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Abstract

Two important physical aspects that determine the performance of a running 
train are the total  running resistance that acts  on the whole train moving 
forward,  and  the  available  adhesion (utilizable  wheel-rail-friction)  for 
propulsion and breaking. Using the measured and available signals,  online 
identification of the current  running resistance and available adhesion and 
also prediction of future values for a distance ahead of the train, is desired. 
With  the  aim  to  enhance  the  precision  of  those  calculations,  this  thesis 
investigates the potential of online identification and prediction utilizing the 
Extended Kalman Filter.

The conclusions are that problems with  observability and  sensitivity arise, 
which result in a need for sophisticated methods to  numerically derive the 
acceleration from the velocity signal. The smoothing spline approximation is 
shown  to  provide  the  best  results  for  this  numerical  differentiation. 
Sensitivity  and  its  need  for  high  accuracy,  especially  in  the  acceleration 
signal, results in a demand of higher sample frequency. A desire for other 
profound ways of collecting further information, or to enhance the models, 
arises with possibilities of future work in the field.
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Sammanfattning

Två viktiga fysikaliska aspekter som bestämmer prestandan för ett tåg i drift 
är det totala gångmotståndet som verkar på hela tåget, samt den tillgängliga 
adhesionen (användbara hjul-räl-friktionen) för framdrivning och bromsning. 
Från  de  tillgängliga  signalerna  önskas  identifiering,  samt  prediktering,  av 
dessa två storheter, under drift. Med målet att förbättra precisionen av dessa 
skattningar  undersöker  detta  examensarbete  potentialen  av  skattning  och 
prediktering av gångmotstånd och adhesion med hjälp av Extended Kalman 
Filtering.

Slutsatsen är att problem med observerbarhet och känslighet uppstår, vilket 
resulterar  i  ett  behov  av  sofistikerade  metoder  att  numeriskt  beräkna 
acceleration  från  en  hastighetssignal.  Metoden  smoothing  spline  
approximation visar  sig  ge  de  bästa  resultaten  för  denna  numeriska 
derivering. Känsligheten och dess medförda krav på hög precision, speciellt 
på accelerationssignalen, resulterar i ett behov av högre samplingsfrekvens. 
Ett behov av andra adekvata metoder att tillföra ytterligare information, eller 
att förbättra modellerna, ger upphov till möjliga framtida utredningar inom 
området.
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List of Symbols

Forces

FRT Total running resistance. [N]

FR Running resistance. [N]

FM Mechanical rolling resistance. [N]

FMA Constant part of the mechanical rolling resistance. [N]

FMB Part of the mechanical rolling resistance dependent on the first 
power of the speed. [N]

FD Running resistance from air drag. [N]

FDB Part of the aerodynamic resistance dependent on the first power of 
the speed. [N]

FDC Part of the aerodynamic resistance dependent on the second power 
of the speed. [N]

FG Running resistance due to gradients. [N]

FC Running resistance due to curves. [N]

FI Running resistance due to inertia. [N]

Ft Measured tractive (propelling) force. [N]

Ftα Adhesive force. [N]

FtJ Tractive (propelling) force at the wheel rims. [N]

Fw Final propelling force at the wheel rims. [N]

Fb Breaking force at the wheel rims. [N]

Freg Resistance force from the motors due to regeneration (regenerative 
breaking). [N]

Fv Speed dependent part of the running resistance. [N]
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Fa Acceleration dependent part of the tractive force. [N]

Constants

I  Identity matrix. [-]

g Acceleration due to gravity. [m/s2]

LT Total length of the train. [m]

M Mass. [kg]

MJ Mass including effects of rotary inertia. [kg]

MT Total mass of the train. [kg]

KD Empirical constant in air drag equation. [kg/m2]

KJ Mass accounting for effects of rotary inertia of a locomotive. [kg]

nax Number of axles. [-]

nloco Number of locomotives. [-]

nwag Total number of wagons. [-]

ntrac 1 during traction, 0 if coasting. [-]

nd Number of driven axles. [-]

rw Wheel radius. [m]

Q Axle-load. [N]

αmax Maximum adhesion coefficient. [-]

µmax Maximum friction of the rail, depending on the texture and 
condition of the contact area that varies with roughness, weather 
and contamination. [-]

κ Coefficient dependent on the locomotive's slip control and its ability 
to stay close to the maximum friction. [-]

γ Coefficient for the part in the running resistance system model that 
depends on the acceleration. [kg]

Parameters

A Parameter for the constant part of the running resistance. [N]
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B Parameter for the speed dependent part of the running resistance. 
[kg/s]

C Parameter for the part of the running resistance depending on the 
speed in square. [kg/m]

D First parameter of the curve resistance. [m]

E Second parameter of the curve resistance. [m]

X Parameter for the constant part of the available adhesion. [-]

Y First parameter of the speed dependent part of the available 
adhesion. [-]

Z Second parameter of the speed dependent part of the available 
adhesion. [-]

Signals

a Acceleration of the train. [m/s2]

Ft Tractive effort. [N]

G Gradient. [‰]

r  Curve radius. [m]

v  Speed of the train in its forward direction along the track. [m/s]

ζ The slippage ratio. [-]

υ The slippage ratio for breaking. [-]

ω Angular speed of the wheel. [rad/s]

vw Wind speed. [m/s]

β The angle between the track and the horizontal plane.

Filter

x  State vector.

u Input signal vector.

y Vector containing the measured reference signal(s).

h Vector containing the model function(s).
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f  Vector containing the state update function(s).

P Covariance matrix of the EKF, containing the estimations of the 
state covariances.

K State gain vector.

H The model function, h, differentiated with respect to the state vector, 
x.

F The state update function, f, differentiated with respect to the state 
vector, x.

R The covariance matrix of the measured reference signals, which is 
used as a design parameter in the EKF.

Q The covariance matrix of the states, which is used as a design 
parameter in the EKF.

Observability & Sensitivity

O  The observability matrix

Hw The model function, h, differentiated with respect to the input signal 
vector, u.
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Definitions & Abbreviations

Adhesion The part of the friction that can be used for 
actual propulsion.

Adhesive mass The total mass resting on the driven axles.

BIS Track Information System.

CATO Computer Aided Train Operation. A system 
developed by Transrail Sweden AB.

Coasting Neither tractive nor braking forces affects the 
train; "pure rolling".

Creep A difference in speed between the periphery of 
a driven wheel and the actual vehicle speed.

EKF Extended Kalman Filter.

GPS Global Positioning System.

IORE Electric locomotive built for ore transport.

Kalman filtering A mathematical method for estimations from 
measurements.

Kernel See Nullspace.

Nullspace The nullspace of a matrix A is the set of every 
vector x for which Ax = 0.

Running resistance All forces acting against a train's direction.

Slip See Creep.

Smoothing Spline 
Approximation

Derivation method where an analytical function 
is fitted to a window of samples of the signal, 
and that analytical function is differentiated.

SVD Singular Value Decomposition.
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Teloc Microprocessor-controlled event recorder 
mounted in many Swedish freight locomotives. 
Developed by HaslerRail AG.

Traction Propulsion.

Transrail Transrail Sweden AB.

Two-point differentiation Simple derivation method using 2 subsequent 
points.

Uad A type of ore wagon.

UKF Unscented Kalman Filter.
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1
Introduction

This  introductory chapter  will  describe the  background of  this  thesis  and 
what earlier work has been made in this area of expertise. The problem will 
be  formulated  followed  by  the  objectives  of  the  thesis  work.  With  this 
defined, the different methods used will be presented and evaluated. In the 
end  of  the  chapter  the  structure  of  the  project  such  as  organization, 
limitations and the outline of the rest of the report will be described.

1.1 Thesis Background

Two important physical aspects that determine the performance of a running 
train is the total resistance that acts on the whole train moving forward, and 
the available adhesion for traction and breaking. The total resistance, called 
running resistance, consists mainly of mechanical rolling resistance, air drag 
and resistance due to  curves  and grades.  Adhesion is  a  term for  the grip 
between a wheel and the rail, or in this context the part of the wheel-rail-
friction in the longitudinal direction that can be used for actual propulsion or 
deceleration. Both the running resistance and the adhesion is affecting the 
performance  of  a  train;  acceleration,  driving  times  and  also  energy 
consumption, and they both vary in time and space.

Transrail  Sweden  AB  (henceforth  called  only  Transrail)  is  a  Swedish 
company working with methods for optimal operations of trains, including 
reduction  of  energy  consumption  (Eco-driving).  The  company  have 
developed a system named CATO (Computer Aided Train Operation) that 
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1 Introduction

provides instructions on how to optimally drive the train, to the driver. See 
Appendix  A for  a  short  description  of  CATO.  The  quality  of  these 
instructions  are,  among other  things,  dependent  on the  calculation  of  the 
running resistance and adhesion, and the parameters on which they depend.

1.1.1 Related Research

It appears more work in the area has been done for road-driven vehicles than 
for railroad vehicles. However, some of the theory can indirectly or directly 
be  applied  to  rail-road  vehicles  as  well,  both  for  running  resistance  and 
adhesion. Parts of the running resistance can theoretically be calculated in 
more or less the same way in both cases,  however  other  parts  differ and 
special conditions and phenomenon for railroad vehicles have to be taken 
into account.

Research aimed more specifically at this area of investigation can be found, 
for  example  [1],  a  doctoral  thesis  by  P.  Lukaszewicz,  which  provide 
extensive  knowledge  on  running  resistance  and  also  presents  empirical 
models  for  both  running  resistance  and  adhesion.  Behind  the  thesis  lies 
experimental data from thorough testing of both passenger and freight trains. 
A  deeper  study  of  the  aerodynamic  resistance  is  provided  by  R.S. 
Raghunathan  et.  al.  in  [26].  A compilation  of  a  total  running  resistance 
model,  similar  to  the one composed in this  thesis,  for  train simulation is 
made in [17] by F. Gauffin.

More investigations seem to be found in the area of adhesion than on the 
subject  of  running  resistance,  for  railroad  vehicles.  Experimental  results 
about  the  relation  between  adhesion  and  slip  for  different  wheel-rail 
conditions is provided by O. Polach in [19], by M. Spiryagin et. al. in [23] 
and by H. Chen et. al. in [22]. Studies of adhesion more with aim on traction 
and slip control is provided by  M. Spiryagin et. al. in [21] and D. Frylmark 
and S. Johnsson in [3].

Also  attempting  to  estimate  running  resistance  parameters  using  Kalman 
filtering are P. Howlett et. al. in [7]. They evaluate the attempt in simulation 
with a satisfactory result. However, they make a number of simplifications, 
not made in this thesis:

• Resistance due to curves is not taken into account.
• Tractive effort removed, making the model valid only in coasting.
• Grade resistance is not included in simulations.

16



1 Introduction

• No compensation for rotary inertia in the train model.
• Running resistance model is normalized by setting the train mass to 

1.
• Not realistic parameter values for freight trains.

The paper seems to focus on demonstrating the UKF rather than making a 
realistic evaluation of train parameter estimation.

1.2 Problem Formulation

Sometimes it happens that a train gets stuck and can’t move forward. This is 
always  undesired  and  very  expensive.  The  cause  of  this  is  a  too  low 
adhesion, thus limiting the available tractive effort, compared to the running 
resistance. For example this could happen in a back slope (rise in running 
resistance) in the autumn with wet leaves on the rail (causing a reduction in 
adhesion). Heavy damage can also be inflicted on the wheels and rail due to 
low adhesion with associated wheel spin and slippage. 

It is of great importance that low adhesion is detected, the running resistance 
is well estimated, and the implications these have on the propulsion therefore 
can be calculated.  It  is not an easy task to find the actual adhesion for a 
running train or to control traction with respect to available adhesion. Much 
research have been made and many papers have been written on this subject 
([3], [18],  [19], [20],  [21], [22],  [23]), but there is still not an easy solution 
and more could be won in better estimation. The methods used by Transrail 
at  present  utilizes  mainly static  models based on empirical  data  which is 
difficult to obtain. 

The  need  for  greater  accuracy  puts  a  demand  on  more  sophisticated 
approaches for calculation of adhesion and running resistance. Many of the 
variables  in  the  models  are  complex,  with  random  components  and 
dependencies on train configuration, wind and weather. Modern locomotives 
are equipped with sensors monitoring variables such as position, propulsion, 
line voltage, temperature etc. Online identification of the running resistance 
and  the  available  adhesion  for  any train  in  service  is  desired,  using  the 
measured and available signals. Also desired is prediction of future values 
for a distance ahead of the train to provide information that for instance can 
be used to optimize energy consumption and keep time schedules.

17



1 Introduction

1.3 Objectives

To further improve the train performance algorithms by taking into account 
weather  and  other  external  unpredictable  influences,  Transrail  wants  to 
enhance the precision of the calculation of running resistance and adhesion 
by investigating the potential of online identification and prediction. Static 
empirical models for these are currently used, which are well working and 
will be a good basis for this thesis work, but a more dynamic and adaptive 
behavior of these is desired, so that the models adjust to the current train and 
prevailing conditions. Transrail wants to find out if the variables available 
online on a train are enough to get a good estimation, and are also interested 
in which signals that would be desirable to have access to in order to identify 
and predict the running resistance and available adhesion with a satisfactory 
result.

To know the accuracy demands of the input signals to this online calculation, 
a sensitivity analysis is wanted. Desired is also a synthesis of the algorithms 
in  the  programming  language  Python  along  with  plots  and  results  from 
simulations.

1.4 Thesis Contribution

This thesis is believed to provide insight in parameter estimation for self-
adapting  models,  together  with  methods  for  evaluating  observability  and 
sensitivity  for  such  problems.  In  addition,  it  presents  how  to  use  these 
methods  for  running  resistance  and  adhesion  for  railroad  vehicles,  and 
evaluates the difficulties specifically for these fields. Up to date models and 
physics regarding running resistance and adhesion for trains in general are 
provided.  Suggestions  of  how  to  improve  results  and  possible  further 
interesting paths for investigation are also presented.

The  thesis  is  believed  to  contribute  with  a  state  of  the  art  method  for 
estimating the acceleration from the available velocity signal with as high 
precision as possible for the running resistance and adhesion identification. It 
can also serve as a reference for the extended kalman filter formulas.
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1 Introduction

1.5 Methods

1.5.1 Kalman Filtering

A common  way of  estimating  parameters  in  a  model  is  to  make  use  of 
Kalman  filtering.  However,  the  Kalman  Filter is  formulated  for  linear 
models and thus can not handle systems with nonlinear models and behavior. 
[4]

Another version of the Kalman filter, the  Linearized Kalman Filter, can be 
used to handle nonlinear models, however it requires the nominal trajectory 
to be known and calculated in advance. [4]

The Extended Kalman Filter, EKF, can be used when the nominal trajectory 
is not known, which is normally the case. The problem is solved using the 
information  available  from  the  estimates  by  the  filter  itself.  The  best 
estimation  available,  the  latest  estimation,  is  used  to  create  a  new 
linearization  in  each  update.  This  means  that  the  K-  (gain)  and  P- 
(covariance)  matrices  can't  be  calculated  beforehand.  The  EKF is  widely 
used in many applications. [4]

Even though the EKF is a very popular approach, there are situations when 
the EKF performs poorly. This occurs particularly when the models used are 
highly  nonlinear  ([5]).  Another  approach  is  then  to  use  the  Unscented 
Kalman Filter, UKF, which uses a set of chosen points in the state space in 
order to capture the effect of model nonlinearities ([4]). The UKF utilizes the 
unscented transform, which is described in [4] and [5].

The  work  presented  in  this  thesis  has  been  made  utilizing  the  Extended 
Kalman Filter. 

1.5.1.1 The Extended Kalman Filter

With some minor modifications, the following filter formulas for EKF are 
provided by [4]:

1. Initialization:

x 0∣−1  =  x0 P0∣−1  =   0 k  =  0 (1.1)
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Where x0 is the initial estimation of the state-vector, П0 the covariance of x0 

and k is the discrete time-sample.

2. Measurement update:

x k∣k  =  x k∣k−1   K k  y k  −  h  x k∣k−1 , uk  (1.2)

K k  =  P k∣k−1 H k
T H k Pk∣k−1 H k

T   Rk 
−1 (1.3)

P k∣k  =   I  −  K k H kP k∣k−1 (1.4)

H k  :=  ∇ x h x ,uk ∣ x=x k∣k−1
T (1.5)

3. Time update:

x k1∣k  =  f  x k∣k ,0 (1.6)

P k+1∣k  = F k P k∣k F k
T  + Qk (1.7)

F k  :=  ∇ x f x ,0∣x=x k∣k−1
T (1.8)

where  f x ,w  denotes  the  state  update  and  w the  noise  vector 
corresponding to the states.

4. Let k  =  k+1  and repeat from 2.

1.5.2 Numerical Derivation

Three methods of numerical derivation have been used where the first is a 
simple two-point differentiation which is satisfactory for a noise-free signal. 
The other two, Kalman filtering and smoothing spline approximation,  can 
attenuate noise well ([12]). These approaches are all described in detail in 
Chapter 5.

1.5.3 Observability

When dealing with parameter estimation, it is important to investigate the 
observability as a measurement, not only for if the parameters are observable 
at  all,  but  also  how observable  they are  to  gain  knowledge  about  which 
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performance  the  estimation  can  provide.  When  dealing  with  nonlinear 
systems  this  analysis  is  often  more  arduous  ([6]).  This  section  describes 
which methods that will be used to investigate, and measure, observability.

1.5.3.1 Covariance Analysis

For each update the Extended Kalman Filter provides an updated matrix, P, 
which is the covariance matrix of the estimated states. The diagonal of this 
matrix consists of the variance of the states and can be studied in order to get 
insight in how reliable the result of the estimation is.

For a parameter estimation where the one-step prediction is described as:

x̂ k+1∣k  =  f ( x̂ k∣k ,0)  =  x̂ k∣k (1.9)

which means:

F k  :=  (∇ x f (x ,0)∣x= x̂ k∣k−1)
T  = I (1.10)

the one-step prediction for the covariance matrix is:

P k+1∣k  = F k Pk∣k F k
T  + Q k (1.11)

With:

F k  =  I  (1.12)

this yields:

P k+1∣k  = P k∣k  +  Q k (1.13)

The updated covariance matrix P is:

P k∣k  =  ( I  −  K k H k)P k∣k−1 (1.14)

When  the  filter  can't  solve  the  equations  needed  in  order  to  couple  the 
measured reference signal to a certain state, the state gain

K k  =  P k∣k−1 H k
T (H k Pk∣k−1 H k

T  + Rk )
−1 (1.15)
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will be zero for that state.

Assuming the state gain for state θ1 is:

K k ,θ1
 =  0 (1.16)

the current covariance estimation for state θ1 will be the same as the one-step 
prediction of the covariance for the last time-update as:

P k∣k ,θ1
 =  Pk∣k−1 , θ1 (1.17)

and thus the covariance for state θ1 will increase linearly with Q k , θ1  as:

P k+1∣k , θ1
 =  P k∣k , θ1

 +  Qk ,θ1
 =  P k∣k−1, θ1

 + Qk ,θ1 (1.18)

where Q k , θ1  refers to the element in Q corresponding to the variance of the 
state θ1.

This  means that  by investigating the diagonal  elements  of the covariance 
matrix,  P,  of  the  parameter  estimation  and  localizing  sections  where  the 
covariance increases linearly for that state, it's  possible to assume lack of 
observability for the state in that section. [14]

1.5.3.2 Rank & Nullspace

Assume  the  observability  matrix  for  a  filter  implementation in  a  given 
interval [k0, kf] is:

 O k0 , k f
 =  (

H k0

H k0+1 F k0+1,k0

⋮
⋮

H k f−1 F k f−1,k 0

) (1.19)

With the H and F matrices according to Section 1.5.1.1.

The estimated states would then be observable on [k0, kf] if and only if O has 
full rank. [10] 

Also note that this implies restrictions of the interval length so that:
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rows (O k0 , k f
)  ≥ columns (O k0 ,k f

) (1.20)

holds. [10]

In the case of parameter estimation with the one-step prediction according to:

x̂ k+1∣k  =  f ( x̂ k∣k ,0)  =  x̂ k∣k (1.21)

and therefore:

F k  :=  (∇ x f (x ,0)∣x= x̂ k∣k−1)
T  = I (1.22)

the observability matrix becomes:

O k0 , k f
 =  (

H k0

H k0+1

⋮
⋮

H k f−1
) (1.23)

This window can provide information during run-time about the performance 
of the filter in terms of local observability. If rank is lost, observability is also 
lost  in  the  interval.  This  does  not  necessarily  mean  that  no  state  is 
observable, but all states aren't, individually.

What this loss of rank does not answer, is which state or states the filter can't 
estimate in the given time interval.

To  gain  knowledge  of  this,  the  nullspace  (or  kernel)  of  O
k0,kf

 can  be 
investigated.  The nullspace consists of all  the directions of the states that 
aren't  observable.  Only  base-vectors  orthogonal  to  this  nullspace  would 
represent states that are observable at the time. By projecting base-vectors 
corresponding to each state onto the nullspace of  Ok0,kf,  a measurement of 
how observable each state is could be derived. Fully observable states should 
be orthogonal to the nullspace, meaning the projection would be zero. For a 
significant  non-zero  value  of  this  projection  for  a  certain  state,  the 
observability of that particular state should be questioned.

23



1 Introduction

Singular Value Decomposition

In order  to  calculate  the  matrix  rank and nullspace  from the  observation 
matrix in Python, the function svd in the Scipy package Linalg has been used 
([27]).  This  function  is  a  Python  implementation  of  singular  value 
decomposition (SVD). The function returns the U and VH matrices according 
to: 

O  =  U  V H (1.24)

It also returns a variable, σ, which is a vector with the diagonal elements of 
Σ,  which  consists  of  the  singular  values  of  O.  VH denotes  the  hermitean 
conjugate,  i. e. the conjugate and transponate, of V. 

The number of non-zero singular values, which here means the number of 
non-zero elements of σ, is equal to the rank of O ([11]).

To calculate the nullspace projection matrix the rows in VH corresponding to 
the  zero-elements of σ are used as columns in a matrix  A. Note that these 
columns  of  A are  orthonormal  vectors.  The  projection  matrix,  P,  is  then 
calculated according to [11], as:

P  =  AAT (1.25)

which means a projection,  Pv,  of  a  vector  v onto the nullspace would be 
calculated as:

Pv  =  AAT v (1.26)

The tolerance threshold for an element to be considered non-zero has been 
chosen to 10-3 for the implementations and figures evaluated in this thesis, 
however other values have been investigated as well.

1.5.4 Sensitivity

In order to get some insight in how disturbances in the input signals affect 
the output signal, the system model can be differentiated with respect to the 
input signals as:

H w  = ∇u h x , u T (1.27)
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The elements of Hw gives an indication of how much the output signal will 
be affected by errors in the input signal corresponding to that element.

1.6 Method Criticism

1.6.1 The Extended Kalman Filter

The Extended Kalman Filter utilizes a linearization around the current point 
to  handle  the  nonlinear  model.  This  can  lead  to  bad  performance  when 
dealing with highly nonlinear models. Also the calculation of the Jacobian 
for each update can be computationally costly, depending on the problem. [5]

1.6.2 Numerical Derivation

The two-point differentiation method performs poorly with even the slightest 
amount of noise present (assuming a reasonably high sample frequency), and 
low-pass filtering of the signal before applying it would be a good idea. Both 
smoothing spline approximation and the Kalman filter  approach are more 
difficult to implement and tuning of design parameters is needed. The type 
and amount of noise along with the signal dynamics, the sample frequency 
and the acceptable time delay of the result are all aspects influencing the 
design parameters, and good knowledge of the signal that is differentiated 
really helps.

1.6.3 Observability

In order to determine if a system is observable, the rank and nullspace are 
studied. However, observability isn't binary in the sense that a system or a 
state is either fully observable or not observable at all. States can exchange 
observability  and  gradually  lose  observability.  As  described  in  Section 
1.5.3.2,  a  tolerance  is  used  to  determine  if  the  singular  value  for  the 
observability  matrix  is  zero  or  non-zero.  This  tolerance  affects  the 
interpretation of when the states are observable and not. Worth to mention 
though, is that the system itself will not be affected by this decision, and the 
tolerance  can  be  chosen  to  match  the  behavior  presented  by  the  filter 
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calculations, for instance through the covariance matrix, P.

1.7 Organization

This  master's  thesis  was  made  for  Transrail  Sweden  AB  (referred  to  as 
Transrail  only  in  the  rest  of  this  thesis),  wherefrom much  guidance  and 
experience has  been provided.  Theoretical  knowledge and experience has 
been provided foremost from the division of Vehicular Systems but also from 
the  division  of  Automatic  Control,  both  at  the  Department  of  Electrical 
Engineering at Linköping University.

1.8 Software

The synthesis and simulations of the models and algorithms in this thesis has 
been done in the programming language  Python with the scientific Python 
library, including primarily Numpy,  Scipy and Matplotlib. Together with the 
Eclipse IDE, along with the plug-in module  Pydev, this forms a substantial 
environment  for  mathematical  operations  similar  to Matlab.  All  the plots, 
simulations and data analysis during this thesis work has been made with it. 
The report is written in OpenOffice.org 3.3.

1.9 Limitations

● The simulations and models provided are only valid for freight trains.
● Limitations from the locomotive manufacturers due to 

confidentiality:
○ Possibly already available, desired signals can not be used.
○ Information regarding accuracy of the used signals is not 

provided.
○ More accurate and extensive data from test runs is not 

available.
● Simulations are limited to make use of the available signals 
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presented.
● The models used in the simulations are considered to be perfect. No 

robustness analysis has been made.
● Some approximations and simplifications have been made:

○ Disregarding slip, introducing errors in the tractive force and 
adhesion models.

○ Assuming no wind.
○ The maximum friction along the track is considered constant.
○ The influence on the adhesion due to curves is not studied.

● Parameter estimation is not performed while breaking.
● Coasting is not explicitly simulated.
● The adhesion model used is only valid when the locomotive operates 

at the adhesion limit (which only occurs in the case of poor rail 
conditions).

● Limitations of the recorded data provided:
○ No suitable information in the provided data to perform a data 

simulation for the adhesion estimation.
○ Low sample rate of 1 Hz.

1.10 Report Outline

Chapter 2: Theoretical Background

In this chapter, the term running resistance and its components in the context 
of train physics will be described followed by equations for the acceleration 
and tractive force of a train. Lastly, the concept of adhesion will be presented 
closer.

Chapter 3: Signals

This  chapter  will  describe  the  signals  involved.  This  includes  available 
signals from the train, but also investigations of other possible sources of 
information.  Simulations  of  the  available  signals,  used  in  the  following 
chapters, will also be described here.
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Chapter 4: Running Resistance

The running resistance equation will be studied closer in this chapter, and a 
system model  for  use  in  an  EKF  deduced.  Parameter  estimation  for  the 
running  resistance  will  then  be  thoroughly  investigated  and  simulated, 
followed by a sensitivity analysis.

Chapter 5: Acceleration

The acceleration  of  the  train  is  a  key  signal  in  the  task  of  parameter 
estimation for the running resistance. This chapter is therefore dedicated to 
an investigation  of  differentiation methods for  estimating  the acceleration 
from a velocity signal.

Chapter 6: Running Resistance with Acceleration Estimation

Using data recorded on running trains, it is possible to get an indication of 
how usable  the  parameter  estimation  is  in  reality.  This  chapter  evaluates 
results from such recordings with discussions about the possible problems.

Chapter 7: Adhesion

In the same way as for the running resistance, parameter estimation for the 
available adhesion is investigated in this chapter.

Chapter 8: Conclusions & Future Work

This chapter will  wrap up the thesis  in a concluding section followed by 
possible interesting matters to further investigate, called future work.

Appendix A: Description of CATO

In  the  first  appendix  is  given  a  brief  description  of  the  CATO  system 
developed by Transrail, as described in a leaflet from 2009.
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Appendix B: Teloc Velocity Measurement

The  second  appendix  is  a  more  thorough  examination  of  the  velocity 
measurement as performed by the Teloc, and consists mainly of a clipping 
from the Teloc 1500 manual.
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2
Theoretical Background

In this chapter, the term running resistance and its components in the context 
of train physics will be described followed by equations for the acceleration 
and tractive force of a train. Lastly, the concept of adhesion will be presented 
closer.

2.1 Running Resistance

Running resistance is the generic term for forces acting on a train against its 
direction of travel. Among such forces are the resistance due to grades and 
the resistance caused by air drag, referred to as  grade resistance, FG, and 
aerodynamic  resistance,  FD, respectively.  A third  category  is  mechanical  
rolling resistance, FM, originating mainly from frictional forces between the 
wheel  and  the  rail  and  losses  in  bearings.  Additionally,  when  a  train  is 
accelerating, resistance due to inertia arises, called inertia resistance, FI. The 
total running resistance, FRT, can thus be divided into four parts ([2]):

F RT  =  F M    F D    FG    F I [N] (2.1)

The mechanical rolling resistance increases with increasing speed, but it also 
has a constant part and a component that increment as the train is rounding a 
curve, called curve resistance, FC, depending on the curve radius, r. This can 
be described as:

F M (v , r)  = F MA  +  F MB(v )  +  FC (r ) [N] (2.2)
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Air resistance also grows with higher speed, both linearly and quadratically, 
which can be written:

F D(v )  =  F DB(v )  +  F DC (v
2) [N] (2.3)

According to Lukaszewicz in [1], writing out the running resistance, FR, a bit 
more in-depth results in:

F R  =  F MA    F MBv     F DBv   F DC v
2    F C r    F G G  [N]

(2.4)

The inertia resistance is here omitted and will instead be compensated for in 
the acceleration and tractive force equations in the following sections.  All 
these forces depend on the train configuration and vary with attributes like 
masses, lengths, axle loads and types of both locomotive(s) and wagons.

A well-recognized way ([1],  [24],  [25],  [17]) of describing the mechanical 
resistance and the air drag together is with a second grade polynomial:

F M (v )  + F D(v)  = A  + B v  + C v2 [N] (2.5)

Although, this is not entirely correct, because the curve resistance is part of 
the mechanical rolling resistance, FM, and has to be taken into account. This 
will be done in the running resistance chapter.

The  following  equations,  (2.6)  –  (2.10),  are  the  empirically  compiled 
expressions for the individual running resistance components of freight trains 
according  to  Lukaszewicz  in  [1].  The  constant  part  of  the  mechanical 
resistance is empirically found to be:

F MA  = 2000 nloco    ∑
j=1

nwag

656⋅10−4 Q j nax , j [N] (2.6)

where nloco is the number of locomotives in the train set, nwag is the number of 
wagons, Qj the average axle load of each wagon, and nax,j the number of axles 
on  wagon  i.  The  linearly speed  dependent  part  of  the  running resistance 
originates from both mechanical and aerodynamic resistance.  It comprises 
what  is  not  covered  by the  constant  and quadratic  term in  the  empirical 
model and is determined by:

F MBv    F DBv   =  −22    0.6 LT  v [N] (2.7)
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where LT is the total length of the train. Further, the term depending on the 
second power of the speed is:

F DC v , vw  = 5.4    K D LT v2    vvw    
vw

2

2  [N] (2.8)

where vw is the wind speed in the longitudinal direction and KD depends upon 
train configuration and vary with how many of the freight wagons that are of 
uncovered open type compared to covered type. It takes a value according to 
different  percentages  of  the  amount  of  open  type  wagons  in  a  train  set 
according to Table 2.1.

Percent open type wagons KD

0.0 – 12.5 5.2·10-2

12.5 - 37.5
(25 ± 12.5) 6.9·10-2

37.5 - 62.5
(50 ± 12.5) 8.6·10-2

62.5 - 87.5
(75 ± 12.5) 9.2·10-2

87.5 - 100 9.7·10-2

Table 2.1: Values of KD for different percentages of open type wagons  
in a freight train, according to [1].

The second parenthesis in  FDC is basically the speed relative to the air,  in 
square,  but  with  a  modification  of  the  squared  wind  speed,  due  to  the 
observed ([1]) impact of measured head and tail wind. Further, the model for 
resistance due to gradients is:

F GG   = ∑
j=1

nlocon wag

g M j
G j

1000
[N] (2.9)

where  Mj is  the individual vehicle mass, and  Gj is the gradient in meters 
climbed per kilometer traveled, i. e. per mille. Lastly, the curve resistance is 
determined empirically and approximately by:

F C(r )  = ∑
j=1

nloco+nwag

g M j
0.455
r j−55

[N] (2.10)
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and is only valid for r j≥350  where rj is the curve radius in meters.

2.2 Acceleration

The equation of  motion describing the acceleration,  a,  of  a  train,  can be 
written ([1]):

a  = 
F w−F R

∑
j=1

nloco

M j+∑
j=1

nwag

M J , j
[m/s2] (2.11)

for a  train in  propulsion (powering),  if  all  axles  of  the locomotive(s)  are 
driven. Fw is the propelling force at the wheel rims, M stands for mass, and 
MJ means the mass including the effect of rotary inertia. nloco is the number of 
locomotives and nwag is the number of wagons. Next, the acceleration during 
coasting is calculated by ([1]):

a  = 
−F R

∑
j=1

nloco+nwag

M J , j
[m/s2] (2.12)

where n is the total number of vehicles, both locomotives and wagons. 

Further ([1]):

a  = −
Fb+F R

∑
j=1

nloco+nwag

M J , j
[m/s2] (2.13)

is  describing  the  acceleration  during  breaking (if  all  axles  are  breaked), 
where Fb is the breaking force at the wheel rims. But if the train is breaking 
regeneratively, the acceleration is determined by ([8]):

a  = −
F reg+F R

∑
j=1

nloco

M J , j+∑
j=1

nwag

M j
[m/s2] (2.14)

where Freg is the resistance force from the motors due to regeneration. 
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2.3 Tractive Force

The propulsion force, called tractive force, Ft, is commonly calculated from 
measurements of motor currents on the locomotive. The real tractive force, 
FtJ, at the wheel rims is however somewhat lower than this calculated signal 
delivered from the measurement equipment,  due to influence of rotational 
inertia in wheels, axles, gear etc. ([1]):

F tJ , ja  =  F t , j  −  K J , j a 1 j [N] (2.15)

for each driven axle  j, where a is the acceleration modified with a slippage 
ratio ζ, described closer in the next section, and:

K J  =  1
r w

2 (u2 J rot+J gear+J w ) [kg] (2.16)

where  Jrot,  Jgear and  Jw is the rotational inertia of rotor, gear and wheel-set, 
respectively, u is the gear ratio and rw is the wheel radius. The propulsion is 
however sometimes limited by adhesion so that the final propelling force at 
the wheel rims is ([1]):

F w  =  min F tJ , F t ,max  [N] (2.17)

where  Ftα,max,  is  the  maximum adhesive  force  described  in  the  following 
section.

2.4 Adhesion

Adhesion is  a  term  for  the  grip  between  two  surfaces,  described  by  an 
adhesion coefficient in the same way as with friction. In this context of train 
physics  it  means  the  part  of  the  wheel-rail-friction  in  the  longitudinal 
direction that can be used for actual propulsion or deceleration. Adhesion is 
stochastic  to  its  nature  and describes  a  mutual  relationship  in  a  dynamic 
tribological system, such as speed dependent interaction between wheel-rail, 
dampers etc. It varies with the roughness of the contact area and the weather, 
being significantly reduced by water and contamination. Adhesion also tends 
to  decrease  with  higher  train  speed  as  the  negative  impact  of  track 
irregularities  on  wheel-rail  contact  increases  ([3],  [18]).  Friction  itself, 
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however, expresses a relationship between just two surfaces.

In  order  to  develop  adhesive  forces,  a  difference  in  speed  between  the 
periphery of the wheel,  rwω, and the actual train speed,  v, is needed. This 
speed difference is normally defined as slip, or creep (according to different 
researchers  slip  is  sometimes  used  instead  of  creep  when  dealing  with 
accelerating tractive forces). The slip for traction is defined by ([1], [3]):

ζ  = 
r wω−v

v
[-] (2.18)

and slip for braking by:

υ  =  
v−rwω

v
[-] (2.19)

where rw is the wheel radius.

Research  ([18],  [19],  [22],  [23])  has  shown  that  adhesion  (the  adhesion 
coefficient) is a function of creep (or slip) as shown in Figure 2.1. When the 
train  is  in  traction,  the  creep  can  reach  5%,  or  even  10%  if  water  or 
contamination is involved, indicated by Figure 2.2. 

Figure 2.1: Adhesion coefficient as a function of creep. (Image from 
[18])
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Figure 2.2: Adhesion coefficient (µx) as a function of creep (sx) for  
various adhesion conditions. (Image from [18])

As stated in the previous section, the propelling force is limited by adhesion 
and can never exceed the maximum adhesive force,  Ftα,max,  determined by 
([1], [3]):

F t , max , j v ,max  =  Q jmax , jv ,max [N] (2.20)

for each axle j, where Q is the axle load and αmax is the maximum adhesion. 
The maximum adhesion as a function of speed is determined for this work by 
([8]):

max v ,max  = maxX   1
YZ v  [-] (2.21)

where µmax describes the current maximum wheel-rail-friction, depending on 
the  texture  and  condition  of  the  contact  area  that  varies  with  weather, 
roughness and contamination.  κ is a vehicle specific constant dependent on 
the slip control and its ability to stay close to the maximum friction. X, Y and 
Z are the model parameters. As indicated by this model and stated above, the 
maximum available adhesion will decrease with increasing speed. 
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3
Signals

This  chapter  will  describe  the  signals  involved.  This  includes  available 
signals from the train, but also investigations of other possible sources of 
information.  Simulations  of  the  available  signals,  used  in  the  following 
chapters, will also be described here.

3.1 Available Data

The following signals of use are available from a computer on board the 
train:

v Speed of the train. [m/s]

Ft Tractive force. [N]

r  Curve radius of track from the BIS database. [m]

G Gradient of track from the BIS database. [‰]

3.1.1 Teloc

The speed and the tractive force is provided by the measurement equipment 
on board the train. Teloc 2200 and Teloc 2500, developed by HaslerRail AG 
in  Switzerland,  are  measurement  instruments  commonly  used  in  many 
freight and ore locomotives in Sweden. According to the Teloc 1500 manual, 
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[13], the speed is measured with a pulse generating sensor on one or several 
of the train's axles, producing an analogue signal with the minimum sample 
time of 20 ms. The Teloc 2500 is functionally identical to the Teloc 1500 
([28]).  See  Appendix  B for  a  clipping  from the  Teloc  1500  manual  and 
formulas for speed calculation.

Figure 3.1: Data acquisition system. (Image from HaslerRail AG)

If the speed is measured on one or several driven axles, during propulsion, it 
may deliver an up to 10% too high value, due to creep (see Section 2.4). 

According  to  [30], often  two  separate  speed  sensors  are  used,  one  on  a 
driven, one on a non-driven axle. The two speed signals are then compared. 
For safety reasons the calculated train speed is usually the one whichever is 
higher. But it’s also possible to configure the speed calculation taking the 
higher  speed  when  decelerating  or  the  slower  of  the  two  speeds  when 
accelerating.  “It’s  the  customer  who  decides”  says Philipp  Gerber  at 
HaslerRail AG, Bern, Switzerland. 

This  is  however  not  the  case  for  freight  trains  according  to  [8],  where 
locomotives  are  re-coupled  often  with  different  wagon  sets,  and 
measurement of the speed is only performed on the axles of the locomotive, 
i. e. driven axles.

In a recording from a running train of the Teloc speed signal it was found to 
have a resolution of 2.8·10-3 m/s (0.01 km/h).
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The tractive force is not a directly measured signal but calculated from the 
motor current and merged with the breaking effort. The Teloc will also create 
an acceleration signal from the velocity measurement using the simple two-
point differentiation method (see Appendix B for details).  But, as described 
in this thesis, there are better ways to calculate the acceleration.

3.1.2 BIS

BIS is a database that is provided by the Swedish Transport Administration 
(Trafikverket) and consists of information such as track data on curves and 
grades for different sections of the Swedish railway.  The database can be 
accessed on board a train to get information about the track at the current as 
well as future positions of the train. 

3.1.3 GPS

With a GPS (Global Positioning System) device – time, position, speed and 
altitude  can  be  measured  independent  of  the  measurement  equipment  on 
board the train. A couple of recordings of such GPS signals from running 
trains were analyzed, and the GPS used gave a resolution for the speed of 
2.8·10-5 m/s (10-4 km/h). The accuracy of the particular GPS device used is 
not known. However,  sources  ([31]) indicates that  GPS devices  can offer 
speed measurement with an accuracy of at least 0.1 m/s, a number decreasing 
due to the fast development in the area.

If the GPS device used is able to give an altitude signal with good accuracy, 
this signal could be a valuable complement to the gradient data from BIS. A 
signal recording that was provided by Transrail containing both track data 
from BIS and GPS signals was processed for evaluation. The altitude signal 
was first filtered and gradient values was then created from it and compared 
to the BIS data, for a section of the recorded run. The result can be seen in 
Figure  3.2,  showing  good  agreement  between  the  two  and  indicates  the 
potential of using  both signals to increase the accuracy using sensor fusion 
(utilizing for example the Kalman filter).

It might be possible to calculate the curve radius in an equivalent manner, 
from the longitude and latitude GPS signals. Taking at least 3 subsequent 
position points, a radius can be computed. This is not evaluated in this thesis.
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Figure 3.2: Gradient signal as provided by BIS together with grades  
calculated from a GPS altitude signal, called Estimation.

3.2 Test Signals for Simulation

3.2.1 Speed & Acceleration

When recorded data of running freight trains was analyzed, the maximum 
running speed was 15-20 m/s, depending on whether the train was loaded or 
empty, the acceleration peeked at about 0.15 m/s2 and the sample time was 
approximately  1  second.  For  testing  purposes  in  simulation,  a  simple 
function of the speed is created as half of a sin2(t) period with a top value of 
20 over a time span of about 6 min to match the peek acceleration of 0.15:

v (t )  = 20⋅sin2( π t
360

) [m/s] (3.1)

However,  it  is  desired to have a total  period of simulation time of much 
longer than 6 min. Taking an hour would result in 10 drives as shown in 
Figure 3.3 where the acceleration has been scaled with a factor 10 for visual 
reasons.
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Figure 3.3: Speed and corresponding acceleration for simulation.  
The acceleration is scaled 10 times for visual reasons.

3.2.2 Tractive Force

Mathematical models are derived, in the case of the running resistance as 
well as the adhesion, that describe the tractive force as a function of the other 
signals.  The  tractive  force  signal,  Ft,  is  therefore  created  online  in  each 
simulation. This results in coasting not being explicitly simulated.

3.2.3 Gradient & Curve Radius

The gradient and curve radius signals are, as mentioned, not measured but 
taken  from  a  database.  These  are  both  step  functions  with  sections  of 
constant values. In the analyzing of recorded data,  the gradient signal,  G, 
varied approximately between -12 and 12 per mille (where positive values 
represent back slopes), and the curve radius signal, r, varied roughly between 
400 and 15,000. Negative values represent curves to one side and positive to 
the other, although a radius can not be negative, all values are considered 
positive. The value zero for r represent infinite radius.

These intervals are not to be taken as a precise investigation of the signal 
boundaries,  but  are  only  interesting  for  producing  realistic  signals  in 
simulation. A track database for testing purposes is produced for the 36 km 
distance of the simulation. This database has two curves, one to the left and 
one to the right, and a couple of slopes. 
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Figure 3.4: The input signals for simulation: speed, acceleration,  
curve radius and gradient.

Running a simulation along this track with the velocity as described above, 
reading the gradients and curve radii along the way, will show these signals 
in relation to the simulation time and the speed as in Figure 3.4, where the 
curve radius is shown in kilometers, and the acceleration multiplied by 10, 
for visual reasons.

3.2.4 Train Configuration

The train used in all simulations is a 52 wagon ore train with 2 locomotives. 
The  data of the wagons are according to a common Swedish ore car, called 
Uad, with 4 axles of 25 ton maximum axle load, 8.4 meters in length, air 
drag corresponding to 100% open type, and the extra mass accounting for 
rotary inertia is 850 kg. [8]

The two locomotives are considered being of type  IORE which are often 
coupled two after each other in long freight train configurations. An IORE is 
22.9 meter long, has 6 axles, all driven, weights 180 ton, considered being of 
100% covered type, and the added mass accounting for rotary inertia is 26 
ton. The value for KJ, calculated as (2.16), is approximately 4,333 kg per axle 
([8]).  The total length of this train is 482.6 m and the total weight is 5,560 
ton.
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Figure 3.5: Standard ore train configuration in north of Sweden, with  
two IORE locomotives followed by 52 ore wagons. (Pictures taken by  
David Gubler on the route Abisko – Stordalen)
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4
Running Resistance

The running resistance equation will be studied closer in this chapter, and a 
system model  for  use  in  an  EKF deduced.  Parameter  estimation  for  the 
running  resistance  will  then  be  thoroughly  investigated,  followed  by  a 
sensitivity analysis.

4.1 The Running Resistance Model

Instead  of  declaring  the  running  resistance  with  respect  to  the  physical 
interpretation, as described in Section 2.1, the total running resistance can be 
described with respect to the available signals, described in Section 3.1:

F Rv , r , G  = F v v     FC r     FG G  [N] (4.1)

where  Fv is speed dependent,  FC is curve radius dependent and  FG is the 
gradient  dependent  part.  In  Section  2.1 a  way  of  describing  the  speed 
dependency of the running resistance is found:

F v v   =  A   B v    C v2 [N] (4.2)

with a constant part, A; B for the speed dependent part; and the parameter C 
for the part depending on the speed in square. Together with the models for 
gradient resistance and curve resistance, the total running resistance model 
becomes:

47



4 Running Resistance

F Rv , r , G  =  AB vC v2   ∑
j=1

nloconwag D g M j

r jE
  ∑

j=1

nloconwag

g M j
G j

1000
[N]

(4.3)

with parameters D and E in the curve resistance model. Mj is the individual 
vehicle mass, nloco and nwag are the number of locomotives and wagons in the 
train  configuration  respectively,  and  rj and  Gj are  the  curve  radius  and 
gradient  signals,  calculated  individually  for  each  vehicle.  g is  the 
gravitational acceleration in Stockholm (9.818 m/s2).

Sometimes  ([3],  [17],  [24])  gradient  resistance  and  curve  resistance  is 
defined with the  train  regarded as  one  center  of  mass,  with  models  then 
becoming simply:

F GG   = g M T
G

1000 [N] (4.4)

F Cr   =  g M T
D

rE [N] (4.5)

with MT being the total mass of the train.

In Figure 4.1 a simple simulation of the curve resistance for these different 
approaches shows the size of the error that the latter models will spawn. With 
the error of course depending on the length of the train. A short train will not 
give such large error as the 52 wagon train used in this simulation. The grade 
resistance will have the same typical behavior (with the difference that it can 
be negative). The signals used in the simulation is shown in Figure 4.2.

Figure 4.1: Simulation of curve resistance comparing point mass  
model to the more accurate sum model.
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Figure 4.2: Signals for the curve resistance simulation of point mass  
model and sum model.

Regarding the gradient resistance model, it is also common ([3], [15]) to see it 
defined as:

F G   =  g M T sin   [N] (4.6)

where  β is the angle between the track and the horizontal plane, calculated 
from the gradient signal as:

β(G)  =  arcsin ( G
1000

) (4.7)

This is obviously identical to (4.4), as G is describing the height climbed in 
meters per kilometer track traveled.

4.2 Deducing a System Model

The  running  resistance  is  not  measured  directly,  instead  it  is  observed 
indirectly  via  the  tractive  force  signal,  making  a  few  limitations  and 
simplifications described below. 

First, if  the available adhesion is high compared to the tractive effort,  far 
from  the  situation  where  the  slip  control  system  has  to  intervene,  the 
propelling force at the wheel rims will be equal to the tractive force:

F w  =  F tJ (4.8)
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This will of course only be valid in traction, and not when the train is in  
breaking mode. When coasting, this will be valid also, because both will be 
equal to zero. Taking Equations (2.11) and (2.12) describing the acceleration 
of a train during traction and coasting, and with the assumption made above, 
combining  them  with  Equation  (2.15) for  the  tractive  force,  a  relation 
between the tractive force and the running resistance is acquired:

a  = 
(F t  − ∑

j=1

nd

K J , j a(1+ζ j))ntrac  − F R(v , r ,G)

ntrac∑
j=1

nloco

M j  + ∑
j=1

nwag

M J , j  + (1−n trac)∑
j=1

n loco

M J , j

,  F t  ≥ 0 [m/s2] (4.9)

where ntrac indicates traction by:

ntrac  = {0,  F t=0  (coasting )
1,  F t≠0  (traction)  

(4.10)

Second, assuming high adhesion, the simplification of removing the factor 
(1+ζ) is made. If the adhesion is very low it can be up to 10%, however in 
this case of very low slip, it is assumed to be only a few percent. Another 
reason for  removing it  is  simply that  the slip  is  not  among the available 
signals (described in Section 3.1), therefore no information exists about the 
slippage ratio. 

Finally, extracting Ft in (4.9):

F tv , a , r ,G   =  F Rv , r , G    a  ,  F t  ≥  0 [N] (4.11)

with

γ  =  n trac∑
j=1

n loco

M j+∑
j=1

nwag

M J , j+(1−ntrac)∑
j=1

nloco

M J , j+n trac K J [kg] (4.12)

K J  =  ∑
j=1

nd

K J , j [kg] (4.13)

and ntrac as (4.10), using FR from (4.3) this will serve as the system model in 
the following sections.
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4.3 Initial Parameter Values

It is important to have good initial values for the state variables in extended 
Kalman filtering ([6]), which is used in the following sections. In this case, 
the initial values for the parameters A to E can be found in the equations in 
Section 2.1:

A  =  2000 nloco  + ∑
j=1

nwag

(65+6⋅10−4Q j)nax , j [N] (4.14)

B  =  0.6 LT  − 22 [kg/s] (4.15)

C  = 5.4   K D LT [kg/m] (4.16)

D  =  0.455 [m] (4.17)

E  = −55 [m] (4.18)

The value of  KD could be looked up in Table 2.1, but  performing quadratic 
regression on that table a formula is acquired:

K D  =  −0.04 x2    0.0852 x   0.0516 [kg/m2] (4.19)

where x denotes the amount of open type wagons (0-1).

4.4 Online Identification 

In order to get the parameters in the model for the running resistance to adapt 
to a running train, Extended Kalman Filtering (EKF) is used to continually 
get estimations for the parameters. See Section 1.5.1 for details on Kalman 
filtering. EKF is deemed appropriate since it is a very common approach to 
handle nonlinear models. UKF is also a possible approach, which here has 
been considered a possible solution path, should the implementations show 
indication  of  problems  relating  to  the  choice  of  method.  However,  the 
problems that arise in this section are not deemed to be related to this choice.

As described in Section 3.1, the available signals are speed (v), gradient (G), 
curve radius (r) and tractive force (Ft), with Ft being the reference signal. But 
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the system model, Equation (4.11), includes also the acceleration, a, which is 
not among the available signals, and this will turn out to be the big challenge 
in the task of parameter estimation for the running resistance.

The parameters are not expected to vary much in time for the simulations 
made in this section, the problem considered is rather that the models and 
parameters can vary for different train configurations. This means that the 
parameters are expected to lie somewhat steady once they reach their correct 
value for a certain train configuration. However, it is important to keep in 
mind that, in reality, disturbances such as for instance wind can affect the 
train  configuration  differently  over  time,  which  could  result  in  varying 
parameters.

The assumption of non-varying parameters means that simulations can be 
done by creating a train that differs from the initial parameters (See Section 
4.3), and letting the estimated parameters converge to the parameters of the 
differing train. In the evaluation simulations of the extended Kalman filters 
below, the “real” train is assumed to differ in the parameters from the initial 
values by 10%.

The filters are simulated with the standard simulation environment described 
in  Section  3.2.  The  filters  run  continuously,  even  while  breaking.  In  the 
realistic  case,  the  used  model  for  tractive  force  (4.11)  is  not  defined for 
breaking,  however  to  purely  evaluate  the  observability  and  theoretical 
aspects of the filter performance it is easier to study these behaviors without 
turning the filter off for those special cases. In the following investigations 
the models used are assumed to be absolutely correct,  even for breaking. 
This  means  no  errors  will  be  seen  in  the  simulations  as  a  result  of  this 
decision.

4.4.1 A First Approach: EKF with 7 States

A first approach would be to choose the parameters A to E as state variables 
in the EKF, along with a state for the speed and one for the acceleration in 
order for the filter to also make estimations for these. The state vector,  x, 
signals, u, and reference signals, y, becomes:
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x  = (
A
B
C
D
E
xv

xa

) u  =  ( v
r
G) y  = ( v

F t) (4.20)

where xv is the state for the speed and xa the state for the acceleration. Having 
the speed as a state allows for the acceleration to be integrated into this state 
and then compared to the speed regarded as a reference signal.  The time 
update of the states becomes:

f  x k∣k ,0  =  
A k∣k
B k∣k
C k∣k

D k∣k

E k∣k

x v k∣kx ak∣k t
x a k

 (4.21)

Or, described as the matrix F:

F  =  
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1  t
0 0 0 0 0 0 1

 (4.22)

where Δt is the time elapsed since the last update:

 t  =  t k  − t k−1 [s] (4.23)

The system model function h will correspond to the measurement signals, y 
in (4.20), with the speed state for the speed and the system model from (4.11) 
for the tractive force reference signal:

h  x k∣k−1 , uk   =  
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 x v

A k∣k−1 B k∣k−1 vk C k∣k−1 vk
2 ∑

j=1

nloconwag D k∣k−1 g M j

r j ,k E k∣k−1

F G G k  x a ,k∣k−1
(4.24)

Deducing H from this yields:

H  = 0 0 0 0 0 1 0

1 vk v k
2 ∑

j=1

nloconwag g M j

r j , k− E k∣k−1
∑
j=1

nloconwag − D k∣k−1 g M j

r j , k E k∣k−1
2 0 

(4.25)

The filter will be updated according to Section 1.5.1.1 and can be tuned with 
the design-parameters Q and R, which are here chosen as:

Q  = (
3000 0 0 0 0 0 0

0 100 0 0 0 0 0
0 0 20 0 0 0 0
0 0 0 0.001 0 0 0
0 0 0 0 0.001 0 0
0 0 0 0 0 0.1 0
0 0 0 0 0 0 0.001

) R=(5⋅104 0
0 1)

(4.26)

The  original  model  for  running  resistance  (4.3)  together  with  the  estimated 
parameters provide an estimation for the current running resistance as:

F R , k∣k vk , r k ,G k   =  

 =  A k∣k   B k∣k vk    C k∣k vk
2   ∑

j=1

nloconwag D k∣k g M j

r j k    E k∣k

  F GG k  [N]

(4.27)

with FG(Gk) as (2.9).

4.4.1.1 Results

The  parameter  values  estimated  by  the  filter  does  not  show  any  real 
indication of converging towards their real values as can be seen in Figure 
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4.3. Note that the parameters are normalized.

4.4.1.2 Observability

A closer  look  at  (4.12)  shows  that  the  term γ  actually  only  depends  on 
constants and the term  ntrac,  which only changes binary between 0 (while 
coasting) and 1 (during traction). This means that for the majority of the run-
time, γ is constant.

Figure 4.3: The estimated parameters for the 7 state EKF.

Further  investigation  of  the  matrix  H (4.25)  reveals  that  problems  with 
observability will arise if γ is constant since the first and last columns of H 
will represent the same direction. This means the measured signal will not be 
able to separate the two states A and xa.

It's also possible to simulate the filter and investigate the covariance matrix 
and observability as described in Section 1.5.3.1. The variances of the states 
increase more or less linearly for all states except the non-parameter states xv 

and xa, as can be seen in Figure 4.4. Note that the variances are normalized. 
This  lack  of  observability  indicates  that  the  measured  signals  does  not 
provide enough information to estimate the states desired.

4.4.1.3 Possible Solution

One  way  to  increase  the  possibility  to  get  observability  and  converging 
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parameters is to reduce the number of states estimated by the EKF. Since A is 
an important parameter to estimate and can not be separated from  xa, one 
approach  is  to  remove  the  state  xa and  thereby  not  estimating  the 
acceleration. This renders the state  xv useless since the only purpose for it 
was  to  provide  a  relation  between  the  acceleration  and  the  speed.  The 
conclusion would be to remove both xa and xv as states. 

Figure 4.4: The normalized variances of the seven states in the EKF.

This decision also results in removal of the speed as reference signal since it 
is of no use anymore. This can be seen mathematically by examining the H-
matrix in (4.25). The first row of H will consist of only zeros if the last two 
columns where to be removed. This means there is no longer a connection 
between any model and the reference signal v.

4.4.2 Removing States xa & xv

Instead of estimating the acceleration, it could be regarded as an input signal 
to  the  system.  Since  the  only available  signal  related  to  the  acceleration 
would be the speed, derivation of this signal would be needed. This will be 
discussed more in depth in Chapter 5.

The new filter  with reduced states would have the following state-vector, 
input signals and reference signal:
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x  =  A
B
C
D
E
 u  =  v

a
r
G y  = F t (4.28)

The time update of the states becomes:

f  x k∣k ,0  =  
A k∣k
B k∣k
C k∣k
D k∣k
E k∣k

 (4.29)

Or, described as the matrix F:

F  = 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (4.30)

If the first reference signal, the speed, is removed, the following system model is 
what remains:

h  x k∣k−1 , uk   =  

A k∣k−1    B k∣k−1 vk    C k∣k−1 vk
2    ∑

j=1

nloconwag D k∣k−1 g M j

r j ,k E k∣k−1

  F GG k     a 

(4.31)

This means that H becomes:

H  = 1 vk vk
2 ∑

j=1

nloconwag g M j

r j ,k− E k∣k−1
∑
j=1

nloconwag − D k∣k−1 g M j

r j , k E k∣k−1
2  (4.32)

The filter will be updated according to Section 1.5.1.1 and can be tuned with 
the design-parameters Q and R, which are here chosen as:
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Q  =  3000 0 0 0 0
0 100 0 0 0
0 0 20 0 0
0 0 0 0.001 0
0 0 0 0 0.001

 R  =  5⋅104 (4.33)

Using  the  estimated  parameters  an  estimation  for  the  current  running 
resistance could also here be calculated with (4.27).

4.4.2.1 Results

Being  simulated  with  the  standard  simulation  environment  described  in 
Section 3.2, the parameter behavior can be seen in Figure 4.5. Note that the 
parameters  are  normalized.  As can be seen,  all  parameters  actually move 
towards their real values except for the parameter E.

Figure 4.5: The parameter behavior for the 5 state EKF.

4.4.2.2 Observability

As expected, studying the P-matrix, the variance of parameter E is increasing 
linearly, which indicates lack of observability (Figure 4.6).

Studying the  nullspace  of  the  observation  matrix  as  described in  Section 
1.5.3.2 it is possible to see that the base-vector of state E constantly is a null-
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direction (Figure 4.7).

The conclusion is  that  E is  not  observable with the presented model  and 
reference signal for the given simulation.

Figure 4.6: The variance of parameter E.

Figure 4.7: The nullspace projection of parameter E.

4.4.2.3 Possible Solution

Since E is not observable and only acting as an offset for the input signal, r, it 
is deemed appropriate to freeze it to its initial value according to Section 4.3 
and thereby reducing the number of estimated states.

4.4.3 Removing State E

This  new approach  is  a  filter  with  4  states.  The new state-vector,  input-
signals and reference signal are:

x  =  A
B
C
D u  =  v

a
r
G y  =  F t (4.34)

The time update of the states becomes:
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f  x k∣k , 0  =  
A k∣k
B k∣k
C k∣k
D k∣k
 (4.35)

Or, described as the matrix F:

F  = 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 (4.36)

Using the system model according to (4.31) and freezing the E-parameter to 
its initial estimation (Ê0) from Section 4.3 yields H as:

H  = (1 v k vk
2 ∑

i=1

n loco+nwag g M j

r j , k  + Ê0
) (4.37)

The filter will be updated according to Section 1.5.1.1 and can be tuned with 
the design-parameters Q and R, which are here chosen as:

Q  = 3000 0 0 0
0 100 0 0
0 0 20 0
0 0 0 0.001 R  =  5⋅104 (4.38)

Using  the  estimated  parameters  an  estimation  for  the  current  running 
resistance could also here be calculated with (4.27).

4.4.3.1 Results

The filter manages to estimate the parameters  A,  B,  C and D with a certain 
accuracy,  which can be seen in  Figure  4.8.  After  about  1,200 seconds of 
simulation, the parameter deviation from the real values are lower than 0.5‰ 
for all parameters as seen in Figure 4.9. One explanation for this seemingly 
long time is  observability,  as  described in  Section  4.4.3.2.  The important 
result though, is that the parameters seem to converge toward their correct 
values with time.
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The parameter D lies steady at its initial value for some time, after which it at 
around 500 seconds run-time quickly changes towards the correct estimation. 
The reason for this is that the first curve appears first at this particular time. 
This  can  be  seen  in  Figure  3.4 which  displays  the  input  signals  of  the 
simulation.

Figure 4.8: The parameter behavior for the EKF with 4 states.

Figure 4.9: A more detailed view of the parameters around their  
stabilizing point. After about 1,200 seconds all parameters are well  
within a 0.5‰ deviation interval.
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4.4.3.2 Observability

To  further  investigate  the  performance  of  the  filter  an  analysis  of  the 
observability is made. The covariance can be studied for the 4 states of the 
filter by examining the covariance matrix,  P.  The diagonal elements of  P, 
actually the variances of the states, can be seen in Figure 4.10. As explained 
in Section  1.5.3.1 a linearly growing variance for a parameter is usually a 
sign for loss of observability. This behavior can be seen for all parameters in 
different sections of the simulation.

Figure 4.10: The variances of parameters in the 4 state EKF.

Relating  to  the  signals,  it's  possible  to  notice  that  the  small  peaks  of  A 
correlates to the speed signal in the sense that a high speed seems to generate 
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a high variance for  A. The two large peaks in  A correlates to the two parts 
where  r is non-zero, i. e. where a curve occurs. The behavior of  B is very 
similar to  A. The variance for  C, seems to be low for a high value of the 
speed, which is the opposite of what was observed for A and B.

Since D is only observable when a curve occurs, the fact that the variance for 
D is low only when r becomes non-zero is expected. More interesting to note 
is that the variances for all the other parameters increase at those times.

The sections with lost observability,  and thus linearly increasing variance, 
will  result  in  the  state  estimation  being  constant  for  the  corresponding 
parameter in that interval. This means the parameters will converge towards 
their desired values slower if the observability is poor, something that can be 
seen in the behavior of the parameter estimation in figures  4.8 and  4.9. As 
soon  as  parameter  B has  observability,  it  converges  quickly  towards  the 
correct  value,  however,  it  contains  large  sections  of  low  observability, 
resulting in a constant value in the corresponding intervals. The same applies 
for all parameters.

In order to deeper investigate this behavior, a more thorough analysis of the 
observability of the states can be made by studying the nullspace projections 
of each state according to Section  1.5.3.2. The nullspace projections of the 
parameters  for  this  simulation  can  be  seen  in  Figure  4.11.  For  a  fully 
observable  parameter  its  nullspace  projection  would  be  zero  and  for  a 
completely non-observable parameter the projection would be 1. Comparing 
the nullspace projections to the variances for different states it is possible to 
see that as the variances increase – the projections increase.

All the parameters have non-zero nullspace projections at certain sections of 
the simulation. At the same time, the variances of the parameters that can be 
seen in the P-matrix are also often increasing linearly in different intervals. 
This indicates frequent lack of observability in all the parameters.

Yet, looking at the parameter behavior in figures 4.8 and 4.9 it seems that the 
parameters actually do reach their desired value after a certain time. This can 
be  explained  with  the  fact  that  the  parameters  of  the  real  train  are  not 
expected to vary in time, as described in the beginning of Section 4.4. This 
assumption  means  that  as  long  as  there  exists  a  time  interval  where  a 
parameter is observable to a certain extent, its estimation will improve during 
that time interval. It also means that if the initial estimation is correct, the 
parameters  will  not  change  during  run-time.  This  holds  only  for  the 
simulated case with no disturbances. Noise, time delays, model flaws and 
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other errors will of course affect the estimations.

Figure 4.11: The nullspace projections of the parameters in the 4  
state EKF.

4.4.3.3 Sensitivity

To investigate how sensitive the model is to errors in the input signals, the 
model function is differentiated according to Section 1.5.4.

H w  = ∇u h x , u T  =  

 = ( B̂ k∣k−1+2Ĉ k∣k−1v k γ − ∑
j=1

nloco+nwag gM j D̂ k∣k−1

(r j , k  + Ê0)
2 ∑

j=1

nloco+nwag gM j

1000) (4.39)
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The elements of Hw gives an indication of how much the output signal, which 
in this case is the estimation of the tractive force, will be affected by errors in 
the input signal corresponding to that element.

For  the  simulation  setup used,  the  size  of  those  elements  can  be  studied 
further to get a picture of which errors in the input signals that affect the 
estimation the most. 

Figure 4.12: The elements of Hw showing how errors in the input  
signals affect the output signal, tractive force.

As can be seen in Figure 4.12, errors in the acceleration will, by far, have the 
greatest impact on the estimated output signal. It affects the output signal 
nearly 100 times more than errors in the speed of the same quantity.  For 
example, an error of 1 m/s in the velocity signal would result in an error 
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around 60 kN for “normal” speeds (10 – 20 m/s), while an error of 1 m/s 2 in 
the acceleration signal would result in an error of around 5,700 kN. 

This  observation  can  be  clarified  further  by investigating  the  term  γ.  As 
(4.12) shows, the γ-term depends on the train mass and inertia, which, for the 
52 wagon ore-train setup in the simulation, is large. Even a small change in 
acceleration for masses of that quantity corresponds to a large force.

To  gain  better  understanding  of  the  importance  of  the  accuracy  of  the 
acceleration, the acceleration dependent part of the tractive force:

F aa  =   a [N] (4.40)

from (4.11) can be compared with the running resistance,  FR, which can be 
seen in Figure 4.13. As expected, as soon as significant acceleration occurs, 
Fa will, by far, be the largest component.

Figure 4.13: The accelerating force, Fa, and the running resistance,  
FR, for the simulation.

This means that when the train is accelerating – the running resistance, which 
is what we want to estimate, is often a small part of the measured signal, Ft, 
compared to the accelerating force,  Fa. With this knowledge, consider that 
the desired parameters to estimate, in their turn, corresponds to parts of the 
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running  resistance.  I.  e.  the  attempted  estimations  are  often  very  small 
portions of the measured signal.

Figure 4.14: The error distributions of the running resistance and its  
parts caused by noise on the acceleration with different standard 
deviations.

For a perfect  acceleration signal  this  difference in size would not  matter, 
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since the  accelerating force  would only be subtracted  from the measured 
signal Ft in order to derive the running resistance perfectly. This is also the 
result from the simulation. In reality however, this causes problems, since 
very small errors in a will cause errors in Fa that are very large in relation to 
FR.

To  investigate  the  requirement  of  the  acceleration  in  terms  of  precision, 
noise, w, is added to it:

a w  =  a  +  w ,  w∈N (0,σ) [m/s2] (4.41)

Figure  4.14 shows  the  error  distributions  corresponding  to  noise  with 
standard deviations (σ) of 10-5, 10-4 and 10-3 m/s2. According to Figure 4.13 
the  magnitude  of  the  running  resistance  is  approximately  100  kN, 
disregarding from grades. Figure 4.14 shows errors up to 10 kN thus 10% of 
the running resistance (on flat track).

To have a maximum error of approximately 2 kN in the running resistance, 
FR, the standard deviation of the noise in a has to be less than 10-4.

4.5 Conclusions

The two main problems that arise are observability and sensitivity. Neither of 
these are correlated to the choice of EKF. The analysis made is not expected 
to result in any different conclusions, should the same simulations be made 
with UKF.

The only filter that, during simulation, was able to estimate all states was the 
filter  with  4  states:  A,  B,  C and  D.  In  this  working  implementation  the 
parameter  E was considered constant at  its initial  estimation according to 
Section 4.3.

The system observability is overall low, which indicates that it  is hard to 
extract as much information as desired from the measured reference signal, 
tractive force, even with the reduced number of states. The impact of this is 
not so severe in the simulation case, since the parameters will move in the 
correct direction whenever there is information. In reality however, this will 
cause problems, since the available information is not always correct.
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A curve is required in order for the parameter D to be observable. However, 
this reduces observability for the rest of the states. High velocity provides C 
with better observability. Although A requires low values of this signal to be 
observable, something that seems to apply for B as well, even though not so 
distinct.

The removal of the acceleration and thereby also the speed as states results in 
the fact that the acceleration is considered an input signal to the system. In 
reality,  this  means  that  it  has  to  be  numerically  differentiated  from  the 
velocity,  since it  is the only available and related input signal.  Sensitivity 
analysis shows that the system is very sensitive to errors in the acceleration 
signal.  These  high  accuracy  requirements  on  the  acceleration  demand 
sophisticated methods for numerical differentiation, which will be presented 
in the next chapter.
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5
Acceleration

As described in Section 4.4.3.3, the acceleration of the train is a key signal in 
the task of parameter estimation for the running resistance. This chapter is 
therefore dedicated to this issue solely. As seen in Section 3.1,  the speed is 
among  the  available  data,  but  not  the  acceleration.  The  acceleration  can 
however be calculated from the speed in a number of different ways, some of 
which will be described and evaluated here.

The most straight-forward method for derivation of a sampled signal is the 
two-point differentiation. The drawback of this method is that all supposable 
noise will largely affect the result. A much more sophisticated approach is to 
use Kalman filtering to estimate the derivative. This method has very good 
noise reducing capabilities, but it is known to cause a time delay. The third 
method investigated here is the  smoothing spline approximation approach. 
This  way  of  finding  a  derivative  of  a  signal  is  found  not  to  have  the 
drawbacks of the other two to the same extent ([12]).

5.1 Two-point Differentiation

This simple derivation method is used as a reference since it gives the most 
instantaneous value with no account taken to the past except for one sample 
before the current one:

a k  =  
v k  −  v k−1

Δ t
[m/s2] (5.1)
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where

Δ t  =  tk  − t k−1 [s] (5.2)

Depending on sample-time this method is heavily affected by noise. One 
way of dealing with this is to pre-filter the speed signal with a low-pass filter. 
Without any noise at all it is however known to be a very good 
approximation method.

5.2 Kalman Filtering

Another way to determine the acceleration is to use the Kalman filter as an 
observer  for  the  acceleration.  If  the  states  consist  of  the  speed  and 
acceleration, which will be estimated by the filter, while the measured signal 
is the speed the following filter can be defined:

x  =  x v

xa y  =  v (5.3)

where xv and xa denotes the states for the speed and acceleration respectively. 
The time update for those states are then formulated as:

f  x k∣k ,0  =   x v , k∣kx a ,k∣k t
x a ,k∣k  (5.4)

Or, described as the matrix F:

F  = 1  t
0 1  (5.5)

where Δt is the time elapsed since the last update (5.2).

The  system function  is  simply  the  estimation  of  state  xv   which  will  be 
compared to the measured signal:

h  x k∣k−1  =  x v , k∣k−1
(5.6)

which gives
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H  = 1 0 (5.7)

The filter  is  updated according to  1.5.1.1 and can be tuned with the design-
parameters  Q and  R.  The  state  xa provides  an  updated  estimation  for  the 
acceleration in each time step.

5.3 Smoothing Spline Approximation

The idea here is to approximate the measured signal, in this case the speed, 
with an analytical function using regression. The derivative is then computed 
analytically from the fitted analytical function. A window of samples is used 
for the approximation and the window size has to be decided. 

In this project, the  Interpolate module of the Scipy package for  Python has 
been  used  for  this  derivation  method  (see  Section  1.8 for  details  on  the 
software used). The splrep function creates a cubic spline function from a set 
of  data,  with  a  smoothness  factor,  s,  controlling  the tradeoff  between 
closeness  and smoothness  of  fit. Following this  with  a  call  to  splev will 
return the value of the derivative in a given point, for instance the last point 
in the interval, x[-1]. An example would be:

tck = splrep(x, y, s=15)
deriv = splev(x[-1], tck, der=1)

where  x is  the  window of  time  samples  as  an  array,  and  y contains  the 
corresponding signal values.  See  [27] for a complete description of these 
functions.

5.4 Evaluation

The  speed  signal  for  simulation  described  in  Section  3.2 with  the 
corresponding analytical acceleration will be used for evaluating the above 
methods  of  derivation  in  simulation.  For  the  Kalman  filter  approach, 
different  design parameters,  Q and R, have been tested,  and were finally 
chosen, for evaluation against the other methods, as:
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Q  = (1 0
0 100) R  =  104 (5.8)

Three different window sizes of the spline approximation method will  be 
simulated, varying with the simulation setup (see below).

5.4.1 Noise

The estimations are here made from the analytical speed with added relative 
noise from a Gaussian distribution with a standard deviation of 1‰. Figure 
5.1 shows  the  analytical,  called  true,  acceleration  together  with  different 
estimations of it, for a small section of the full simulation, where the number 
after each spline approximation is the window size in seconds. 

Figure 5.1: The analytical acceleration together with the three  
estimation methods described, for a small section of the total  
simulation. The number after each spline is the window size in  
seconds.

Looking  instead  at  the  error  each  estimation  has,  as  in  Figure  5.2,  the 
closeness to the real acceleration can be better indicated. To really evaluate 
these  estimation  errors,  the  error  distributions  are  plotted  in  Figure  5.3, 
where  the  vertical  axis  is  the  number  of  samples  with  absolute  errors 
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according to the x-axis, which is logarithmic. It is clear that the smoothing 
spline approximation with a window of 64 seconds performs the best in this 
simulation.

Figure 5.2: The errors for the estimation methods.

Figure 5.3: The distributions of the estimation errors with a  
logarithmic scale on the x-axis.
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The above simulation was made with the assumption of a sample frequency 
of the speed of once per second. A higher sample frequency might improve 
the estimations, but the Gaussian noise added will also increase in frequency, 
making it harder for especially the two-point differentiation. 

As  stated  in  Section  3.1,  the  minimum  sample  time  of  the  speed 
measurement, by the equipment on board many Swedish freight locomotives, 
is 20 ms. The same simulation as above of the differentiation methods, but 
with a sample frequency 50 times higher, will produce error distributions for 
the different estimations as shown in Figure 5.4. Smaller window lengths for 
the  spline  approximation  method  apparently  perform  better  for  higher 
sampling frequencies, and a window size of 18 seconds is doing the best job 
in this particular case, with an error much smaller than the best estimation in 
the previous simulation with sample time of 1 s. 

Figure 5.4: The distributions of the errors of the simulated estimation  
methods where the sample time is decreased to 20 ms, instead of 1 s.

As  a  final  test  with  noise,  noticing  the  good  performance  of  the  spline 
approximation with 18 seconds window size and with a sample-time of the 
speed signal of 20 ms, the relative noise is increased with a factor 10, to a 
standard deviation of 1%. The result,  again shown as distributions of the 
errors of the estimation methods, is shown in Figure 5.5.
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Figure 5.5: Distributions of the estimation errors when the noise is  
increased to a standard deviation of 1%.

5.4.2 Time Delay

All measured signals has some amount of noise of one form or the other. But 
apart from noise, other type of errors could also be involved. Adding a time 
delay of 0.1 seconds to the velocity signal with sample time of 1 second, 
running the three types of estimations described above, error distributions as 
shown in Figure 5.6 appear. The errors will behave more oscillative than in 
the case of noise only, but the methods perform similar, ranking in the same 
order with the 64 s window spline approximation in the first place.

Simulating instead the higher sample frequency of 50 times per second, a 
time window of 32 seconds is doing well compared to the others, all shown 
as error distributions in Figure 5.7.

Indicated by this test is that even a short time delay can be problematic for a 
good estimation result. Important to bear in mind though is that an absolute 
time delay might not be the problem, but rather a relative delay, compared to 
other signals used. All depending on the system.
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Figure 5.6: Estimation error distributions for the three estimation  
methods with a time delay on the speed signal of 0.1 s.

Figure 5.7: Error distributions for the acceleration estimations when 
the speed is delayed 0.1 s and using a sample frequency of 50 Hz.

To show the errors caused by different time delays,  a table (Table  5.1) is 
compiled  showing  the  maximum  error  for  both  the  low  and  the  high 
frequency for a set of delays. For the low frequency of 1 Hz, the 64 second 
window for the spline approximation is used, and the 32 second one for the 
high frequency, 50 Hz.
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Maximum error [m/s2]
Delay [s] 1 Hz, Spline 64 50 Hz, Spline 32

0.1 1.6·10-3 8.5·10-5

0.2 1.8·10-3 3.31·10-4

0.3 2.0·10-3 6.31·10-4

0.4 2.26·10-3 9.40·10-4

0.5 2.52·10-3 1.24·10-3

Table 5.1:  Maximum errors for different time delays in the speed  
signal, for both 1 Hz sample frequency as well as 50 Hz.

5.4.3 Scale Error

As described in Section 3.1, if the speed is measured on a driven axle and the 
train is in traction, the creep, or slip, of the wheels is causing a scale error in 
the speed measurement of, in the worst case, up to 10%. Usually the creep is 
however much lower than this. Simulating a scale error on the speed of 5%, 
results  in errors as shown in Figure  5.8.  As with the other error types,  a 
sample frequency of 50 Hz is also simulated for this scale error of 5%, with 
results shown in Figure 5.9.

Figure 5.8: A 5% scale error added to the speed results in error  
distributions for the acceleration estimations as shown here.
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Figure 5.9: Error distributions of acceleration estimations made with  
20 ms sample time from speed with 5% scale error.

Obviously, the choice of method does not matter here and the errors are large 
compared to the other error types simulated. It is clear that an increase in 
sample  frequency  does  not  help  the  acceleration  estimations  –  only  the 
Kalman filter has a significant difference in its error distribution.

5.4.4 Conclusions

Shown by these simulations is that noise is the least of problems among error 
types in the speed signal, if the method and design parameters are chosen 
wisely. A time delay should not be the big problem either, for it is likely that 
it could be compensated for in the system. In the presence of either noise or a 
time delay, or  both, it is desired to access and use a speed signal with the 
highest possible frequency.

Shown by the  last  example,  it  is  highly  desired  that  the  speed  signal  is 
delivered  from  a  non-driven axle  on  the  train.  If  not,  using  only  the 
acceleration estimation during coasting is an option. Otherwise the slip must 
be known should this type of error, with low accuracy on the acceleration 
estimation as a result, be avoided. Also shown is that a decrease in sample 
time is not affecting the result in the presence of a scale error.
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6
Running Resistance with 

Acceleration Estimation

In  this  chapter,  a  few  simulations  of  the  running  resistance  parameter 
estimation are made utilizing the results on acceleration estimation from the 
previous chapter.

6.1 Recorded Data

To evaluate the running resistance parameter estimation and get an indication 
of how usable it is in reality, a data recording from a running train is used. 
This section evaluates results from such a recording with a discussion about 
the possible problems.

6.1.1 The Data

Recorded data of a coasting train was provided by Transrail. The train was 
brought up to a speed of 20 m/s, traction effort set to zero, the recording of 
signals started, and the train was let rolling until it almost hit zero speed after 
about 300 seconds, i. e. 5 minutes. 

The train used was 2 IORE locomotives with 68 empty  Fanoo ore wagons 
(see Section  3.2.4 for details on IORE and  [29] on details of the Fanoo). 
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Signals  recorded from this  coasting experiment  are  plotted in  Figure  6.1, 
showing the speed,  v, the curve radius,  r, and the gradient,  G. The sample-
time during the recording was 1.16 seconds.

Figure 6.1: Signals from coasting recording.

6.1.2 Online Identification of Running Resistance 

An EKF setup as in Section  4.4.3, with 4 states for the parameters  A,  B,  C 
and D, is used. The reference signal, the tractive force, Ft, is set to zero for 
the whole simulation, and the acceleration is estimated from the speed with 
the  smoothing  spline  approximation  method  described  and  evaluated  in 
Chapter 5.

6.1.2.1 Results

A simulation of the filter and recorded data described above will result in the 
parameter behavior as shown in Figure  6.2, where the parameters are not 
normalized. The end values of all parameters are 69,000, 4,400, 1,600 and 7 
for  A,  B,  C and  D respectively.  Variances of the parameters are shown in 
figure 6.3 indicating lack of observability, something that is also indicated by 
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the nullspace projection plots in Figure 6.4.

Figure 6.2: Parameter behavior for the EKF with recorded data.

Acceleration  estimations,  made  from  the  recorded  speed,  with  Kalman 
filtering and smoothing spline approximation is shown in Figure 6.5, where 
the spline estimation with a 64 second window is the one used in the filter.
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Figure 6.3: Variances of the parameters in the simulation with  
recorded data.
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Figure 6.4: Nullspace projection length of each parameter.

Figure 6.5: Acceleration estimations from the recorded speed signal.  
The number at each spline is the window length in seconds.
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6.1.2.2 Discussion

Shown by the variance and nullspace projection plots (Figure  6.3 and  6.4) 
are that parameter A is suffering from lack of observability during the whole 
run, except in the very end of the simulation. In the end the speed drops 
which increases observability for A, but decreasing observability of C. This is 
all in agreement with the observability analysis made in Section 4.4.3.2.

All parameters except A show a deviation from the initial value of 1000% or 
more during the run. Parameter A off with around 100% at its worst (in the 
end). Parameter  C and  D experience negative values at some point. If this 
was true it would mean that the corresponding part of the running resistance 
is  actually  pushing  the  train  forward.  This  is  of  course  impossible,  and 
clearly shows that parameter estimation of the running resistance with EKF 
of this train, with this recording, is not possible with a satisfying result.

There are several possible causes for the unsatisfying result. When leaving 
the simulated world, many phenomenon are introduced, such as:

● Noise and other signal disturbances
● Model flaws
● Errors in the train configuration constants
● Acceleration estimation difficulties

In a normal case, slip would be present during traction, further obstructing 
the parameter convergence.

Possible improvements for a better result would include primarily using the 
maximum possible frequency of the velocity signal, much higher than in this 
recording. In addition to that, using both GPS velocity and Teloc velocity in 
sensor  fusion  could  further  increase  the  accuracy.  The  accuracy  in  the 
velocity signal is important for the acceleration estimation. It might also be 
possible to measure the acceleration explicitly with extra sensors. 

Better  accuracy  of  constants  related  to  the  train  configuration,  including 
weights  of  locomotives  and  wagons  and  their  rotary  inertia  could  also 
contribute to better parameter behavior.
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6.2 Simulation

A  demonstration  of  the  acceleration  estimation  and  its  impact  on  the 
parameters in the running resistance filter will be presented in this section.

Shown  in  Section  4.4.3.3,  the  running  resistance  estimation  is  highly 
sensitive to errors in the acceleration, and the acceleration is estimated from 
the speed. To evaluate the combination of the EKF parameter estimation for 
the  running  resistance  and  the  best  performing  acceleration  estimation 
compiled in Chapter 5, two simulations will be made. The acceleration will 
be computed from a perfect velocity signal with no errors, and then inputted 
to  the  filter  along  with  the  other  signals  without  any  errors  added.  The 
signals will be according to Section 3.2. 

6.2.1 Sample Time: 1 s

In the first experiment, the speed signal is assumed to be available with a 
sample time of 1 s, and everything will therefore be run with this frequency. 
The result is shown in Figure 6.6, where the parameters are plotted. Seen in 
this figure are parameter deviations of more than 200%, and no indication of 
convergence  to  the  correct  values  is  seen.  Only  A is  staying  within  a 
reasonable variation. The maximum error in the acceleration is 0.0014 m/s2.

Figure 6.6: Parameter behavior when simulating with acceleration  
estimation from a perfect speed signal with a sample time of 1 s.
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6.2.2 Sample Time: 20 ms

In the same manner as in the acceleration evaluation in Chapter 5, the sample 
time is decreased to 20 ms as this is the maximum frequency of the measured 
speed  signal  from the  available  equipment  (see  Section  3.1.1).  The  filter 
simulation is still run in 1 Hz, but the acceleration is computed 50 times per 
second. The result can be seen in Figure 6.7, where it is clear that this sole 
change in the simulation setup had a huge impact on the parameter behavior. 
After the time where the first curve appears, around 500 seconds into the 
simulation, all parameters except B shows a maximum deviation of 2% and 
B are regularly peaking 3.5% away from its correct value. The error in the 
acceleration is now less than 9·10-6 m/s2.

Figure 6.7: The parameter convergence when the acceleration is  
computed from a correct speed signal every 20 ms.

6.3 Conclusions

The overall low system observability demands high accuracy in measured 
signals along with model correctness. The results  of parameter estimation 
from recorded data indicates that these accuracies are not at all satisfying in 
the real world. Noise and errors of the measured signals are too high in order  
to estimate the parameters with the presented setup.
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6 Running Resistance with Acceleration Estimation

The biggest problem is lack of accuracy in the acceleration signal, because of 
the system's high sensitivity for it. The second part of this chapter illustrates 
an important  point:  If  it  is  assumed that  an acceleration estimation made 
from a speed signal with some errors (as always in reality) will be worse than 
one made from a perfect speed signal, then the simulations show clearly that 
the high frequency of the speed signal (50 Hz) is absolutely necessary for a 
satisfying result of running resistance parameter estimation with EKF (and 
the models and signals as described).
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7
Adhesion

In the same way as for the running resistance, parameter estimation for the 
available adhesion is investigated in this chapter.

7.1 Deducing a System Model

The model for adhesion (2.21) is describing the current maximum available 
adhesion as a function of the current maximum friction, µmax (that varies in 
time and space), the locomotive's slip control and its ability to stay close to 
the maximum friction, κ, and the speed, v:

max v ,max  = maxX   1
YZ v  [-] (7.1)

Combining this with the model for the maximum adhesive force, (2.20), the 
current  limit  for  the  propelling  force  at  the  wheel  rims  of  each  axle  is 
acquired:

F t , max , j v ,max  =  Q jmax , jX    1
YZ v  [N] (7.2)

If the slip control system cuts in and limits the tractive effort, it means that 
the tractive force has hit the limit caused by the current available adhesion, 
and the tractive force, (2.15), will then be equal to the maximum adhesive 
force:
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7 Adhesion

F t , max  =  F tJ (7.3)

resulting in:

Q jmax , jX   1
YZ v  = F t , j  −  K J , j a 1 j (7.4)

which now involves the tractive force, Ft, that is one of the available signals. 
Although nothing can be said about the slip, ζ, with the data available, thus a 
simplification of removing this factor is made.  The slip is normally a few 
percent, but if the adhesion is very low it can be up to 10%. Extracting Ft and 
looking at the total expression instead of each individual axle, a final system 
model for the parameter estimation is acquired:

F tv , a ,max  =  ∑
j=1

nd

Q jmax , jX   1
YZ v    ∑

j=1

nd

K J , j a [N] (7.5)

where nd is the number of driven axles.

7.2 Initial Parameter Values

It  is  important  to  have  good  initial  values  for  the  state  variables  in  the 
extended Kalman filter ([6]). In this case, the initial values for the parameters 
X, Y and Z can be found in the empirical equation describing the adhesion for 
dry rail computed by Lukaszewicz in [1]:

X  =  0.161
max

[-] (7.6)

Y  =  
44max

7.5
[-] (7.7)

Z  =  
3.6max

7.5
[-] (7.8)

92



7 Adhesion

7.3 Online Identification

In order to identify the current maximum adhesion online on a running train, 
extended Kalman filtering will be the approach for investigation (see Section 
1.5.1.1 for  a  description of  the  EKF).  The EKF will  continually produce 
estimations for the parameters chosen, thus adapting the model to the current 
locomotive.

In  this  investigation  of  EKF  for  the  adhesion,  µmax will  be  regarded  as 
constant. This is a major simplification, but necessary here due to the lack of 
information and signals. If the slip were among the available signals,  µmax 

could be estimated as described in [9]. µmax will be set to 0.7 and κ to 0.8.

The simulations will  also be made with the assumption that the model is 
valid  for all signal values and that all conditions for it to be valid are met. 
This is to ease a clear analysis of the filter and its behavior. This will mean 
that the slip control system will be considered active all the time and that the 
model will be assumed valid when the train is in breaking mode as well. This 
assumption will not lead to any errors in these simulations, for the model is 
here considered absolutely correct.

The parameters in the adhesion model are not expected to vary much in time, 
but  rather  on  different  locomotives.  This  means  that  the  parameters  are 
expected  to  lie  steady  once  they  reach  their  correct  value,  for  a  certain 
locomotive.  However,  it  is  important  to  keep  in  mind  that,  in  reality, 
disturbances can affect the train configuration differently over time, which 
could result in varying parameters.

In the evaluation simulations below, the “real” train is assumed to differ in 
the parameters from the initial values by 10%.

7.3.1 A First Approach: EKF with 3 States

Like in the case of the running resistance, having the Kalman filter estimate 
the acceleration together with the parameters will not be a good idea for the 
same reason (only the sum of X and a can be observed). The acceleration is 
instead derived from the velocity as described in Chapter  5, and the state 
vector,  input  signals  and  reference  signal  for  the  initial  Kalman  filter 
approach becomes:
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7 Adhesion

x  = (X
Y
Z ) u  =  (va) y  = F t (7.9)

Further,  with  this  defined,  the  state  update  function  f,  the  F-matrix,  the 
system function h, and the H-matrix, becomes:

f  x k∣k ,0  =   X k∣k

Y k∣k

Z k∣k
 (7.10)

F  = (1 0 0
0 1 0
0 0 1) (7.11)

h( x̂ k∣k−1 ,uk )  = ∑
j=1

nd

Q jμmax , j κ( X̂ k∣k−1+
1

Ŷ k∣k−1+Ẑ k∣k−1 vk ) +  ∑
j=1

nd

K J , j a k

(7.12)

H  = ∑j=1

n d

Q jmax , j
−∑

j=1

nd

Q jmax , j

 Y k∣k−1 Z k∣k−1 vk 
2

−vk∑
j=1

nd

Q jmax, j

 Y k∣k−1 Z k∣k−1v k 
2  (7.13)

The filter will be updated according to Section 1.5.1.1 and can be tuned with 
the design-parameters Q and R, which are here chosen as:

Q  = 10−4 0 0
0 1 0
0 0 1 R  =  1010 (7.14)

Using  the  estimated  parameters  an  estimation  for  the  current  maximum 
adhesion could be calculated with (7.1).
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7 Adhesion

Figure 7.1: Parameter behavior of EKF for the adhesion states X, Y  
and Z.

7.3.1.1 Results

Simulating the behavior of this filter with the simulation signals described in 
Section 3.2, the parameters will behave as shown in Figure 7.1 (normalized). 
Shown by this figure is that none of the parameters converge toward their 
true value and both Y and Z has an oscillating behavior.

7.3.1.2 Problems

The simulation indicates poor observability.  Plotting the variance of each 
parameter  (the  diagonal  elements  of  the  P-matrix  in  the EKF),  shown in 
Figure  7.2, a diverging behavior over time for all parameters can be seen, 
especially  for  X,  indicating  lack  of  observability  as  described  in  Section 
1.5.3.1.
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7 Adhesion

Figure 7.2: Variances of X, Y and Z.

The parameters Y and Z have a coupled behavior, oscillating similar to each 
other.  Mathematically,  as  seen  in  the  H-matrix  together  with  the  EKF 
definition, a change in one of these parameters will affect the gain of the 
other.

7.3.1.3 Possible Solution

A way of increasing the possibility to gain observability, along with better 
convergence of the parameters, is to freeze one of the parameters and thus 
reducing the number of states to be estimated in the filter. As Y and Z has a 
coupled  nature,  one  of  these  would  be  a  candidate  for  removal.  The 
corresponding values for  Y and  Z in the empirical adhesion models for dry 
and wet rail in [1] are indicating higher dynamics for Z than for Y. Z is also 
tied  to  the  speed  dependence  of  the  model,  and  keeping  this  parameter 
creates  a  possibility  for  different  speed  dependencies  of  the  maximum 
adhesion for different locomotives.
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7 Adhesion

7.3.2 Removing Parameter Y

Removing Y from the states of the previous filter, the new EKF setup for the 
state-vector, input signals and reference signal will become:

x  = (X
Z ) u  =  (va) y  = F t (7.15)

Further, the state update function f and the F-matrix becomes:

f  x k∣k ,0  =   X k∣k

Z k∣k  (7.16)

F  = (1 0
0 1) (7.17)

Freezing the Y parameter will result in putting its initial value as a constant, 
Ŷ 0 , in the system function h:

h( x̂ k∣k−1 ,uk )  = ∑
j=1

nd

Q jμmax , j κ( X̂ k∣k−1  +  1
Ŷ 0+Ẑ k∣k−1v k)  + ∑

j=1

nd

K J , j a k

(7.18)

Finally, the matrix H, becomes:

H  = (∑j=1

nd

Q jμmax , j κ
−v k∑

j=1

nd

Q jμmax , j κ

(Ŷ 0+Ẑ k∣k−1 vk)
2 ) (7.19)

The filter will be updated according to Section 1.5.1.1 and can be tuned with 
the design-parameters Q and R, which are here chosen as:

Q  = 10−4 0
0 1 R  =  1010 (7.20)

Using the estimated parameters an estimation for the current maximum adhesion 
could be calculated with (7.1).
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7.3.2.1 Results

Simulating this new filter and plotting the parameters once again, now only 
X and  Z,  produces the behavior seen in Figure  7.3. A fast convergence of 
both parameters can be observed, with no oscillating behavior, staying within 
an error of less than 0.2‰ after 380 seconds.

Figure 7.3: Parameters for EKF of the adhesion with X and Z as  
states.

7.3.2.2 Observability

The problems with observability has decreased compared to the three state 
filter,  as  can  be  seen  in  Figure  7.4,  showing the  variances  of  the  states. 
However, the problem still suffers from periodic lack of observability. Lack 
of observability for a state is shown by linearly increasing variance for that 
state according to Section 1.5.3.1. The variance estimation of the EKF shows 
that  when one parameter  increases  its  observability,  the other  one suffers 
from  loss  of  observability  and  vice  versa.  An  important  observation, 
however, is that the variance of the states does not seem to diverge as for the 
three state filter shown in Figure 7.4.
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Figure 7.4: Variances for X and Z.

7.3.2.3 Sensitivity

The system model is differentiated with respect to the input signals according 
to Section 1.5.4, to gain insight in how errors in the input signals will affect 
the output signal.

H w  = ∇u h x , u T  =  

( −κ Ẑ k∣k−1

(Ŷ 0+Ẑ k∣k−1v k)
2∑

j=1

naxd

Q jμmax , j     ∑
j=1

naxd

K J , j) (7.21)

The two elements  of  Hw provides  an  indication  of  how much the  output 
signal, in this case the estimation of the tractive force, will be affected by 
errors in the input signals,  v and  a respectively. The size of these elements 
are studied for the simulation setup provided, which can be seen in Figure 
7.5. 

The system is significantly (5 to 10 times) more sensitive to errors in the 
acceleration input signal. An error of 1 m/s2 would result in an estimation 
error of 52 kN, as can be seen in the second plot of Figure 7.5.

Since the acceleration signal is not provided among the available signals, it 
will be derived from the velocity, thus moving the accuracy demands onto 
the velocity signal and the method of estimating the acceleration from it.
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7 Adhesion

Figure 7.5: The elements of Hw showing how errors in the input  
signals affect the output signal, tractive force.

7.4 Conclusions

In order to at least achieve local observability of all parameters, one state has 
to be removed from the original three state model for the simulation setup. 
The parameter behavior of the two state filter is satisfactory; the parameters 
converge toward their desired values.

Lack of observability seems to be a problem, studying the behavior of the 
state variance estimation in Figure 7.4. For the simulated environment, this 
does not cause any major problems, but will only delay the time it takes for 
the  parameters  to  reach  their  desired  values.  In  the  real  world  however, 
disturbances  will  affect  the  system  and  increase  the  impact  of  the 
observability issues.
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8
Conclusions & Future Work

This chapter will  wrap up the thesis  in a concluding section followed by 
possible interesting matters to further investigate, called future work.

8.1 Conclusions

The  most  challenging  problems that  arise  with  the  online  prediction  and 
parameter  estimation  of  the  running  resistance  are  observability  and 
sensitivity.  The number  of  states  observable  from the  available  signals  is 
limited, ending in a model with four estimated parameters. The observability 
problems arise when these four parameters of the running resistance, only 
separated by the input signals, are to be estimated using only one reference 
signal, tractive force. In addition, because of the large masses involved, this 
tractive force signal consists mostly of the accelerating force rather than the 
running resistance which is the interesting part for estimation. This makes 
small variations of the acceleration of the train correspond to large forces, 
which defines the sensitivity problem.

Just as  the running resistance,  the parameter  model  for adhesion with its 
available input signals suffers from observability problems. The investigation 
leads  to  a  filter  with two estimated  parameters,  for  a  satisfying  result  in 
simulation.

For both the running resistance and the adhesion, the observability problems 
will be much more severe in reality than for the simulated case. With added 
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8 Conclusions & Future Work

disturbances,  lowering  the  accuracy  of  the  measured  signals,  more 
information  is  desired  in  order  to  observe  the  real  values  of  the  sought 
parameters.

To  further  improve  the  observability,  there  are  a  few  different  paths  to 
investigate. One way is to further reduce the number of states. Another way 
is to provide additional information by adding more signals, for instance by 
adding extra sensors. If new, or additional, models were introduced using 
different calculations or other possibly available signals, that could also be a 
way of increasing observability for the desired parameters. 

In  order  to  solve  the  sensitivity  problem,  a  very  high  accuracy  in  the 
acceleration signal is needed. The best way to derive the acceleration with 
the provided signals is by numerically differentiating the velocity signal. The 
analysis  in  Chapter  5 indicates  that  the best  way of  doing this  is  with a 
smoothing spline approximation. A slip free velocity signal (measurement on 
a non-driven axle, or using GPS) with good accuracy and high frequency (50 
Hz) is desired in order to estimate the acceleration with a satisfying result.

Worth to be mentioned is that these two main problems are connected in the 
sense  that  poor  observability  puts  a  high  demand  on  the  quality  of  the 
information. Since information is only seen during limited windows in time, 
it's important that it is valid during that time. With high observability, higher 
variance  of  the  measurements  wouldn't  have  the  same  impact  on  the 
estimations.

8.2 Future Work

Acceleration

Further  study  of  the  possibilities  of  increasing  the  accuracy  of  the 
acceleration  has  the  potential  of  greatly  improving  the  estimation  of  the 
running resistance. One way of further investigation would be to study the 
possibility of explicit measurement of the acceleration adding extra sensors.

In  the  case  where  the  acceleration  is  estimated  from the  velocity  signal, 
investigations  on  how to  further  improve  this  could  be  valuable.  Sensor 
fusion using both GPS and Teloc speed signals, along with perhaps also a 
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doppler radar, could be used.

Gradient

The GPS signal of the altitude has been evaluated to the extent that it seem to 
provide data enough to make an estimation of the gradient close to the one 
provided by BIS. Further use of this information by using sensor fusion, with 
for instance Kalman Filtering, to improve the accuracy of the gradient signal 
might very well be possible.

Since  BIS is  not  known to be  updated  very quickly,  nor  always  provide 
highly reliable  data  according to  [8],  it  could  definitely be  of  interest  to 
further  investigate  the  possibility  of  recording  an  own,  independent, 
database.

Curve Radius

In a similar manner as for the gradient signal, calculation of the curve radius 
from the GPS information could be implemented, with possibilities of the 
same benefits; better accuracy and recording a more flexible database.

Slip

Methods for measuring and estimating the slip is an important field of further 
investigation. Measurement of the velocity on both a driven and a non-driven 
axle  could  give  valuable  information.  Research  ([1])  has  also  shown  a 
relation  between  the  slip  and  the  tractive  effort.  If  train  speed  was  also 
measured  utilizing  other  methods  such  as  doppler  radar  technology,  the 
difference in speed of a driven wheel and the train, thus the slip, could be 
estimated.

Adhesion

The major simplifications made in the adhesion model in this thesis demands 
further studying of both slip and the maximum friction. The latter could be 
estimated via the slip, described in [9], where the derivative of the adhesion 
with respect to the slip is used to determine the maximum friction, μmax.
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Further Filter Evaluations

If recorded data with higher data rates were available, it would be interesting 
to evaluate different filters more thoroughly. Not least a three parameter filter 
for the running resistance.

It could also be interesting to evaluate if UKF performs better than EKF in 
the implementations presented. The running resistance model is not assumed 
to consist of any particularly problematic nonlinearities. The problems lie in 
areas  as  observability  and  sensitivity,  wherefore  UKF is  not  expected  to 
provide significant increased performance, however evaluation of this could 
still be interesting.
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A
Description of CATO

(As described in the CATO Leaflet from Trainsrail Sweden AB, 2009, with a  
modification of the driver's interface to the latest)

CATO (Computer  Aided  Train  Operation)  provides  a  traffic  management 
system  allowing  trains  to  run  as  efficiently  as  possible  considering  the 
overall traffic situation on a railway line. 

– CATO  consists  of  two  modules,  CATO-TRAIN  and  CATO-TCC 
(Traffic Control Centre).

– Aimed both for train operators and infrastructure administrators.

– CATO-TRAIN  can  be  operated  together  with  CATO-TCC  or 
standalone.

– Follows the European EETROP (Energy Efficient TRain OPeration) 
draft interoperability standard.

– Developed by Transrail with funding from the Swedish National Rail 
Administration and LKAB.

Trials on the LKAB iron ore railway lines have rendered the following

– Reduced energy consumption by 20-25%.

– Increased line capacity by 10%.

– Reduced maintenance cost for brakes by 30%.

If applied to the Swedish railway system, this would yield yearly savings in 
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the order of 34 MEUR.

Other benefits

– Increased regularity and punctuality.

– Reduced CO2 emissions (diesel powered trains).

– Improved utilization of rolling stock and crews.

– Better working environment.
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B
Teloc Velocity Measurement

Speed measuring procedure

(The following is a clipping from [13])

According to the actual speed, two criteria, “Low Speed” and “High Speed”, 
form the base for speed calculation.  If,  with rising speed,  the number of 
pulses rises above 400 pulses per second (pps), the system switches to the 
“High Speed” criterion; if, vice versa, the number of pulses drops below 320 
pps, the system switches to the “Low Speed” mode.
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In “Low speed“ mode, the speed is computed from the time between two 
pulses,  whereas  the  first  pulse  launches  a  counter  being  stopped  by the 
second pulse. The actual speed is then differentiated from the counter value. 
If no further pulse is registered until the counter reaches its maximum value 
(FFFF), this is defined as vehicle standstill or zero speed.

In “High speed“ criterion, the speed is computed from the number of pulses 
registered in a 250 ms time slot.

Each frequency generator (sensor, probe) is hardwired to a pulse input of the 
TELOC®. Each pulse input is configured as analogue input, allowing the 
interpretation of the measured frequency. The maximum possible frequency 
is computed from the configured target speed using the formula below:

F max  = 
vend z

3.6π d

Fmax Maximum frequency [Hz]

vend Needle deflection [km/h]

z  Number of pulses (positive edges) during one wheel revolution

3.6 Conversion factor m/s → km/h

d Wheel diameter [m]

The  real  recorded  (and  indicated)  speed  is  proportional  to  the  measured 
frequency. In case of a wheel diameter correction, the speed is corrected by 
the “actual wheel diameter / nominal wheel diameter” factor. 

The covered distance is incremented every 20 ms with the real speed:

Distance increment = Real speed * 20 ms

The overall covered distance is the sum of all distance increments.

Should it be the case that the speed originates from the frequency inputs then 
the following formula is valid for the distance calculation.

S n  =  mn ds k

Sn Distance traveled in the measurement interval n. [m]

mn Number of impulses (positive flanks) on the transmitter frequency 

112



Appendix B

input, during the measurement interval n.

ds Distance element per transmitter pulse. [m]

k Correction factor (wheel diameter).

Acceleration with frequency inputs:

a  = 
v t−v t−Δ t

Δ t
where Δt = 1s.

Different configurations are possible:

1. Pulse generator: The measured frequency is used to compute speed 
and distance as well as the operating direction.

2. Pulse generators mounted on the same or on different axles: By 
default, the higher frequency is used to compute speed and distance.

3. Pulse  generators,  2  pulse  generator with  2  sensors  each,  both 
pulse generator mounted on different axles: First, the sensors are 
compared  internally  in  each  pulse  generator.  Then,  the  higher 
frequency is  compared with the  other  pulse generator.  The sensor 
producing  the  highest  frequency  is  used  for  speed  and  distance 
calculation.

Further  configurations  are  feasible  on  customer  demand  (e.g.  2  pulse 
generators on the same axle and the speed is transmitted by a vehicle bus). In 
these cases, the speed calculation criteria have to be defined mutually by the 
customer and HaslerRail.

Pulse generator monitoring and frequency selection

Usually, the two sensors used for speed acquisition are delivered with the 
output signals electrically shifted by 90°. The operating circuit computes the 
vehicle’s direction from this phase shift.
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(End of the clipping)

Velocity calculation

From the description above of the pulse measuring procedure, the equations 
that Teloc uses to calculate the velocity is deduced:

v=d π
t z

in “Low speed“ criterion and:

v= 4 p d π
z
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in “High speed“ criterion, where:

v Speed. [m/s]

d Wheel diameter. [m]

t  The time between two pulses. [s]

z  Number of pulses (positive edges) during one wheel revolution.

p Number of pulses registered in a 250 ms time slot.

These equations are confirmed by [30].
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