
Simulating the G-forces of a rallycross track

Master’s thesis
performed inVehicular Systems

by
Ville Grandin

Reg nr: LiTH-ISY-EX -- 07/3995 -- SE

14th December 2007

Simulating the G-forces of a rallycross track
Master’s thesis

performed inVehicular Systems,
Dept. of Electrical Engineering

atLink öpings universitet

by Ville Grandin

Reg nr: LiTH-ISY-EX -- 07/3995 -- SE

Supervisor:Anders Fröberg
Linköping University, division Vehicular Sys-

tems

Examiner: Professor Lars Nielsen
Linköpings Universitet

Linköping, 14th December 2007

Abstract

The purpose of this thesis is to design a motion simulator fora rallycross rac-
ing environment. The focus on the design is how to mechanically create the
G-forces and to model them. After that is done the visually seen motion has
to be electronically implemented into the motion simulator, creating as realis-
tic as possible an experience for the driver. A program called Aprot is written
in National Instruments Labview to handle the communication between the
software simulator and hardware signals. Alot of focus is paid on how to
represent the much larger G-forces that are experienced on areal track in
the limited capacity that a motion simulator allows. For this purpose several
formulas are proposed, all of which have their benefits. The simulation en-
vironment used is Racer, a well documented racing simulation that is still in
development by the creator Ruud van Gaal. Aprot continuously reads specific
data from a file in Racer and uses the formulas to form them intoreference
values for mechanics. Aprot also has a PID-controller, so that the piston po-
sitioning can be optimized.
The original plan of this master thesis was to use Aprot on a full-scale pneu-
matic or hydraulic prototype. However, due to time and moneyconstraints,
this was not done, leaving this work as a theoretical base on which to build
upon.

Keywords: motion, simulator, Labview, Racer, design, pneumatic, hydraulic,
G-forces

iii

iv

Contents

Abstract iii

1 Introduction 1
1.1 Background and Goal . 1
1.2 Thesis outline . 2
1.3 Simulator modularity . 2

2 Why use Racer? 4

3 Extracting data from Racer 6
3.1 Different methods . 6

3.1.1 Source Code . 6
3.1.2 Chair Property . 7
3.1.3 Using the log . 7

3.2 Decision . 8
3.2.1 Tackle Drawbacks 8

4 Simulator design 9
4.1 Some existing simulators 9
4.2 Piston setup . 9

4.2.1 Producing G-forces 10
4.2.2 Piston placement 10
4.2.3 Weight calculations 11
4.2.4 Hydraulic specifications 12

4.3 Final design . 14

5 Computer to hardware interface 17
5.1 Interface card . 18

6 Simulator software control theory 19
6.1 Labview . 19
6.2 The application . 19

6.2.1 Reading log file . 19
6.3 The control loop . 21

v

6.3.1 Producing reference values 23
6.3.2 Simple acceleration 26
6.3.3 Dependable formulas 30
6.3.4 Including orientation 32
6.3.5 A more advanced approach 33
6.3.6 Vertical acceleration 35
6.3.7 PID-controller . 36

7 Pneumatic motion board 37
7.1 Motion board setup . 37
7.2 Test results . 37

7.2.1 Evaluation . 39

8 Future work 41

References 43

Notation 44
.1 Full data series . 45

vi

Chapter 1

Introduction

1.1 Background and Goal

What exactly is a motion simulator? Within the boundaries of this thesis, it
is described as an object that more or less encapsulates a person and creates a
false sense of motion on a somewhat stationary object through visual display
combined with a device that tilts and/or moves a platfrom, creating gravita-
tional forces. They are common in amusement parks and simpleversions of
them can often be seen in arcade halls. More advanced versions are made for
the automotive and aircraft industry, especially for military use, to train pilots
on the ground. Motion simulators as a joy ride have become more and more
common since their introduction in the late 1980’s. The increased computer
capacity and development of electromechanical steering mechanisms have al-
lowed much smoother and wilder rides. Nowadays most software simulators
for racing are designed with motion simulators in mind, often allowing move-
ment information to be sent out on the TCP/UDP port for another computer
to access. How exactly the information translates into movements, is one of
the main business secrets.

Torpa racing, a small company that provides various outdooractivities,
mainly focused around rallycross, wants a motion simulatoras a part of ex-
panding their activities for companies that visit them.

The main purpose of this thesis is to find a working concept fora motion
simulator prototype explaining the solution to every mechanical and electri-
cal part of it. Due to the lack of time involved compared to a company some
elements are focused on more than the other. Therefore factors like nauseous-
ness and the influence of visual display are only briefly mentioned although
they have a significant importance in the motion experience.

The work in this thesis is largely based on a modular approach, where
existing modules that can be used, will be used. As a result nonew simulation
software needs to be created, as there are already a number ofcandidates,

1

2 Chapter 1. Introduction

some of them free of charge.
There are already many different motion simulators in existence. So

what’s the motivation for not just buying one? Firstly thereis the price is-
sue. There is not only the price for the motion simulator itself, but also the
customization of a body, a rallycross car and a rallycross track that needs to
be implemented. Also there are some additional experiencesthat can be built
in with a custom simulator. For example creating a shaky and perhaps even
slightly painful ride, which simulates the uneven gravel track. There is also
the control of the equations. With complete control of how tocreate forces
some new concepts, which perhaps don’t work well on a generaltrack, can
be tried on this specific track.

1.2 Thesis outline

The main parts of the master thesis were to:

• Take a brief look at software simulation environments that could be
used.

• Determine how the software to hardware interface would be solved.

• Extract data from Racer which could be used to calculate reference
values.

• Create a control program with the data from Racer and the input from
piston positions to control the analog outputs for the pistons.

• Design a motion simulator.

The last two points are the focus of the thesis. Creating the simulator,
based on the design, is Torpa Racing’s job.

1.3 Simulator modularity

To furthermore pinpoint what exactly needs to be done the motion simulator
itself can be divided into several parts.

• Driver input

• Simulation software

• Software to hardware interface

• A way to create forces

• A module or platform on which forces act

1.3. Simulator modularity 3

In most specialized simulators the driver input, simulation software and
software to hardware interface are handled by one program. But with mod-
ularity these parts can be divided into three separate, where the driver input
and simulation software are bought, while the software to hardware interface
is a background program that works in between the simulationsoftware and
the card that produces the outputs. The most important part of how to create
forces is to have the right interface between hardware output from computer
and hardware input on the actuators. The design of the motionplatform is
important for the equations creating the forces. If it is simple enough the for-
mulas could just translate forces linearly. All this given the main part of the
thesis became making the software to hardware interface andfiguring out how
to translate the G-forces from the simulation software to the motion simulator.

Note: The lines of code that exist in this paper are all based on Matlab
code structure.

Chapter 2

Why use Racer?

There are a few simulation environments out there that couldhave been used
as software instead of Racer (Racer website, see references). Here’s a list of
the main competitors that were considered:

• rFactor (www.rfactor.net)

• Live For Speed (www.liveforspeed.net)

• netKar (www.netkar-pro.com)

All of these simulators use physics engines that model real driving. They
are all also finished products, with new versions being developed, as opposed
to Racer, which is still not released in a final version.

There are some key facts that differ Racer from these commercial simu-
lators:

• Racer is free

• You can model your own track, car and wheel setup in Racer. The
other programs do not support anything but modifications to existing
graphics. This is the main reason why Racer is still popular among sim
gamers.

• The developer is positive toward his product being used for various
non-commercial use. Such as education.

• The source code has been released. Albeit it’s for an old version from
2003.

All of these factors, along with the fact that Racer is already being used
in a course given by Vehicular Systems, made Racer the best choice. Even
though the source code wasn’t actually used in the final product, it was con-
sidered as a viable option for some time. Also, the limited time that a master

4

5

thesis allows did not give the choice of examining the other software thor-
oughly.

The Aprot application has the possibility of, after being modified, being
used on other simulation environments. One example of such is the simple
and user friendly Outsim interface that Live For Speed has. Live For Speed
includes an application, which when used will send the necessary data to a
port, using the UDP interface, allowing it to be received on another computer.
That computer can in turn control a motion simulator. The main reasons
why Live For Speed wasn’t chosen for this project was it’s lack of physics
documentation, and the inability to make your own tracks andcars.

Chapter 3

Extracting data from Racer

3.1 Different methods

When looking into different ways of getting the necessary data, of which
acceleration of the car is the most important, three different approaches were
considered.

1. Using the source code version. Modify source code.

2. Using the chair property of the 0.5.0 version.

3. Using the log from the latest beta version.

3.1.1 Source Code

The developer of Racer, Ruud van Gaal, has released the source code for
the 0.5.0 Linux version of Racer. It is quite straightforward and easy to un-
derstand which classes and member functions to use to get acceleration and
other data from the code. The approach had this method been used would be
to write a class that compiled with the game, extracting the necessary data
to the software to hardware interface. The main drawback of this approach
is that it only works for Linux. This means that there is no guaranteed sup-
port for force feedback. Making the code compile on Windows is possible.
However, just getting a compiled version to run on Windows without crashes
would require several weeks of work, including tests. The insecurity of not
knowing if the result would be good negated this option.

6

3.1. Different methods 7

Advantages Drawbacks
Manipulate source code Only works with Linux
Access to every variable in the
game

Old version (0.5.0 is from 2003)

No (guaranteed) force feedback

3.1.2 Chair Property

Racer version 0.5.0 for Windows has a property that enables sending data
out of the game through UDP on a specified port. It is easy to enable by
just manipulating the configuration file ”racer.ini”. The data that is sent is
acceleration (3 values) and position/orientation (9 values) of the car. The
data could be received by another computer that would control the motion
simulator. Unfortunately, this property has been excludedfrom the new beta
releases.

Advantages Drawbacks
Windows version Old version (0.5.0 is from 2003)
Access to necessary (albeit limited)
variables

The latest racing wheels (e.g. G25)
aren’t supported

3.1.3 Using the log

In the most recent versions of Racer, the user has the choice of creating a
log for later use. This is easily enabled in the main configurefile, ”racer.ini”.
The log file has a few key positive features. It can be read while the game
is writing to it. This means that an application can poll the log file and ev-
ery time new info is detected it can be used right away. The logfile has a
minimum sample time of 1 ms, and can store all the position andacceleration
data, as well as data on throttle, brake, steering, suspension lengths and tire
forces. There are also a few drawbacks. First, Racer writes data to the logfile
in batches of 4 kilobytes each, meaning if you have a sample time of 1 ms, it
still updates at a periodic time of 5-30 ms depending on how many parameters
are written. This means that all data except the very latest is useless and takes
up space (in the example of an update period of 10 ms, nine of ten samples
are not needed). The second drawback is a consequence of the first. If you
make the system fast, which is necessary in order to avoid motion sickness
and a funky feeling, you have to make the sample time very low.This means
the logfile will grow large with time. A simple calculation of15 data values
of 8 bytes (64 bits) each with 1 ms log frequency makes for a fileof about
15x8x1000x60 = 7,200,000 bytes = 7.2 Megabyte of data per minute.

8 Chapter 3. Extracting data from Racer

Advantages Drawbacks
Use of the latest beta version Lots of omitted data
Support for advanced racing wheel
(G25)

Log file grows very large with time

Windows version Background application will steal
computer capacity
Windows is not a real-time system

3.2 Decision

Racer is still in development, and the latest version, whichat this time is four
years newer (0.5.3 beta 5) than the 0.5.0 version, has improved features such
as improved graphics, physics, and audio. Also, it supportsthe latest racing
wheels with a stick-shifter and a clutch. Therefore, the choice ultimately fell
on the method of extracting data from the log.

3.2.1 Tackle Drawbacks

When coding the application it was possible to optimize the time from the
game writing to the log file until it was read to only a matter ofa few mil-
liseconds. This was done by logging every millisecond, and log a few more
parameters than necessary. The average period it logged thespecified parame-
ters was approximately 8 ms. This means that 7/8 lines in the log are omitted.
The application was also made to delete the log file after the driving mode
was left, thus there will be no problem with big files. Runningthe application
at this stage had very little effect on computer performance. A visual test of
the amount of frames per second in Racer (using Fraps) showeda decline (on
medium graphics settings) from about 30 to about 27. It should also be noted
that the computer used for these tests was a AMD Athlon 2800+ (1.80 GHz),
1.0 GB of RAM. More importantly, a modern dual-core processor should be
much more suitable to run both Racer and the software to hardware applica-
tion on the same computer due to it’s increased ability to runsimultaneous
processes.

Chapter 4

Simulator design

This part of the thesis was partly research about how existing motion simula-
tors are built. The main part was to design a simulator focusing on minimizing
the cost with a decent performance. Also important was that Torpa wanted
the simulator to look and feel like a real rallycross car fromthe outside and
the driver seat. As a result a pneumatic model was investigated at first (see
section 7) but quickly discarded.

4.1 Some existing simulators

Force dynamics(see references for website) use a electromechanical triangu-
lar piston setup, scaling down on innecessities. Their simulator is made for
racing and they use Live For Speed as one of their main computer simulators.
Advanced motion simulators such as the one atVTI in Linköping (again, see
references for website) use both rails and hydraulics to create realistic lateral
G-forces. However they are mainly based on analyzing driverbehaviour in-
stead of racing. This simulator is based on simplicity and cost reduction in
mind, similar toForce dynamics’.

4.2 Piston setup

Two piston configurations were considered. A setup with fourpistons, sim-
ulating one at each wheel (again, see 7) and a triangular piston setup. The
four piston setup has the advantage of initially having slightly easier equa-
tions, with opposing pistons being the same formula but withinverted signs
on each factor. The major disadvantages are that this construction requires
more signals and if the system is not to be stressed, dependability between
the piston positions has to be introduced, so that the individual pistons can’t
assume any position. This problem does not exist in a triangular setup where

9

10 Chapter 4. Simulator design

all pistons can move freely without any problem. It was therefore decided
that a triangular setup would be used.

4.2.1 Producing G-forces

The only factor that is used to theoretically describe the G-force experienced
by the person in the motion simulator, is the angle relative to earth gravity of
the motion platform. No attention is paid to the impact that change in G-force
has on the sense of balance. Therefore the G-forces are only produced by the
lean created by the pistons.

b
α

0.3 m

B
1 G

A

C

Figure 4.1: The G-force is produced only by leaning the simulator.

4.2.2 Piston placement

The pistons are locked into a vertical position in the ground, but not to the
motion platform. This because the equations will be much simpler and create
an almost perfect linear relationship between angle and piston position. To
achieve this, the platform is able to slide a few centimetersas shown in figure
4.2.

A

C

D

C

D

CB

A

B

D

A

B

Figure 4.2: Rails on the junction between piston and simulator platform are
used not to stress the fixed pistons. To the right, how the rails are placed
relative to the pistons, as seen from above, with one piston in each corner of
the triangle.

4.2. Piston setup 11

To scale down on the required length of the pistons, thereby cutting costs,
they are placed relatively close to eachother. Thus shorterpistons can create
the same amount of lean. Discussions lead up to a stroke length of 300 mm
being chosen for each piston. The actual maximum lean is onlya minor
factor because the nautiousness also has to be considered (less lean leads to
less nautiousness). Based on these facts and the data collected from the real
track at Torpa (figure 6.3), the lateral G was decided to not bemore than 0.3
G and the longitudinal G not to be more than 0.25 G.

The function of the pistons is such that in the ”default” state all pistons
are extracted at half their length, having a total length of approximately 450
mm from the floor junction. With one piston fully retracted and one fully
pulled out the situation can now be seen as a right triangle asin figure 4.1
with the important angleα as a measurement of the G-force. From the figure
the experienced G-force,Gexp, is calculated asGexp = 1 · sinα. If Gexp is
to be no more than 0.3 in the lateral (sideways, caused by turning) case, then
the minimum distance A-C is easily obtained trigonometrically as:

α = arcsin(Gexp) = arcsin(0.3) = 17.5◦

tanα = BC/AB ⇔ AB = BC/ tanα = 0.3/ tan 17.5 = 0.96m

Same calculation for the maximum longitudinal (front-back, caused by ac-
celerator and brake) G-force 0.25 gives:

α = arcsin(Gexp) = arcsin(0.25) = 14.5◦

tanα = BC/AC ⇔ AC = BC/ tanα = 0.3/ tan 14.5 = 1.16m

Rounded up the values land at 1.0 meters and 1.2 meters.

4.2.3 Weight calculations

The request for a realistic rallycross car body as the platform creates some
problems of it’s own. The whole construction becomes biggerthan necessary,
which adds weight. The driver position in the platform is also important. This
is because a person not placed in the center of the triangularsetup will also
experience undesired vertical acceleration as the platform moves. Addition-
ally, the center of gravity is affected by the driver position. Another factor that
is important but uncalculable is the nausiousness that people often experience
from simulators, especially if they have great maximum lean.

The weight of the whole simulator on top of the pistons has been esti-
mated by Torpa to be 400 kg (including driver). With the pistons positioned
on the left side of the vehicle this opens up for some problemsto balance the
center of gravity of the simulator on the center of gravity between the trian-
gular point. It’s hard to say exactly where the center of gravity will be on a
stripped down chassis, with everything under the bonnet, rear seats and right
seat etc. removed. The chassis will also be cut off just behind the back seat,

12 Chapter 4. Simulator design

Figure 4.3: Three different ways of placing pistons in relation to the driver.

shortening the simulator by about one meter. This calculation is based on a
chassis weight, m1, of 300 kg with center of gravity exactly at the center of
the chassis, and the driver and seat, m2, being a 100 kg unit mass placed as
shown in figure 4.4.

x =
0 ·m2 + 0.4 ·m1

m2 +m1
=

0 · 100 + 0.4 · 300

100 + 300
= 0.3

For the above reasons, the placement of the pistons is decided to be a com-
promise between having the driver in the middle, and placingthe platform
center of gravity as close to cm as possible. Additionally the triangular setup
is rotated 90 degrees from a natural and common setup, which has one piston
in the front and two in the back, to having one piston to the left and two to the
right. This balances the weight better between the three pistons. As discussed
in section 4.2.2 the distance laterally between the pistonsis one meter. The
optimal position for the driver is in between, at 0.5 meters,while the optimal
point for weight balance is at the center of gravity of a triangle, which is 2/3
of the length or 67 cm from the left side piston. Now the driveris sitting 0.5
meters from the left side of the chassis, while the center of gravity is 0.8 me-
ters from the left side. The difference between the two optimal places being
(0.8− 0.5)− (0.67− 0.5) = 0.13 m = 13 cm. With this in mind it is decided
that the piston setup is moved 10 cm to the right as seen in figure 4.7, which
means the driver is 10 cm off his optimal position, and the center of gravity
is 3 cm off it’s optimal position.

4.2.4 Hydraulic specifications

Designing the hydraulic system and piston size/force is notpart of the mas-
ter’s thesis. However some important specifications on their performance are
needed for the company making it. Figure 4.6 shows how fast the G-forces
change at the most extreme on the track. The pistons should have rise and
falltime to match these. Looking at the figure a rise and falltime of at most 15
samples (600 ms) preferably less than 10 samples (400 ms) is desired. Ad-
ditionally although the total weight is estimated at 400 kg,and the pistons

4.2. Piston setup 13

m2

x
3.4

0.9

0.5

1.7

1.8

m1cm

Front

Figure 4.4: The common center of mass, cm, for the simulator design, is a
function of the two point masses m1 (chassis), which is in themiddle and m2
(driver), which is located to the left.

14 Chapter 4. Simulator design

xy

1.0

0.5

0.67

1.2

Figure 4.5: The hydraulic setup with one piston in each corner means that the
ideal position to place the center of mass of the chassis is x,while the ideal
position to place the driver in is y.

are taking about one third of the weight each, some extra weight has to be
considered not to make them too weak. In this case 200 kg each is chosen.

• Rise and falltime of at most 0.6 seconds.

• Each piston capable of holding 200 kg of weight stationary.

• Proportional valves that have an interface which allows foranalog input
control, preferably in the range 0-5 Volt.

4.3 Final design

The final design is shown in figure 4.7. Some final notes of interest:
The non-centralized piston placement will mean that for an onlooker from the
outside the simulator will move more vertically on the rightside than the left
side (about 15 cm more between extreme values). It is a good idea to add
some kind of helping springs on the right side to lighten the force on the two
pistons on the right-middle.

4.3. Final design 15

885 890 895 900 905 910 915 920 925 930 935

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
lo

n
g

it
u

d
in

a
l

660 665 670 675 680
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

la
t
e

r
a

l

samples

Figure 4.6: Zoom of extreme G derivative from figure 6.3. Sample rate 25 Hz.
These extreme G derivatives are important as a specificationof the capacity
of the pistons, since they describe how fast they have to move.

16 Chapter 4. Simulator design

1.8

cm

0.8

1.1

2.3

1.1

.
3.4

0.1

Front

Figure 4.7: The final design. cm = center of mass. The pistons are placed in
the corners of the triangle.

Chapter 5

Computer to hardware
interface

Early on it was decided that pistons would be used as the actuators creating
the G-forces. For further reference see chapter 4. With thisin mind, and
after the failed attempt with the pneumatic setup, the specifications for the
hydraulic motion simulator that Torpa were building, in regards to signal input
and output from the computer, were agreed to be:

• 3 or 4 analog or pulse width modulated inputs from potentiometers
giving the position of each piston.

• Analog to digital resolution of at least 32 values (5 bits). This means
that each piston can have at least 32 positions, which shouldbe enough
to be able to satisfy the need for enough diversity in the G-forces.

• Sample rate of at least 100 Hz. Since the values need to be updated
at at least 10 Hz (probably 20 Hz) the sample rate needs to be a lot
faster especially if there is a PID-controller in the software. A common
rule (Glad, Ljung et al 2003) is that the sample rate should be10 times
faster than the system for good control.

• 3 or 4 analog or pulse width modulated outputs to control proportional
valves. The valves control the pressure in each piston, esentially con-
trolling their position.

Two ways to make this interface were considered. Either to program a
PIC processor that meets the demands, or to buy a hardware module with
A/D converters and digital outputs built into it. The latterone was chosen
since all the tools, including a software development program, were already
available.

17

18 Chapter 5. Computer to hardware interface

5.1 Interface card

The National Instruments USB-6008 hardware interface board meets most
of the above requirements. It has 8 A/D converters, 12 digital I/O ports, a
sample rate of 2.5 kHz (the sample rate is esentially limitedby the software
to be lower), and 12 bits or212 = 4096 values of resolution. It only has 2
D/A converters, giving only 2 analog outputs. It is possibleto use 8 of the
digital ports as an analog output with an external D/A converter. This is much
cheaper than buying an overdimensioned better board with 4 analog outputs.
This was also one of the reasons the three piston setup (see section 4) was
chosen in the design phase. NI USB-6008 also has a USB interface, and NI-
DAQmx API that Labview (see section 6) supports. In conclusion, all the
necessary tools and an easy to learn interface.

Chapter 6

Simulator software control
theory

The NI USB-6008 supports National Instruments’ own software development
tool, Labview (Labview website; see references). Labview was used to create
the simulator software interface between Racer and the motion simulator.

6.1 Labview

Labview is a graphical programming language, similar to e.g. Simulink in
MATLAB. It has functions for most things you can do in C++ code, including
if and case structures, while and for loops, extensive file reading and writing,
feedback loops, and user defined classes with member functions. It also has
the possibility of displaying a graphical user window, similar to Visual Basic.

6.2 The application

6.2.1 Reading log file

Each line of data in Racer’s logfile is a complete set of data, sampled at a
specific time. Aprot manipulates the ini file for Racer, so that the data in the
log is in the right order. Theoretically, the more parameters that are set to be
logged, the faster the application will be. This because when data is written
to a file it is stored in a buffer, usually 4 kb large, and written to file when this
buffer gets full. Therefore there will be a lot of old data each time the logfile
is written to.

1. When starting Aprot, Racer will also start. Aprot will run in the back-
ground.

19

20 Chapter 6. Simulator software control theory

Figure 6.1: A view of the main component of the program Aprot created in
Labview.

6.3. The control loop 21

2. Aprot is scanning for the log file until it is found.

3. The log file is created, this means that the user is ”racing”.

4. Aprot reads the full data line above the line that detectedend of file
(most recent full data available).

5. The appropriate data from this line is used to update the control loop.
After which the program jumps back to step 4. This is a major step for
which possible ways to use the data is explained throughout the rest of
this chapter.

6. A timeout means that Racer has stopped updating the logfile, thus quit
”racing”. This will occur when Aprot has read the exact same data a
number (decided by logfile settings) of times. Aprot removesthe log
file, then jumps to step 2. The timeout can be set in the program, a
timeout of 0.5 seconds, barely noticeable to the driver, held up well
during several test runs.

6.3 The control loop

The control loop uses the data from Racer as reference values, compares them
to the piston position values, and determines the voltage output from that.
There are of course many different ways to control the system, but Labview
doesn’t support advanced mathematical formula in an easy way. The choice
fell on three PID (Proportional, Integral, Derivative) controllers (Glad, Ljung
et al 2003) because there is only one value, piston position,that needs to be
controlled. Details on the PID-controller are explained insection 6.3.7.

The data that is usable from racer is:

• x velocity (horizontal,vxm/s)

• y velocity (vertical,vym/s)

• z velocity (horizontal,vzm/s)

• longitudinal acceleration (axm/s
2)

• lateral acceleration (azm/s
2)

• vertical acceleration (aym/s
2)

• pitch angle (θradians)

• yaw angle (ψ radians)

• roll angle (βradians)

22 Chapter 6. Simulator software control theory

As explained earlier, there are many more factors that can beused, such
as tire slip, throttle, steering wheel position etc., Raceralready uses these
values to determine the data in the list above, therefore it would be unwise to
recalculate use them again. A factor that has been left out isangular velocity
(and angular acceleration). But they too are included in theacceleration data.
Take the simple example of a car going through a ”perfect” curve at a constant
speed and without tire slip. The force equation for the car is:

F =
m · v2

r
(6.1)

where
r = radius of curve
v = velocity of car
m = mass of car
F = Force
v/r = angular velocity

Translated into mass independent G-forces:

G-force=
F

m
=
v2

r
(6.2)

Thus validating the point that the angular velocity is a function of the
force, which determines the G-force, which is the same as acceleration. There-
fore it would be unwise to use this factor in any way to generate the reference
values for the pistons unless the acceleration factor is removed.

Acceleration, obviously is a data that must be used, since acceleration is
almost equal to G-forces and this is what the driver actuallyfeels.

The leaning angles of the car can be used e.g. if you want to have the
car lean the same amount in both the physical and software simulators. This
could be factored in only at low speeds, or at all speeds, bothof which will
decrease and increase the sensation of G-forces through acceleration in their
own way.

Velocity can be used to determine if different multiplying factors on ac-
celeration are to be used for different speeds, as well as forthe leaning angle.
It can be a scaling factor only. The sensation of speed is impossible to achieve
just by leaning a car body.

It is of course very hard to know what the equation should be for the
best driving experience in the motion simulator without doing a series of tests
and evaluate. Since a real simulator was never built the options can only
discussed, but it can’t be determined which one is the best.

Before proceeding it is important to look at how Racer definespositive
accelerations, velocities and angles, so that the formulasare correct. Racer
has it’s own definition of these units, as seen in figure 6.2.

Because of the velocity vectors fixed to the ground, to get a measurement
of the speed (not necessarily the same as the speed on the speedometer, but

6.3. The control loop 23

forward direction

x−acceleration

z−acceleration

roll

pitch

yaw

From above
y−acceleration

z−acceleration

From left side

pitch

roll

From front

x−acceleration

Figure 6.2: Definition of positive accelerations and anglesin Racer. The
velocity of the car is measured relative to a coordinate system fixed on the
ground. These definitions were found through tests in Racer,which can dis-
play the data in real time.

close) of the vehicle the formula is:

speed =
√

v2
x + v2

y + v2
z (6.3)

6.3.1 Producing reference values

To aid in the process of retrieveing the best equations for reference values,
some reference data collected from the track at Torpa was used, see figure
6.3. Some interesting facts if the plot is looked at carefully are:

1. The lateral acceleration is rarely more than 0.6 G, but spikes to 1.0 G
at a few points.

2. The longitudinal acceleration seems to have an offset of 0.05 G, as seen
at the beginning and end of the graph.

3. The longitudinal acceleration is rarely more than 0.35 G (0.4 - offset),
but spikes to 0.5 G at a few points.

4. The longitudinal retardation is rarely less than -0.25 G (-0.2 - offset),
but spikes to -0.5 G at a few points.

5. The lateral acceleration is generally greater than the longitudinal accel-
eration.

6. The vertical acceleration has a lot of noise.

Point 5 presents a problem for which an example of a solution is presented
in 6.3.5.

The following equations are all based on the triangular piston setup with
one piston to the left, and two to the right, see section 4. Thetwo right

24 Chapter 6. Simulator software control theory

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

lo
n

g
it
u

d
in

a
l

200 400 600 800 1000 1200 1400 1600 1800 2000

−1

−0.5

0

0.5

1

la
te

r
a

l

200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.4

0.6

0.8

1

1.2

1.4

v
e

r
ti
c
a

l

samples

Figure 6.3: Measurement of G-forces at the real Torpa racingtrack at 25
samples per second (2000 samples = 80 seconds). Note: Due to unexpected
problems when measuring the forces, this figure has samples of unread data
removed, Therefore this is not a perfect measure of the track(see .1 for more
information). It is however a decent measure of the max G-forces that are ex-
perienced on the rallycross track and with a rallycross car.The measurement
was done with an accelerometer.

6.3. The control loop 25

pistons will act identically on lateral forces and angles, while the left piston
acts inverted to them. The longitudinal forces and angles have no impact on
the left piston since it is in the middle seen longitudinally. The two right side
pistons will be identically affected by the longitudinal forces, but in opposite
directions.

Here it is assumed that if a copy of the real track and car is made in Racer,
the data produced from Racer will be the same as the measured data. In reality
this will not be the case. Consider for example the method of mesuring the
G-forces on the real track. An accelerometer (a gyro) was used, which is
affected by the car orientation. The accelerations from Racer is based on
force formula at the center of gravity and would show 0 G acceleration on
an immobile car no matter the orientation of the car. But since there is no
data from a rallycross track in Racer available here, one canfor the sake of
discussion assume that real world and computer world data are equal. The
only things that needs to be adjusted for a modeled track are the coefficients
for each parameter.

Piston position representation

Each piston has a sliding potentiometer that linearily represents it’s position
as a voltage value between 0 and 5 Volts. The potentiometer voltage value
from each piston is represented as a value between 0 and 100, where 0 is
minimum position and 100 is maximum position of piston. The process of
getting the voltage value that represents a certain numericvalue between 0
and 100 is by configuring the simulator. The pistons are sent to the minimum
position, from which a mean minimum voltage value (mincyl) is sampled
from the potentiometers. Then they are brought to the maximum position,
from which a mean maximum voltage value (maxcyl) is stored for each of
the three potentiometers. The simple equation to create thepiston position
between 0 and 100 is then:

y =
cur cyl −min cyl

max cyl −min cyl
• 100 (6.4)

where curcyl is the current voltage readout. With this formula the impor-
tance of the calibration of potentiometers is minimal. All potentiometers can
be individually different, and the difference between maximum and minimum
reference values does not affect the performance, as long asthe potentiome-
ters act linearly between the values.

The simplification introduced in section 4.2.2 coupled withthe small an-
gles (no more than18◦ ⇒ sinα ≈ α) that can be produced leads to all
formulas being based on a linear relationship between piston position and
experienced G-forces.

26 Chapter 6. Simulator software control theory

6.3.2 Simple acceleration

The easiest set of equations are to base the maximum reference values on the
maximums from the data. Notice here that the dead-zone and non-linearity
between control signal and valve flow that usually exists in proportional valves
is not compensated at all. Dead-zone is a property which means that it takes
a little extra power to get things moving, esentially meaning that the pro-
portional valve is highly non-linear around it’s center value. Because some
proportional valves have the dead-zone compensated with built-in electronics,
the amount of dead-zone varies alot between different priceranges and manu-
facturers. Therefore it is in this case not incorporated into the equations. In a
real system one solution could be to increase the size of small control signals,
so that the entire system becomes somewhat linear.

If no attention is paid to the lean of the car, the reference values, one for
each piston, can be calculated according to the following formula:

Front-right:
rfr = 50 + klon · az − klat · ax (6.5)

Left:
rl = 50 + klat · ax (6.6)

Rear-right:
rrr = 50 − klon · az − klat · ax (6.7)

The question now is how to determine the coefficients. This isdone based
on the facts in section 6.3.1. Based on acceleration longitudinally from -0.25
to 0.35, because of the spikes 0.35 is used as the maximum representation to
determineklon in equation 6.5 (assume no lateral acceleration involved):

klon ≈ abs
rfr,max − 50

az,min

= abs
100 − 50

0.35
= 143 (6.8)

This means that longitudinal acceleration is mapped linearily as 0.35 G on
the track becomes 0.25 G in the motion simulator.

Based on acceleration laterally from -0.6 G to 0.6 G laterally klat can
be determined using equation 6.6 as (assume no longitudinalacceleration in-
volved):

klat ≈
rl,max − 50

ax,max

=
100 − 50

0.60
≈ 83 (6.9)

This means that lateral acceleration is mapped linearily as0.6 G on the track
becomes 0.3 G in the motion simulator.

This choice of coefficients is straightforward. It is also important to real-
ize that with one coefficient much larger than the other (in this caseklon >>
klat), that force can dominate the feel in some way. For example let’s say
a driver is exiting a corner, in reality experiencing 0.3 G both longitudinally
and laterally. If he is to experience something realistic the motion simulator

6.3. The control loop 27

should lean equally in both angles, but the equations would make each piston
have the following position:

Front-right:

rfr = 50 + 143 · 0.3 − 83 · 0.3 = 68 (6.10)

Left:

rl = 50 + 83 · 0.3 = 75 (6.11)

Rear-right:

rrr = 50 − 143 · 0.3 − 83 · 0.3 = −18 = 0 (6.12)

In this case the longitudinal acceleration is 0.3 G, but because of the shape
of the equations, the longitudinal G-force is only 68% (difference between
front and rear piston is68 − 0) of the maximum, which is 68% of 0.25 G
= 0.17 G . The lateral acceleration of 0.3 G is scaled down to 41% (the dif-
ference between left and right pistons is75 − 68+0

2 = 41) of the maximum,
which is 41% of 0.3 G = 0.12 G. This 0.05 G difference is probably not some-
thing a driver would notice severely, but is still worth mentioning. A slight
modification in the formulas to reduce the difference is presented in section
6.3.3.

The actual G-forces that can be produced by lean (0.3 G) are much less
than the 0.6 (up to 1.0) G that exist in the real system. The above equation
maps 0.0 to 0.6 G linearly to the scale of the real system whichis linear from
0 to 0.3 G. To aquire values closer to reality theklat coefficient would need
to be increased substantially to be twice as large. The downside to this is that
the larger range of G-forces experienced laterally will be cut to max out at
0.3 G. In other words, the platform will lean at maximum in just about every
corner. The same problem but not as great exists in the longitudinal direc-
tion where in the above equation acceleration from -0.35 to +0.35 G will be
scaled down linearly to -0.25 to +0.25 G. Figure 6.5 shows what the largest
possible coefficients, which map 0.1 G as 0.1 G, 0.2 G as 0.2 G etc., would
result in. How the coefficients are actually chosen has to be based on tests
on a real platform because the most important factor, how theG-forces are
experienced in a real situation, can’t be discussed here.

28 Chapter 6. Simulator software control theory

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

lo
ng

itu
di

na
l

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

la
te

ra
l

samples

Figure 6.4: How the actual measured G forces (dotted black) are scaled down
with equations 6.5 to 6.7 (solid red) if the coefficients areklon = 143, klat =
83. The individual pistons are at max or min level at an average of 12% of
the time. The pistons are almost constantly moving.

6.3. The control loop 29

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

0

0.5

lo
ng

itu
di

na
l

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

la
te

ra
l

samples

Figure 6.5: How the actual measured G forces (dotted black) are scaled down
with equations 6.5 to 6.7 (solid red) if the coefficients areklon = 200, klat =
160. Especially for the lateral forces it can now be seen that they hit max
level a lot more. The individual pistons are at max or min level at an average
of 34% of the time. The real forces are followed more closely but there is less
room for flexibility. If the coefficients are any larger than this the experienced
forces in the simulator may be bigger than the real forces from the track.

30 Chapter 6. Simulator software control theory

6.3.3 Dependable formulas

To make the platform lean more closely to the desired G-forcesome depend-
ability can be introduced into the formulas.

Front-right:

rfr = 50 + klon · az − klat · ax (6.13)

Rear-right:

rrr = 50 − klon · az − klat · ax (6.14)

Left:

rl = abs

(

rfr + rrr

2

)

+ 2 · klat · ax (6.15)

In the above equations, 6.13 and 6.14 are exactly the same as before, while
6.15 has been changed to depend on the result of the first two equations. This
means the longitudinal G-force will be exactly the same as before, but the
lateral G-force can be bigger. If these equations are adopted to the theoretical
case discussed in section 6.3.2, with longitudinal and lateral G-forces both
being 0.3 G and the coefficients beingklat = 83 andklon = 143. Now the
piston reference values become:

Front-right:

rfr = 50 + 143 · 0.3 − 83 · 0.3 = 68 (6.16)

Rear-right:

rrr = 68 − 2 · 143 · 0.3 = −18 ⇒ rrr = 0 (6.17)

Left:

rl = abs

(

68 + 0
2

)

+ 2 · 83 · 0.3 = 34 + 50 = 84 (6.18)

Comparing to the former example, the longitudinal G-force is the same(68−
0) = 68% of the maximum (0.17 G). While the lateral G-force now is84 −

34 = 50% of the maximum (0.30 G), which is 0.15 G. So now the actual
difference in G-force is only 0.02 G, as opposed to the 0.05 G in the earlier
example. These formulas are exactly the same as those in 6.3.2 as long as all
pistons have reference values between 0 and 100. But as soon as one or both
the right side pistons hits the limit, the left piston can compensate for it until
it too hits the limit. The result of these equations applied to the data from
figure 6.3 are in figure 6.6.

6.3. The control loop 31

200 400 600 800 1000 1200 1400 1600 1800 2000

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

lo
ng

itu
di

na
l

200 400 600 800 1000 1200 1400 1600 1800 2000

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

la
te

ra
l

samples

Figure 6.6: The difference between the G force representation using either
equations 6.5 to 6.7 (dotted black) or 6.13 to 6.15 (solid red) if the coeffi-
cients areklon = 143, klat = 83. The dotted black is almost impossible to
see because the difference is very small. There is no difference in the longitu-
dinal G-force, but a general small increase of the lateral G-force (at most the
increase is 0.03 G). This results in somewhat better representation of lateral
G-forces.

32 Chapter 6. Simulator software control theory

6.3.4 Including orientation

The main purpose of the orientation data is to lean the motionsimulator when
the acceleration is very small. If you stop in a steep uphill,the motion simu-
lator will also stop at a similar angle. In this model, the orientation input has
the same effect on the reference values at all speeds. A10◦ uphill slope will
lean the motion simulator about10◦. The equations are then:

Front-right:

rfr = 50 + klon · az − klat · ax + kpitch · θ − kroll · β (6.19)

Left:

rl = 50 + klat · ax + kroll · β (6.20)

Rear-right:

rrr = 50 − klon · az − klat · ax − kpitch · θ − kroll · β (6.21)

Here klon and klat can be the same as in equations 6.8 and 6.9. The
kpitch andkroll have to be based on a immobile car (accelerations = 0) and
the lengths from the motion simulator design.

Longitudinally the biggest producable angle isθ = arctan(0.3/1.2) =
0.2450 rad (14.0◦) and it is produced when the piston value is either 0 or 100.
Put into equation 6.19:

rfr,max = 50 + klon · az − klat · ax + kpitch · θ − kroll · β ⇔

100 = 50 + klon · 0 − klat · 0 + kpitch · 0.245 − kroll · 0 ⇔

kpitch = 50/0.245 = 204

Laterally the biggest producable angle isβ = arctan(0.3/1.0) = 0.2915
rad (16.7◦). Put into equation 6.20:

rl = 50 + klat · ax + kroll · β ⇔

100 = 50 + klat · 0 + kroll · 0.2915 ⇔

kroll = 50/0.2915 = 172

The upside of these added parameters is that the platform will lean much more
closely with the track, especially when driving carefully (because of the less
G-forces present).

6.3. The control loop 33

6.3.5 A more advanced approach

An attempt at a solution of the problem of the real lateral forces being much
larger than what can be experienced in the simulator is presented here.

From a close look at the lateral G-force graph 6.3 it is obvious that at a
few points along the track the lateral G-force increases quickly from a high
value to an even higher value (e.g. at sample 950 from 0.4 to 0.8 G). If the
motion simulator is already at max sideway lean, nothing will happen here.
But if there is a function that slowly straightens up the car alittle at constant
G, then these short G spikes could be partially felt too.

A theoretical way to do this is to constantly change the factor klat. The
idea is that originally all lateral values up to 0.3 G are exactly mapped to the
lean, which meansklat = klat,max = 165, but as long as the lateral G is less
than 0.6 Gklat will constantly go down to the value where 0.6 G is mapped
as 0.3 G, and 0.3 G is mapped as 0.15 G. This value isklat = 83. This means
that all values from 0.6 G (in this example) and up will be represented as
maximum lean, but 0.3 G will also be possibly represented as maximum lean
if the lateral G has been low for a short time.

if (abs(ax) < 0.6) & (abs(ax) > 0.15)
klat = klat ·Klat,minus;

else
klat = klat +Klat,plus;

end
if (klat < 83)
klat = 83;

elseif(klat > 165)
klat = 165;

end
(continued with e.g. equations 6.5 to 6.7.)

The oddest sensation a driver can experience with these equations is if he
is taking a fast corner at constant 0.3 G he will feel as if the lateral G falls
from 0.3 G to 0.15 G in 1.9 seconds (withKlat,minus = 0.985) in the simu-
lator. The driver may then think that he can actually turn more because of the
lesser side-force and therefore increase the force too muchand spin out. The
same situation could occur at the 0.15 G limit. Holding a somewhat constant
lateral force of 0.14 G may in some situations make the simulator increase
lean from 0.07 G to 0.14 G. The driver might attempt to compensate for this
and then re-compensate for the compensation which could result in some odd
behaviour.

34 Chapter 6. Simulator software control theory

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

la
te

ra
l

samples

200 400 600 800 1000 1200 1400 1600 1800 2000

90

100

110

120

130

140

150

160

170

k la
t

Figure 6.7: How the actual measured lateral G force (dotted black) is scaled
down (solid red) with equations 6.5 to 6.7 and the if structure introduced in
section 6.3.5 withKlat,minus = 0.985 andKlat,plus = 0.03. The second
plot shows the change of the factorklat with these equations.klat falls from
165 to 83 in 1.9 seconds and rises from 83 to 165 in 0.7 seconds.Scale 25
samples per second.

6.3. The control loop 35

6.3.6 Vertical acceleration

On the track at Torpa there is one considerably large downhill slope followed
by an uphill slope. When the car accelerates along this straight Racer will
produce vertical G-forces that may be desirable to experience. The vertical
acceleration in Racer is much less noisy than the measured vertical acceler-
ation data in figure 6.3 so it is possible to include it. The problem is that it
will be hard to add vertical forces for the whole length of thedownhill. For
this reason it can be determined that the vertical acceleration only plays a part
if it rises above a certain threshold which is only broken at these few points
on the track. For example, a coefficientkvert could be added to each piston
equation, and just like in section 6.3.5 it will rapidly increase above a thresh-
old and slowly decrease below it.

if (ay > 1.2)
kvert = kvert −Kvert,add · (ay − 0.2);

elseif(ay < 0.8)
kvert = kvert +Kvert,add · (1.8 − ay);

else
kvert = kvert ·Kvert,mult;

end
if (kvert < kvert,min)
kvert = kvert,min;

elseif(kvert > kvert,max)
kvert = kvert,max;

end
(continued with e.g. equations 6.5 to 6.7 with the factorkvert added.)

WhereKvert,add is chosen large enough to generate enough vertical G-forces,
Kvert,mult is chosen below 1 to slowly makekvert smaller and the limits
kvert,min (around -50 is a good figure) andkvert,max (around 50) should not
be reached.

36 Chapter 6. Simulator software control theory

6.3.7 PID-controller

The PID-controller takes the reference value produced by one of the equa-
tions and compares it to the actual piston position calculated with equation
6.4. The whole algorithm, which includes methodology to take care of reset
windup, is for the front-right piston:

efr,old = efr

efr = rfr − yfr

if umin < vfr < umax then
Ifr = Ifr +KI · efr

else
Ifr = Ifr

end
vfr = KP · efr +KD · (efr − efr,old) + Ifr

ufr =







umax, if vfr > umax

vfr, if umin < vfr < umax

umin, if vfr < umin

ufr,out = ufr/20
whereyfr = measured position (0 to 100)
rfr = reference position (0 to 100)
ufr = output position (0 to 100)
ufr,out = output value (0 to 5 Volts)

Estimates for theKP ,KIandKD values can e.g. be obtained by using the
Ziegler-Nichols method (described in Glad, Ljung et al, 2003) on the pistons.

These equations rely on the Aprot program to execute the loopat a con-
stant rate. Due to windows not being a real-time system this won’t be the
case. This will result in the derivative and integral parts being the wrong size.
The PID-controller relies on the loop being sufficiently constantly executed.

If it would turn out that the program is too slow for the PID-controller
or that it is too unreliable in terms of inconsistent timing as explained above,
external controllers would have to be used. The Aprot program would then
either A) output a voltage representation of the error or B) output a voltage
representation of the reference value (this option would mean that specific
knowledge of the min and max values of each individual potentiometer need
to be known).

Chapter 7

Pneumatic motion board

The motion board was used to test the interface with a physical system before
constructing a full scale simulator. It was also used to see if it is possible to
use pneumatics instead of hydraulics.

7.1 Motion board setup

In this case the four piston setup was used, which has one piston in each cor-
ner, each piston representing an imagined wheel/suspension. This setup was
used because it is the intuitive one. And may give a more stable experience.
The air flow into the pistons is controlled by four valves which can be shut
on and off by four relays controlled from the interface card,meaning no D/A
converters are needed. Since the valves are driven by a 240 Volt, 50 Hz AC
voltage, the relays are triggered on the zero-passages in the signal (a com-
mon AC voltage relay property). This means that the relays have a maximum
on/off performance of 100 Hz. Each piston is connected to a potentiometer
which gives a 0-5 V signal. A plate mounted on the top of the piston and
the top of the linear potentiometer connects them. The software operates at
approximately 100 Hz (this cannot be guaranteed since Windows isn’t a real-
time system) and includes a PID controller.

7.2 Test results

There were a couple of problems that arose during the test. The pistons re-
acted much faster going up than going down. The approximate risetime from
0 to 100 (full) was 135 ms without external weight. The corresponding fall-
time was 430 ms. The only factor that caused the pistons to fall was gravity.
An attempt to balance this out by adding weight on the pistonsreduced the
risetime to 260 ms. The falltime was still 430 ms. Adding moreweight

37

38 Chapter 7. Pneumatic motion board

Figure 7.1: Motion board.

7.2. Test results 39

caused more trouble, namely the inconsistency of air causedby compression.
The weight was too much for the current air pressure (about 1.4 bar) to be
able to push up the weight. A slight increase in air pressure (0.1 bar) again
caused the piston to rise very fast. Add to this the pistons being individually
not identical in their behaviour, and the conclusion is thatusing air will be
hard.

Letting the relays be controlled by a PID controller and measuring posi-
tion as well as updating relays at 100 Hz frequency, there wassome success.
The control equations were:

efr(t) = rfr − yfr (7.1)

I = I +KI ∗ efr(t) (7.2)

ur(fr) = −sign(KP ∗ efr(t) +KD ∗ (efr(t) − efr(t− T)) + I) (7.3)

efr(t− T) = efr(t) (7.4)

where fr = front-right piston The negative sign on the relaysignal depends
on the card having open collector digital output pins. This means that sending
out a low signal (ur< 0) corresponds to the relay being on, and driving the
output high (+5 V, ur> 0) turns the relay off.

After much tweaking of the parameters the best result when desiring a
position of 50 was that the piston would oscillate between 40and 60, 20% of
the whole piston length, at a frequency of about 20 Hz (see figure 7.2. The
coefficient values wereKP = 0.3,KD = 5,KI = 0.02.

Theoretically you would expect the pistons to be able to oscillate at an
amplitude of at most ”relay period / full piston movement time”, where full
piston movement time is 260 ms and a fair relay period is 20 ms (10 ms,
corresponding to 100 Hz, is not possible to guarantee). Thismeans that the
pistons should be able to have an amplitude of 8% when oscillating. Even 8%
is a big number, and if you consider four pistons moving individually they
would create a shaky experience, even when it’s standing still at the finish
line.

Another interesting effect was the amount of samples the relay was on
compared to the amount of samples that the relay was off. Since the pistons
have a faster risetime than falltime one would think that they would be off
more than they are on. But, actually, counting over 640 samples it turned out
that the relay was off for 262 samples and on for 378 samples. Asignificant
difference that could depend on many factors, such as the aircompressing
slower when the piston isn’t in position 0 due to it having more space to
compress in.

7.2.1 Evaluation

The conclusion from this experiment was that pneumatics is too hard to con-
trol and too inaccurate to be used in a full-scale model. Because of it’s high

40 Chapter 7. Pneumatic motion board

100 150 200 250 300 350

30

35

40

45

50

55

60

65

70

75

Figure 7.2: Measurement of one piston when trying to center it at 50 with a
PID controller.

compression rate, it is almost impossible to steer an air piston into position
by adjusting the pressure. Relay control is possible, but will make for avery
bumpy ride. There are no professional (to the author’s knowledge) indus-
trial applications where pneumatics has been used to control piston positions
between two values with decent precision.

Chapter 8

Future work

The most obvious future step based on this work is to use the formulas and
evaluate the experience in a real simulator. There are also some other things
that can and should be tested before implementing on a motionsimulator:

• Test how well Racer and Aprot run together on a modern dual-core
processor PC. Focusing on the frames per second in Racer to berea-
sonably high while the performance of Aprot (especially howfast the
loop runs) is the best possible.

• Create a copy of the track and a car used at Torpa in Racer. Compare the
G-forces from the simulation to those measured on the track.Optimize
the equations (coefficients) based on the new data.

• Simulate the behaviour of the system. For this part only one piston
could be necessary. Create a model in Matlab for the non-linearity of
the valve-flow and for difference between risetime and falltime (fall-
time is probably shorter) and see how well a PID controller performs
with these limitations.

Once this is done some things that can be done on the motion simulator
itself are:

• Evaluate whether or not the pistons can be fixed vertically. If not, fix
the pistons in such a way that the angle to piston extraction ratio is as
linear as possible.

• If necessary modify the formulas to eliminate the non-linearity of a
new design, valve-flow dead-zone characteristics and general valve-
flow characteristics. One idea is to use the formulas as they are, but
to have a lookup table to convert the calculated position to something
appropriate as output signal.

41

42 Chapter 8. Future work

• Evaluate the PID-controller. Use for example a Ziegler-Nichols test to
get decent coefficients for the the proportional, derivative and integral
parts.

• Try out some different sets of equations. Evaluate the experience and
choose the most satisfying set. Perhaps include an option tohave some
coefficients change between runs for smoother or rougher rides.

References
Lennart Ljung, Torkel Glad, Svante Gunnarsson, Tomas McKelvey, Anders
Stenman, Johan L̈ofberg (February 2003),Digital Styrning Kurskompendium
(in swedish)

Racer website,Overview of features in Racer[www]
http://www.racer.nl/overview.htm, accessed december 2007.

Racer website,Links to documentation about the physics used in Racer[www]
http://www.racer.nl/links.htm, accessed december 2007.

Force dynamics simulator[www]
www.force-dynamics.com/content, accessed december 2007

VTI Link öping,driving simulator[www]
http://www.vti.se/templates/Page 3258.aspx, accessed december 2007

Labview website. [www]
www.ni.com/labview

43

Notation

Symbols used in the report.

Vocabulary

Explanation of words and phrases in this document.
API Application Programming Interface (high level programming language)

Motion board Model of motion simulator, used to test piston setup and control algorithms
G-force Accelerationasitisexperiencedbyaperson(independentofmass).1G ≈ 9.8m/s2

Fraps A program that measures the amount of frames per secondthat games and other software are run at. Good for

Variables and parameters

g Gravitational constant (9.82m/s2)
G G-force (acceleration/g)
ax lateral acceleration
ay vertical acceleration
az longitudinal acceleration
θ pitch angle
ψ yaw angle
β roll angle

rindex reference values
yindex measured position (0 to 100)
urindex signal to relay (1 = off, 0 = on)

Note that the indexes are fl for front-left, fr for front-right, rl for rear-left
and rr for rear-right.

operators

≻ Succeeds.

44

.1. Full data series 45

.1 Full data series

Here is the full data series collected from the Torpa racing track, including the
areas of uncollected data. The 6000 samples represent threelaps of driving.

46 Notation

0 1000 2000 3000 4000 5000 6000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

lo
n

g
it
u

d
in

a
l

0 1000 2000 3000 4000 5000 6000
−1.5

−1

−0.5

0

0.5

1

1.5

la
te

r
a

l

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

v
e

r
ti
c
a

l

samples

Figure 1: Full data series from torpa racing track

Copyright

Svenska

Detta dokument h̊alls tillgängligt p̊a Internet - eller dess framtida ersättare -
under en l̈angre tid fr̊an publiceringsdatum under föruts̈attning att inga extra-
ordinära omsẗandigheter uppstår.

Tillg ång till dokumentet inneb̈ar tillstånd f̈or var och en att l̈asa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att anv̈anda det of̈orändrat f̈or
ickekommersiell forskning och för undervisning.̈Overföring av upphovsr̈atten
vid en senare tidpunkt kan inte upphäva detta tillst̊and. All annan anv̈andning
av dokumentet kr̈aver upphovsmannens medgivande. För att garanteräaktheten,
säkerheten och tillg̈angligheten finns det lösningar av teknisk och administra-
tiv art.

Upphovsmannens ideella rätt innefattar r̈att att bli n̈amnd som upphovs-
man i den omfattning som god sed kräver vid anv̈andning av dokumentet på
ovan beskrivna s̈att samt skydd mot att dokumentetändras eller presenteras
i sådan form eller i s̊adant sammanhang som̈ar kr̈ankande f̈or upphovsman-
nens litter̈ara eller konstn̈arliga anseende eller egenart.

För ytterligare information om Link̈oping University Electronic Press se
förlagets hemsida:http://www.ep.liu.se/

English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanentpermission
for anyone to read, to download, to print out single copies for your own use
and to use it unchanged for any non-commercial research and educational
purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are conditional on the consentof the copy-
right owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page:http://www.ep.liu.se/

c© Ville Grandin
Linköping, 14th December 2007

	Firstpage
	Abstract
	Introduction
	Background and Goal
	Thesis outline
	Simulator modularity

	Why use Racer?
	Extracting data from Racer
	Different methods
	Source Code
	Chair Property
	Using the log

	Decision
	Tackle Drawbacks

	Simulator design
	Some existing simulators
	Piston setup
	Producing G-forces
	Piston placement
	Weight calculations
	Hydraulic specifications

	Final design

	Computer to hardware interface
	Interface card

	Simulator software control theory
	Labview
	The application
	Reading log file

	The control loop
	Producing reference values
	Simple acceleration
	Dependable formulas
	Including orientation
	A more advanced approach
	Vertical acceleration
	PID-controller

	Pneumatic motion board
	Motion board setup
	Test results
	Evaluation

	Future work
	References
	Notation
	Full data series

