, where it also covers the set NFΘ .  

Undescribed behavioral modes should be used with caution since every component in 
which it is introduced will be able to explain inconsistent observations. This will increase 
the number of suspects and decrease the diagnosis performance.  
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It should be said that the undescribed behavioral modes sole purpose is to be used for 
fault isolation. The use of undescribed behavioral modes can cause trouble when 
generating a SDB to be used for design related analysis. Because an undescribed failure 
mode is consistent with all possible values, the gathered information of an SDB, that have 
been generated from a model containing components with undescribed behavioral modes, 
will be reduced. This since the value ranges of variables it affects will be infinite. 

y 2

NFΘ

xFΘ
y 1  

Figure 15. Illustration of the coverage of an undescribed behavioral mode Fx. 

5.2.3 Consistent modeling in Rodon 
It is of great importance that the model used for model based diagnosis in Rodon 
describes as much of the real system behavior as possible. Differences between the model 
and the system will reduce diagnosis performance. Reasons for inconsistencies can be 
many e.g. stochastic variations in signals, unmodeled component parameter uncertainty, 
and model simplifications.  

For a system with three behavioral modes NF, F1, and F2 the differences between the 
model and the real system is illustrated in Figure 16, where the behavioral modes are 
observed through measurements 1y and 2y . An observation NFz Θ∈  has been measured in 

the real system, as illustrated in Figure 16, and is inserted in the model. Since BMz Θ∉ ˆ  
for all of the implemented behavioral modes { }21,, FFNFBM ∈ , Rodon will not be able to 
generate any diagnosis result. In this case, the consequence of having a model 
inconsistent with the real system is that Rodon can not generate any diagnosis at all. But 
in other cases it could lead to that the correct diagnosis is missing.    
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y 2

y 1

Real system

0UU = y 2

y 1

Ideal model

0UU =

NFΘ
NFΘ̂

1
ˆ

FΘ
1FΘ

2FΘ
2

ˆ
FΘ

z

 

Figure 16. The differences between an inconsistent model and the real system, where the value sets of 
behavioral modes NF, F1, and F2 are observed through measurements y1 and y2 and z is an 

observation from the real system inserted in the model. 

In Rodon interval arithmetic is used to make the models as consistent as possible to the 
real systems. By introducing intervals for stochastic variations in signals, component 
variables or imprecise knowledge of parameters, the value sets of each system behavioral 
mode will increase. The aim is to have a model so that all possible behaviors of the real 
system are solutions to the model. Hence, create a model so that iSystem

BMBM ii
∀Θ=Θ ,ˆ  is 

created. 

5.2.4 Effects of interval use 
Handling stochastic variations with interval arithmetic is however not unproblematic. 

The question is how interval arithmetic is to be used most efficient in order to handle 
stochastic variation, without creating larger value sets for the behavioral modes then 
necessary. 

Here follows an example of how multiplicative effects can occur when intervals are 
introduced in both local component parameters as well as connector variables. Consider a 
model of a system containing a series of resistors as showed in Figure 17, where the 
voltage u1 and u2 are measured, and 21 uu > .   

Figure 17. A model containing a series of resistors. 

R1 R2 RNU1 U2

I
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In the real system there is a stochastic variation for each nominal resistor resistance, ri, 
and for each measured voltage, uj, where i = 1,…, N and j = 1, 2. Since the true value of 
ri, and uj is not known their tolerances, εRi and εUj, are described in the model by 
introducing intervals, Ri and Uj, where [ ]RiiRiii rrR εε +−= and 

[ ]UjjUjjj uuU εε +−= .  

In the Rodon model, the equations of different components are linked together with 
connectors as described in Section 4.1.1. The interval Ri is a local parameter in each 
component and the total resistance of the circuit, NTot RRR ++= K1 , will because of 
interval arithmetic be  
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Since current I is determined by the relation IRU Tot ⋅=∆ , where 21 UUU −=∆ , this 
results in the value set  
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To get an estimation of the size of these multiplicative effects, assume that measurements 
Vu 201 = and Vu 102 = have a stochastic variation of εU1

= εU 2 ±1V due to measurement 
noise. Furthermore assume that the system contains 4 resistors, each with resistance r = 
100 ohm with a stochastic variation ofεRi

= ±5 Ohm. This leads to a current 
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Hence, the calculated current I will have a value set range of A0065.0025.0 ± , which 
means a deviation of %26± . Because Rodon calculates the effects that the maximum 
deviation will have on the system, there is a great risk that the calculated value set is not 
proportional to how the real value of the system current will vary. Most likely the model 
will include the real system behavior but if the value sets of the behavioral modes is too 
large it affects the diagnosis performance. An insensitive model will have trouble 
separating the fault free behavior from a faulty behavior, which will lead to that NF will 
be the diagnosis even for a faulty system.  

For the example system discussed in Section 5.2.3, the consequences of these 
multiplicative effects are illustrated in Figure 18. An observation z is measured in the real 
system and inserted in the Rodon model. Due to insensitivity of the model, z will be 
consistent with both the modeled behavioral mode sets of NF, and F2.  

y 2

y 1

Real system

0UU = y 2

y 1

Insensitive model

0UU =

NFΘ NFΘ̂ 1
ˆ

FΘ
1FΘ

2FΘ
2

ˆ
FΘz

 

Figure 18. The differences between an insensitive model and the real system, where the value sets of 
behavioral modes NF, F1, and F2 are observed through measurements y1 and y2 and z is an 

observation from the real system inserted in the model. 

5.2.5 Thresholds for measurement 
An approach to reduce multiplicative effects while still handling model uncertainty could 
be to only introduce intervals for measured variables and by this way try to cover both 
measurement noise and model uncertainty.  

Consider a modeled system where the measurement wyy += 0  is to be inserted in the 
model. 0y is the real system value and depends on the input signal u as )(00 uGy = , and w 
is measurement noise. In the model, ŷ is calculated by the function )(ˆ uGy = . If )(uG∆ is 
a model uncertainty, and satisfies )()()(0 uGuGuG ∆+= , then wuGyy +∆=− )(ˆ  is the 
variation that needs to be handled. Assuming that )()( uwuG ε=+∆ , then the 
thresholds ))(min( uε  and ))(max( uε can be used to introduce an interval in the model to 
improve robustness so that [ ]))(max(ˆ))(min(ˆ uyuyy εε ++∈ .   
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Since one cause of measurement variation could be model uncertainty, as seen above, 
there is also a great risk that the same uncertainty is represented in both the local 
parameters and in the measurements when the approach discussed in Section 5.2.4 is 
used. Another advantage of using the approach discussed in this section is that the risk of 
having the same uncertainty added more then once vanishes. 

It should be said that the process of estimating suitable intervals is not trivial. Since the 
variation will most likely vary depending on the values of control signals, a great deal of 
sampled measurement data will have to be gathered for many different control signal 
combinations. The possibility of generating measurement data for faulty behaviors will 
also be limited. Because the number of faulty system behavioral modes increases with the 
size of the system, it might not be financially sound to estimate thresholds for each and 
every set 0uu

BM
=Θ . Especially not since the wide range of variation a faulty behavior can 

have, see Section 5.2.1, increases the complexity of the problem even more. The most 
realistic approach will probably be to estimate the thresholds ))(min( uε  and ))(max( uε for 
the nominal fault free behavior, then use the same thresholds for all behavioral modes, 
and hope that the diagnosis performance will be sufficient enough.    

5.3 Simulation 

Rodon is developed primary to simulate stationary behavior of systems. However it is 
possible to perform dynamic simulations with Rodon. When it comes to analyzing 
dynamic systems, an evaluation need to be made in order to chose a suitable simulation 
approach. For some dynamic systems, it might be sufficient with a model based on a 
static approximation of the dynamic behavior, but in many cases the dynamics will be 
necessary to include in the model. The two different approaches above will be discussed, 
in Sections 5.3.1 and 5.3.2, with the example described below. Consider a 
system { }FNF,sys ∈ . The behavior of the systems is described by the dynamic equations,  

fuyy −=+ &  

au =  

⎩
⎨
⎧

<
≤≤

=
tb
t

f
τ

τ00
 

where u is a constant input signal, y the output signal, and f is a signal describing the 
behavior of the fault F. When time t < τ then sys = NF. At time t = τ fault F occurs and 
starts to affect the system. The system behavior is roughly outlined in Figure 19, where   
u = 100, f = 30, and τ = 0.3. 
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Figure 19. A plot of how y varies with time influenced by fault f. 

5.3.1 Dynamic  
In order to make a dynamic simulation in Rodon a discretization of time into intervals of 
size dt is needed. This is done in Rodon by dividing the simulation into different frames, 
see Section 4.3. After this, the user needs to implement how derivatives of dynamic 
variables should be approximated and updated between the frames. Here follows an 
example of how the dynamic behavior of system sys, described in Section 5.3, could be 
implemented with a forward Euler approximation in Rodon.  

fuyy −=+ &̂ˆ  

ydtyNexty &̂ˆˆ ⋅+=  

The smaller intervals dt used during simulation, the better approximation of the real 
system behavior will be achieved. Rodon does not have any plotting features so 
calculated values of yy &̂,ˆ  from a simulation will be gathered in tables. For model based 
diagnosis purposes this might not be a limitation since the only information requested 
from a simulation is suspected candidates. However, in design phase the lack of plotting 
feature will make it hard to analyze the generated simulation data.  

This might seem trivial but if simulation data is to be exported to other tools, with 
plotting features, the use of interval arithmetic in Rodon might cause problems since most 
plotting functions uses vectors of single numeric values as inputs, not intervals.   
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The use of interval arithmetic in Rodon will also cause problems when it comes to 
verifying the model quality. Assume that a model for system sys = NF is to be validated. 
Measurements have been collected from the real system during a time window t = 1,…, 
N. A commonly used method for this is to calculate the mean of the prediction 
error, yy ˆ− , where y is the real system value and ŷ the calculated model value.  

The validity of the model quality when sys = NF is estimated by the function V: 

[ ] [ ]∑
=

−=
N

t
tyty

N
V

1

ˆ1  

When validating a Rodon model, the question that needs to be answer is what 
interpretation of this function that can be made when ŷ is an interval. 

As said before these problems discussed here might seem trivial. Still they will have to be 
dealt with.  

5.3.2 Static  
A static approximation of the example described in Section 5.3 is achieved by setting y& = 
0 in the model. This means that the static simulation result that Rodon generates can be 
interpreted as the value of y when all system transients have disappeared. To describe 
how the fault F is going to affect the system the two behavioral modes NF and F has to 
be simulated separately. For the fault free case the system behavior is described by the 
following equations: 

uy =  

For fault mode F, the system behavior is described by equations: 

fuy −=  

If this approach is to be useful the system can not be controlled more rapid then the 
systems own time constant because this results in the system not reaching a stationary 
behavior. It is up to the user to determine if a static approach will be sufficient or not. For 
many applications in Rodon this is a necessary approach. E.g. the generation of SDB, 
described in Section 4.4.1, is generated through static simulations.  

5.3.3 Validation of a model 
The quality of the model will affect the diagnosis performance in Rodon and therefore it 
is of importance to validate the model. Here are some suggestions on methods to follow 
and criteria to check when verifying a model. 

• Simulate the nominal fault free case. Make sure that no variables in the model 
have undefined values. This should hold for all control signal combinations. 
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• Use the auto simulation feature to simulate all single faults that can occur in 
the model for all control signal combinations. The percentage of simulations 
that has resulted in conflicts should be very low. Each case that causes a 
conflict should be carefully investigated. 

• In the case that a simulation has been aborted the feature constraint net 
analyzer is strongly recommended for debugging, where the calculation 
processes can be viewed and loops detected. 

5.4 Applications 

Rodon offers flexible simulation opportunities that suite different analysis approaches.  

During development it is possible to analyze what impact a certain component behavioral 
mode bm and control signal combination u will have on the system observations y and 
failure codes fc, see Figure 20. In Section 3.1 this was referred to as failure analysis but 
the same approach could also be used for generation of decision trees to aid the 
technicians in maintenance, as described in Section 4.4.3.  

MBMu y

fc

bm

 

Figure 20. A simulation approach in Rodon that is useful in many design phase applications.  Where 
control signals u, behavioral modes bm, are inputs and failure codes fc, and calculated observations y, 

are outputs. 

Failure codes that have been set and observations that have been measured in the real 
system can be used together with the model to get all diagnosis, see Figure 21. This can 
be useful in maintenance for fault isolation purposes, but the same approach can also be 
used to generate decision structures for implemented tests.   



  Chapter 5 - Using Rodon 

  

40 

MBMu y

bm

fc  

Figure 21. A simulation approach in Rodon that is used for fault isolation and generation of decision 
structures for implemented tests.  Where control signals u, failure codes fc, and observations y, are as 

inputs and behavioral modes bm are outputs. 

These aspects make Rodon useful during both development and operations.  

5.4.1 Limitations 
As discussed in Section 5.3, Rodon is developed primary to analyze stationary behavior 
of systems. Dynamic simulations can be made and used for fault isolation on dynamic 
systems, but most of the applications in Rodon are designed for use on static models. 

Another limitation is that some Rodon applications require discrete control signals. 
Consider auto simulation described in Section 4.4.1, which is a significant application in 
Rodon. It generates state space databases for static models, by simulating each 
combination of control signal u, and behavioral modes bm, as illustrated in Figure 20. An 
analog varying control signal will in auto simulation be interpreted by Rodon as a 
discrete control signal with an interval including the whole value range of the analog 
signal. A solution to this could be to map the value range of each analog control signal 
into discrete working points. 

5.5 Summary 

In this chapter a general overview of how it is to work in Rodon have been given. 
Benefits that can be gained when using different Rodon applications have been described, 
but also problems and limitations that can occur depending on modeling and simulation 
purposes. 

To conclude, the criterions for a model to be useful in all Rodon applications are: 

• The model needs to be static. 

• The model needs to have discrete control signals. 

• The model needs to have well defined system behavioral modes. 

For fault isolation on physical systems the only limitation will be how well the real 
system behavior is described by the model, as discussed in sections 5.2.3 - 5.2.5. 
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In the next chapter a method is given with the purpose to decide which tests and sensors 
that should be implemented to achieve fault isolation and functional monitoring goals.
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Chapter 6  
 
A method to compute all tests from the SDB 

In this chapter a general method will be presented with the purpose to generate all tests 
that can be implemented in the on board diagnosis system to achieve FDI. These tests are 
generated from the information of the system state space. After this, a possible 
implementation of the method in Rodon will be discussed together with limitations. The 
chapter will conclude with how Rodon can be used together with a modified version of 
the method to generate all tests.   

6.1 Overview of the method 

The method can be used for a system with an arbitrary number of sensors and m system 
behavioral modes to generate all possible tests. The first part of the method is to compute 
the system state space. This is performed by determining the set 
Zmodel mBMBMBM Θ∪∪Θ∪Θ= ...

21
, where }0),(|),{( ==Θ yuMyu i

i

BM
BM . This is put 

into words equivalent to determining how the model responds to different system 
behavioral modes. This information is further processed in the second part of the method 
that generates and gathers all possible tests in a decision structure, which can be used for 
diagnostic system design. 

6.2 Example of how to generate Zmodel 

How to generate Zmodel will be described through an example of an arbitrary system, sys, 
with three system behavioral modes, NF, F1, and F2, and two sensors 1y and 2y . For 
simplicity it is assumed that the system only can be controlled with 0uu = and the 
corresponding system behavioral mode sets can be seen in Figure 22. The SDB contains 
the set Zmodel, which in this case is determined as 

}0),(|{}0),(|{}0),(|{ 000
21

21

=∪=∪=

=Θ∪Θ∪Θ

yuMyyuMyyuMy FFNF

FFNF  

In the example it is assumed that the model is a perfect description of the system, 
hence isys

BMBM ii
∀Θ=Θ , . 
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y2

y1

0uu =

2FΘ

NFΘ 1FΘ

 

Figure 22. View of the system state space, Zmodel = 21 FFNF Θ∪Θ∪Θ . 

The process of determining the system state space will be formalized in next section but 
the basic idea is to calculate the corresponding measurements y of the sensors, for each 
control signal 0uu = and each system behavioral mode BM, with the help of the 
model 0),( =yuM BM . 

6.3  System state space generation algorithm 

This section contains the system state space generation algorithm, which can be used to 
generate information of the system state space. 

6.3.1 Definition   
Given a system with the corresponding model 0),( =yuM kBM , 
where { }mk FFNFBM ,...,, 1∈  and ),...,,...,( 1 pi yyyy = are calculated expected 
measurements from sensors. Control signals are nikuk ,..,,..,1, = . Each control signal 

iu can be chosen according to all possible choices included in iU , 

nnii UuUuUuUu ∈∈∈∈ ,...,...,,, 2211 . All possible control signal combinations can be 
defined as ni UUUUU ×××××= ......21 . The currently iterated control signal is 
denoted 0u , and Uu ∈0 .  
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6.3.2 Algorithm part 
The input is the model equations for all system behavioral modes, and all control signals, 
of interest. The output is information of the system state space in the form of a table, 
called SSP (System State Space). 

{ }

{ }
( )

end
end

jj

yyyuBMSSP
yuMwithconsistentyfind

FFNFBMallfor
Uuallfor

jInitiation
spacestateSystemSSPTableOutput

FFNFBMzMUInput

pikj

BM

mk

mk
BM

k

k

;.5

);,...,,...,,,(:.4
;0,.3

,...,,.2
.1

;1:
)(:

,...,,,0)(,:
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0

1

0

1

++=
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∈
∈

=

∈∀=

 

Initiation is performed by setting the SSP row index 1=j . The algorithm is iterated for 
each control signal combination 0u in U (on line 1) and each system behavioral mode (on 
line 2). The model is used every iteration to find consistent expected measurements (on 
line 3). The current iterated system behavioral mode and control signal combination is 
together with calculated measurements inserted in the j:th row of the SSP (on line 4). 
After this, j is incremented (on line 5). The resulting SSP table will consist 
of Uinsignalscontrolofnumberm ⋅+ )1( rows and )2( +p columns.  

6.4 Example of how to generate all tests 

When the SSP has been computed, it can be used for test generation. This is because the 
SSP contains all the information of the system state space Z and states how all sensors 
will be affected by every possible control signal and system behavioral mode 
combination. The test generation is achieved by dividing the system state space into all 
possible subsets and creating a test for each and every subset. An illustration of how the 
example in Section 6.2 is divided into subsets, 7,...,1, =Θ iC

i , can be found in Figure 23.  
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Figure 23. Example of how the original set is divided into subsets. 
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The resulting tests of the example are listed in the order of how they are generated for the 
example above and can be seen in Table 5. 

Table 5. The tests that can be generated for the example. 

21
: FFNFZInitially Θ∪Θ∪Θ= Test Rejection region Decision 

211 FFNF
C Z Θ∩Θ∩Θ∩=Θ  T1 →Θ=Θ∈ CC

Tz 11
 },,{ 21

1 FFNFSsys =∈

CZZ 1\ Θ=     

12 FNF
C Z Θ∩Θ∩=Θ  T2 →Θ=Θ∈ CC

Tz 22
},{ 1

1 FNFSsys =∈  

CZZ 2\ Θ=     

23 FNF
C Z Θ∩Θ∩=Θ  T3 →Θ=Θ∈ CC

Tz 33
},{ 2

1 FNFSsys =∈  

CZZ 3\ Θ=     

NF
C Z Θ∩=Θ4  T4 →Θ=Θ∈ CC

Tz 44
}{1 NFSsys =∈  

CZZ 4\ Θ=     

215 FF
C Z Θ∩Θ∩=Θ  T5 →Θ=Θ∈ CC

Tz 55
},{ 21

1 FFSsys =∈  

CZZ 5\ Θ=     

16 F
C Z Θ∩=Θ  T6 →Θ=Θ∈ CC

Tz 66
}{ 1

1 FSsys =∈  

CZZ 6\ Θ=     

27 F
C Z Θ∩=Θ  T7 →Θ=Θ∈ CC

Tz 77
}{ 2

1 FSsys =∈  

CZZ 7\ Θ=     

 

These tests can be gathered in a decision structure. The process of dividing the original 
set into subsets and creating tests for each and every subset is formalized in next section 
but the basic idea can be described as follows. 
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Outer loop: For every control signal combination 0u of U  

Calculate the subset, Zsub, of the system state space, Z, defined by the 
current iterated control signal combination as },|{ 0uuZzzZ sub =∈=   

Inner loop:  Divide Zsub into all possible subsets and create a test for 
each subset. 

 Include each test in the decision structure 

This means for the example above, that the outer loop only will be iterated once since 
there is only one control signal combination. It should be noted that Z =Zsub in this case. 
The inner loop will be iterated seven times, since Zsub can be partitioned into seven non-
empty subsets.     

6.5 Test generation algorithm 

This section contains the test generation algorithm, which can be used to divide the 
system state space into subsets and create a test for each and every subset. The output is 
all generated tests and they are gathered in a decision structure. 

6.5.1 Definition 
The same notation as in Section 6.3.1 will be used here.  

6.5.2 Algorithm part 
The input is the SSP and all system behavioral modes and control signals of interest. The 
output is a decision structure table, which is on the form that can be seen in Section 2.2.2. 
Current iterated control signal is denoted 0u and all control signals U. A binary 
number )....( 21 ml xxxxx = is used to keep track of which subset of Zsub that is currently 
searched. A new set is necessary to define, which for 0uu = and the system behavioral 
mode { }mk FFNFBM ,...,, 1∈  is:  

{ }0),(| 0
0 ==Θ = yuMy k

k

BMuu
BM    
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Initiation is performed by setting the decision structure row index 1=j . The outer loop of 
the algorithm is iterated for each control signal combination 0u in U (on line 1). In the 
outer loop, the SSP is used to decide Zsub, which is the subset of the system state space for 
the current iterated control signal (on line 2). Furthermore, the binary number x is 
initiated each outer loop iteration (on line 3). If x is expressed binary then it can be said to 
represent which behavioral mode subset that is being explored in the inner loop. For the 
example in Section 6.4, x would be initiated as x=<1 1 1>. The binary number x=<1 1 1> 
represents that the intersection of all behavioral modes will be searched during the first 
iteration of the inner loop,

21 FFNF Θ∩Θ∩Θ . After the inner loop has finished, x will be 
decremented to x=<1 1 0>, which means that the intersection of behavioral 
modes

1FNF Θ∩Θ instead will be searched during the second iteration. The inner loop will 
continue with searching the current behavioral mode intersection and decrementing x, 
until x = 0. 
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The inner loop starts by calculation of the currently searched region, as the intersection 
between the system behavioral mode sets, indicated by x, and the set Zsub (on line 5). If 
the currently searched region is non-empty (on line 6) then it is saved as the rejection 
region of a test (on line 7). If the system is behaving according to one of the behavioral 
modes that are included in the searched subset this can cause the created test to react. 
Implicitly this means that x indicates which behavioral modes that can cause the test to 
react, which if expressed binary is equivalent to the row information of a decision 
structure, and the decision then taken. This decision is saved (on line 8) and inserted 
together with the rejection region of the test on the j:th row of the decision structure (on 
line 9). The set Zsub is updated by removing the rejection region of the created test (on 
line 10) and the row index j is incremented (on line 11). The final step of the inner loop is 
to decrement x (on line 12). The inner loop starts over again if the condition x > 0 is 
fulfilled (on line 4), if not, then the outer loop is reiterated provided that there are control 
signal combinations in U left to iterate.  

The resulting decision structure table will consist of endj rows and )2( +m columns. The 
value of endj can not be predetermined, and therefore the number of rows will only be 
apparent after the algorithm has finished.  

6.6 Implementation in Rodon and limitations 

There are some limitations of how Rodon can be used in the method. The system state 
space algorithm can be performed automatically and the result will be an SDB table (see 
Section 4.4.1), but this is only an approximation of the SSP. This is because the SDB 
only contains value intervals describing how each and every variable can vary 
independent of any other variable. For further clarification, assume a system, sys, which 
has two system behavioral modes, NF and F, and two sensors 1y and 2y . The system can 
only be controlled as 0uu = . A model of the system has been developed, and Zmodel is the 

set 00 uu
F

uu
NFFNF

== Θ∪Θ=Θ∪Θ .  

Assume that one model equation for NF is 2,22
2

2
1 =≤+ rryy and the SDB states for NF 

that [ ]221 −∈y and [ ]222 −∈y , then these value ranges define a region that contains 
values that are inconsistent with the model equation. Pick e.g. the point )2,2(),( 21 =yy for 
which 4822 222

2
2
1 >=+=+ yy . These inconsistent points would not be included in the 

region if the SDB described the dependencies between the variables as the SSP will do. 

The test generation algorithm can not be achieved in Rodon, but the SDB can be used as 
input in the algorithm since it is an approximation of the SSP. The SDB contains regions  

{ } [ ])max()min(,,,1|ˆ
0

0
iiiii

uu
BM yyywhereUukpiyy

k
=∆∈∀∀≤≤∆∈=Θ =  

The corresponding theoretical SDB for sys can be seen in Table 6. Figure 24 show the 
system behavioral modes, the resulting intervals, and the corresponding SDB set (dashed 
rectangles) for sys.  
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Table 6. The theoretical SDB for the example that is used in the test generation algorithm. 

System 
behavioral 

modes 

Control 
signal 

u 

1y  2y  

NFΘ  0u  ( ) ( )⎥⎦
⎤

⎢⎣
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Figure 24. The system behavioral modes of the example and the resulting SDB intervals, which 
indicate the SDB regions (dashed boxes) that are used in the test generation algorithm. 

The intervals of the figure define the SDB regions 

},|{ˆand},|{ˆ
,22,11,22,11

00
FF

uu
FNFNF

uu
NF yyyyyyyyyy ∆∈∆∈=Θ∆∈∆∈=Θ ==  

If the information of the SDB is used in the test generation algorithm then the result will 
be the rejection regions shown in Figure 25, and the following tests, listed in the order of 
how they are created with the algorithm: 
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Figure 25. The three resulting rejection regions when the test generation algorithm is used. 

For the example above the use of the test generation algorithm has been performed 
manually. However, for a bigger SDB this manual implementation would be very hard to 
achieve and therefore it would be necessary to automate the algorithm. The test 
generation algorithm has not been automated in this thesis, since this was not included in 
the scope, and because of time shortage. Instead, a variation of the algorithm was 
implemented and will be presented in next section. 

6.7 Modification of the test generation algorithm 

The SDB in Table 6 will be used to illustrate the steps of the modified test generation 
algorithm. Each sensor column ,, iyi ∀ contains a listing of intervals

Nl iii yyy ∆∆∆ ,....,,...,
1

, 
where N is the Uinsignalscontrolofnumber times the number of system behavioral 
modes. Hence, each interval corresponds to one certain system behavioral mode and 
control signal combination.  
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These intervals can intersect each other. The intervals calculated from the same control 
signal combination are for each column divided until no such intersections exist, which 
results in intervals

Kl iii yyy ∆′∆′′∆ ,....,,...,
1

, where NK ≥ . This means that the same steps 
are followed as in the test generation algorithm with the difference being that only one 
sensor dimension at a time, is processed.  

For the example depicted in Figure 24, where NFy ,2∆ intersects Fy ,2∆ and 

NFy ,1∆ intersects Fy ,1∆ , this would result in the subintervals shown in Figure 26. A test is 
created for each generated interval of each column, which results in six tests for the 
example.  
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Figure 26. Resulting subintervals when the modified test generation algorithm is used. 

The following tests can be created in the example: 
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For all tests, except T5, the decision when a test does not react will 
be },{0 FNFSsys =∈ . However, if T5 does not react the decision will be }{0 FSsys == , 
since 0uu

NF
=Θ is a subset of C

T5
Θ .   

The resulting decision structure for the tests above can be seen in Table 7.  

Table 7. Decision structure for the tests generated through the modified method. 

Test NF F 

T1 X 0 

T2 X X 

T3 0 X 

T4 0 X 

T5 1 X 

T6 0 X 

6.8 Summary 

This chapter presented a general method to generate the system state space, which could 
be used to generate all tests. Rodon could be used to generate the SDB which constitutes 
an approximation of the system state space. This SDB could be used with the test 
generation algorithm manually but this approach turned out to be very cumbersome if the 
SDB contained much information. A recommendation is to automate the test generation 
algorithm if it is to be of practical use. The test generation algorithm was modified to 
better suite a manual approach. An example was presented on which both the original and 
modified test generation algorithm was used. The achieved diagnostic performance was 
in this case the same for the two approaches. This thesis leaves no guarantee that the 
achieved diagnostic performance always will be the same.  

The modified test generation algorithm will be used in Section 7.1 and 7.2. The next 
chapter will analyze different parts of the vision presented in Chapter 3, and determine 
whether or not they are fulfilled.
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Chapter 7  
 
Vision analysis 

This chapter will try to determine if Rodon fulfills the desired achievements, presented in 
Section 3.2. It will start with the use of Rodon during developments: for failure analysis, 
guidance of sensor placements, design and evaluation of tests for an on board diagnosis 
system, and generation of decision structures of designed tests. After this follows a 
section about the use of Rodon for fault isolation during operations, before the chapter is 
concluded with a summary.  

7.1 Failure analysis 

The possible uses of failure analysis are many. As said in Section 3.1, it is important to 
analyze the behavior of a system in order to determine which faults that can cause critical 
system failures. During early development of a system this is done to detect design flaws, 
but it is also used for developed systems to design diagnostic tests for functional 
monitoring and fault isolation, and one method for this is described in Chapter 6.  

Complex systems demand systematical failure analysis and two common methods to 
structurize the work are FTA (Fault Tree Analysis) and FMEA (Failure Mode Effect 
Analysis). FTA is briefly described in Section 4.4.4 and will not be analyzed in this 
thesis. It is mentioned here since Rodon features an FTA application, but this application 
uses another type of model compared to the one described in this thesis.  

FMEA on a system is done by investigating each component that the system consists of 
and list which faulty behaviors they can have. When that is done each component fault 
behavior is analyzed in order to determine the effects it will have on the whole system. 
To be able to do this, detailed knowledge of the system and all of it components is 
needed. The result from the FMEA is then summarized in a chart. 
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By using the already existing knowledge on component level of which faults that can 
occur and how they will behave to build a Rodon model, the effects each fault will have 
on the system can be automatically generated through auto simulation and the result 
gathered in an SDB as described in Section 4.4.1. Since the SDB contains the knowledge 
of which behavioral modes that will deviate from NF, it can then be used as a decision 
basis for FMEA. This will probably ease the work of FMEA, because the analysis of how 
a fault affects the system is performed manually today. It is also likely that the quality of 
the FMEA will increase since the risk of missing fault effects will decrease. 

To conclude, Rodon is very useful for failure analysis and thereby fulfills this 
requirement of the vision. 

7.2 Guidance of sensor placements for FDI 

This section will discuss how Rodon can be used to decide optimal sensor placement in a 
system. The sensor placement choice is intertwined with achieved diagnosis performance, 
since the choice determines which tests that can be created in the on board diagnosis 
system. Therefore, optimality is here defined as given a diagnosis performance 
specification to minimize the number of sensors. 

If the Rodon model describes the system behavior well, then it can be used to give an 
indication of how sensors should be placed to achieve a certain diagnosis performance. 
Possible sensor placements are marked with the property mark observation in the Rodon 
model and can of course be an arbitrary choice. The process of deciding optimal sensor 
placement starts by generating the SDB of the model including all potential sensors. This 
SDB contains an approximation of what every sensor in theory will measure in each 
system behavioral mode, and because of this it can be analyzed to create a decision 
structure that contains all possible tests for every sensor, as described in Section 6.7. This 
decision structure can be analyzed to decide if a sensor choice exists that accomplishes 
the desired diagnosis performance. 

Assume a system, sys, in which we want to find the optimal sensor placement, emanating 
from some initial sensor placement points, in order to achieve a desired diagnosis 
performance. The system contains the components and component behavioral modes 
listed in Table 8. 
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Table 8. Component and component behavioral modes in the modeled system and the description of 
their model equations. 

Component Behavioral mode Description 

Battery  No fault (nf)  0=+ outin ii  

Wire No fault (nf) outin uu = ,  

0=+ outin ii  

Wire Short to ground (short2gnd) 0== outin uu  

Wire Short to battery (short2batt) Vuuu batteryoutin 12===  

Switch No fault (nf) Desired position =  

Actual position 

Switch Disconnected (disc) Actual position =  

switch open 

Switch Pin short (pin_short) Actual position =  

switch closed 

Bulb No fault (nf) outin uu = ,  

0=+ outin ii  

Bulb Disconnected (disc) 0== outin ii  

Ground No fault (nf) Kirchhoff: 

0=+ groundin ii  

0=groundu  

Ground Disconnected (disc) 0== groundin ii  
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The model of the system can be seen in Figure 27, in which the circles marks initial 
current and voltage sensor points. The desired diagnosis performance of the on board 
diagnosis system is to detect when the switch malfunctions and deviates from nf. 
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Figure 27. The model of the system and the defined possible measurement points, which are marked 
by circles. 

The system behavioral modes are defined in Table 9. 
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Table 9. Listing of how the system behavioral modes are defined in the example. 

NF All components behave according to nf 

F1 Bulb disconnected, 1 

F 2 Ground disconnected, 1 

F 3 Switch disconnected, 1 

F 4 Switch pin short, 1 

F 5 Wire_1 disconnected, 1  

F 6 Wire_1 short to ground, 1  

F 7 Wire_1 short to battery, 1 

F 8 Wire_2 disconnected, 1 

F 9 Wire_2 short to ground, 1  

F 10 Wire_2 short to battery, 1 

F 11 Wire_3 disconnected, 1 

F 12 Wire_3 short to ground, 1 

F 13 Wire_3 short to battery, 1 

 

System behavioral modes of interest are F 3 and F 4, since the desired diagnosis 
performance is to detect when the switch malfunctions. Analogous with the nomenclature 
in Chapter 2, the model is defined as: 

 

 

 

 

 

 

1 All other components behave according to the component behavioral mode nf 
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The resulting SDB for the model and suggested sensor placements can be seen in Table 
10. This SDB is manually processed in accordance with the modified test generation 
algorithm in Section 6.6. Column wire_1.p2.i will be processed for illustration purposes. 
A restriction is that only intervals outside the interval of NF are used for creation of tests. 
These tests are implemented in Dirigent, see Section 4.4.7, which provides the system 
behavioral modes that can cause each test to react. The following tests can be created: 
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This same process is repeated for every column. The result is that all possible tests have 
been created and can be translated into the decision structure in Table 11. 
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Table 10. SDB generated in Rodon for the possible sensor placements. 

Fault State U wire_1.p2.i wire_1.p2.u wire_2.p1.i wire_2.p1.u wire_3.p2.i wire_3.p2.u 

NF off 0 12 0 0 0 0

F1, Bulb 
disconnected off 0 12 0 [0 12] 0 0

F2, ground 
disconnected off 0 12 0 [0 12] 0 [0 12] 

F3, switch 
disconnected off 0 12 0 0 0 0

F4, switch pin_short off [-0.83168 -0.83166] [11.975 11.977] [0.83166 0.83168] [11.975 11.977] [0.83166 0.83168] 0

F5, Wire_1 
disconnected off 0 [0 12] 0 0 0 0

F6, wire_1 
short_to_gnd off 0 0 0 0 0 0

F7, wire_1 
short_to_batt off 0 [11.999 12] 0 0 0 0

F8, wire_2 
disconnected off 0 12 0 [0 12] 0 0

F9, wire_2 
short_to_gnd off 0 12 0 0 0 0

F10, wire_2 
short_to_batt off 0 12 0 [11.974 11.976] [0.83159 0.83161] 0
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F11, wire_3 
disconnected off 0 12 0 [0 12] 0 [0 12] 

F12, wire_3 
short_to_gnd off 0 12 0 0 0 0

F13, Wire_3 
short_to_batt off 0 12 0 0 0 0

NF on [-0.83168 -0.83166] [11.975 11.977] [0.83166 0.83168] [11.975 11.977] [0.83166 0.83168] 0

F1, bulb 
disconnected on 0 12 0 12 0 0

F2, ground 
disconnected on 0 12 0 12 0 12

F3, switch 
disconnected on 0 12 0 0 0 0

F4, switch pin_short on [-0.83168 -0.83166] [11.975 11.977] [0.83166 0.83168] [11.975 11.977] [0.83166 0.83168] 0

F5, wire_1 
disconnected on 0 0 0 0 0 0

F6, wire_1 
short_to_gnd on 0 0 0 0 0 0

F7, wire_1 
short_to_batt on [-0.83259 -0.83237] [11.986 11.99] [0.83237 0.83259] [11.986 11.99] [0.83237 0.83259] 0

F8, wire_2 
disconnected on 0 12 0 12 0 0
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F9, wire_2 
short_to_gnd on [-416.67 -416.66] 0 [416.66 416.67] 0 0 0

F10, wire_2 
short_to_batt on [-0.47518 -0.3723] [11.986 11.99] [0.3723 0.47518] [11.986 11.99] [0.83237 0.83259] 0

F11, wire_3 
disconnected on 0 12 0 12 0 12

F12, wire_3 
short_to_gnd on [-0.83168 -0.83166] [11.975 11.977] [0.83166 0.83168] [11.975 11.977] [0.83166 0.83168] 0

F13, wire_3 
short_to_batt on [-0.83168 -0.83166] [11.975 11.977] [0.83166 0.83168] [11.975 11.977] [0.83166 0.83168] 0
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Table 11. Resulting decision structure generated with the test generation algorithm based on 
possible sensor placements. 
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Since it was of interest to detect and isolate switch malfunctions, the decision 
structure must be analyzed to see if there are tests or combination of tests that 
accomplishes this criterion. For fault isolation of switch pin short, F4, the following 
tests can be chosen for implementation: 
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For fault isolation of switch disconnected, F3, the following combination of tests can 
be implemented, which is represented as taking the intersection of the row 
representing T16 with the inverse of the row representing T24 in Table 11: 
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For isolation of F3, this means that the two sensor measurements wire_1.p2.u and 
wire_2.p1.u will be implemented and can be used for further test creation.  

Unfortunately, none of the signals wire_1.p2.u and wire_2.p1.i is included in the tests 
that can be implemented to isolate if the switch is behaving according to pin short. 
This means that one more sensor is needed to be able to isolate the system behavioral 
mode switch pin short as well, and is decided by the test chosen for isolation of F4. In 
the example the test for isolation was chosen as: 

[ ] },83168.083166.0.2.3_|{:
44

offuipwirezzT C
FF =∈=Θ∈  

In summary the sensor placement sufficient to achieve detection of all faults in the 
switch will be: 

• wire_1.p2.u 

• wire_2.p1.u 

• wire_3.p2.i  

As a consequence of this sensor placement choice, additional tests can be 
implemented in the diagnosis system. All tests possible to implement, for the given 
sensor placement choice, are listed in the decision structure in Table 12. It is possible 
to analyze how these tests can be combined for fault isolation, by using the Rodon 
feature DRsimulator.  

It can be concluded that Rodon can be used for guidance of sensor placement which 
was one of the desired features of the vision. 
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Table 12. Resulting decision structure from the chosen optimal sensors placement. 
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7.3 Test design 

This section will discuss how diagnostic tests can be designed for the on board 
diagnosis system. Design of a test is equivalent to determining the rejection region of 
the test, C

TΘ , and determining which system behavioral modes that can cause the test 
to react, 1S .  

Tests for on board use can, as earlier stated, both be used for fault isolation and for 
functional monitoring purposes. Assuming that a sensor placement choice has been 
made, the general process for both test types is to decide a rejection region of the test.  

The difficulty when designing tests lies in the choice of the rejection region, since this 
affects the achieved diagnosis performance. Test rejection regions for fault isolation 
and for functional monitoring purposes can be chosen manually by the engineer.  

Another way to choose the rejection regions for fault isolation purposes is by using 
the method in Section 6.6 or the method in Section 6.7. The steps presented in these 
algorithms can be followed to generate all diagnostic tests for fault isolation purposes. 
These tests will all be of limit checking type, which means that they decide whether or 
not a sensor value is above or below a certain value. This leads to the system state 
space being divided into angular regions, which the method uses as rejection regions. 

The chosen rejection regions can then be implemented in Dirigent, which 
automatically decides the set 1S . If this is done for all tests desired in the diagnosis 
system, then a decision structure can be created. This decision structure can be 
analyzed to decide if the diagnosis performance is sufficient. 

In summary, Rodon is used to generate the SDB, which is used as input to the method. 
The method provides a structured approach to generate all limit checking tests and the 
resulting decision structure. This means that, since Rodon provides the necessary 
input to the method, Rodon in combination with the method can be used for test 
design. 

},0.1.2_|{

:
1212

onuupwirez

zT C
T

==

=Θ∈
 

0 0 1 0 1 1 0 0 1 0 0 0 0 

},12.1.2_|{

:
1313

onuupwirez

zT C
T

==

=Θ∈
 

1 1 0 0 0 0 0 1 0 0 1 0 0 

[ ] },83259.083237.0.2.3_|{

:
1414

onuipwirez

zT C
T

=∈

=Θ∈

 0 0 0 0 0 0 1 0 0 1 0 0 0 

},0.2.3_|{

:
1515

onuipwirez

zT C
T

==

=Θ∈
 

1 1 1 0 1 1 0 1 1 0 1 0 0 



  Chapter 7 - Vision analysis 

  

70 

The conclusion that can be drawn is that Rodon can be used in combination with the 
method for design and evaluation of tests. Rodon does not fulfill the requirement of 
the vision concerning design of tests, but can provide the set 1S automatically. It is 
hard to say which diagnostic performance that is achieved by using the method in 
combination with Rodon. An evaluation would be of interest and is a recommendation 
for future work. 

7.4 Generation of decision structures 

As stated earlier in Chapter 3, Saab is interested in automatic generation of the 
decision structure for designed diagnostic tests that are to be implemented in the on 
board diagnosis system for FDI. This decision structure contains information of which 
system behavioral modes that can cause each test to react. The decision structure is to 
be used in the fault isolation logic block during operation together with the values of 
the diagnostic tests and the desired output is the diagnosis that is consistent with the 
values of the tests. A generic fault isolation logic block with software must be 
constructed to achieve the process described above.   

An example can perhaps clarify the function of the block. Assume that three 
diagnostic tests, T1, T2, and T3, are used in the diagnosis system of a subsystem during 
operation. There are four system behavioral modes that the subsystem can behave 
according to: NF, F1, F2, and F3. The decision structure can be seen in Table 13.   

Table 13. Decision structure of an example that illustrates the function of the fault isolation logic 
block. 

 

At one juncture the values of the test are >>=<=< 110321 TTTT . The task for the 
software in the fault isolation logic block will then be to reach the conclusion 
that 3Fsys = . To conclude, the purpose with the fault isolation logic block is to 
perform an automatic fault isolation analysis and present the diagnosis based upon the 
values of the diagnostic tests and the decision structure in use.  

 NF F1 F2 F3 

T1  0 X X 0 

T2 0 0 X X 

T3 0 0 0 X 
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7.4.1 Rodon generation of decision structures 
If the diagnostic tests, that are to be implemented in the on board diagnosis system, 
are implemented in Rodon, according to Section 4.4.6, then Dirigent can be used to 
generate what is called diagnostic rules in Rodon, as described in Section 4.4.7. The 
diagnostic rules are listed in a code file and contain the same information as a decision 
structure. This diagnostic rule file can be used as input in the feature DRsimulator to 
generate a corresponding file, which is a list in a c source format that also contains the 
same information as a decision structure. This c source code can be used in the fault 
isolation logic block. The process described above is illustrated in Figure 28. 

Fault
Isolation

logic

Rodon 
model

DRsimulatorDirigent

User
defined

tests

Diagnostic
rules

Decision
structure
C code

 

Figure 28. Illustration of the process how the Rodon model is used together with the features 
Dirigent and DRsimulator to generate decision structure code, which is used as input to the fault 

isolation logic block. 
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7.4.2 Diagnostic rules 
Pseudo code for how the diagnostic rules are listed can be seen in Figure 29 and a real 
example of code can be found in Appendix A.  

Failure codes:
1: fc1

…….
N: fcN

System behavioral modes:
1: FM1

…….
M: FMM

Diagnostic Rules:
R1: 
if (fc1 = true)
suspected (System behavioral mode set1)

…….
RN: 
if (fcN = true)
suspected (System behavioral mode setN)

 

Figure 29. Illustration of the generated diagnostic rules expressed in pseudo code 
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The pseudo code consists of failure codes Nifci ,...,1, = . These failure codes 
correspond to the tests that are to be implemented in the on board diagnosis system in 
a system, sys. Furthermore, the pseudo code contains a listing of possible system 
behavioral modes that sys can behave according to. If T1 is the only test of the 
diagnosis system and corresponds to the failure code 1fc then 1fc will be included in 
the failure code section. If T1 indicates the system behavioral modes F1 and F2, then 
these will be listed in the system behavioral modes part. This will also result in the 
part with diagnostic rules only being filled up with one rule since there only is one 
diagnostic test. This rule will contain the condition )( 1 truefcif = and include the 
system behavioral modes F1 and F2 as the suspects. If test T1 reacts in the diagnosis 
system, the result will be that the failure code 1fc will be set true, and the decision will 
then be },{ 21

1 FFSsys == . If the diagnosis system was to be supplemented with one 
more test 

},{},3,2|{: 32
1

222 22
FFSsystruefczyuzzT C

T
C
T =∈⇔=→Θ∈===Θ∈  

then the supplements in the code would be an extension of failure codes with 2fc and 
the inclusion of system behavioral modes F3, and a new additional diagnostic rule. 
This new rule would have the condition )( 2 truefcif = and suspected system 
behavioral modes F2 and F3.  

7.4.3 Decision structure c code 
The generated diagnostic rule file can be used in the feature DRsimulator to generate 
a c source code file, which for the diagnostic rule code in Appendix A will be: 

 

#define DR_SYSTEM_SOURCE_C_ 
#include "drSystemSource.h" 
 
static const unsigned int data[] = { 

 /* Choice 0 */ 
 1,  
 /* Choice 1 */ 
 2, 
 /* Choice 2 */ 
 3,  
 /* Choice 3 */ 
 4, 5,  
 /* Choice 4 */ 
 6,  
 /* Choice 5 */ 
 7,  
 /* Choice 6 */ 
 8,  
 /* Choice 7 */ 
 9,  
 /* Choice 8 */ 
 10,  
 /* Choice 9 */ 
 11, 
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 /* Choice 10 */ 
 12,  
 /* Choice 11 */ 
 13, 14, 
 /* Choice 12 */ 
 15,  
 /* Choice 13 */ 
 16,  
 /* Choice 14 */ 
 17,  
 /* Choice 15 */ 
 18,  
 /* Choice 16 */ 
 19,  
 /* Choice 17 */ 
 20,  
 /* Choice 18 */ 
 21,  
 /* Choice 19 */ 
 22,  
 /* Choice 20 */ 
 23,  
 /* Choice 21 */ 
 24,  
 /* Choice 22 */ 
 25,  
 /* Choice 23 */ 
 26,  
 /* Choice 24 */ 
 27,  
 /* Choice 25 */ 
 28,  
 /* Choice 26 */ 
 29, 30,  
 /* Choice 27 */ 
 31,  
 /* Choice 28 */ 
 32,  
 /* Choice 29 */ 
 33,  
 /* Choice 30 */ 
 34,  
 /* Choice 31 */ 
 35,  
 /* Choice 32 */ 
 36,  

 /* Candidates of rule 0 */ 
 10, 11, 13, 28, 29, 32, 33, 36,  
 /* Candidates of rule 1 */ 
 3, 4, 9,  
 /* Candidates of rule 2 */ 
 1, 2, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 
 27, 30, 31, 34, 35,  
 /* Candidates of rule 3 */ 
 5 
}; 

static const struct sChoiceSource choices[] = { 
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 {&data[0], 1},  
 {&data[1], 1},  
 {&data[2], 1},  
 {&data[3], 2},  
 {&data[5], 1},  
 {&data[6], 1},  
 {&data[7], 1},  
 {&data[8], 1},  
 {&data[9], 1},  
 {&data[10], 1},  
 {&data[11], 1},  
 {&data[12], 2},  
 {&data[14], 1},  
 {&data[15], 1},  
 {&data[16], 1},  
 {&data[17], 1},  
 {&data[18], 1},  
 {&data[19], 1},  
 {&data[20], 1},  
 {&data[21], 1},  
 {&data[22], 1},  
 {&data[23], 1},  
 {&data[24], 1},  
 {&data[25], 1},  
 {&data[26], 1},  
 {&data[27], 1},  
 {&data[28], 2},  
 {&data[30], 1},  
 {&data[31], 1},  
 {&data[32], 1},  
 {&data[33], 1},  
 {&data[34], 1},  
 {&data[35], 1}}; 

static const struct sChoiceSpaceSource choiceSpace = {&choices[0], 33}; 

static const struct sRuleSource rules[] = { 
 {'S', "*1***", &data[36], 8, 1}, 
 {'S', "**1**", &data[44], 3, 2}, 
 {'S', "***1*", &data[47], 25, 3}, 
 {'S', "****1", &data[72], 1, 4}}; 
 

const struct sDrSystemSource drSystemSource =  
{"0.0.1", "", &choiceSpace, &rules[0], 4};  
 

const struct sDrSystemSource drSystemSource =  
{"0.0.1", "", &choiceSpace, &rules[0], 2}; 



  Chapter 7 - Vision analysis 

  

76 

This source code is generated from a diagnostic rule file that contains 36 system 
behavioral modes and four diagnostic rules. These 36 system behavioral modes 
describe how 33 components can behave. The code starts by filling a data struct with 
which system behavioral modes that can cause malfunction of which component, and 
which system behavioral modes that are indicated by the diagnostic rules. In the code, 
choice i means that component i is faulty and is listed together with the system 
behavioral modes that can cause malfunction of component i. The choice data is 
inserted in the data struct choices[]. Choices can be said to represent the knowledge of 
which faulty components that a system behavioral mode indicates. This information is 
then included in the struct choiceSpace[].  

The diagnostic rules data is inserted in the struct rules[], in which ‘S’ represents that 
the system behavioral modes indicated by the diagnostic rules are of type suspect, 
which means that they indicate components suspected of being faulty. Instead of ‘S’, 
‘C’ can be used and means that the diagnostic rule is of the type that clears 
components from being faulty. The struct rules[] also include a string that states 
which failure code that is included in the condition part of the diagnostic rule. For the 
example code above there are four failure codes and the first string “*1***” means 
that 1fc is included in the condition part of the first rule. The second string “**1**” 
means that 2fc is included in the condition part of the second rule. For a string in 
general “*a1…an”, ai can either be the symbol * or 0 or 1. If the symbol of ai is 1 
then ifc is included and if it is 0 the negation of ifc is included. If the symbol of ai is * 
then it does not matter whether ifc is true or not, which is equivalent with do not care 
(dc).  

After the string follows the reference of where the listing of the suspected system 
behavioral modes can be found in data[], for the diagnostic rule. The following 
number states how many places in data[] that contain these suspected system 
behavioral modes. The number that ends each row indicates which rule that the 
information is valid for.  

A conclusion is that since the source code file contains the same information as a 
decision structure, the code is suitable to use in the generic fault isolation block. This 
means that Rodon includes the desired feature, of the vision, to generate the decision 
structure corresponding to the diagnostic tests of the diagnosis system.  

The Dirigent feature is very useful when it comes to analyzing functional monitoring 
diagnostic tests. Such tests are constructed to indicate loss of function and which 
system behavioral modes that cause the loss are generally unknown. This can be 
solved with Rodon since it can be used to decide these system behavioral modes.          
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7.5  Fault isolation 

7.5.1 Fault isolation through hypothesis tests 
In Gripen the hypothesis tests of the on board diagnosis system are primary designed 
to detect loss of functionality in a system, but some tests are also designed for fault 
isolation purposes. An investigation is made for each hypothesis test with the purpose 
to list possible failure modes that can cause it to react. When all tests have been 
investigated this knowledge is translated into a fault isolation flow chart with the 
purpose to generate a set of suspected faulty components depending on which tests 
that have reacted. This flow chart is then translated into fault isolation software. By 
logging tests that reacts during flight, fault isolation can hopefully be achieved in 
maintenance by using the software. If not, additional measurements need to be made 
manually by technicians. Suitable measure points are chosen based on documented 
decision trees or the technicians own experience.   

Fault isolation at Saab today can be illustrated as in Figure 30.  

 

Fault Isolation 
Software

( ) 11 fczT →
( ) 22 fczT →

( ) NN fczT →

Diagnostic

Report

 

Figure 30. Fault isolation at Saab today. Fault isolation software is feed with failure codes to 
determine faults. 

7.5.2 Fault isolation with Rodon 
Off board diagnostics can be performed with Rodon through MBD with an AI 
approach, which is, as earlier stated, the process to compare if measurements from the 
system are consistent with the ones calculated from the model. An inconsistency 
indicates a faulty system. Observations and failure codes are loaded into the model 
and a diagnosis statement is generated which indicates the component or components 
suspected of being faulty. In the last case the number of suspects can be further 
reduced through additional measurements, which can be suggested by Rodon.  

Fault isolation with Rodon can be illustrated as in Figure 31. 
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Figure 31. Fault isolation with Rodon. Observations and failure codes are feed to the Rodon 
model to determine the system faults. 

7.5.3 Comparison of the two fault isolation methods 
Achieved fault isolation for the method with hypothesis tests is dependant on how the 
tests are designed. It can either be a residual or a limit check and these two types of 
the hypothesis fault isolation method will be compared separately with the Rodon 
fault isolation method. 

7.5.3.4 Rodon versus limit checking 
Assume a system, sys, with three behavioral modes: NF, F1, and F2. It is monitored 
through two sensors, y1 and y2. Three hypothesis tests T1, T2, and T3, with thresholds 
J1, J2, and J3 are used in the on board diagnosis system according to the method 
described in Section 7.5.1. If no test reacts the decision of the fault isolation logic will 
be NFsys = . An illustration of the behavioral modes of the system and the thresholds 
can be found in Figure 32. The tests are defined as:    
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Figur 32. A system with three behavioral modes on which off board diagnostics is performed. 
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Two different observations z1and z2 have been measured at two different junctures in 
the system when it is behaving in accordance with 1Fsys = . Observation z3 has been 
measured when 2Fsys = . Observation z2 and z3 will both affect T3 to react and the 
decision will for both be { }21, FFsys ∈ . No tests will react for observation z1 and this 
leads to the conclusion that { }21,, FFNFsys ∈ .   

If a Rodon model that describes the system well instead is used for fault isolation, the 
observations z1, z2, and z3 would respectively lead to the strongest conclusion 
that NFsys = , 1Fsys = , and 2Fsys = . The reason for this is that Rodon uses all 
information and dependencies between variables, contrary to the method with limit 
checking hypothesis tests. To conclude, fault isolation performance achieved by  
Rodon if it terminates will be better then the method with limit checks. 

7.5.3.5 Rodon versus residuals 
Tests can be designed so that their rejection regions C

TiΘ cover the system behavioral 
modes BMiΘ in a better way then limit checking tests. The process of how to generate 
these is to first derive and formulate model equations of the system. Some of the 
variables in the equations will be measured and thereby considered to be known. The 
model equations are used to analytically eliminate unknown variables and the 
remaining equations, which are only dependant on measured variables, can be used to 
generate test quantities called residuals. These residuals constitute the hypothesis tests 
of the on board diagnosis system and are used for MBD through FDI. 

A more detailed description of how to create residuals will not be further discussed. 
Instead it is assumed that residuals tests have been created with rejection regions that 
cover the system behavioral modes perfectly. For system behavioral mode F1 and F2, 
this means residual tests with rejection region )(\

211 FNFF
C
TF

Θ∪ΘΘ=Θ and 

)(\
122 FNFF

C
TF

Θ∪ΘΘ=Θ .  

Fault isolation performance achieved by correctly constructed residuals will be of 
high quality, but they demand more design effort since tests must be derived. In 
comparison with Rodon, for which there is no need for test construction, the use of 
residuals demands more labor.  

It should be stressed that the process of creating all residuals manually is very 
cumbersome and the risk of missing some is severe. If an automatic approach is used 
to generate all residuals then this problem is solved. But some residuals can turn out 
to be instable, since equations might be inverted during design, and thereby unusable. 
If stabilized they might be of use but the fault isolation performance will be degraded 
and as a result some parts of the system behavioral modes will not be covered by any 
tests. On the contrary there is no guarantee that the solving process will be stable in 
Rodon or be jammed in calculation loops.  



  Chapter 7 - Vision analysis 

  

80 

Both Rodon and residuals will provide high quality fault isolation since they are 
model based diagnosis approaches. The use of residuals demands extra work since 
hypothesis tests need to be derived. One of the advantages with using residuals is that 
they can be used for real time on board diagnostics and that the design of them 
provides a mean to handle stochastics by setting the threshold in accordance with 
desired false alarm probability. The pros and cons with the different approaches are 
summarized in Table 14.  
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Table 14. Pros and cons for different fault isolation approaches. 

 Pros Cons 

Use of limit checks • Can be performed 

in real time for on 

board functional 

monitoring 

• No absolute need to 

derive a model 

• Degraded fault 

isolation 

performance 

Use of residuals • Can be performed 

in real time for on 

board functional 

monitoring  

• Provides a mean to 

handle stochastic 

variations when 

constructing tests 

• High quality fault 

isolation 

• Demands extra 

work to design 

residuals 

• Stability might be 

difficult to obtain 

 

Use of Rodon • No need for test 

construction 

• High quality fault 

isolation 

• Can not be 

performed in real 

time for on board 

functional 

monitoring 

• Might result in 

unstable solving 

processes and 

calculation loops 
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7.5.4 Can MBD with an AI approach be used on board?  
MBD with an AI approach for on board fault isolation would in theory be a very 
powerful approach since the isolation performance would be of high quality. A 
drawback is that the calculation time is unknown since a consistent system behavioral 
mode can be found quickly or slowly depending on the search path. There is also a 
risk of calculation loops, in which case the calculation time will be infinite. 
Furthermore, propagation will continue until the user decided tolerance is achieved 
and the time for this is very hard, perhaps even impossible, to estimate. The 
conclusion drawn is that MBD with an AI approach will not be suitable for on board 
use for real time systems with fast calculation time demands, i.e. an aircrafts control 
system, since it can not be guaranteed that the search will finish in time. For real time 
systems with slower calculation time demands, i.e. monitoring of cabin systems in 
commercial aircrafts, MBD with an AI approach might possibly be suitable for on 
board use.    

7.6 Summary 

The vision presented in Chapter 3 included the following desired features of a 
diagnostic tool: 

• Performance of failure analysis 

• Guidance for sensor placements 

• Test design for an on board diagnosis system 

• Generation of the decision structure corresponding to the diagnostic tests of 
the on board diagnosis system. This decision structure is to be used for fault 
isolation  

• Achieve high quality fault isolation during maintenance by an AI model based 
diagnosis approach 

Section 7.1 reached the conclusion that it is possible to perform failure analysis with 
the help of Rodon. How Rodon can be used for guidance for sensor placements was 
discussed in the next section. Section 7.3 determined that Rodon can provide the 
conclusions 1S for implemented tests, but not design tests. The next section reached 
the conclusion that Rodon can be used to generate the decision structure 
corresponding to the diagnostic tests of the on board diagnosis system. This decision 
structure can be used in the fault isolation of the diagnosis system. The concluding 
section dealt with how Rodon can be used for high quality fault isolation.
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Chapter 8  
 
Discussion 

The main goal of this thesis project was to evaluate the functinality of the diagnostic 
tool Rodon and decide how the tool could be used for development and operations at 
Saab Aerosystems. Chapter 3 presented a vision of what was desired from a 
diagnostic tool. Chapter 5 included a general analysis of the tool, including what 
benefits the tool have, problems that can occur, limitations, and which type of systems 
that are suitable to model. Chapter 7 analyzed what parts of the vision that Rodon can 
fulfill. This chapter will conclude with recommendations for future work.  

8.1 Conclusion 

Rodon is an interesting diagnostic tool since it can be used for several various 
purposes, during development and operations. The tool performs MBD with methods 
from AI, see Section 4.2, for fault isolation which is a powerful approach.  

A model based development approach will be required if Rodon is introduced. 
Detailed models of systems of interest will be necessary to create, including the 
nominal behavior of the system and faulty behaviors. Two different ways to model 
faulty behaviors was described in sections 5.2.1 and 5.2.2. In order to achieve high 
quality fault isolation it is necessary to have complete and consistent models. Such 
models require much work to accomplish and this was discussed in sections 5.2.3 - 
5.2.5.  

Preferable characteristics of systems to be modeled in Rodon are, according to Section 
5.4.1, that they should be static, use discrete control signals, and have well defined 
system behavioral modes.  

Which parts of the vision that Rodon fulfills is summarized in Section 7.6 and 
concludes that the tool can be used for failure analysis, guidance of sensor 
placements, evaluation of tests, generation of decision structures, and high quality 
fault isolation. Design of tests is a gap in the vision that Rodon does not fulfill, and 
therefore two different methods were presented in sections 6.6 and 6.7 that utilizes 
Rodon to generate all possible limit checking tests.   

In conclusion, Rodon can be very useful in several different aspects if introduced, but 
benefits gained by using Rodon will have to be compared to the labor cost of creating 
good models. 
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8.2 Future work 

The scope of this thesis project has been to analyze what Rodon is capable of and how 
it can be used during development and operations. This has been performed by 
providing a general overview and coverage of the tool, which can serve as a base for 
future studies. Gained benefits are of interest to further explore and a recommendation 
is a case study following from developments to operations. This case study should 
include the modeling of suitable systems, both static and dynamic, for which various 
features of the tool are used, so that a deeper analysis can be achieved.  

If the method described in Section 6.6 is to be of practical use for generation of 
diagnostic tests, then the algorithm must be automated. It is of interest to further 
explore the process of generation of decision structures for use in the fault isolation 
logic in the on board diagnosis system, as described in Section 7.4.
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Appendix A 

 

/** This file was generated with RODON!*/ 

 

Variables (4): 

1 aIUnew_1.warning_101_ONE_RECTIFIER_US <GR: !FC> 

2 aIUnew_1.warning_105_BATT_CHARGE_MALF <GR: !FC> 

3 aIUnew_1.warning_106_BATT_DRAIN <GR: !FC> 

4 aIUnew_1.warning_107_BATT_CHARGE_INCORR_ACT <GR: !FC> 

 

Candidates (36): 

1 dC_PowerSystem_1/_2PA disconnected <W: 1>  

2 dC_PowerSystem_1/_6PA disconnected <W: 1>  

3 dC_PowerSystem_1/_16PA/coil disconnected <W: 1>  

4 dC_PowerSystem_1/_16PA/switch disconnected <W: 1>  

5 dC_PowerSystem_1/_16PA/switch pin_short <W: 1>  

6 dC_PowerSystem_1/_24PA/coil disconnected <W: 1>  

7 dC_PowerSystem_1/_24PA/switch pin_short <W: 1>  

8 dC_PowerSystem_1/groundnode_2 disconnected <W: 1>  

9 dC_PowerSystem_1/groundnode_3 disconnected <W: 1>  

10 dC_PowerSystem_1/tRUtest2_1 notOK <W: 1>  

11 dC_PowerSystem_1/tRUtest2_2 notOK <W: 1>  
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12 dC_PowerSystem_1/wireIdealDiscStgStb_19 short_to_gnd <W: 1>
  

13 dC_PowerSystem_1/wireIdealDiscStgStb_21 disconnected <W: 1>
  

14 dC_PowerSystem_1/wireIdealDiscStgStb_21 short_to_gnd <W: 1>
  

15 dC_PowerSystem_1/wireIdealDiscStgStb_22 short_to_gnd <W: 1>
  

16 dC_PowerSystem_1/wireIdealDiscStgStb_23 short_to_gnd <W: 1>
  

17 dC_PowerSystem_1/wireIdealDiscStgStb_25 short_to_gnd <W: 1>
  

18 dC_PowerSystem_1/wireIdealDiscStgStb_26 short_to_gnd <W: 1>
  

19 dC_PowerSystem_1/wireIdealDiscStgStb_28 short_to_gnd <W: 1>
  

20 dC_PowerSystem_1/wireIdealDiscStgStb_29 short_to_gnd <W: 1>
  

21 dC_PowerSystem_1/wireIdealDiscStgStb_30 short_to_gnd <W: 1>
  

22 dC_PowerSystem_1/wireIdealDiscStgStb_31 disconnected <W: 1>
  

23 dC_PowerSystem_1/wireIdealDiscStgStb_32 short_to_gnd <W: 1>
  

24 dC_PowerSystem_1/wireIdealDiscStgStb_34 disconnected <W: 1>
  

25 dC_PowerSystem_1/wireIdealDiscStgStb_35 disconnected <W: 1>
  

26 dC_PowerSystem_1/wireIdealDiscStgStb_64 short_to_gnd <W: 1>
  

27 dC_PowerSystem_1/wireIdealDiscStgStb_65 disconnected <W: 1>
  

28 dC_PowerSystem_1/wireIdealDiscStgStb_74 disconnected <W: 1>
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29 dC_PowerSystem_1/wireIdealDiscStgStb_75 disconnected <W: 1>
  

30 dC_PowerSystem_1/wireIdealDiscStgStb_75 short_to_gnd <W: 1>
  

31 dC_PowerSystem_1/wireIdealDiscStgStb_76 short_to_gnd <W: 1>
  

32 dC_PowerSystem_1/wire_4 disconnected <W: 1>  

33 dC_PowerSystem_1/wire_5 disconnected <W: 1>  

34 dC_PowerSystem_1/wire_11 disconnected <W: 1>  

35 dC_PowerSystem_1/wire_12 disconnected <W: 1>  

36 groundnode_1 disconnected <W: 1>  

 

Rules (4): 

R1: aIUnew_1.warning_101_ONE_RECTIFIER_US 

if ( 1) 

suspect ( 10 11 13 28 29 32 33 36) 

 

R2: aIUnew_1.warning_105_BATT_CHARGE_MALF 

if ( 2) 

suspect ( 3 4 9) 

 

R3: aIUnew_1.warning_106_BATT_DRAIN 

if ( 3) 

suspect ( 1 2 6 7 8 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 
31 34 35) 

 

R4: aIUnew_1.warning_107_BATT_CHARGE_INCORR_ACT 

if ( 4) 

suspect ( 5)
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Appendix B 

 

Property marks 

Here are a collocation of some predefined property marks.   

Inputs 
Name Usage 

sw Variables which sets the value of a control signal. In electrical systems this 
is often switch positions, therefore “sw”. 

sw-d Control signal variables with default value. 

a Action, this property mark can be used for actions where sw and sw-d are 
inappropriate. 

fm Behavioral mode. Variable represents different types of component 
behavioral modes. 

Outputs 

Name Usage 

obs Used for variables which represents an observable quantity. 

fc Failure code. 

t Test result. General property mark for variables that represents the result 
of tests. 

t-vis Result of a manually visual check. 

t-cont Result of a manually continuity test of a wire. 

t-short Result of a manually short to ground test of a wire. 

t-curr Result of a manually inline current measurement. 

m-r Result of a manually measurement result. 


